FL1CR: A Fast and Lightweight LiDAR Point
Cloud Compression Based on Lossy RI

Jin Heo
Georgia Institute of Technology
Atlanta, Georgia, USA
jheo33@gatech.edu

Abstract—Light detection and ranging (LiDAR) sensors are
becoming available on modern mobile devices and provide a
3D sensing capability. This new capability is beneficial for
perceptions in various use cases, but it is challenging for resource-
constrained mobile devices to use the perceptions in real-time
because of their high computational complexity. In this context,
edge computing can be used to enable LiDAR online perceptions,
but offloading the perceptions on the edge server requires a low-
latency, lightweight, and efficient compression due to the large
volume of LiDAR point clouds data.

This paper presents FLiCR, a fast and lightweight LiDAR
point cloud compression method for enabling edge-assisted online
perceptions. FLiCR is based on range images (RI) as an interme-
diate representation (IR), and dictionary coding for compressing
RIs. FLiCR achieves its benefits by leveraging lossy Rls, and we
show the efficiency of bytestream compression is largely improved
with quantization and subsampling. In addition, we identify the
limitation of current quality metrics for presenting the entropy
of a point cloud, and introduce a new metric that reflects
both point-wise and entropy-wise qualities for lossy IRs. The
evaluation results show FLiCR is more suitable for edge-assisted
real-time perceptions than the existing LIDAR compressions, and
we demonstrate the effectiveness of our compression and metric
with the evaluations on 3D object detection and LiDAR SLAM.

Index Terms—lidar, lidar point cloud, lidar point cloud com-
pression, 3D point cloud compression, remote lidar perceptions,
real-time perception service, range image compression, edge
computing

I. INTRODUCTION

Light detection and ranging (LiDAR) sensors have been
used in robotics and autonomous vehicles for robust and
accurate 3D sensing. The 3D point clouds from LiDAR sensors
are used in perception tasks for understanding real-world
contexts, such as 3D object detection and tracking, and LiDAR
simultaneous localization and mapping (LiDAR SLAM). A
LiDAR sensor has advantages over image sensors as it can
provide environmental information in 3D with higher accuracy
and is more robust to challenging weather and light conditions.
Previously, despite the benefits of LiDAR sensors, only a few
device platforms were equipped with them because the early
models of LiDAR were too expensive and large in size [1].
However, as LiDAR technology advances, the sensors are be-
coming smaller and affordable, while maintaining their sensing
performance even at lower power usage. Recently, Velodyne
Lidar released a palm-size LiDAR sensor, Velabit [2], for
around $100, Intel RealSense camera [3] has a tiny LiDAR

Christopher Phillips
Adeia
Hartwell, Georgia, USA
chris.phillips @adeia.com

Ada Gavrilovska
Georgia Institute of Technology
Atlanta, Georgia, USA
ada@cc.gatech.edu

sensor, as do the latest Apple iPhone and iPad [4] devices.
As LiDAR becomes cost-effective and smaller in size, there
would be more opportunities for mobile devices to leverage
perceptions of this new sense in diverse use cases.

Although LiDAR technology is becoming available on
mobile devices, there remain challenges in leveraging Li-
DAR perceptions for real-time use cases. As discussed in
prior LiDAR perception research [5]-[9], the computational
complexities of LiDAR perceptions are very high because
these algorithms process unstructured 3D data. Even with
these highly optimized algorithms, high-end processors and
GPUs are required to make them run in real-time. This
poses limitations to enabling real-time LiDAR perception on
resource-constrained (including by battery lifetime) mobile
devices which lack such high-end hardware.

Edge computing is a technology that can relieve such issues
and enable computationally intensive perceptions for mobile
users with commodity hardware. The edge (or cloudlet) is
located at the edge of the network and close to the end users in
the multi-tier cloud. End users can utilize edge resources effec-
tively for storing and processing data on nearby edge servers
accessible via low-latency and high-bandwidth networks such
as 5G [10]. There has been research on offloading image-based
real-time perceptions on the edge [11]-[13]. When remotely
running the perceptions, a sequence of images is transmitted
to the edge server in real-time. In such settings, efficient and
low-latency image compression is essential because of the
large size of the raw images. Fortunately, image compression
algorithms have been extensively studied by both industry and
academia [14]-[16], and the accelerators for such standard
codecs are broadly available even on mobile devices, given
the popularity of video streaming [17]-[19]. These existing
video codecs with accelerators enable the online perceptions
on the remote edge servers.

While offloading image-based perceptions takes advantage
of the available codecs and accelerators for real-time video
streaming, there are challenges to enabling edge-assisted on-
line LiDAR perceptions due to the lack of such infrastructure
for LiDAR point cloud compression. LiDAR sensors generate
unstructured 3D point clouds, and their volume is too large
to send them as raw data. As an example, the points per
scan of the KITTI dataset [20] are about 120,000 of 2 MB,
and streaming the raw sensor data at 60 frames per second

(FPS) needs a bandwidth of 120 Mbps. In addition to the
high bandwidth usage, transmitting a large amount of data not
only causes higher network loads on the backend middleboxes,
resulting in additional transmission delays, but also reduces the
lifetime of a mobile device by consuming its battery [21]-[23].
In this context, an effective point cloud compression is crucial,
but it is required to be low-latency and lightweight. Since
the responsiveness of online perceptions is determined by the
end-to-end latency, high compression latency can introduce
discrepancy between the real environment and the perception
results [24]. The compression time should be sufficiently small
not to compromise the benefit of the reduced perception
processing time on the server. Moreover, the compression
should be lightweight to run on mobile devices.

There are prior efforts to improve 3D point cloud compres-
sion, but their primary focus is on achieving higher compres-
sion ratio while preserving the original content qualities [25]—
[31]. Even with real-time compression methods, the latency
ranges of previous methods are too high to enable online
perceptions, or they require high-end processors with GPUs
for low latency [32]-[37]. In short, the effectiveness of existing
point cloud compression methods is limited when considering
mobile devices, which poses a challenge to enabling edge-
assisted LiDAR perceptions.

For enabling edge-assisted LiDAR perceptions to real-time
applications, we propose FLiCR, a lightweight and low-
latency point cloud compression method based on the range-
image (RI) representation and a lossless compression algo-
rithm. While previous research on RI compressions utilizes
only the quantization of the point bit precision with lossless
RI mapping [26]-[29], [32], [33], we explore the optimization
opportunities of lossy RIs with subsampling for reducing the
data size and improving the compression efficiency. The idea is
that compression algorithms such as dictionary coding, which
use shorter references to repetitive features, would become
more effective since they operate with a more limited data
representation space. Subsampling of mapped points leads to
point loss, and it is criticial to understand how this translates
to reduction in end-to-end perception quality. We demonstrate
the limitations of existing quality metrics to represent this
total information loss because their designs are only concerned
with point-to-point distances. Then, we propose a unified
metric, ePSNR, that captures both point-wise and entropy-
wise point cloud qualities, by extending the current PSNR
with a probability function of entropy estimation.

We evaluate FLiCR and ePSNR with the current compres-
sion methods and metrics and different LiDAR perception use
cases. In our results, FLiCR achieves up to 5.3 x improvement
in end-to-end compression latency on mobile devices and
12.6x in compression ratio compared to Google Draco, and
ePSNR captures the quality impact of the lossyness introduced
by FLiCR, enabling future system support to dynamically
exercise the latency-performance tradeoff it exposes. In sum-
mary, we make the following contributions:

e We identify the requirements of LiDAR point cloud com-
pression methods for edge-assisted online perceptions and

conduct a thorough analysis on the limitations of the state-
of-the-art technologies.

e We propose FLiCR, a lightweight, low-latency, and effi-
cient compression method that combines use of lossy RI
and lossless dictionary coder, and compare it to the existing
methods.

e We point out the limitations of the current quality metrics
for point clouds in terms of the entropy loss and propose
ePSNR as a new single-number metric reflecting both point-
wise and entropy-wise qualities.

e We demonstrate the benefits of our compression method
and metric on two downstream perception tasks, 3D object
detection and LiDAR SLAM.

II. BACKGROUND

3D Point Clouds. A 3D point cloud is a set of points in the
3D space. Point clouds can be categorized into two categories
by their characteristics: structured and unstructured. The un-
structured (raw) point cloud is a sequence of the coordinate
values of 3D points (usually x, y, z in a Cartesian coordinate
system), optionally with other attributes such as reflection
intensities. The structured point cloud is a point set organized
with geometric or hierarchical structure contexts including
meshes, octrees, etc. A LiDAR point cloud is an unstructured
point cloud directly captured from LiDAR sensors.
Unstructured Point Cloud Compression. There are di-
verse existing compression methods, but a common thread
across them is to convert raw point clouds into structured
intermediate representations (IRs) and apply compression al-
gorithms to the IRs, as shown in Figure 1. The compres-
sion process is tied to each IR, and the commonly used
IRs are k-d tree, octree, mesh, and range image. Figure 2
shows different IR visualizations from a raw point cloud.
Compression methods are categorized into geometry-based or
image-based compression, based on the used IRs. Geometry-
based compression uses the tree structures or mesh [25], [30],
[34], [38]-[42], and the image-based compression maps the
point clouds into 2D frames [26], [27], [32], [33], [36]. The
geometry-based compressions code their IRs and compress the
coded IRs, and the image-based approaches utilize the existing
codecs or present their own techniques for compressing the
mapped images. More details of the existing methods appear
in Section VIII.

Original Point Cloud

% PCtoIR [—— IR Encode
Reconstructed Point Cloud

o - «—— IRtoPC |« IR Decode

Fig. 1: The general processing steps of the existing point cloud
compression methods.

(b) A mesh representation.

(c) An octree representation.

ol

(d) A range image.

Fig. 2: The visualizations of a LiDAR point cloud from KITTI [20]
dataset with different IRs.

III. CHALLENGES WITH LIDAR POINT CLOUD
COMPRESSION

Reducing discrepancy latency. For online perception, the
end-to-end latency of the processing pipeline has a major
impact on performance as it affects the application respon-
siveness to changes in the real-world environment [24]. For
instance, if the perception result of the data captured at g is
available at ¢1, there would be a discrepancy between the result
and real world with the changes during the time from ¢ to ¢;.
Figure 3 is the screenshot of the simulated online perception
results with and without 300 ms of the discrepancy latency
in the object detection task. Without the discrepancy latency,
all real-world objects are aligned with the detection results as
Figure 3a. However, with the latency, the perception results are
not correctly corresponding to the real-world objects because
of the discrepancies as Figure 3b.

In Figure 4, we show the impact of different discrepancy
latencies between the real world and the perception results
on the performance of object detection. We use the metrics
for streaming perceptions [24] — the average precision (AP)
with intersection over union (IoU) threshold 0.5, and the
number of mismatched objects between the results with and
without discrepancy latencies. For object detection, we use
Mask R-CNN [43] pre-trained with the dataset of Microsoft
COCO [44]. Then, the detection model runs with an au-
tonomous driving dataset, Argoverse [45], and we measure
the metrics with different discrepancy latencies. Without the
discrepancy latency, the perception model detects ~36% of

(a) The object detection result
without the discrepancy latency.

(b) The object detection result
with the discrepancy latency of
300 ms.

Fig. 3: The simulated results of the online perceptions with Mask
R-CNN [43] and Argoverse [45].

45 30
=3 Mask R-CNN: AP

40 { —4&- Mask R-CNN: Mismatches
F25
351 Fe

N
o

,_.
w
of Mismatched Objects

N N w
o v o

-

v
—
o

AP with loU threshold 0.5

—
o

w

0 30 50 100 200
Discrepancy Latency (ms)

Fig. 4: The measured AP and number of mismatches of the online
object detection with different discrepancy latencies.

objects to the ground truth. As the latency increases, the AP
result starts to decrease with the increased number of mis-
matched objects. These results show the latency governs the
perception performance and there is the latency-performance
tradeoff of online perceptions.

In addition to the perception algorithm, there are additional
components in the processing pipeline which introduce latency
when offloading the LiDAR perceptions on the edge: data
compression and network transportation. The overheads from
these steps contribute to the discrepancy latency, and the
benefit of the reduced processing time of a perception can
be compromised by them. As shown in Figure 4, even with
30 ms of discrepancy latency, AP decreases by ~28% of the
result without the latency. With 100 ms delay, it becomes
half of the result without delay. Furthermore, the number of
mismatched objects soars with the higher latencies. So, along
with the application of edge computing to reduce the network
latency, a lightweight and low-latency LiDAR point cloud
compression method is essential to enable edge-assisted online
LiDAR perceptions for resource-constrained mobile users.
Limitations of existing compression methods. Given
the popularity of 3D point cloud data, there are existing
technologies for LiDAR point cloud compression: Google
Draco [42], MPEG Geometry based point cloud compres-
sion (G-PCC) [25], Point Cloud Library (PCL) [38] octree
compression, and the real-time spatio-temporal (RT-ST) com-

TABLE I: The benchmark results of the existing compression methods for 3D point clouds. The results in parentheses are on

the Jetson AGX.

Metrics Methods RLE Dict Coding [46] | Google Draco [42] | MPEG G-PCC [25] PCL [38] RT-ST [32]
Compression Ratio 0.54 1.67 17.05 8.76 5.72 15.96
PSNR (dB) Lossless Lossless 67.29 78.43 89.77 63.18
CD (cm) Lossless Lossless 0.267 0.184 0.001 3.07
Enc Time (ms) 40.1 (42.4) 40.5 (75.4) 21.1 (48.4) 598 (741) 72.1 (198) 97.7 (240)
Dec Time (ms) 17.9 (15.8) 13.8 (33.7) 9.44 (18.6) 204 (265) 55.4 (153) 15.2 (34.8)
Enc Energy Usage (J) 1.18 (0.11) 1.19 (0.23) 0.83 (0.14) 15.35 (2.41) 2.05 (0.46) | 2.63 (0.59)
Dec Energy Usage (J) 0.51 (0.04) 0.39 (0.08) 0.36 (0.05) 5.56 (0.66) 1.54 (0.36) | 0.57 (0.12)

pression by Feng et al. [32]. Google Draco is based on k-d

tree, PCL and G-PCC are on octree, and RT-ST compresses

range images (RIs) of 3D point clouds. Moreover, with these
methods, it is possible to apply bytestream compressions of

run-length encoding (RLE) and dictionary coding (LZ77) [46]

to the point clouds directly; they treat point clouds as raw

byte arrays and deflate them losslessly. We compare these
methods based on performance, quality, and efficiency metrics
on a desktop and on NVIDIA Jetson AGX of our experimental
testbed, as described in Section VII-A. As the quality metrics
of the point clouds, we use peak signal-to-noise ratio (PSNR)
and Chamfer Distance (CD) as defined in Section VI. For
each method, we encode and decode 100 point clouds from

the KITTI dataset [20]. The averaged results are in Table I,

showing the results of the desktop, and in parentheses the

results from the Jetson.

While every method has its advantages for different metrics,
we focus on the compression ratio, energy usage and latency,
because these metrics show how well a compression method
meets the requirements of point cloud compression for edge-
assisted online perceptions. For our target use case, there are
three requirements of a compression method.

(1) It should be very low-latency because of the latency-
performance tradeoff of online perceptions;

(2) The compression performance effectiveness in reducing
the data size is important since the larger size of com-
pressed data causes higher network cost and energy con-
sumption on the client to transmit;

(3) It should be lightweight to run on mobile devices of
limited resources while satisfying the other requirements.

For the compression ratio and latency, Google Draco out-
performs the other methods and is highly efficient in terms of
the compression ratio and energy usage. Although RLE shows
comparable latency and energy usage on Jetson, it shows
increased total size when applying RLE directly to the floating-
point values of 3D points. Except for the lossless methods,
PCL’s octree compression shows the highest quality metrics.
However, it is at the cost of the lower efficiency and high
energy usage versus Google Draco.

Based on the results in Table I, Google Draco seems the
best option to meet the requirements, but it causes about 60
ms (~50 ms for encoding and ~10 ms for decoding) of the
compression cost when the user device is Jetson and our desk-
top is a server. Since there are additional delays from network

transmission and algorithm processing, the discrepancy latency
of the whole pipeline will be too high given a compression
cost of 60 ms. This would hurt the perception performance
and be hard to use, as illustrated in Figure 4.

In summary, there is a need for a low-latency, lightweight,
and efficient LIDAR compression method for edge-assisted
online perceptions, which motivates us to pursue this work.

IV. INTERMEDIATE REPRESENTATIONS FOR FLICR

For meeting the aforesaid requirements, it is important to
select a proper IR because the compression is dependent on
each IR. In this section, we microbenchmark the IR conver-
sions and point out the benefit of range images (RIs) over the
others in the context of enabling remote online perceptions.

TABLE II: The latencies (ms) of each IR construction.

RI Parallel RI | Octree | K-d tree | Mesh
Desktop | 11.78 6.72 30.67 13.21 1872
Jetson 16.34 9.26 32.11 32.44 2755

Table II shows the conversion latencies of the IRs with the
LiDAR point clouds from the KITTI dataset [20]. We use
PCL [38] implementations for octree and k-d tree, and mesh
conversion is based on the algorithm of Marton et al. [47].
The RI conversion is our implementation, and the parallelized
version is with OpenMP [48]. The RIs are generated by
converting the raw points in the 3D Cartesian coordinates to
the spherical coordinates. Equation 1 shows the conversion and
r, 8, and ¢ are the radial distance, polar angle, and azimuthal
angle each. When 6 and ¢ are calculated, they are mapped
to the frame pixel by the sensor’s angular precisions. For
example, Velodyne HDL-64E used in the KITTI dataset has
0.08° and 0.35° for horizontal and azimuthal precisions with
360° of the horizontal field of view (FoV) and 64 vertical
lasers [49]. Thus, each scan’s point cloud would be mapped
to a 2D frame of 4500x64. By adjusting the parameters of
precisions and FoV, RI can work on diverse LiDAR sensors.

r = /x2+y2+22

0 = arccos (E)
r

¢ = arctan (%)

(D

In our results, the parallelized RI conversion shows the
lowest latency on both desktop and Jetson as RI has advan-
tages over other IRs in terms of simplicity and parallelism.
For the octree and k-d tree, there have been many efforts
for their parallelized constructions [5S0]-[54]. However, as
pointed out in the previous works, their hierarchical structures
inherently make the construction processes sequential, and
it is challenging to fully parallelize their constructions. In
contrast, the RI conversion can be easily parallelized since
each point conversion of RI is completely independent from
the others. For the mesh, its generation from point clouds
requires triangulation algorithms and calculating the surface
normal for each mesh. These processes require iterating each
point and finding nearest neighbors to generate a mesh, and the
mesh conversion has high computational complexity and is not
suitable for real-time due to its large magnitude of execution
time [47], [55], [56].

Furthermore, these IRs have different theoretical complex-
ities for the conversion. The time complexities of the IR con-
structions are O(n) for the RI and O(nlogn) for the trees and
mesh; the trees require binary search for each point insertion,
and the mesh construction needs nearest neighbor searches for
the normal estimation and triangulation. In addition, there is a
side benefit that various image-processing techniques can be
used for RIs. Based on these observations, we adapt RI as the
target IR.

V. FLICR: RANGE IMAGE COMPRESSION

Following selecting RI as the appropriate IR, the compres-
sion also needs to be efficient, low-latency, and lightweight. In
this section, we describe how to achieve the objectives of the
compression method. First, we identify the distortion issue of
the current image codecs to LiDAR RIs. Second, we explore
the opportunity of lossy Rls for the downstream compression
steps via RI quantization and subsampling. We argue the
lossless bytestream compressions can be hugely enhanced in
terms of the compression efficiency and low latency through
the lossy representation. However, it compromises the point
cloud quality, and we present the possible issues of FLiCR
with lossy RIs.

TABLE III: The compression ratios and qualities of H.264
with different QPs for 100 RIs of 4500x64 and 8 bpp.

QPO | QP10 | QP20 | QP 30

Compression Ratio | 12.85 13.33 16.41 35.01
PSNR (dB) 63.18 | 48.21 37.61 38.12
CD (cm) 2.23 16.25 126.06 | 107.16

A. Issues with Current Image Compressions

By representing LiDAR point clouds as images, it becomes
possible to leverage the existing image-processing infrastruc-
tures and techniques. With the popularity of video streaming,
modern processor platforms and GPUs are equipped with
dedicated hardware modules for the standard codecs such as
H.264 and HEVC [17]-[19]. These codecs efficiently encode

(c) Point cloud of QP 20.

(d) Point cloud of QP 30.

Fig. 5: The visualizations of the reconstructed point clouds from
the RI of 4500x64 with H.264 and four different quantization
parameters.

and decode continuous images with spatial and temporal
optimizations [14], [16], and the pervasive accelerators enable
the codecs in a low-latency and efficient way even with
commodity mobile devices.

In this context, it seems appropriate to rely on the existing
codecs with hardware accelerators at first glance. However,
we argue the existing codecs specialized for human vision
are hardly applicable to RI compression. The lossy image
compression algorithms for human vision fully utilize the
characteristics of the human eyes to remove the data with
minimal impacts to visual quality as much as possible; one
example is to convert an image into the frequency domain
via discrete cosine transform (DCT) or fast Fourier transform
(FFT) and the high frequency has more loss than the low-
frequency data [14], [16], [57]. While the techniques that
leverage the nature of human vision work well for normal
images, the point cloud details are effectively lost as a result
of the frequency-domain loss in LiDAR RlIs.

Figure 5 shows the reconstructed point clouds from the RIs
encoded and decoded via H.264 with different quantization
parameters (QP). QP regulates how much spatial detail is
retained and is set from O for lossless to 51 for the most lossy
compression. As QP increases, the spatial detail is aggregated
so that the encoded bit rate drops at the expense of data
loss, resulting in lower quality [14]. The reconstructed point
clouds become vague and noisy with high QPs. Table III
shows the averaged compression ratio and quality metrics of

the reconstructed point cloud with different QPs. With the
visual results of the reconstructed point clouds, the PSNR and
CD results become worse drastically while the compression
ratio increases moderately. Considering that the quantization
parameter such as QP or CRF of video streaming is usually set
around 20 and 30 as a rule of thumb (FFmpeg’s H.264 default
CREF is 23 [58]), these results show the current human-vision
codecs are unsuitable for the RI compression. For preserving
the quality of point clouds, the codec quantization parameter
should be set for lossless (QP 0), but it is at the cost of
the lower compression efficiency, as Google Draco achieves
~33% higher compression ratio in Table 1.

TABLE IV: The existing quality metrics with sampling error
(SE) for the subsampled RIs of 8 bpp.

2048x64 | 1024x64 | 512x64 | 256x64
PSNR (dB) 62.4 61.41 58.61 53.71
CD (cm) 5.37 9.23 15.22 36.17
SE 21.03% 58.77% 78.95% 89.22%

(d) Point cloud from 256 x64 RI.

Fig. 6: The visualizations of the point clouds reconstructed from the
subsampled RlIs of Figure 2a corresponding to 4500x64 RI.

B. RI Quantization and Subsampling

RI has been used for losslessly mapping LiDAR point
clouds to 2D frames, and previous work only applies quantiza-
tion of bit-per-point (bpp) [26]-[29], [32], [33]. In these prior
works, the main objective is to maximize the compression
efficiency while maintaining the point cloud quality as high as
possible. However, we argue that there are more optimization

Sampling Error
———
Original Point Cloud

e RI (float value)

PC2RI [
Conversion

Quanli‘mtion } Quantization Error

Lossless
Deflation

Compressed Bytestream

Lossless
Inflation

Reconstructed Point Cloud

- RI2PC {

Conversion

Dequantization
A

RI (float value)]

Fig. 7: FLiCR compression steps with lossy Rls of subsampling and
quantization and lossless compression algorithms.

opportunities with lossy RI to decrease not only the data size
but the downstream compression tasks’ complexities. Specifi-
cally, the RI resolution is determined by the sensor’s precisions
as mentioned in Section IV, and the subsampling of point
clouds can be done by adjusting the precision parameters;
the 3D points are coarsely mapped to a 2D frame. Figure 6
shows the visualizations of reconstructed point clouds from the
subsampled RIs. From the raw point cloud of Figure 2a, we
reduced the precision parameters to map it to the RIs of four
different lower resolutions. Even with the lowest subsampled
RI of 16 KB with 8 bpp, the shapes of scanned objects are
recognizable.

While the subsampled and quantized RI has advantages for
data reduction and compression with lower latencies, it would
affect the performance of the perception tasks. So, a quality
metric for the point clouds from lossy RIs needs to reflect both
the quantization and subsampling errors. The currently used
metrics, PSNR and CD, reflect the quantization error well, but
the sampling error of lossy Rls is not represented effectively
as these metrics are defined with the point-to-point distances
between point clouds (see Section VI for more details).

Table IV shows PSNR, CD, and sampling error (SE) of
the point clouds from four RI resolutions. In the results, the
changes of PSNR and CD exhibit different trends from SE
because SE is about the number of lost points from the original
point cloud (the entropy-wise quality) while PSNR and CD are
with the distances of the closest point pairs between two point
clouds (the point-wise quality).

The current metrics’ issue is they only count the point-
to-point distances, and each point distance is calculated by
finding the nearest point in the comparing point cloud. So,
when the point clouds have different numbers of points, they
are limited to represent this difference in the total number
of points in the point clouds. To address the limitations of
the existing metrics, we propose a unified metric for both
the point-wise quality and the information amount to measure
quantitatively the impacts on the downstream perceptions from
lossy RlIs in Section VI.

C. Lossless Compression with Lossy Rls

As shown in Section V-A, the application of lossy video
codecs to Rls results in lower compression efficiency or can
distort the point clouds in the 3D space. The previous RI com-
pression methods apply the image compression algorithm at
lower efficiencies or propose effective lossless RI compression
algorithms via spatial and temporal optimizations [26]-[29],
[32], [33]. However, they partially leverage the opportunities
of lossy RIs only with bit quantization, and their complex
algorithms have downsides in terms of latency and overheads,
while showing high compression ratios. For satisfying the low-
latency, lightweight, and efficiency requirements, we use the
existing bytestream compression algorithm, dictionary coding,
and enhance its efficiency by fully leveraging the RI quanti-
zation and subsampling.

Dictionary coding is a lossless compression algorithm for
bytestreams and deflates the bytestream by replacing the
repeating patterns with shorter references. Dictionary coding
algorithms have been extensively studied with corpus text
data, and they are with simple bit/byte operations and lower
computation complexities in terms of the space-time trade-
off [59]. So, they provide the benefits of being lightweight and
low-latency, with simple operations and do not distort point
clouds unexpectedly. Even with such advantages, the direct
application of bytestream compressions to the raw point cloud
and unquantized RIs of floating values is inefficient in terms
of the compression ratio (RLE and Dict Coding in Table I and
Figure 8a).

To improve the efficiency, we fully utilize both quantization
and subsampling. The underlying assumption of our approach
is dictionary coding uses the repeating features in a bytestream
and there is a higher probability of recurring patterns when
limiting the representation space of quantized RIs. The com-
pression pipeline is shown in Figure 7. FLiCR with dictionary
coding has similarity to previous RI-based works in terms of
leveraging local spatial features, but it is more advantageous
in meeting the requirements with its simplicity. Explicitly,
compared to the recent RI-based compression (RT-ST [32] in
Table I), FLiCR shows lower encoding and decoding latencies
and energy usage, with the higher compression ratio, as shown
in Table V.

Among the dictionary coding algorithms, we use LZ77 [46]
and compare it with RLE. We measure the efficiency im-
provement and quality reduction by the quantization and
subsampling with LZ77 and RLE, and Figure 8 shows the
results of different resolutions of RIs quantized by 8 bpp.
While the end-to-end latencies of the whole compression
pipeline can decrease only with subsampling (see Figure 8b),
both quantization and subsampling are required to improve
the compression ratios effectively, as shown in Figure 8a.
Then, dictionary coding shows larger growth than RLE, and
these results support our assumption about the performance
improvement of dictionary coding with lossy RlIs.

Although FLiCR achieves compression efficiency and re-
duced latency, it is at the cost of degradation of the point

cloud quality by the quantization and subsampling errors, as
shown in Figures 8c and 8d. Since the reduced point cloud
quality can have an impact on the downstream perceptions, we
evaluate FLiCR with the state-of-the-art LiDAR perceptions
and analyze the errors’ impacts in Section VIIL.

Figure 9 shows the latency breakdowns of FLiCR on our
testbed. In the case where Jetson is a mobile client and the
desktop is a server, the end-to-end latency is ~39 ms (~60%
of Google Draco [42]) even with the highest RI resolution; it
takes 27 ms for client encoding and 12 ms for server decoding.
With the 256 x 64 resolution, the end-to-end latency is ~10 ms
which is ~16% of Draco. Since the large portion of the end-to-
end latency is the conversion time between the point cloud and
RI, the end-to-end latencies can be largely reduced if a device
has a dedicated hardware logic for the RI conversion. As the
RI resolution gets lower, the quantization and compression
latencies decrease. These results show FLiCR fully leverages
the synergistic effect by quantization and subsampling for the
bytestream compressions.

VI. EPSNR: QUALITY METRIC FOR LIDAR POINT
CLOoUDS

The errors in the RI conversion process can affect the
performance of LiDAR perceptions. PSNR and CD (or RMSE)
have been broadly used as the quality metrics of 3D point
clouds [26], [27], [30], [32]-[34], [40], but by definition they
are point-wise quality metrics and do not reflect the point
loss effectively. In the context of our approach with lossy
RIs, we argue a metric for both point-wise quality and overall
information amount is essential.

Dist(p, C') = min ((pe — p)?))

IC2ll—1

1
MSE(Cy,C) = Y. {Dist(pe,, C1)} B
=0

1C ||

Both PSNR and CD use the mean squared error (MSE)
of the point-wise distances between two point clouds. When
C} is the original point cloud and Cj is the reconstructed
point cloud, the distance between a point in C and the
corresponding point in C; is calculated by Equation 2. So,
the corresponding point in C] is of the shortest distance to the
point in Co. Then, MSE between two point clouds is defined
by Equation 3.

CD(Corig7 Ccomp) =]V[SE(Corigv Ccomp) +]V[SE(Ccompv Corig)
“)

PSNR(Corig, Ceomp) = 10 l0g (srspidleZors) ()

Then, PSNR and CD are defined as Equation 4 and 5. CD
is the sum of reciprocal MSEs between two point clouds, and
PSNR is the ratio of the peak LiDAR sensor range to MSE.
As indicated by their definitions, these metrics are based on

212{ —® DictCoding A
- DictCoding - Quant (FLICR) 4

182{ ~* RLE

¥ RLE - Quant

J—

4500x64 4096x64 2048x64 1024x64 512x64 256x64

RI Resolution

(a) The compression ratios with and without quanti-
zation in different RI resolutions.

—&— PSNR
-4 PSNR with Quantization

5%500X64 4096x64 2048x64 1024x64 256x64

RI Resolution

512x64

(c) The PSNR results with and without quantization
in different RI resolutions.

. —&— DictCoding
60 " --4- DictCoding - Quant (FLiCR)
—%-- RLE
¥-- RLE - Quant

50 @ Jet:DictCoding
m - Jet:DictCoding - Quant (FLiCR)
ELn - Jet:RLE
> ~-%-- Jet:RLE - Quant
E \i)i??:
o 30 -
]
3

20

w0, el

""" s (e

g500X64 4096x64 2048x64 1024x64 512x64 256x64

RI Resolution

(b) The end-to-end latencies with and without quan-
tization in different RI resolutions.

40

—& CD
35{ -4~ CD with Quantization A
30

512x64 256x64

0
4500x64 4096x64 2048x64 1024x64
RI Resolution

(d) The CD results with and without quantization in
different RI resolutions.

Fig. 8: The quantization and subsampling impacts on the lossless bytestream compressions.

MSE and are determined by the point-to-point distance. They
natively represent the quality loss by the quantization error, but
the subsampling error is not effectively represented even if the
impact of SE is shown mildly as some nearest points can be
lost in the reconstructed point cloud. Specifically, in the current
metrics, it is possible to get a high-quality result even with a
few points of small distances to a point cloud of large number
of points. It is caused by the unstructured nature of the LiDAR
point cloud; there is no point-to-point correspondence between
LiDAR point clouds having different numbers of points. In the
case of the normal images, the total number of pixels is fixed
without SE and the point-wise metrics work well.

||Corig - Ccomp”
[Corigl

Based on our observation, we argue it is inappropriate to use
the metrics representing only the point-wise quality for LIDAR
point clouds. To address the limitation of the current metrics,
we propose a new single-number metric, entropy-reflecting
PSNR (ePSNR), by extending PSNR. ePSNR is designed
to indicate both the point-wise and entropy-wise quality of
a point cloud.

SE = , 0<SE<] (6)

SE is related to the total information (entropy) loss in a point
cloud because it is the percent of the lost points, as in Equa-
tion 6. One naive way of making PSNR reflect the entropy is to
multiply 1 —SE to PSNR with the assumption that the entropy
is 1 — SE and SE is exactly the same with the actual entropy
loss, Zsg. However, instead of the naive way, we extend
PSNR by estimating .Zs . Our underlying assumption is Zsg
is not exactly the same with SE and follows the exponential
distribution as Equation 7. The intuition for this assumption
is that SE can have minimal impacts on the downstream
perceptions as far as the total amount of necessary information
is preserved for the perception algorithms. It means there
would be a knee of the curve in the graph of the entropy
function.

ZLsg ~ exp(f) (7

When Zsg follows the exponential distribution, the en-
tropy function F(SE) can be defined with the cummulative
distribution function (CDF) of the exponential distribution as
Equation 8. This entropy function is a probability function
estimating the actual entropy of the remaining points in a point
cloud with the given SE.

Assumption :

25
PC2RI Conversion
RI Quantization
Deflation
Inflation

RI Dequantization
RI2PC Conversion

20

BRCELE

Latency (ms)

0

4500x64 4096x64 2048x64 1024x64 512x64 256x64

(a) The latency breakdown of our method on desktop.

50 PC2RI Conversion

45 Rl Quantization
Deflation

40 Inflation

35 RI Dequantization

RI2PC Conversion

Latency (ms)
N
w

0 4500x64 4096x64 2048x64 1024x64 512x64 256x64

(b) The latency breakdown of our method on Jetson
AGX.

Fig. 9: The end-to-end latency breakdowns of FLiCR.

F(SE)=PE>z)=¢# wherez=1—-SE (8)

With our entropy function, ePSNR is defined as Equation 9.
Since it is based on PSNR, the point-wise quality with the
quantization error is represented while reflecting the entropy
with the given SE. When SE is small, ePSNR would be
almost same with the original PSNR, but would start to
decrease exponentially when SE gets larger, by its definition.
ePSNR has two parameters: « as a derivative adjusting factor
to prevent too steep or shallow distribution and S of the
exponential distribution.

ePSNR(Corig, Coomp) = PSNR x {1 — (SE x (F(SE) + o))},

0<F(SE)+a<1
9

VII. EVALUATION

The goal of this section is to demonstrate that our approach
appropriately meets the requirements of the LiDAR point
cloud compression for enabling edge-assisted online percep-
tions. We compare FLiCR with several existing compression
method. Since FLiCR affects the quality of the point clouds, its

impact is evaluated with the state-of-the-art LIDAR perception
algorithms for 3D objection detection and LiDAR odometry
and mapping (LOAM). We also evaluate ePSNR and demon-
strate its effectiveness compared to PSNR and the naive way of
combining PSNR and SE. All experiments are done by using
the LiDAR point clouds of the KITTI dataset [20], which are
captured from Velodyne HDL-64E [49].

A. Experimental Testbed

The testbed consists of two machines, an NVIDIA Jetson
AGX Xavier and a high-end desktop. The Jetson has ARMv8
CPU and 32 GB memory, and we set its power mode as
15W. The desktop has Intel Core 17-10700, 32 GB memory,
and NVIDIA RTX 2070 GPU. Both run Ubuntu 18.04, and
the energy usage is measured with perf on desktop and
tegrastats on Jetson.

B. FLiCR Benchmark

As shown in Table I, Google Draco [42] is the most
suitable compression method for online perceptions in terms of
compression ratio, latency, and energy usage. So, we compare
FLiCR with different RI resolutions to Draco. We benchmark
FLiCR and measure the compression ratio, SE, PSNR, ePSNR
(o = —0.15, B = 0.5), latencies, and energy usage. The
compression level parameter of Draco is set as 10 which is
maximum. For FLiCR, each RI is quantized by 8 bpp. The
benchmark results are shown in Table V.

FLiCR achieves higher compression ratios across all resolu-
tions than Draco, and it is ~25% higher even with the highest
resolution. As highlighted in Table V, FLiCR with little
subsampling starts to outperform Draco in the compression
ratio, latency, and energy usage. One characteristic of Draco
is its encoding process takes longer and uses more energy
than decoding while with FLiCR it is similar in most cases.
Considering the use case of edge-assisted perceptions, it is the
client who encodes and sends data, and the server receives and
decodes the encoded data to feed it to perception modules.
When the client is Jetson and the server is the desktop in
our testbed, Draco introduces ~60 ms end-to-end latency,
and with FLiCR it ranges from ~11 ms for 256x64 to ~40
ms for 4500x64. Therefore, FLiCR is more advantageous
for the latency-performance tradeoff of online perceptions
for commodity mobile devices, given its higher compression
efficiency in terms of compression ratios and energy usage.

To satisfy the aforementioned requirements, we compromise
the quality of point clouds with lossy RIs. Since Draco
quantizes each point as 11 bpp, it shows a higher PSNR,
and ePSNR is almost same with PSNR as it has small SE.
One issue about SE is that the highest resolution RIs have
~8% SE even though its resolution is with the maximum
sensor precision of HDL64 specified in the spec sheet [49].
We presume this SE is caused by the sensor’s measurement
error and noise as the LiDAR point clouds are captured by
running cars. In Table V, PSNR barely changes with 1024 x 64
RIs which have 58.8% SE while ePSNR reflects it. Since
the reduced quality affects the performance of downstream

TABLE V: The comparison between Google Draco and FLiCR of different RI resolutions.

Google Draco FLiCR FLiCR FLiCR FLiCR FLiCR FLiCR
4500 64 4096 x 64 2048 x 64 1024 x 64 512x64 25664

Compression Ratio 17.05 21.26 24.75 46.18 80.88 131.13 215.85
SE 6.7% 8.4% 9.1% 21% 58.8% 78.9% 89.2%
PSNR (dB) 67.29 63.18 63.09 62.4 61.41 58.61 53.71
ePSNR (dB) 67.27 63.13 63.01 61.64 51.38 35.4 22.29
Enc Time (ms) 21.1 (48.4) 10.48 (26.83) | 7.69 (23.41) 4.3 (16.03) 3.37 (12.26) | 2.35 (10.46) 1.99 (9.54)
Dec Time (ms) 044 (18.6) | 12.52 (21.94) | 7.44 (20.97) | 4.67 (17.09) | 2.47 (15.13) | 2.01 (11.06) | 1.36 (10.11)
Enc Energy Usage (J) 0.83 (0.14) 0.36 (0.09) 0.27 (0.07) 0.16 (0.04) 0.13 (0.03) 0.09 (0.03) 0.07 (0.02)
Dec Energy Usage (J) 0.36 (0.05) 0.48 (0.05) 0.3 (0.05) 0.19 (0.04) 0.13 (0.04) 0.09 (0.03) 0.08 (0.02)

perceptions, we also evaluate our compression and metric with B Part-A E=I PV-RCNN —=— PSNR

the state-of-the-art LiDAR perceptions. B PointPillars SECOND 4 ePSNR

B58 PointRCNN [Voxel R-CNN --e-- PSNR*(1-SE)

C. End-to-end Evaluation

We evaluate our method and metric with two perception
tasks: 3D object detection and LOAM. For 3D object de-
tection, we use machine learning (ML) models pre-trained
with the original point clouds from the KITTI dataset from
the Model Zoo of OpenPCDet [60]. We use the following
models: Part-A? Net [61], PointPillars [62], PointRCNN [63],
PV-RCNN [64], SECOND [65], Voxel R-CNN [66]. These
models are trained with 7481 samples, and the testset is 7518
LiDAR scans. For LOAM [67], we use the A-LOAM imple-
mentation [68]. For checking the impacts of RI quantization
and subsampling, we generate the LiDAR point cloud dataset
reconstructed from different resolution RIs. Then, we feed our
dataset to those perception models. Since the object detection
models are trained with the original LiDAR data and A-LOAM
is implemented and tested by using the original dataset, we can
quantitatively measure the impacts of lossy Rls in FLiCR on
the perception performance.
3D Object Detection. 3D object detection is the task of
detecting objects from 3D point clouds. Each algorithm of the
models we use has a different network architecture, but there
is a commonality between them: a backbone network extracts
features from the point clouds and the extracted features
are used by the regional proposal networks (RPN). As the
backbone networks of these models, PointNet++ [69] is used
to extract the point-level features. For the voxel-level features,
the voxel feature encoder (VFE) layer and 3D sparse convolu-
tional networks [70] are used. When each model produces the
region proposals of the detected objects, they are compared
with the region of the ground truth objects. The result recall
is determined by the detected objects corresponding to the
ground truth object with the IoU threshold.

Table VI shows the recall for the detected objects of the
models. With the highlighted example of PointPillars, the
performance reductions between the original and 4500 x 64 RIs
show the impact of the quantization error. In the case of IoU
threshold 0.7, it shows ~23% performance reduction while it
is ~2% with threshold 0.3. This shows the results of higher
IoU thresholds are more sensitive to the quantization error,
and 3D object detection with a higher IoU threshold requires
input point clouds of almost the same quality as the original
training data.

100

70

60
80

EERERERENEN NOEE

60

B
o
Decibel (dB)

w
o

40

S

e e

20

3D Object Detection Recall (%)

20

:

ATATATATATATATAAA A AVAAVAA A ATATATATA"A A A"A"A" T

10

1SS NENN NN NN NN s N NN anRNN N nENsnsnsnnNnananEnnnEnnnnunnnnE suna]

4500x64 4096x64 208)(64 1024x64

256x64

(8%) (9%) (21%) (58%) (89%)

RI Resolutions with SE

(79%)

Fig. 10: The results of PSNR, ePSNR, and the naively-entropy-
reflecting PSNR with the 3D object detection results of the IoU
threshold 0.5 for the models.

The results across the different resolutions show the impacts
of SE. One noticeable thing is the performance results decrease
little with 2048 x64 RIs compared to 4500x64 Rls, and this
trend is for all IoU thresholds. These results support our
assumption for ePSNR in Section VI; there is a knee of the
curve in the entropy loss by SE. Moreover, Table V shows the
ePSNR results drop drastically from 1024 x64 RIs as does the
performance of the 3D objection detection models.

Figure 10 shows the object detection recall values, and
PSNR, ePSNR, and the naive way of making PSNR capture
entropy, PSNRx (1—SE), as described in Section VI. The ToU
threshold is 0.5 for all detection models, and the parameters
of ePSNR are « (-0.15) and 3 (0.5). For the changes of SE
and recalls, PSNR mildly changes across the RI resolutions,
and PSNRx (1 — SE) shows more drastic decreases compared
to the perception results. On the other hand, ePSNR shows a
similar trend with the performance reduction of the perception
models. These results demonstrate the effectiveness of ePSNR
with the probability function estimating the actual entropy by
using SE, as a single-number metric for the point-wise and
entropy-wise qualities of a point cloud.

LiDAR Odometry and Mapping. LOAM (or LiDAR SLAM)

10

TABLE VI: The 3D object detection performances with different IoU threshold and reconstructed point clouds from the RIs. The number

in each cell is the recall for the detected objects in the scene.

Original | 4500x64 RI | 4096x64 RI | 2048x64 RI | 1024x64 RI | 512x64 RI | 256x64 RI
Part-AZ Net 95.1 88.4 88.3 87.9 76.2 75.5 56.1
PointPillars 94 92.6 924 91.5 82 76.1 54.8
IoU Threshold PointRCNN 89.8 70.7 71.2 71.7 68.8 62.9 47.5
0.3 PV-RCNN 96.8 94.6 94.4 94 89.9 82.8 70.2
SECOND 94.9 92.7 92.6 92.1 88.4 79.4 60.2
Voxel R-CNN 95.4 93.6 93.6 93.5 89 87.5 76.1
Part-A? Net 91.2 82.3 82.2 81.1 71.4 63.7 41.3
PointPillars 88.7 82.7 82.5 81 69.8 57.8 30.8
IoU Threshold PointRCNN 87.1 65.5 66 66.2 63.8 57 38.5
0.5 PV-RCNN 93.4 88.9 88.8 87.6 81.8 71.2 53
SECOND 89.1 83.8 83.7 82.3 76.8 61.9 38
Voxel R-CNN 94.9 91.1 91.1 90.5 85.2 79.4 58.4
Part-AZ Net 73.6 59.9 59.8 574 46 38.1 21.6
PointPillars 63.9 49.6 49.3 46 334 18.4 5.5
IoU Threshold PointRCNN 73.3 46.8 47.3 46.9 43.9 36.4 20.8
0.7 PV-RCNN 75.9 60.6 60.4 574 49 33.3 16.7
SECOND 66.5 52.4 52.3 49.1 41.5 26.3 10.3
Voxel R-CNN 84.6 67.9 67.9 64 54.1 37.1 16.4
TABLE VII: The LOAM averaged results of the error metrics:
Position (m) and Rotation (degree). Top-View

ATEpos ATErot REpos RErot

Original 0.316 0.57 0.389 0.82
4500x 64 RI 0.321 0.2 0.387 0.83
4096 x 64 RI 0.313 0.21 0.39 0.84
2048 x64 RI 0.294 0.17 0.388 0.82
1024 x64 RI 0.394 0.17 0.388 0.82
512x64 RI 0.610 0.17 0.388 0.82
256 x64 RI 0.596 0.2 0.387 0.82

is a 3D mapping technique running the odometry, point
matching, and registration (mapping) algorithms simultane-
ously [67]. LOAM, and other SLAM algorithms that use dif-
ferent sensors, are widely used in various use cases, including
autonomous vehicle, extended reality, and 3D reconstruction,
and are one of the key perception tasks. We evaluate the
quality impacts of point clouds reconstructed from different
RI resolutions with A-LOAM [68] and the evaluator [71].
The experiments are with a sequence of 1101 LiDAR point
clouds from the KITTI dataset. We show our evaluation results
using two metrics: absolute trajectory error (ATE) and relative
error (RE). While ATE calculates the root mean squared
errors (RMSE) of position (ATE,,,) and rotation (ATE,.)
to the groundtruth, RE measures the relative relations of sub-
trajectories in position (RE;,,) and rotation (RE,) [72].
Table VII shows the evaluation results of A-LOAM with
different RIs. Based on the results, the LOAM algorithm works
well even with high quantization and subsampling errors.
Except for the increased ATE,,; for 512x64 and 256x64,
other results are almost same with the result of the original
data. Moreover, the LOAM paths of all cases are almost
identical to each other as shown in Figure 11. After thorough
analysis of the A-LOAM implementation, we find the mapping
resolutions of A-LOAM are attributed to these results; the line
and plane mapping resolutions of A-LOAM are 0.4 m and
0.8 m [68]. The increased ATE,,,; for 512x64 and 256 x 64

11

—— Original Path
4500x64 Path
—— 4096x64 Path
—— 2048x64 Path
—— 1024x64 Path
—— 512x64 Path
256x64 Path
=== /ground_truth

-100 -50 0

x[m]

50 100

Fig. 11: The path results of LOAM with point clouds of different
RIs.

are because the coarser subsampling causes loss of the sparse
regions in the scene. Specifically, in Figure 6, the points over
long distances are lost with coarser subsampling. The distance
errors are reflected in ATE,,, because ATE calculates the
RMSE over the whole path; there is no global reference in
LOAM, and the early small errors can contribute to ATE more
than the later errors [72]-[74]. For RE,, it calculates the
averaged errors of separate sub-trajectories, and the distance
errors are not accumulated over the whole path.

Summary. Based on the experiments, we demonstrate that
FLiCR is suitable for enabling edge-assisted online percep-
tions to mobile users. Compared to the existing LiDAR
point cloud compressions, it is fast in terms of the end-to-
end compression/decompression latency, and lightweight and
efficient in terms of energy usage and compression ratio.
FLiCR achieves these benefits by affecting the quality of the
point clouds using RI quantization and subsampling errors, and
the end-to-end experiments of 3D object detection and LOAM

show the impacts of the quality degradation on the downstream
perception algorithms and their parameters. Even though the
lossy RIs have a different effect on the perception performance
based on each algorithm setting, ePSNR is able to quantify
the point-wise and entropy-wise quality of a point cloud
effectively. Thus, when optimizing the compression method,
it would be crucial to co-design the compression system with
awareness of the impact on downstream perceptions, and we
leave this for future work.

VIII. RELATED WORK

Given the popularity of 3D point clouds, there are many
point cloud compression methods. Firstly, there are MPEG
standard specifications: video-based point cloud compression
(V-PCC) and geometry-based PCC (G-PCC) [31]. V-PCC
converts 3D point clouds into 2D frames and compresses the
frames with MPEG video codecs. G-PCC directly leverages
the octree structure as the intermediate representation (IR),
and compresses the octree of point clouds. Other than G-
PCC, Google Draco [42] and Point Cloud Library (PCL)
compressors [38] utilize tree structures including k-d tree and
octree. After generating the tree structure from a point cloud,
the occupancy information with the leaf nodes is coded, and
entropy or arithmetic coding is applied to compress the coded
information [39], [75]. For range image compression, Tu et
al. present direct mapping of sensor data to 2D frames by
each laser ID with precision and compress these raw Rls using
image compression methods [26]. Other RI-based compression
methods convert the raw sensor data from Cartesian coordi-
nates into spherical coordinates by using the LiDAR sensor
design [28], [29], [32]. Feng et al. propose spatial encoding
in the plane granularity and temporal optimization with scene
alignment and prediction by using IMU fusion. Even though
these existing compression methods show decent compression
performance, it is hard to apply them to our target use case
of online remote perceptions because of their high latency
magnitudes, as described in Section III.

Recently, there has been research to utilize machine learn-
ing (ML) for LiDAR point cloud compression. One popular
approach is with the octree because the high compression
ratio can be achieved by coding the tree into a more com-
pact bytestream with well-predicted occupancy information
of a given tree [75]. By fully utilizing the relationship of
neighboring nodes in the octree, the state-of-the-art works
train the ML models to predict the distribution of the octree
nodes [30], [34], [40], [41]. With the predicted distribution,
the occupancy information and nodes are effectively coded by
assigning proper bits to each node of non-empty child nodes.
For RI-based ML approaches, the spatial optimization is done
by using the encoder and decoder networks trained with RIs
of point clouds [27], [33]. Some of these ML algorithms
achieve sufficiently low latency to run in real-time [30], [34].
However, they are not practical for mobile users, because they
rely on high-end processors and GPUs, which are usually
unavailable for mobile devices. Even if a mobile device has

12

such computing resources, there is another issue with its
limited battery.

IX. LIMITATIONS AND FUTURE WORK

Although we show the effectiveness of FLiCR and ePSNR,
there are still some remaining limitations. Firstly, as we
observed with the end-to-end experiments, perception models
pre-trained with the original data lose their predictive perfor-
mance when used with point clouds reconstructed from lossy
RIs. To alleviate this issue, there is an opportunity to make
the perception models robust to point clouds from different
RI resolutions. Another opportunity is to develop dedicated
hardware logic for the processing steps in Figure 7. As shown
in Figure 9, the RI conversion takes a large portion of the
end-to-end latency. Accelerating the conversion process would
further improve the latency benefits of FLiCR. In addition,
ePSNR has a limitation. While ePSNR as a single-number
metric effectively represents the point-wise and entropy-wise
point cloud qualities, it requires two parameters: « and 3. We
manually set these parameters for our experiments, but it is
not scalable. Therefore, there is a need to further develop a
tuning methodology for these parameters, or to further refine
the quality metric for LIDAR point clouds.

X. CONCLUSION

We describe the limitations of the existing point cloud
compression methods for enabling LiDAR online perception
on the edge. We propose a lightweight, low-latency, and
efficient compression method by using RI and dictionary
coding. For achieving the requirements, FLiCR fully leverages
lossy RIs with quantization and subsampling. To quantify the
quality loss by quantization and subsampling, we introduce
a new metric, ePSNR, which reflects both the point-wise
and entropy-wise qualities of a point cloud. We evaluate
our compression method and demonstrate FLiCR is more
appropriate for edge-assisted LiDAR online perceptions than
the state-of-the-art compression algorithms. Compared to the
existing algorithm most suitable for the target use case, FLiCR
takes up to 80 percent less end-to-end latency while presenting
12 xcompression ratio. Our evaluation results with 3D object
detection and LOAM show the impact of lossy Rls on the
downstream perceptions and the effectiveness of ePSNR com-
pared to the current quality metrics to capture this impact.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers. We are
grateful to José Araudjo, Héctor Caltenco, Bob Forsman, Per-
Erik Brodin, and Gregoire Phillips for providing valuable
feedback on this work and helping us improve its presentation.
This work has been partially supported by NSF projects
CCF-2217070 and CNS-1909769, the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA, and by funding and equipment
gifts from VMware and Intel.

[6]

[7]

[9]

[10]

(11]

[12]

(13]

[14]
[15]

[16]

(17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Timothy Lee, “Lidar used to cost $ 75,000—here’s how apple brought
it to the iphone,” 2020.

Velodyne Lidar, “Velabit: Velodyne’s smallest lidar sensor,” https://
velodynelidar.com/products/velabit/, 2021.

Intel, “Intel realsense™ lidar camera 1515, https://www.intelrealsense.
com/lidar-camera-1515/, 2021.

Apple, “Apple unveils new ipad pro with breakthrough lidar scanner and
brings trackpad support to ipados,” 2020.

M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch,
S. Milz, and H. Michael Gross, “Complexer-yolo: Real-time 3d object
detection and tracking on semantic point clouds,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0-0.

M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, “Complex-yolo:
An euler-region-proposal for real-time 3d object detection on point
clouds,” in Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, 2018, pp. 0-0.

M. Ye, S. Xu, and T. Cao, “Hvnet: Hybrid voxel network for lidar
based 3d object detection,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 1631-1640.

B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2018, pp. 7652-7660.

Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh,
“Polarnet: An improved grid representation for online lidar point clouds
semantic segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 9601-9610.
W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219-235, 2019.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155-168.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1-16.

J. Heo, K. Bhardwaj, and A. Gavrilovska, “Poster: Enabling flexible
edge-assisted xr,” in 2021 IEEE/ACM Symposium on Edge Computing
(SEC), 2021, pp. 465-467.

I. E. Richardson, H. 264 and MPEG-4 video compression: video coding
for next-generation multimedia. John Wiley & Sons, 2004.

A. Grange, P. De Rivaz, and J. Hunt, “Vp9 bitstream & decoding process
specification,” Version 0.6, March, 2016.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (hevc) standard,” IEEE Transactions
on circuits and systems for video technology, vol. 22, no. 12, pp. 1649—
1668, 2012.

Intel, “Intel quick sync video, create, edit, and share video in a flash,”
2011.

Qualcomm, “Snapdragon 855+/860 mobile platform,” 2021.

Nvidia Corporation, “Nvidia video codec sdk,” 2021.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231-1237, 2013.

Y. Xiao, Y. Cui, P. Savolainen, M. Siekkinen, A. Wang, L. Yang,
A. Yla-Jadski, and S. Tarkoma, “Modeling energy consumption of data
transmission over wi-fi,” IEEE Transactions on Mobile Computing,
vol. 13, no. 8, pp. 1760-1773, 2013.

E. J. Vergara and S. Nadjm-Tehrani, “Energybox: a trace-driven tool for
data transmission energy consumption studies,” in European Conference
on Energy Efficiency in Large Scale Distributed Systems. Springer,
2013, pp. 19-34.

X. Zhang and K. G. Shin, “E-mili: Energy-minimizing idle listening in
wireless networks,” IEEE Transactions on Mobile Computing, vol. 11,
no. 9, pp. 1441-1454, 2012.

M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming perception,”
in European Conference on Computer Vision. Springer, 2020, pp. 473—
488.

K. Mammou, P. A. Chou, D. Flynn, M. Krivoku¢a, O. Nakagami, and
T. Sugio, “G-pcc codec description v2,” ISO/IEC JTC1/SC29/WGI11
NI18189, 2019.

13

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

C. Tu, E. Takeuchi, C. Miyajima, and K. Takeda, “Compressing contin-
uous point cloud data using image compression methods,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC). 1EEE, 2016, pp. 1712-1719.

C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, “Point cloud compres-
sion for 3d lidar sensor using recurrent neural network with residual
blocks,” in 2019 International Conference on Robotics and Automation
(ICRA). 1EEE, 2019, pp. 3274-3280.

J.-K. Ahn, K.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “Large-scale 3d
point cloud compression using adaptive radial distance prediction in
hybrid coordinate domains,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 3, pp. 422-434, 2014.

H. Houshiar and A. Niichter, “3d point cloud compression using
conventional image compression for efficient data transmission,” in
2015 XXV International Conference on Information, Communication
and Automation Technologies (ICAT). 1EEE, 2015, pp. 1-8.

L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “Octsqueeze:
Octree-structured entropy model for lidar compression,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 1313-1323.

D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression stan-
dardization activities: video-based (v-pcc) and geometry-based (g-pcc),”
APSIPA Transactions on Signal and Information Processing, vol. 9,
2020.

Y. Feng, S. Liu, and Y. Zhu, “Real-time spatio-temporal lidar point cloud
compression,” in 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS). 1EEE, 2020, pp. 10766-10773.

C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, “Real-time streaming
point cloud compression for 3d lidar sensor using u-net,” /[EEE Access,
vol. 7, pp. 113616-113 625, 2019.

Z. Que, G. Lu, and D. Xu, “Voxelcontext-net: An octree based frame-
work for point cloud compression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
6042-6051.

X. Sun, S. Wang, M. Wang, Z. Wang, and M. Liu, “A novel coding archi-
tecture for lidar point cloud sequence,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5637-5644, 2020.

X. Sun, H. Ma, Y. Sun, and M. Liu, “A novel point cloud compression
algorithm based on clustering,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 2132-2139, 2019.

F. Song, Y. Shao, W. Gao, H. Wang, and T. Li, “Layer-wise geometry
aggregation framework for lossless lidar point cloud compression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 12, pp. 4603-4616, 2021.

R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
2011 IEEE international conference on robotics and automation. 1EEE,
2011, pp. 1-4.

O. Devillers and P.-M. Gandoin, “Geometric compression for interactive
transmission,” in Proceedings Visualization 2000. VIS 2000 (Cat. No.
00CH37145). 1IEEE, 2000, pp. 319-326.

S. Biswas, J. Liu, K. Wong, S. Wang, and R. Urtasun, “Muscle: Multi
sweep compression of lidar using deep entropy models,” Advances in
Neural Information Processing Systems, vol. 33, pp. 22170-22 181,
2020.

D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘“Multiscale
deep context modeling for lossless point cloud geometry compression,”
in 2021 IEEE International Conference on Multimedia & Expo Work-
shops (ICMEW). IEEE, 2021, pp. 1-6.

Google, “Draco: 3d data compression,” 2018.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

M.-E. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8748-8757.

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337-343, 1977.

Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruction
methods for large and noisy point clouds,” in 2009 IEEE international
conference on robotics and automation. 1EEE, 2009, pp. 3218-3223.
L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46-55, 1998.

Velodyne Lidar, “Velodyne lidar hdl-64e,” 2018.

M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel fast kd-tree
construction for interactive ray tracing of dynamic scenes,” in Computer
Graphics Forum, vol. 26, no. 3. Wiley Online Library, 2007, pp. 395—
404.

D. Wehr and R. Radkowski, “Parallel kd-tree construction on the gpu
with an adaptive split and sort strategy,” International Journal of Parallel
Programming, vol. 46, no. 6, pp. 1139-1156, 2018.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast bvh construction on gpus,” in Computer Graphics Forum, vol. 28,
no. 2. Wiley Online Library, 2009, pp. 375-384.

T. Karras, “Maximizing parallelism in the construction of bvhs, octrees,
and k-d trees,” in Proceedings of the Fourth ACM SIGGRAPH/Euro-
graphics conference on High-Performance Graphics, 2012, pp. 33-37.
Z. Wu, F. Zhao, and X. Liu, “Sah kd-tree construction on gpu,” in
Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, 2011, pp. 71-78.

N. Salman, M. Yvinec, and Q. Mérigot, “Feature preserving mesh
generation from 3d point clouds,” in Computer graphics forum, vol. 29,
no. 5. Wiley Online Library, 2010, pp. 1623-1632.

B. Guan, S. Lin, R. Wang, F. Zhou, X. Luo, and Y. Zheng, “Voxel-based
quadrilateral mesh generation from point cloud,” Multimedia Tools and
Applications, vol. 79, no. 29, pp. 20561-20578, 2020.

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An
overview of jpeg-2000,” in Proceedings DCC 2000. Data Compression
Conference. 1EEE, 2000, pp. 523-541.

FFmpeg team, “Ffmpeg, h.264 video encoding guide,” 2022.

S. Shanmugasundaram and R. Lourdusamy, “A comparative study of
text compression algorithms,” International Journal of Wisdom Based
Computing, vol. 1, no. 3, pp. 68-76, 2011.

O. D. Team, “Openpcdet: An open-source toolbox for 3d object detection
from point clouds.”

S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE transactions on pattern analysis and machine intelli-
gence, 2020.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12697-12705.

S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 770—
779.

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
renn: Point-voxel feature set abstraction for 3d object detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10529-10538.

Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel r-
cnn: Towards high performance voxel-based 3d object detection,” arXiv
preprint arXiv:2012.15712, 2020.

J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.

C. S. Qin Tong, “Advanced implementation of loam.”

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic segmen-
tation with submanifold sparse convolutional networks,” CVPR, 2018.

H. Gim, D. Cho, and J. Hong, “A framework for lidar slam algorithm
evaluation.”

14

[72]

[73]

[74]

[75]

Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory eval-
uation for visual (-inertial) odometry,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2018, pp.
7244-7251.

R. Kiimmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, “On measuring the accuracy of slam algorithms,”
Autonomous Robots, vol. 27, no. 4, pp. 387-407, 2009.

W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kiimmerle, C. Dorn-
hege, M. Ruhnke, A. Kleiner, and J. D. Tardos, “A comparison of
slam algorithms based on a graph of relations,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 1EEE,
2009, pp. 2089-2095.

R. Schnabel and R. Klein, “Octree-based point-cloud compression.” in
PBG@ SIGGRAPH, 2006, pp. 111-120.

