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Abstract—This letter devises a physics-informed neural hier-
archical control for uncertain networked microgrids (NMs) to
provide certificated safe and stable control of NMs undergoing
disturbances and uncertain perturbations. The main contribu-
tions include 1) a learning-based hierarchical control framework
for inverter-based resources (IBRs) in NMs under unprecedented
uncertainties of renewable energies; 2) a robust control Lyapunov
barrier function (rCLBF) to provide provable safety and stabil-
ity guarantees under uncertain scenarios; 3) an rCLBF-based,
physics-informed learning scheme to simultaneously discover the
certificates and control policy with explicit safety, stability, and
robustness guarantees, enabling certified generalization beyond
nominal operating scenarios. The efficacy of the rCLBF-based
neural hierarchical control is thoroughly validated in different
NMs cases.

Index Terms—Networked microgrids, learning-based control,
certified control, microgrid stability, robust control.

I. INTRODUCTION

ICROGRIDS and networked microgrids (NMs) are

facing increasing control challenges with the integra-

tion of massive inverter-based resources (IBRs). The strongly
nonlinear dynamics of IBRs and their reduced inertia can sig-
nificantly deteriorate the system’s stability. The unprecedented
uncertainties from renewables also impact the IBR operations
and would force the system to unsafe states. Existing model-
driven control methods for NMs, either linearization-based [1]
or Lyapunov function-based, are found hard to handle the un-
foreseen large disturbances and uncertain scenarios. Recently,
learning-based control has been introduced in power system
control [2] to explore their potential for being generalizable to
new operating conditions. However, most existing learning-
based control employs a posteriori verification module to
check the system’s stability, which retards the training process.
Some learning-based control techniques incorporate certifi-
cates to prove the soundness of learned controllers, which may
fail under uncertain scenarios unseen in the training process.
To tackle the challenges, this letter devises physics-informed
neural hierarchical control for uncertain NMs to ensure large-
signal stability and nonlinear safety requirements under sce-
narios with bounded uncertainties. A robust control Lyapunov
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barrier function (rCLBF) is constructed for NMs under uncer-
tainties from renewables to explicitly and rigorously certify
the safety and stability, and an rCLBF-based, physics-informed
learning approach is established to train the safety and stability
certificates and control strategies simultaneously.

II. NEURAL HIERARCHICAL CONTROL OF NMS

Mathematically, the hierarchical control for DER i €
{1,..., N} is formulated as:
wi =w; —myp(P — P+ Ap;) +
Ei=E; —ngi(Qi — Q) +e
Here, w;, E;, P; and Q); respectively denote the angular speeds,
output voltage magnitudes, active power, and reactive power of
distributed energy resources (DER) i; superscript * denote the
nominal values; m,, ; and n,; denote the droop coefficients;
Q; and e; respectively denote the secondary control signals.
Specifically, Ap; represents the impact of uncertainties from
renewables on DER’s power generation, making the NMs an
uncertain dynamic system.

Denote u = [Q1, s, ..., Ay, €1, €2, ...,en]T as the assem-
bling of the secondary control signals of all DERs. Tradi-
tional methods usually design the control rules of w based
on linearized system models. Although such methods can
guarantee small-signal stability, NMs behaviors under large
disturbances can not be certificated, let alone the system’s
safety and stability under heterogeneous uncertain scenarios.

To bridge the gap, we design a learning-based control
policy for w to establish neural network-represented secondary
control signals for DERs:

u=ms(X) )

Here, 7} denotes the policy neural network parameterized by
«; X denotes the NMs state variables, which are selected as
the input of 7} (see details in Subsection III-A). By properly
training 7%, u will be designed to ensure the system’s stability
and safety even under uncertain scenarios, as discussed in

Section III.
III. PHYSICS-INFORMED LEARNING FOR NEURAL

HIERARCHICAL CONTROL
A. rCLBF Certificates for Uncertain NMs
This subsection establishes the rCLBF certificates for an un-
certain NMs system to provide theoretical safety and stability
certificates under uncertain operating scenarios.
The uncertain NMs system under neural hierarchical control
(i.e., (1)) is functionally formulated as:

VoeO : X =f(X,0)+g(X,0)mi(X) (3

(D
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The rationale of modeling the NMs as a set of ordinary
differential equations (ODE) in (3) is detailed in [3]. Basically,
considering the load and branch dynamics in NMs, such an
ODE-based formulation is rigorously equivalent to the original
differential algebraic equation (DAE)-based model [3]. In (3),
X € x C R” denotes the NMs states; 7 : RY — RN
denotes the neural control policy in (2); f and g are functions
describing the NMs dynamics and are assumed to be locally
Lipschitz; 6 denotes the uncertain parameters of NMs (e.g.,
Ap; in (1)) and © denotes the set of possible values of the
uncertainties. We assume that © is a convex hall.

To theoretically certify the stability and safety of NMs in
arbitrary uncertain scenarios, we introduce the robust control

following loss function is constructed to train wg and 74
simultaneously:

Lyapunov barrier function (rfLBF) theory [4].

Denote * = X — X.(0) where X.(6) denotes the equi-
librium point of the NMs under uncertainty 6. A function
V : x — R is defined as a|rCLBF for the NMs in (3), if
it satisfies:

Vo S O: V<wgoal) =Y, (:B) >0 Vae X\mgoal (4a)
inf LiV+LVutAV <0 Vo € x\Tgour  (4b)
V(z) <c T € Xsafe (4c)
V($) >c Vx € Xunsafe (4d)

convergence rate. The safety |certificate is guaranteed by the
barrier function requirements in (4c) and (4d), where ¢ denotes
a hyperparameter describing the safe level. The robustness
characteristic is guaranteed pecause (4) is required for an
arbitrary uncertain scenario 6|€ ©.

On the one hand, it can be proved that any control policy
mi(x) € {u|L;V 4+ LyVu+ AV < 0} will be both safe and
stable! when executed on NMs specified by f and g with
uncertain parameters 6 € © [4]. On the other hand, as © is a
convex hull of the uncertain parameters, the learned controller
is safe and stable in any scenatios from the convex hull as long
as the vertex scenarios are gharanteed [4]. Correspondingly,
the rCLBF-based neural hierarchical control of NMs, if sat-
isfying (4), can provably stabilize the uncertain NMs without
any safety violation under uncertain scenarios in O.

B. Physics-Informed Co-Learning of rCLBF and the Control
Policy

This subsection develops a physics-informed training pro-
cess to learn rCLBF (i.e., V(z) in (4)) and the neural control
policy (u in (2)) in a simultaneous manner.

Denote 7'('23/(33) as the rCLBF certificate neural nerwork. The
rCLBF is designed as V(z)| = hT(x)h(z), where h(x) is
the activation function of the last hidden layer of w};. The

By “safe and stable”, we mean [4]{ for every initial state 20 || tlim z(t)—
el

Zgoal|| = 0: For all t2 > t1 > 0, z(t1) € Xsafe implies (t2) € Xunsafe-

min £ = Lrcrpr + 7Ly @)
where each loss term is defined as:
Lrcrpr = L1+ Lo+ L3+ Ly (6a)
El(ﬂ) = V(xgoal)2 (6b)
e 1 as
= — L
Lo(a, B) 25, (Ntmm ;0(6 + LyV(x)
+ L,V (x)my(z) + AV (2))) (6¢)
Ns
LB =S [ Y N v p\\ (6d)
; Ng \Nsafe JJELXZLfe
| a
- F (s ¥ e vin) w
i—1 Ng unsafe L€ X unsafe
Eu(a) - ||U(3§') - unominalH2 (6f)

where v, a;~as, €, A and c (i.e., the safe level) are positive hy-
perparameters of the algorithm; ng denotes the number of un-
certain scenarios to ensure the control robustness. Specifically,
L,.cr.er is the rCLBF-related loss function [4] to enforce (4)
to be satisfied by £, ~ L4, where o(x) = max(z,0) denotes
the ReLU function, and the strict inequality satisfaction is
ensured by e. £, provides a training signal for the policy
neural network 7, where Unominal 1S @ nominal controller(e.g.,
the LQR policy).

Consequently, wg and 7, will be jointly trained by min-
imizing (5). The small weight applied to £, ensures that
the training process prioritizes satisfying the Equation (4)
conditions. By every I epoch, new training samples will be
generated using the currently trained 7. Fig. 1 summarizes
the overall architecture for the training process.

Microgrid Model X=f(X 0)+9(X, O)myX)
MG

@ {@%%DDEEQD

n; onstraint
gooo-n

Xsafe

1
Uncertainties
t
Microgrid Trajectory Pool
Proof

Certificate
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> rCLBF V(x) Policy NN —> 7, (x)

H Loss function |

Fig. 1: Architecture of the physics-informed training process of the safety-
and-stability-certified neural hierarchical control

((Stability certificate )
\_ ( Safety certificate )

C. Algorithm Flow

The pseudo-code for the proposed method is given in Algo-
rithm 1. The hyperparameters to be pre-determined are c, A, €
and the size of the rCLBF neural network wg and the control
policy neural network 7%. A nominal controller is utilized
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to
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To
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senerate NMs trajectories for initialization. Training data

sampled from the state space covered by the trajectories.
improve the training performance and broaden the space
ered by training samples, we specify fixed percentages of

ning points sampled from the goal, safe, and unsafe regions

use the learned controller to regenerate new training

samples to improve the training performance after several

epq

chs.

A

gorithm 1: Learning controller with certificates

10
11
12

13

Require: NMs parameters set O, learning rate «, batch
size H, epochs I per episode and total epochs K
Input: NMs initial states, safe region, unsafe region and
system model (3) and initial weights ¢ for network
Training samples generation:
T = f9 (ZL‘) + goUnominal — Tgoaly Tsafey Lunsafe
br current_epoch = 1 to K do
for i = 1 to ns do
Calculate descent loss with uncertain parameters:
Lo, V(@) + Lgy, V(2)u(z) + AV (2)

end /

Calculate total loss of all the batches

Loss = Leorpr + BLu

Update weights in the neural network by passing Loss

to Adam optimizer

Output V (z) and 7, (z)

if current_epoch % I == 0 then

Update training samples :
x &= fo(x) + gome(x)

end

14 end

15

Outpuy: Neural controller u(x)

IV. CASE STUDY

The rCLBF-enabled neural hierarchical control method is

tested in a typical microgrid system [1] and a 6-microgrid NMs

system [5]. Hyperparameters in (6) are set as a1 =
and

ag = 100,
a3 =1,7v=107% X = 1.0 and € = 0.01. We construct

fully-connected neural networks with 2 hidden layers, 64 units

at ¢

A.

ach layer, and Tanh activation functions for all cases.

Validity of rCLBF-based Neural Hierarchical Control

e first validate the efficacy of the rCLBF-based neural

hierarchical control to guarantee systems’ safety and stability
under typical large disturbances.

Fig. 2 studies the performance of the devised method for the

migrogrid case [1]. Case I is a load change scenario. Fig. 2(a)
illustrates the contour plot of the rCLBF V() vs. the voltages

of

DER1 and DER2, as well as the safe (SR) and unsafe

regjons (UR). It shows that the safe region is enclosed in the

safe

level set (¢ = 0.5), which ensures (4c)-(4d) are satisfied

with the safety requirement. Case II is a short-circuit fault
scenario, where the fault happens at 0.1s and is cleared after
0.0ps. Fig. 2(b) shows that the DER voltages are also in the
saf¢ region after the fault clearance.

B.

Fig. 3 studies the method’s
casg

Scalability of rCLBF-based Neural Hierarchical Control

performance for the NMs
[5] under short-circuit faults. The counter-plot in Fig. 3(a)

again shows that the safe level set (c=0.5) encloses the safe
regjon, which ensures the system’s safety as long as the NMs
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g
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Fig. 2: Performance of the rCLBF-based ncural controller for a microgrid

enter a safe region. The NMs dynamics in Fig. 3(b) also
validate the effectiveness of the neural controller to guarantee
the NMs’ safety and stability after the fault clearance.
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(b) DER voltages with short-circuit fault

Fig. 3: Performance of the rCLBF-based neural controller for NMs

C. Robustness of rCLBF-based Neural Hierarchical Control

We then validate the robustness of the proposed method in
the NMs case [5] under uncertainties. Fig. 4(a) and Fig. 4(b)
respectively present the active power and output voltage of
DERI under different uncertain scenarios. It can be observed
that the NMs remain stable with guaranteed voltage safety,

even though it is perturbed by the uncertalnt‘ges T :Z; 7:; e
energies. In contrast, Fig. 4(c) shows that Jhe e 'O
severe oscillation without adopting the r@%g 1
controller. o A 02
E 14— —A ?
fn (A1 {——Ap—tap. &
£ ogla — &
éu_gflszbi__,—f__? Y I
ER L —" o 0 0.1 0.2
g ts) 0.1 0.2 t(s)

t(s)
(b) Voltage of DER1 with
neural controller

D. Comp&hson wzth Existing Methods

(¢) Active power of DER1
without neural controller

We compare the rCLBF-based neural control against DAPI
control [3], i.e., a typical model-driven hierarchical control,
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and min-max robust model predictive control®tMPC) [6],
which also provides safety guarantees. A short-circuit fault
occurs at 0.1 s and is cleared after 0.05. Table I summarizes
the dynamic performance of the controllers in Fig. 5. The NMs
with neural-certificated controller always operates in a safe
region and gets stable in a very short time after the fault clears
( safety rate” is 100%). The results show that the certificated
safe operation is guaranteed using neural-certificated control
and has a better safety rate and dynamic performance against
DAPI and rMPC methods.

o — . Fault happens . o
—~ — NC ; t traints
3 Fault happens - NC g b — [ | safety constraints|
& _ DAPI & A
= 15 . © | |
© | | — MPC &
¥ e — = ! |
3 1 o A S S, 2 09
z | \ \ 2 — NC
50.5— — 1717 7 EO. — DAPI
A | Fault clears | | 0 — MPC

.7
0 0.1 0.2 03 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
t(s) t(s)

(a) Performance for the microgrid case (b) Performance for the NMs case

Fig. 5: DER voltage under a short-circuit fault using different control methods
(NC: the devised rCLBF-based neural hierarchical control)

TABLE I: Comparison of controller performance under parameter variation

Test | Algorithm | Safety rate | Coverage time(ms)

NC 100% 10
MG
rMPC 85% 100
NC 100% 50
NMs
T™MPC 66.7% 160

V. CONCLUSION

This letter develops an rCLBF-based, physics-informed neu-
ral hierarchical control for NMs. The unique feature of the de-
vised method is its provable safety and stability certificates for
real-time NMs control and its capability of handling the fast
dynamics and uncertain scenarios in the simultaneous design
of rCLBF and the control policy. The next step is to further
validate the controller performance under more complicated
operating scenarios, such as reconfiguration operations and
cyber-physical hybrid operations.
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