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Abstract Submarine melting has been implicated in the accelerated retreat of marine-terminating glaciers
globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting
in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge
plumes emit high-frequency internal gravity waves that propagate along glacier termini and transfer energy

to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial
discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume

and its surface outflow. Accounting for the near-terminus velocities associated with these waves increases
predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates
and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified
ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.

Plain Language Summary Recent acceleration in sea-level rise has been attributed to the mass loss
of glaciers that terminate in the ocean, such as those found in Greenland and Alaska. Warm ocean currents are
thought to melt glacier ice, contributing to their loss of mass and retreat. We use moored instruments deployed
with autonomous vehicles, as well as a computer simulation, to demonstrate how a previously unconsidered
type of current, called an internal wave, is generated at marine-terminating glaciers. We show that the strength
of the waves is related to the amount of subglacial discharge that originates from surface melting occurring at
higher elevations on the glacier. Internal waves may contribute to local ice melt, and ultimately glacier mass
loss, by mixing warm water in a thin layer immediately adjacent to the glacier.

1. Introduction

Fjords with active tidewater glaciers are principle conduits for meltwater runoff and ice discharge into the ocean.
Tidewater glaciers have been losing mass in recent years and contributing to an acceleration in sea-level rise
(Chambers et al., 2017; Mouginot et al., 2019; Rignot & Kanagaratnam, 2006; Shepherd et al., 2020). The ocean
dynamics occurring within glacial fjords play a key role in modulating glacier retreat (Straneo & Cenedese, 2015;
Wood et al., 2018). Ocean thermal forcing directly causes mass loss via melting and may also act to amplify other
ice-loss mechanisms such as calving (Luckman et al., 2015; Slater et al., 2021), although there is uncertainty in
the sign and magnitude of this effect (Ma & Bassis, 2019; Mercenier et al., 2020). Increasing meltwater runoff
has been linked to a weakening of the Atlantic Meridional Overturning circulation in recent decades (Thornalley
et al., 2018).

Since direct observations of submarine melting are scarce, melt rates are often estimated from near-terminus ocean
velocity, temperature, and salinity using a parameterization for heat and salt fluxes through the ocean boundary
layer. The most widely used form of the parameterization, known as the 3-equation model, assumes shear-driven
boundary layer dynamics in which the heat and salt fluxes are linearly dependent on the terminus-parallel ocean
velocity (Holland & Jenkins, 1999; Jenkins, 2011, and Text S1 in Supporting Information S1). The 3-equation
model suggests that the melt rate m is proportional to:

1
m o« C2 T'r |u|AT, (H
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where C), is the drag coefficient, I'; is the turbulent thermal transfer parameter, u is the terminus-parallel outer
boundary layer velocity, and AT is the temperature difference across the boundary layer. Parameterized melt rates
are often coupled with theory for buoyant plumes (Jenkins, 2011; Morton et al., 1956) and have been used to model
the melt rates of subglacial discharge plumes (Carroll et al., 2016; Cowton et al., 2015; Slater et al., 2015, 2022),
which are highly energetic buoyant flows commonly found at tidewater glaciers. These discharge plumes rise
from the glacier grounding line and originate from upstream surface meltwater that has drained to the glacier bed
and flowed downslope via a network of subglacial channels. Measurements of terminus morphology suggest that
melt induced by discharge plumes is large (Fried et al., 2015, 2019; Rignot et al., 2015; Sutherland et al., 2019),
consistent with solutions to Equation 1 for high-velocity flows.

Away from the main subglacial discharge plume(s), coupled plume-melt theory suggests that the buoyant forc-
ing from melt alone drives relatively weak plumes (Cowton et al., 2015; Magorrian & Wells, 2016; Straneo &
Cenedese, 2015). As such, melting occurring away from discharge plumes, termed ambient melting, was thought
to be small.

Yet, the only direct observations of submarine melting made to date demonstrate that ambient melting exceeds
theoretical estimates by one to two orders of magnitude (Sutherland et al., 2019). Reasons for this discrepancy
include: incorrect values for the drag and turbulent transfer coefficients, an incorrect form of the parameterization
at low velocity (McConnochie & Kerr, 2017; Schulz et al., 2022) and the neglect of non-plume flows from the
assumed near-terminus ocean velocity, such as those from lateral fjord-circulation (Jackson et al., 2020; Slater
et al., 2018). Here, we focus on additional sources of near-terminus currents that could contribute to enhancing
melt, in particular, energetic internal waves revealed by a new set of observations.

Throughout the ocean, internal gravity waves are a dominant source of energy for turbulent mixing and exert
significant influence over a diverse range of processes from nutrient availability to the global overturning circu-
lation (MacKinnon et al., 2017; Melet et al., 2013; Woodson, 2018). Winds and tides are the main energy sources
for internal waves in the global ocean (Ferrari & Wunsch, 2009), while isolated buoyant plumes common to
glacial fjords have not previously been identified as a wave source. In the ocean, only horizontally propagating
plumes from rivers have been linked to internal wave generation (Nash & Moum, 2005). In the atmosphere,
convective plumes associated with thunderstorms are known to generate internal waves (Clark et al., 1986; Fovell
et al., 1992; Lane et al., 2001; Yue et al., 2013). Internal waves are commonly observed in fjords and typically
develop from tidal flows over sills (Bourgault et al., 2011; Farmer & Armi, 1999; Farmer & Smith, 1978; Gilli-
brand & Amundrud, 2007; Ross et al., 2014). Very recent observations from the Antarctic Peninsula suggest that
iceberg calving events are also a source of internal waves and significant mixing (Meredith et al., 2022).

Propagating internal waves have an upper frequency limit equal to the local buoyancy frequency, N, which ranges
from around 24 cycles per day (cpd) in the deep ocean to well over 100 cpd in highly stratified locations, such
as fjords. Winds and tides typically excite waves at frequencies much lower than N (<2 cpd), while nonlinear
wave interactions facilitate energy transfers to higher frequencies. In the laboratory, plumes and mechanically
generated turbulence have been demonstrated to generate near-N waves (Ansong & Sutherland, 2010; Dohan &
Sutherland, 2005).

While internal gravity waves are ubiquitous in stratified fluids, they have not been observed near the ice-ocean
interface of tidewater glaciers. This is due in part to the difficulty involved in collecting measurements close to
the calving termini of glaciers, which must be done using autonomous or remotely operated platforms. Further-
more, moving instruments tend to alias temporal and spatial signals, making it difficult to detect propagating
waves. Moored instruments anchored to the seafloor are better able to isolate oscillatory signals but are at signif-
icant risk of being destroyed by icebergs and are typically deployed from ships that cannot approach close to
glacier termini. Past moored records have been located greater than 1 km from glacier termini, and have generally
aimed for long-duration records, necessitating low-frequency sampling that may not detect high-frequency waves
(Jackson et al., 2014; Moffat, 2014).

Here, we present the first-ever time series of ocean velocity within the calving zone of a tidewater glacier. Our
observations reveal that energetic internal waves account for nearly half of the near-terminus velocity variability
and could significantly enhance melt rates. We are able to reproduce the wave characteristics accurately in an
idealised numerical simulation forced only by a subglacial discharge plume. Because discharge plumes are a
ubiquitous feature of tidewater glacier systems, such internal waves may be common.
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Figure 1. (a) Map of LeConte Bay, located in Southeast Alaska. The study region is located at the end of the bay in the
boxed region. (b) Remote deployment of a mooring captured from drone footage. (c) A 3-D view of the observed bathymetry
and glacier morphology looking down at the fjord from the southwest. Mooring locations are denoted by yellow bars and
mean velocity vectors are given by orange quivers. The approximate location of the discharge outlet is indicated with an
arrow.

2. Materials and Methods

In September 2018, an extensive dataset of near-terminus ocean properties were collected during a field campaign
at LeConte Glacier (Xeitl S“1t’ in Tlingit), Alaska (Figure 1a). Remotely controlled kayaks called Robotic Ocean-
ographic Surface Samplers or ROSS (Nash et al., 2017) were used to deploy a mooring approximately 100 m
from the terminus and roughly 150 m from the discharge plume source (the near mooring, MN, Figures 1b
and Ic) at the beginning of the campaign (1-3 September). Uniquely, MN was instrumented with a 5 beam
Acoustic Doppler Current Profiler (ADCP) providing direct measurements of vertical velocity over 13—134-m
depth. A second more distant mooring (denoted MD), instrumented with two 4 beam ADCPs, was deployed by
ship approximately 400 m from the terminus and discharge plume, and measured velocities from 6 to 165-m
depth. A series of processing steps are applied to the ADCP data to remove noise, exclude iceberg calving events,
and reduce biases, but some of horizontal velocity estimates are likely biased low due to beam spreading (Text S2,
Figure S1 in Supporting Information S1). Both moorings were recovered at the end of the campaign (12-18 Sept),
during which time a large number of additional observations were obtained, including ship- and ROSS-based
profiles of temperature and salinity.

Complementing the in-situ observations, a large eddy simulation (LES) with a uniform resolution of 1 m was
conducted to investigate plume-driven ocean variability (Figure 2a). Compared to models that have previously
been used to study discharge plumes, such as MITgem, the LES uses a sophisticated turbulence closure scheme
that better represents the largest turbulent scales relevant to internal wave generation (Text S3 in Supporting Infor-
mation S1). The domain is an idealized rectangular channel of width 1 km, length 6 km, and depth 165 m, approx-
imating the dimensions of the near-terminus region at LeConte. At the eastern wall of the model (the “glacier”)
melting is parameterized using the 3-equation model (Holland & Jenkins, 1999). The model was initialized with a
horizontally uniform, depth-dependant temperature T (z) and salinity S(z), and forced by 150 m? s~! of subglacial
discharge injected from a 100 m wide by 4 m high channel at the base of the eastern wall. The temperature and
salinity profiles were derived from the average of 35 near-glacier CTD casts. The chosen discharge flux is close
to the average for the fieldwork period (Jackson et al., 2020) and the shape of the discharge outlet is roughly
based on prior inferences of subglacial outlets from glaciers in Greenland (Fried et al., 2019; Jackson et al., 2017;
Slater et al., 2017). Boundary conditions at the western downstream fjord exit above 60 m depth were set to a
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Figure 2. (a) A snapshot of the vertical velocity field from a 600 m wide subset of the 1,000 m wide large eddy simulation
(LES) domain. The simulation was forced by 150 m? s~! of freshwater injected at the location of the blue arrow. MD+ and
MN: represent points in the model corresponding to the real mooring locations. (b) One hour of vertical velocity output from
MN in the LES. (c) Observed vertical velocity over 1 hr from mooring MN.

constant outflow equal to the total prescribed subglacial discharge influx. Below 60 m, the outflow velocity was
set to zero.

3. Results

Observed and simulated vertical velocity time series confirm the presence of an energetic internal wavefield
(Figure 2). The waves appear as regular bands of positive and negative vertical velocity with a period of approx-
imately 10 min and magnitude exceeding 5 cm s~!. The same regular oscillations are also observed in horizontal
velocity and at the more distant mooring (Text S4 and Figure S2 in Supporting Information S1). An analysis of
the dynamical wave modes using observations suggests that the dominant horizontal wavelength lies between 100
and 800 m, most likely toward the lower end of this range (Text S5 and Figure S3 in Supporting Information S1).

In the numerical simulation, waves emerge from the discharge plume and propagate throughout the fjord and
along the terminus (Figure 2a, Movie S1).

The observed wave signals are superposed on a slowly varying horizontal circulation (e.g., Figure 1¢) and turbu-
lent motions confined to the upper 30 m associated with the outflowing discharge plume. The magnitude of
observed horizontal velocities is less than the internal waves velocities at mid-depths (30-100-m) but exceeds
the wave velocities in the shallowest and deepest parts of the water column (Figures S2a and S2b in Supporting
Information S1). Variability in the surface horizontal velocity has been analyzed in prior works using iceberg
tracking and autonomous boat surveys (Jackson et al., 2020; Kienholz et al., 2019). The turbulent motions are
readily seen in the numerical model output (Figure 2b), but are not always apparent in the ADCP data because of
the instruments' resolution and the potential for surface contamination.

Internal waves produce a peak in the vertical kinetic energy (KE) spectrum between frequencies of 50-300
cycles per day (cpd) equivalent to 5-30 min periods (Figure 3a), close to but less than the maximum observed
buoyancy frequency which is ~300 cpd. We exploit the narrow-band nature of the wave signal to study the rela-
tive energy content of waves and their impact on predicted melt rates. Specifically, we decompose the data into
a high-frequency wave band (50-300 cpd), and a low-frequency band (<50 cpd) using moving averages that are
robust to data gaps. The wave band isolates the most energetic internal waves but may also contain contributions
from non-wave motions such as turbulence at shallow depths. The low-frequency band contains the fjord circula-
tion, as well as low-frequency internal wave motions and tides.

The mean total KE in the wave band at mooring MN is (2.1 + 0.2) x 1073 J kg~! at 95% confidence or 42% + 2%
of the total when averaged over 20-120 m depth. The depth range chosen is the intersection of the observed
depths at the two moorings allowing for a fair comparison at these two locations. At MD, which is 4 times further
from the discharge source, the depth-average KE in the wave band is (0.9 + 0.1) X 1073 J kg™, approximately
half that found at MN.
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Figure 3. (a) Vertical kinetic energy (KE) spectra averaged over 30—60-m depth, where the wave signal is strongest, from
mooring data (solid lines) and large eddy simulation (dashed lines). Maximum buoyancy frequency is marked with a vertical
line. (b) Daily depth-averaged KE from mooring MN split into wave and low frequency components, as well as the subglacial
discharge flux. In all plots the shaded regions and error bars indicate 95% confidence intervals.

Internal waves appear near-continuously throughout the observational period but with some variability in their
KE (Figure 3b). We find a positive correlation (0.4 + 0.2 at 68% confidence) between wave KE at the near-glacier
mooring and the subglacial discharge flux estimated from a glacier runoff model (Amundson et al., 2020;
Sutherland et al., 2019). We also find a positive correlation between low-frequency KE and discharge (0.5 + 0.2).
The short record length, inherent variability in the wave and low-frequency fields, and uncertainty in the runoff
model may be reasons for the modest correlation estimates. Times of greater low-frequency KE, such as Septem-
ber 9-11, are associated with the presence of a strong surface outflow of subglacial discharge plume water above
the mooring. Prior work has demonstrated that this outflow is often concentrated in a relatively narrow current
that regularly changes orientation (Kienholz et al., 2019). The relative timing of peaks in discharge and KE hint
at a 1-2 days lag between changes in runoff and changes in ocean circulation (Figure 3b), which could result from
inadequate representation of water storage in the glacier runoff model (Jackson et al., 2022; Jansson et al., 2003).
However, a lag-correlation analysis did not result in higher correlation estimates. Interestingly, we find a good
correlation between wave and low-frequency KE (0.7 & 0.1), which could indicate that waves derive their energy
from the laterally spreading surface expression of the discharge plume, rather than its vertically rising part. Since
both the rising and spreading parts ultimately derive their KE from the potential energy of the freshwater ejected
at the glacier grounding line, this points to discharge as the common energy
source for both low-frequency and wave band KE.

We use Equation 1 to estimate the impact of high-frequency internal wave

total (exc. u) motions on melt rates for velocity observations at mooring MN. We esti-

B

- C L 20 mate terminus-parallel speed in two ways, (a) using only the northward

horizontal velocity component, since the glacier terminus is oriented
B - 40 approximately north-south and (b) using all horizontal velocity components
(Figure 4a). Changes in melt rate are calculated as the ratio of speed with
and without high-frequency motions. We neglect the contribution of ambient
melt plumes to the velocity, since they were not measured. In both cases,

Depth [m]

the terminus-parallel mean speed is much greater when wave motions are
B - 100 included. For the “northward only” case, predicted melt rates above 100-m
120 depth increase by up to 70% (Figure 4b), while for the “northward and east-

5 10
|u] [cm s71]

Melt rate N [cpd]
change [%]

T T ward” case, they increase by up to 50%. The enhancement in melt rates

25 50 75 100150 is focused around the pycnocline, where buoyancy frequency is greatest

(Figure 4c), consistent with the expectation from classical internal wave
theory that internal wave energy scales with buoyancy frequency (Gill, 1984,

Figure 4. (a) Time-mean ocean speed at mooring MN with (solid) and Chapter 8.12.2).
without (dashed) the internal wave band. The speed is calculated in two ways:

with the eastward component of velocity (blue) and without (orange). (b) . .
Change in parameterized melt rate implied by the inclusion of wave velocities. 4. Discussion

Shading indicates the 95% confidence interval calculated using a bootstrapping
procedure. (c) Average buoyancy frequency from 35 near-terminus CTD

profiles.

These new measurements from autonomously deployed moorings suggest
that energetic internal waves are a persistent feature at LeConte Glacier. Our
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results raise a number of questions. How ubiquitous are internal waves at tidewater glaciers? Can you predict
wave amplitudes and frequency from subglacial discharge rates and ocean stratification? Tackling these broader
questions will be the goal of future work. Below, we focus on two of the main questions that arise from our results,
namely, how are the waves generated and what is their potential contribution to melting?

4.1. How Are the Internal Waves Generated?

A mechanism for wave generation must explain the properties of the waves found above, in particular, their
near-N frequency, persistence and correlations with discharge forcing. Possible mechanisms for generating
internal waves include iceberg calving (Meredith et al., 2022) and flow-topography interactions (Farmer &
Armi, 1999). Additionally, internal waves may be emitted from turbulence in the rising plume, perhaps via a
similar mechanism to that occurring within thunderstorms (Ansong & Sutherland, 2010; Fovell et al., 1992).
The lateral outflow of plume water at the neutral buoyancy depth, which resembles a density current (Nash &
Moum, 2005; White & Helfrich, 2008) or a convective boundary layer (Clark et al., 1986; Kuettner et al., 1987),
could be another source of internal waves. We refer to wave generation by the plume and its lateral outflow as
“turbulent emission”. While calving and flow-topography interactions may generate waves and introduce vari-
ability into measurements, the numerical simulation, which lacks any of these forcings, is able to reproduce the
observed wave characteristics. Calving and flow-topography interactions also cannot explain the observed corre-
lation between waves, low-frequency KE and subglacial discharge fluxes and the persistence of the wavefield
during periods of low calving activity.

We suggest that a turbulent emission mechanism may best reflect the observations. While traditional theories
for discharge plumes cannot generate unsteady waves because they average out unsteady (turbulent) dynamics
(Morton et al., 1956), plumes are known to be highly turbulent. Laboratory results have shown that turbulence
and buoyant plumes can generate internal waves with a frequency near N (Ansong & Sutherland, 2010; Dohan &
Sutherland, 2005). Additionally, the mechanism provides a dynamical connection between turbulence, horizontal
fjord circulation, and internal waves that could explain the persistence of waves and the correlation among these
quantities. Significantly more work is needed to confirm our suspected mechanism and to better understand
high-frequency internal waves at glaciers. While we attempted to eliminate calving induced waves in our data
processing, some events may have been missed. Confirmation of a turbulent generation mechanism would require
an analysis of energy transfers between turbulence and internal waves, which is beyond the scope of this paper.
Additionally, wave properties may depend on non-ocean factors such as discharge outlet geometry and terminus
geometry which also vary in time.

4.2. How Do Internal Waves Contribute to Boundary Layer Heat and Salt Fluxes?

Within the 3-equation parameterization, the melt rate is proportional to the ocean boundary layer heat and salt
fluxes, which are assumed to be linearly dependent on the terminus-parallel ocean velocity (Equation 1 and Text
S1 in Supporting Information S1). We consider that the outer velocity may be comprised of plume, mean hori-
zontal and internal wave components denoted by subscript p, subscript m and subscript w respectively, giving,

u= (Un+ tw,0, w, + wy). 2)

We have chosen a coordinate system where the second component of velocity is perpendicular to the ice and must
satisfy the no-flow condition at the ice-ocean boundary (v,, = v,, = v, = 0) and we neglect the horizontal plume
velocity (u, = 0). The contribution of internal waves, plumes and mean flows to melt is the average magnitude of
Equation 2 over a wave period T, for example,

el

Tw
m o [u] = TL / \/(um + ) + (W + wy) dt 3)
w 0

The nonlinearity of Equation 3 ensures that waves always contribute to melting. The significance of the wave
contribution will depend on the relative magnitude of waves, plumes and mean flows. Within the discharge
plume, large vertical velocities associated with buoyantly rising fluid will dominate other velocity sources
(w,>w,, u,, u,) and the wave contribution may be negligible. In ambient regions far away from the discharge
plume, our observations suggest that waves and mean flows have similar magnitude and both contribute to
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melting (w,, ~ u,, ~ u,). For the case of a single sinusoidally varying wave superposed onto a mean flow with

w,, = u, = u,, Equation 3 predicts a 30% increase in the melt rate relative to the case without a wave. In our
analysis of melt rate enhancement by waves, we did not include the ambient melt plume velocity since it was not
measured, which is equivalent to assuming that w, < w,. In the absence of external flow, this assumption is valid
since coupled plume-melt theory predicts weak ambient plume velocities of order 1 cm s~! or less, much weaker

than the observed wave velocities (Jackson et al., 2020).

The interaction of plumes, mean flows and waves may involve additional complexities that are not captured by
the simplified theory presented here. For instance, enhancement of melt by waves and mean flows might provide
additional buoyancy to ambient plumes, increasing their vertical velocity. The combination of a mean and oscil-
latory boundary layer forcing also occurs in the shallow coastal ocean when currents and surface gravity waves
both impinge on the seafloor. In this case, the interaction of surface waves and currents with the bottom boundary
layer leads to a higher drag coefficient (Trowbridge & Lentz, 2018, and reference therein). If a similar interaction
were to occur at the ice-ocean boundary, it suggests another possible mechanism for increased melt rates via an
increased drag coefficient.

Wave-induced melting is likely greatest close to the plume and decreases farther away due to spreading of wave
energy. However, complicated glacier geometry could lead to focusing or shadowing in certain regions. Our
results suggest that wave energy is concentrated at the pycnocline depth. Consequently, numerical models that
do not resolve internal waves may underestimate melting around the pycnocline. In many deep glacial-fjord
systems, discharge plumes reach neutral buoyancy below the surface. Atmospheric studies and laboratory tests
demonstrate that plumes radiate waves upward into stratified regions implying that discharge-generated waves
should also be found close to deep termini (Ansong & Sutherland, 2010; Fovell et al., 1992; Lane et al., 2001; Yue
etal., 2013). An uneven vertical distribution of melting, as implied by Figure 4a and implied by the observed melt
rates and geometries collected previously in May 2017 (Sutherland et al., 2019), may also lead to uneven glacier
shapes that are more prone to calving (Slater et al., 2021). The observed profile of terminus-parallel velocity
increases in magnitude toward the surface and could cause melt-induced overcutting, in agreement with observed
September 2018 ice morphology (Abib et al., 2023).

5. Conclusion

Our observations reveal the presence of an energetic internal wavefield at Xeitl S1t” (LeConte Glacier). Analyses
confirm these are generated by the subglacial discharge plume and have the potential to significantly enhance
melt rates. Because the fundamental ingredients needed to excite these waves are common to most tidewater
glacier systems—an energetic upwelling plume impinging on a stratified ocean—we expect the waves to be
widely prevalent at other tidewater glaciers in Greenland, Alaska and Patagonia.

Prior laboratory studies suggest that the internal wave energy flux scales with the plume energy flux (Ansong
& Sutherland, 2010) suggesting that more energetic waves may be found at tidewater glaciers with higher
discharge rates and more energetic plumes. Our findings highlight the importance of obtaining measurements
very close to glaciers, since observations taken far away may miss key dynamical processes and greatly
underestimate the energy of ocean flows that can enhance melting. Ultimately, the impact of high-frequency
internal waves should be included in parameterizations of melt for accurate modeling of ocean-glacier
interactions.

Data Availability Statement

The oceanographic data (ship, autonomous vessel, moorings) are archived at the National Centers for Environ-
mental Information (Accession 0189574, accession.nodc.noaa.gov/0189574). The subglacial discharge data have
been archived at the Arctic Data Center (https://doi.org/10.18739/A22G44). The analysis code is available on
GitHub (https://github.com/jessecusack/LeConte_plume_internal_waves) and is also permanently archived on
Zenodo (https://doi.org/10.5281/zenodo.7682656).
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