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Abstract—This letter devises a physics-informed neural hier-
archical control for uncertain networked microgrids (NMs) to
provide certificated safe and stable control of NMs undergoing
disturbances and uncertain perturbations. The main contribu-
tions include 1) a learning-based hierarchical control framework
for inverter-based resources (IBRs) in NMs under unprecedented
uncertainties of renewable energies; 2) a robust control Lyapunov
barrier function (rCLBF) to provide provable safety and stabil-
ity guarantees under uncertain scenarios; 3) an rCLBF-based,
physics-informed learning scheme to simultaneously discover the
certificates and control policy with explicit safety, stability, and
robustness guarantees, enabling certified generalization beyond
nominal operating scenarios. The efficacy of the rCLBF-based
neural hierarchical control is thoroughly validated in different
NMs cases.

Index Terms—Networked microgrids, learning-based control,
certified control, microgrid stability, robust control.

I. INTRODUCTION

M ICROGRIDS and networked microgrids (NMs) are
facing increasing control challenges with the integra-

tion of massive inverter-based resources (IBRs). The strongly
nonlinear dynamics of IBRs and their reduced inertia can sig-
nificantly deteriorate the system’s stability. The unprecedented
uncertainties from renewables also impact the IBR operations
and would force the system to unsafe states. Existing model-
driven control methods for NMs, either linearization-based [1]
or Lyapunov function-based, are found hard to handle the un-
foreseen large disturbances and uncertain scenarios. Recently,
learning-based control has been introduced in power system
control [2] to explore their potential for being generalizable to
new operating conditions. However, most existing learning-
based control employs a posteriori verification module to
check the system’s stability, which retards the training process.
Some learning-based control techniques incorporate certifi-
cates to prove the soundness of learned controllers, which may
fail under uncertain scenarios unseen in the training process.

To tackle the challenges, this letter devises physics-informed
neural hierarchical control for uncertain NMs to ensure large-
signal stability and nonlinear safety requirements under sce-
narios with bounded uncertainties. A robust control Lyapunov
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barrier function (rCLBF) is constructed for NMs under uncer-
tainties from renewables to explicitly and rigorously certify
the safety and stability, and an rCLBF-based, physics-informed
learning approach is established to train the safety and stability
certificates and control strategies simultaneously.

II. NEURAL HIERARCHICAL CONTROL OF NMS

Mathematically, the hierarchical control for DER i ∈
{1, ..., N} is formulated as:{

ωi = ω∗
i −mp,i(Pi − P ∗

i +∆pi) + Ωi

Ei = E∗
i − nq,i(Qi −Q∗

i ) + ei
(1)

Here, ωi, Ei, Pi and Qi respectively denote the angular speeds,
output voltage magnitudes, active power, and reactive power of
distributed energy resources (DER) i; superscript ∗ denote the
nominal values; mp,i and nq,i denote the droop coefficients;
Ωi and ei respectively denote the secondary control signals.
Specifically, ∆pi represents the impact of uncertainties from
renewables on DER’s power generation, making the NMs an
uncertain dynamic system.

Denote u = [Ω1,Ω2, ...,ΩN , e1, e2, ..., eN ]T as the assem-
bling of the secondary control signals of all DERs. Tradi-
tional methods usually design the control rules of u based
on linearized system models. Although such methods can
guarantee small-signal stability, NMs behaviors under large
disturbances can not be certificated, let alone the system’s
safety and stability under heterogeneous uncertain scenarios.

To bridge the gap, we design a learning-based control
policy for u to establish neural network-represented secondary
control signals for DERs:

u = πu
α(X) (2)

Here, πu
α denotes the policy neural network parameterized by

α; X denotes the NMs state variables, which are selected as
the input of πu

α (see details in Subsection III-A). By properly
training πu

α, u will be designed to ensure the system’s stability
and safety even under uncertain scenarios, as discussed in
Section III.

III. PHYSICS-INFORMED LEARNING FOR NEURAL
HIERARCHICAL CONTROL

A. rCLBF Certificates for Uncertain NMs

This subsection establishes the rCLBF certificates for an un-
certain NMs system to provide theoretical safety and stability
certificates under uncertain operating scenarios.

The uncertain NMs system under neural hierarchical control
(i.e., (1)) is functionally formulated as:

∀θ ∈ Θ : Ẋ = f(X, θ) + g(X, θ)πu
α(X) (3)
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The rationale of modeling the NMs as a set of ordinary
differential equations (ODE) in (3) is detailed in [3]. Basically,
considering the load and branch dynamics in NMs, such an
ODE-based formulation is rigorously equivalent to the original
differential algebraic equation (DAE)-based model [3]. In (3),
X ∈ χ ⊆ Rn denotes the NMs states; π : RN → R2N

denotes the neural control policy in (2); f and g are functions
describing the NMs dynamics and are assumed to be locally
Lipschitz; θ denotes the uncertain parameters of NMs (e.g.,
∆pi in (1)) and Θ denotes the set of possible values of the
uncertainties. We assume that Θ is a convex hall.

To theoretically certify the stability and safety of NMs in
arbitrary uncertain scenarios, we introduce the robust control
Lyapunov barrier function (rCLBF) theory [4].

Denote x = X − Xe(θ) where Xe(θ) denotes the equi-
librium point of the NMs under uncertainty θ. A function
V : χ → R is defined as a rCLBF for the NMs in (3), if
it satisfies:

∀θ ∈ Θ : V (xgoal) = 0, V (x) > 0 ∀x ∈ χ\xgoal

inf
u

LfV+LgV u+λV ≤ 0 ∀x ∈ χ\xgoal

V (x) ≤ c x ∈ χsafe

V (x) > c ∀x ∈ χunsafe

(4a)
(4b)

(4c)
(4d)

The stability certificate is guaranteed by the control Lyapunov
function requirements in (4a) and (4b), where xgoal denotes
a stable goal point under control input u; χsafe and χunsafe

denote a set of safe states and a set of unsafe states separately;
LfV and LgV are respectively the Lie derivatives of V along
f and g (i.e., the NMs dynamic models in (3)); λ > 0 is the
convergence rate. The safety certificate is guaranteed by the
barrier function requirements in (4c) and (4d), where c denotes
a hyperparameter describing the safe level. The robustness
characteristic is guaranteed because (4) is required for an
arbitrary uncertain scenario θ ∈ Θ.

On the one hand, it can be proved that any control policy
πu
α(x) ∈ {u|LfV + LgV u + λV ≤ 0} will be both safe and

stable1 when executed on NMs specified by f and g with
uncertain parameters θ ∈ Θ [4]. On the other hand, as Θ is a
convex hull of the uncertain parameters, the learned controller
is safe and stable in any scenarios from the convex hull as long
as the vertex scenarios are guaranteed [4]. Correspondingly,
the rCLBF-based neural hierarchical control of NMs, if sat-
isfying (4), can provably stabilize the uncertain NMs without
any safety violation under uncertain scenarios in Θ.

B. Physics-Informed Co-Learning of rCLBF and the Control
Policy

This subsection develops a physics-informed training pro-
cess to learn rCLBF (i.e., V (x) in (4)) and the neural control
policy (u in (2)) in a simultaneous manner.

Denote πV
β (x) as the rCLBF certificate neural network. The

rCLBF is designed as V (x) = hT (x)h(x), where h(x) is
the activation function of the last hidden layer of πV

β . The

1By “safe and stable”, we mean [4]: for every initial state x0: || lim
t→∞

x(t)−
xgoal|| = 0; For all t2 ≥ t1 ≥ 0, x(t1) ∈ χsafe implies x(t2) /∈ χunsafe.

following loss function is constructed to train πV
β and πu

α

simultaneously:

min
α,β

L = LrCLBF + γLu (5)

where each loss term is defined as:
LrCLBF = L1 + L2 + L3 + L4

L1(β) = V (xgoal)
2

L2(α, β) =

ns∑
i=1

1

ns

(
a3

Ntrain

∑
x

σ(ϵ+ LfV (x)

+ LgV (x)πu
α(x) + λV (x)))

L3(β) =

ns∑
i=1

1

ns

(
a1

Nsafe

∑
x∈χsafe

σ(ϵ+ V (x)− c)

)

L4(β) =

ns∑
i=1

1

ns

(
a2

Nunsafe

∑
x∈χunsafe

σ(ϵ+ c− V (x))

)
Lu(α) = ||u(x)− unominal||2

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)
where γ, a1∼a3, ϵ, λ and c (i.e., the safe level) are positive hy-
perparameters of the algorithm; ns denotes the number of un-
certain scenarios to ensure the control robustness. Specifically,
LrCLBF is the rCLBF-related loss function [4] to enforce (4)
to be satisfied by L1 ∼ L4, where σ(x) = max(x, 0) denotes
the ReLU function, and the strict inequality satisfaction is
ensured by ϵ. Lu provides a training signal for the policy
neural network πu

α, where unominal is a nominal controller(e.g.,
the LQR policy).

Consequently, πV
β and πu

α will be jointly trained by min-
imizing (5). The small weight applied to Lu ensures that
the training process prioritizes satisfying the Equation (4)
conditions. By every I epoch, new training samples will be
generated using the currently trained πu

α. Fig. 1 summarizes
the overall architecture for the training process.
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Fig. 1: Architecture of the physics-informed training process of the safety-
and-stability-certified neural hierarchical control

C. Algorithm Flow

The pseudo-code for the proposed method is given in Algo-
rithm 1. The hyperparameters to be pre-determined are c, λ, ϵ
and the size of the rCLBF neural network πV

β and the control
policy neural network πu

α. A nominal controller is utilized
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to generate NMs trajectories for initialization. Training data
are sampled from the state space covered by the trajectories.
To improve the training performance and broaden the space
covered by training samples, we specify fixed percentages of
training points sampled from the goal, safe, and unsafe regions
and use the learned controller to regenerate new training
samples to improve the training performance after several
epochs.

Algorithm 1: Learning controller with certificates
1 ▷ Require: NMs parameters set Θ, learning rate α, batch

size H , epochs I per episode and total epochs K
2 ▷ Input: NMs initial states, safe region, unsafe region and

system model (3) and initial weights φ for network
3 ▷ Training samples generation:

ẋ = fθ(x) + gθunominal −→ xgoal, xsafe, xunsafe

4 for current epoch = 1 to K do
5 for i = 1 to ns do
6 Calculate descent loss with uncertain parameters:

Lfθi
V (x) + Lgθi

V (x)u(x) + λV (x)
7 end
8 Calculate total loss of all the batches

Loss = LCLBF + βLu

9 Update weights in the neural network by passing Loss
to Adam optimizer

10 Output V (x) and πφ(x)
11 if current epoch % I == 0 then
12 Update training samples :

x : ẋ = fθ(x) + gθπφ(x)
13 end
14 end
15 ▷ Output: Neural controller u(x)

IV. CASE STUDY

The rCLBF-enabled neural hierarchical control method is
tested in a typical microgrid system [1] and a 6-microgrid NMs
system [5]. Hyperparameters in (6) are set as a1 = a2 = 100,
and a3 = 1, γ = 10−5, λ = 1.0 and ϵ = 0.01. We construct
fully-connected neural networks with 2 hidden layers, 64 units
at each layer, and Tanh activation functions for all cases.

A. Validity of rCLBF-based Neural Hierarchical Control

We first validate the efficacy of the rCLBF-based neural
hierarchical control to guarantee systems’ safety and stability
under typical large disturbances.

Fig. 2 studies the performance of the devised method for the
microgrid case [1]. Case I is a load change scenario. Fig. 2(a)
illustrates the contour plot of the rCLBF V (x) vs. the voltages
of DER1 and DER2, as well as the safe (SR) and unsafe
regions (UR). It shows that the safe region is enclosed in the
safe level set (c = 0.5), which ensures (4c)-(4d) are satisfied
with the safety requirement. Case II is a short-circuit fault
scenario, where the fault happens at 0.1s and is cleared after
0.05s. Fig. 2(b) shows that the DER voltages are also in the
safe region after the fault clearance.

B. Scalability of rCLBF-based Neural Hierarchical Control

Fig. 3 studies the method’s performance for the NMs
case [5] under short-circuit faults. The counter-plot in Fig. 3(a)
again shows that the safe level set (c=0.5) encloses the safe
region, which ensures the system’s safety as long as the NMs
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Fig. 2: Performance of the rCLBF-based neural controller for a microgrid

enter a safe region. The NMs dynamics in Fig. 3(b) also
validate the effectiveness of the neural controller to guarantee
the NMs’ safety and stability after the fault clearance.
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Fig. 3: Performance of the rCLBF-based neural controller for NMs

C. Robustness of rCLBF-based Neural Hierarchical Control
We then validate the robustness of the proposed method in

the NMs case [5] under uncertainties. Fig. 4(a) and Fig. 4(b)
respectively present the active power and output voltage of
DER1 under different uncertain scenarios. It can be observed
that the NMs remain stable with guaranteed voltage safety,
even though it is perturbed by the uncertainties from renewable
energies. In contrast, Fig. 4(c) shows that the NMs undergo
severe oscillation without adopting the rCLBF-based neural
controller.
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Fig. 4: System performance with different uncertainties

D. Comparison with Existing Methods
We compare the rCLBF-based neural control against DAPI

control [3], i.e., a typical model-driven hierarchical control,
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and min-max robust model predictive control(rMPC) [6],
which also provides safety guarantees. A short-circuit fault
occurs at 0.1 s and is cleared after 0.05. Table I summarizes
the dynamic performance of the controllers in Fig. 5. The NMs
with neural-certificated controller always operates in a safe
region and gets stable in a very short time after the fault clears
( safety rate2 is 100%). The results show that the certificated
safe operation is guaranteed using neural-certificated control
and has a better safety rate and dynamic performance against
DAPI and rMPC methods.
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Fig. 5: DER voltage under a short-circuit fault using different control methods
(NC: the devised rCLBF-based neural hierarchical control)

TABLE I: Comparison of controller performance under parameter variation

Test Algorithm Safety rate Coverage time(ms)

MG
NC 100% 10

rMPC 85% 100

NMs
NC 100% 50

rMPC 66.7% 100

V. CONCLUSION

This letter develops an rCLBF-based, physics-informed neu-
ral hierarchical control for NMs. The unique feature of the de-
vised method is its provable safety and stability certificates for
real-time NMs control and its capability of handling the fast
dynamics and uncertain scenarios in the simultaneous design
of rCLBF and the control policy. The next step is to further
validate the controller performance under more complicated
operating scenarios, such as reconfiguration operations and
cyber-physical hybrid operations.
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