
FLiCR: A Fast and Lightweight LiDAR Point
Cloud Compression Based on Lossy RI

Jin Heo
Georgia Institute of Technology

Atlanta, Georgia, USA

jheo33@gatech.edu

Christopher Phillips
Adeia

Hartwell, Georgia, USA

chris.phillips@adeia.com

Ada Gavrilovska
Georgia Institute of Technology

Atlanta, Georgia, USA

ada@cc.gatech.edu

AbstractÐLight detection and ranging (LiDAR) sensors are
becoming available on modern mobile devices and provide a
3D sensing capability. This new capability is beneficial for
perceptions in various use cases, but it is challenging for resource-
constrained mobile devices to use the perceptions in real-time
because of their high computational complexity. In this context,
edge computing can be used to enable LiDAR online perceptions,
but offloading the perceptions on the edge server requires a low-
latency, lightweight, and efficient compression due to the large
volume of LiDAR point clouds data.

This paper presents FLiCR, a fast and lightweight LiDAR
point cloud compression method for enabling edge-assisted online
perceptions. FLiCR is based on range images (RI) as an interme-
diate representation (IR), and dictionary coding for compressing
RIs. FLiCR achieves its benefits by leveraging lossy RIs, and we
show the efficiency of bytestream compression is largely improved
with quantization and subsampling. In addition, we identify the
limitation of current quality metrics for presenting the entropy
of a point cloud, and introduce a new metric that reflects
both point-wise and entropy-wise qualities for lossy IRs. The
evaluation results show FLiCR is more suitable for edge-assisted
real-time perceptions than the existing LiDAR compressions, and
we demonstrate the effectiveness of our compression and metric
with the evaluations on 3D object detection and LiDAR SLAM.

Index TermsÐlidar, lidar point cloud, lidar point cloud com-
pression, 3D point cloud compression, remote lidar perceptions,
real-time perception service, range image compression, edge
computing

I. INTRODUCTION

Light detection and ranging (LiDAR) sensors have been

used in robotics and autonomous vehicles for robust and

accurate 3D sensing. The 3D point clouds from LiDAR sensors

are used in perception tasks for understanding real-world

contexts, such as 3D object detection and tracking, and LiDAR

simultaneous localization and mapping (LiDAR SLAM). A

LiDAR sensor has advantages over image sensors as it can

provide environmental information in 3D with higher accuracy

and is more robust to challenging weather and light conditions.

Previously, despite the benefits of LiDAR sensors, only a few

device platforms were equipped with them because the early

models of LiDAR were too expensive and large in size [1].

However, as LiDAR technology advances, the sensors are be-

coming smaller and affordable, while maintaining their sensing

performance even at lower power usage. Recently, Velodyne

Lidar released a palm-size LiDAR sensor, Velabit [2], for

around $100, Intel RealSense camera [3] has a tiny LiDAR

sensor, as do the latest Apple iPhone and iPad [4] devices.

As LiDAR becomes cost-effective and smaller in size, there

would be more opportunities for mobile devices to leverage

perceptions of this new sense in diverse use cases.

Although LiDAR technology is becoming available on

mobile devices, there remain challenges in leveraging Li-

DAR perceptions for real-time use cases. As discussed in

prior LiDAR perception research [5]±[9], the computational

complexities of LiDAR perceptions are very high because

these algorithms process unstructured 3D data. Even with

these highly optimized algorithms, high-end processors and

GPUs are required to make them run in real-time. This

poses limitations to enabling real-time LiDAR perception on

resource-constrained (including by battery lifetime) mobile

devices which lack such high-end hardware.

Edge computing is a technology that can relieve such issues

and enable computationally intensive perceptions for mobile

users with commodity hardware. The edge (or cloudlet) is

located at the edge of the network and close to the end users in

the multi-tier cloud. End users can utilize edge resources effec-

tively for storing and processing data on nearby edge servers

accessible via low-latency and high-bandwidth networks such

as 5G [10]. There has been research on offloading image-based

real-time perceptions on the edge [11]±[13]. When remotely

running the perceptions, a sequence of images is transmitted

to the edge server in real-time. In such settings, efficient and

low-latency image compression is essential because of the

large size of the raw images. Fortunately, image compression

algorithms have been extensively studied by both industry and

academia [14]±[16], and the accelerators for such standard

codecs are broadly available even on mobile devices, given

the popularity of video streaming [17]±[19]. These existing

video codecs with accelerators enable the online perceptions

on the remote edge servers.

While offloading image-based perceptions takes advantage

of the available codecs and accelerators for real-time video

streaming, there are challenges to enabling edge-assisted on-

line LiDAR perceptions due to the lack of such infrastructure

for LiDAR point cloud compression. LiDAR sensors generate

unstructured 3D point clouds, and their volume is too large

to send them as raw data. As an example, the points per

scan of the KITTI dataset [20] are about 120,000 of 2 MB,

and streaming the raw sensor data at 60 frames per second

1

(FPS) needs a bandwidth of 120 Mbps. In addition to the

high bandwidth usage, transmitting a large amount of data not

only causes higher network loads on the backend middleboxes,

resulting in additional transmission delays, but also reduces the

lifetime of a mobile device by consuming its battery [21]±[23].

In this context, an effective point cloud compression is crucial,

but it is required to be low-latency and lightweight. Since

the responsiveness of online perceptions is determined by the

end-to-end latency, high compression latency can introduce

discrepancy between the real environment and the perception

results [24]. The compression time should be sufficiently small

not to compromise the benefit of the reduced perception

processing time on the server. Moreover, the compression

should be lightweight to run on mobile devices.

There are prior efforts to improve 3D point cloud compres-

sion, but their primary focus is on achieving higher compres-

sion ratio while preserving the original content qualities [25]±

[31]. Even with real-time compression methods, the latency

ranges of previous methods are too high to enable online

perceptions, or they require high-end processors with GPUs

for low latency [32]±[37]. In short, the effectiveness of existing

point cloud compression methods is limited when considering

mobile devices, which poses a challenge to enabling edge-

assisted LiDAR perceptions.

For enabling edge-assisted LiDAR perceptions to real-time

applications, we propose FLiCR, a lightweight and low-

latency point cloud compression method based on the range-

image (RI) representation and a lossless compression algo-

rithm. While previous research on RI compressions utilizes

only the quantization of the point bit precision with lossless

RI mapping [26]±[29], [32], [33], we explore the optimization

opportunities of lossy RIs with subsampling for reducing the

data size and improving the compression efficiency. The idea is

that compression algorithms such as dictionary coding, which

use shorter references to repetitive features, would become

more effective since they operate with a more limited data

representation space. Subsampling of mapped points leads to

point loss, and it is criticial to understand how this translates

to reduction in end-to-end perception quality. We demonstrate

the limitations of existing quality metrics to represent this

total information loss because their designs are only concerned

with point-to-point distances. Then, we propose a unified

metric, ePSNR, that captures both point-wise and entropy-

wise point cloud qualities, by extending the current PSNR

with a probability function of entropy estimation.

We evaluate FLiCR and ePSNR with the current compres-

sion methods and metrics and different LiDAR perception use

cases. In our results, FLiCR achieves up to 5.3× improvement

in end-to-end compression latency on mobile devices and

12.6× in compression ratio compared to Google Draco, and

ePSNR captures the quality impact of the lossyness introduced

by FLiCR, enabling future system support to dynamically

exercise the latency-performance tradeoff it exposes. In sum-

mary, we make the following contributions:

• We identify the requirements of LiDAR point cloud com-

pression methods for edge-assisted online perceptions and

conduct a thorough analysis on the limitations of the state-

of-the-art technologies.

• We propose FLiCR, a lightweight, low-latency, and effi-

cient compression method that combines use of lossy RI

and lossless dictionary coder, and compare it to the existing

methods.

• We point out the limitations of the current quality metrics

for point clouds in terms of the entropy loss and propose

ePSNR as a new single-number metric reflecting both point-

wise and entropy-wise qualities.

• We demonstrate the benefits of our compression method

and metric on two downstream perception tasks, 3D object

detection and LiDAR SLAM.

II. BACKGROUND

3D Point Clouds. A 3D point cloud is a set of points in the

3D space. Point clouds can be categorized into two categories

by their characteristics: structured and unstructured. The un-

structured (raw) point cloud is a sequence of the coordinate

values of 3D points (usually x, y, z in a Cartesian coordinate

system), optionally with other attributes such as reflection

intensities. The structured point cloud is a point set organized

with geometric or hierarchical structure contexts including

meshes, octrees, etc. A LiDAR point cloud is an unstructured

point cloud directly captured from LiDAR sensors.

Unstructured Point Cloud Compression. There are di-

verse existing compression methods, but a common thread

across them is to convert raw point clouds into structured

intermediate representations (IRs) and apply compression al-

gorithms to the IRs, as shown in Figure 1. The compres-

sion process is tied to each IR, and the commonly used

IRs are k-d tree, octree, mesh, and range image. Figure 2

shows different IR visualizations from a raw point cloud.

Compression methods are categorized into geometry-based or

image-based compression, based on the used IRs. Geometry-

based compression uses the tree structures or mesh [25], [30],

[34], [38]±[42], and the image-based compression maps the

point clouds into 2D frames [26], [27], [32], [33], [36]. The

geometry-based compressions code their IRs and compress the

coded IRs, and the image-based approaches utilize the existing

codecs or present their own techniques for compressing the

mapped images. More details of the existing methods appear

in Section VIII.

Original Point Cloud

PC to IR IR Encode

IR Decode

Reconstructed Point Cloud

IR to PC

Fig. 1: The general processing steps of the existing point cloud
compression methods.

2

(a) A raw point cloud.

(b) A mesh representation.

(c) An octree representation.

(d) A range image.

Fig. 2: The visualizations of a LiDAR point cloud from KITTI [20]
dataset with different IRs.

III. CHALLENGES WITH LIDAR POINT CLOUD

COMPRESSION

Reducing discrepancy latency. For online perception, the

end-to-end latency of the processing pipeline has a major

impact on performance as it affects the application respon-

siveness to changes in the real-world environment [24]. For

instance, if the perception result of the data captured at t0 is

available at t1, there would be a discrepancy between the result

and real world with the changes during the time from t0 to t1.

Figure 3 is the screenshot of the simulated online perception

results with and without 300 ms of the discrepancy latency

in the object detection task. Without the discrepancy latency,

all real-world objects are aligned with the detection results as

Figure 3a. However, with the latency, the perception results are

not correctly corresponding to the real-world objects because

of the discrepancies as Figure 3b.

In Figure 4, we show the impact of different discrepancy

latencies between the real world and the perception results

on the performance of object detection. We use the metrics

for streaming perceptions [24] ± the average precision (AP)

with intersection over union (IoU) threshold 0.5, and the

number of mismatched objects between the results with and

without discrepancy latencies. For object detection, we use

Mask R-CNN [43] pre-trained with the dataset of Microsoft

COCO [44]. Then, the detection model runs with an au-

tonomous driving dataset, Argoverse [45], and we measure

the metrics with different discrepancy latencies. Without the

discrepancy latency, the perception model detects ∼36% of

(a) The object detection result
without the discrepancy latency.

(b) The object detection result
with the discrepancy latency of
300 ms.

Fig. 3: The simulated results of the online perceptions with Mask
R-CNN [43] and Argoverse [45].

0 30 50 100 200 300
Discrepancy Latency (ms)

5

10

15

20

25

30

35

40

45

AP
 w

ith
 Io

U
th

re
sh

ol
d

0.
5

Mask R-CNN: AP
Mask R-CNN: Mismatches

5

10

15

20

25

30

of

 M
ism

at
ch

ed
 O

bj
ec

ts

Fig. 4: The measured AP and number of mismatches of the online
object detection with different discrepancy latencies.

objects to the ground truth. As the latency increases, the AP

result starts to decrease with the increased number of mis-

matched objects. These results show the latency governs the

perception performance and there is the latency-performance

tradeoff of online perceptions.

In addition to the perception algorithm, there are additional

components in the processing pipeline which introduce latency

when offloading the LiDAR perceptions on the edge: data

compression and network transportation. The overheads from

these steps contribute to the discrepancy latency, and the

benefit of the reduced processing time of a perception can

be compromised by them. As shown in Figure 4, even with

30 ms of discrepancy latency, AP decreases by ∼28% of the

result without the latency. With 100 ms delay, it becomes

half of the result without delay. Furthermore, the number of

mismatched objects soars with the higher latencies. So, along

with the application of edge computing to reduce the network

latency, a lightweight and low-latency LiDAR point cloud

compression method is essential to enable edge-assisted online

LiDAR perceptions for resource-constrained mobile users.

Limitations of existing compression methods. Given

the popularity of 3D point cloud data, there are existing

technologies for LiDAR point cloud compression: Google

Draco [42], MPEG Geometry based point cloud compres-

sion (G-PCC) [25], Point Cloud Library (PCL) [38] octree

compression, and the real-time spatio-temporal (RT-ST) com-

3

TABLE I: The benchmark results of the existing compression methods for 3D point clouds. The results in parentheses are on

the Jetson AGX.

Metrics
Methods

RLE Dict Coding [46] Google Draco [42] MPEG G-PCC [25] PCL [38] RT-ST [32]

Compression Ratio 0.54 1.67 17.05 8.76 5.72 15.96
PSNR (dB) Lossless Lossless 67.29 78.43 89.77 63.18
CD (cm) Lossless Lossless 0.267 0.184 0.001 3.07
Enc Time (ms) 40.1 (42.4) 40.5 (75.4) 21.1 (48.4) 598 (741) 72.1 (198) 97.7 (240)
Dec Time (ms) 17.9 (15.8) 13.8 (33.7) 9.44 (18.6) 204 (265) 55.4 (153) 15.2 (34.8)
Enc Energy Usage (J) 1.18 (0.11) 1.19 (0.23) 0.83 (0.14) 15.35 (2.41) 2.05 (0.46) 2.63 (0.59)
Dec Energy Usage (J) 0.51 (0.04) 0.39 (0.08) 0.36 (0.05) 5.56 (0.66) 1.54 (0.36) 0.57 (0.12)

pression by Feng et al. [32]. Google Draco is based on k-d

tree, PCL and G-PCC are on octree, and RT-ST compresses

range images (RIs) of 3D point clouds. Moreover, with these

methods, it is possible to apply bytestream compressions of

run-length encoding (RLE) and dictionary coding (LZ77) [46]

to the point clouds directly; they treat point clouds as raw

byte arrays and deflate them losslessly. We compare these

methods based on performance, quality, and efficiency metrics

on a desktop and on NVIDIA Jetson AGX of our experimental

testbed, as described in Section VII-A. As the quality metrics

of the point clouds, we use peak signal-to-noise ratio (PSNR)

and Chamfer Distance (CD) as defined in Section VI. For

each method, we encode and decode 100 point clouds from

the KITTI dataset [20]. The averaged results are in Table I,

showing the results of the desktop, and in parentheses the

results from the Jetson.

While every method has its advantages for different metrics,

we focus on the compression ratio, energy usage and latency,

because these metrics show how well a compression method

meets the requirements of point cloud compression for edge-

assisted online perceptions. For our target use case, there are

three requirements of a compression method.

(1) It should be very low-latency because of the latency-

performance tradeoff of online perceptions;

(2) The compression performance effectiveness in reducing

the data size is important since the larger size of com-

pressed data causes higher network cost and energy con-

sumption on the client to transmit;

(3) It should be lightweight to run on mobile devices of

limited resources while satisfying the other requirements.

For the compression ratio and latency, Google Draco out-

performs the other methods and is highly efficient in terms of

the compression ratio and energy usage. Although RLE shows

comparable latency and energy usage on Jetson, it shows

increased total size when applying RLE directly to the floating-

point values of 3D points. Except for the lossless methods,

PCL’s octree compression shows the highest quality metrics.

However, it is at the cost of the lower efficiency and high

energy usage versus Google Draco.

Based on the results in Table I, Google Draco seems the

best option to meet the requirements, but it causes about 60

ms (∼50 ms for encoding and ∼10 ms for decoding) of the

compression cost when the user device is Jetson and our desk-

top is a server. Since there are additional delays from network

transmission and algorithm processing, the discrepancy latency

of the whole pipeline will be too high given a compression

cost of 60 ms. This would hurt the perception performance

and be hard to use, as illustrated in Figure 4.

In summary, there is a need for a low-latency, lightweight,

and efficient LiDAR compression method for edge-assisted

online perceptions, which motivates us to pursue this work.

IV. INTERMEDIATE REPRESENTATIONS FOR FLICR

For meeting the aforesaid requirements, it is important to

select a proper IR because the compression is dependent on

each IR. In this section, we microbenchmark the IR conver-

sions and point out the benefit of range images (RIs) over the

others in the context of enabling remote online perceptions.

TABLE II: The latencies (ms) of each IR construction.

RI Parallel RI Octree K-d tree Mesh
Desktop 11.78 6.72 30.67 13.21 1872
Jetson 16.34 9.26 32.11 32.44 2755

Table II shows the conversion latencies of the IRs with the

LiDAR point clouds from the KITTI dataset [20]. We use

PCL [38] implementations for octree and k-d tree, and mesh

conversion is based on the algorithm of Marton et al. [47].

The RI conversion is our implementation, and the parallelized

version is with OpenMP [48]. The RIs are generated by

converting the raw points in the 3D Cartesian coordinates to

the spherical coordinates. Equation 1 shows the conversion and

r, θ, and ϕ are the radial distance, polar angle, and azimuthal

angle each. When θ and ϕ are calculated, they are mapped

to the frame pixel by the sensor’s angular precisions. For

example, Velodyne HDL-64E used in the KITTI dataset has

0.08° and 0.35° for horizontal and azimuthal precisions with

360° of the horizontal field of view (FoV) and 64 vertical

lasers [49]. Thus, each scan’s point cloud would be mapped

to a 2D frame of 4500×64. By adjusting the parameters of

precisions and FoV, RI can work on diverse LiDAR sensors.

r =
√

x2 + y2 + z2

θ = arccos
(z

r

)

ϕ = arctan
(y

x

)

(1)

4

In our results, the parallelized RI conversion shows the

lowest latency on both desktop and Jetson as RI has advan-

tages over other IRs in terms of simplicity and parallelism.

For the octree and k-d tree, there have been many efforts

for their parallelized constructions [50]±[54]. However, as

pointed out in the previous works, their hierarchical structures

inherently make the construction processes sequential, and

it is challenging to fully parallelize their constructions. In

contrast, the RI conversion can be easily parallelized since

each point conversion of RI is completely independent from

the others. For the mesh, its generation from point clouds

requires triangulation algorithms and calculating the surface

normal for each mesh. These processes require iterating each

point and finding nearest neighbors to generate a mesh, and the

mesh conversion has high computational complexity and is not

suitable for real-time due to its large magnitude of execution

time [47], [55], [56].

Furthermore, these IRs have different theoretical complex-

ities for the conversion. The time complexities of the IR con-

structions are O(n) for the RI and O(n log n) for the trees and

mesh; the trees require binary search for each point insertion,

and the mesh construction needs nearest neighbor searches for

the normal estimation and triangulation. In addition, there is a

side benefit that various image-processing techniques can be

used for RIs. Based on these observations, we adapt RI as the

target IR.

V. FLICR: RANGE IMAGE COMPRESSION

Following selecting RI as the appropriate IR, the compres-

sion also needs to be efficient, low-latency, and lightweight. In

this section, we describe how to achieve the objectives of the

compression method. First, we identify the distortion issue of

the current image codecs to LiDAR RIs. Second, we explore

the opportunity of lossy RIs for the downstream compression

steps via RI quantization and subsampling. We argue the

lossless bytestream compressions can be hugely enhanced in

terms of the compression efficiency and low latency through

the lossy representation. However, it compromises the point

cloud quality, and we present the possible issues of FLiCR

with lossy RIs.

TABLE III: The compression ratios and qualities of H.264

with different QPs for 100 RIs of 4500×64 and 8 bpp.

QP 0 QP 10 QP 20 QP 30
Compression Ratio 12.85 13.33 16.41 35.01

PSNR (dB) 63.18 48.21 37.61 38.12
CD (cm) 2.23 16.25 126.06 107.16

A. Issues with Current Image Compressions

By representing LiDAR point clouds as images, it becomes

possible to leverage the existing image-processing infrastruc-

tures and techniques. With the popularity of video streaming,

modern processor platforms and GPUs are equipped with

dedicated hardware modules for the standard codecs such as

H.264 and HEVC [17]±[19]. These codecs efficiently encode

(a) Point cloud of QP 0.

(b) Point cloud of QP 10.

(c) Point cloud of QP 20.

(d) Point cloud of QP 30.

Fig. 5: The visualizations of the reconstructed point clouds from
the RI of 4500×64 with H.264 and four different quantization
parameters.

and decode continuous images with spatial and temporal

optimizations [14], [16], and the pervasive accelerators enable

the codecs in a low-latency and efficient way even with

commodity mobile devices.

In this context, it seems appropriate to rely on the existing

codecs with hardware accelerators at first glance. However,

we argue the existing codecs specialized for human vision

are hardly applicable to RI compression. The lossy image

compression algorithms for human vision fully utilize the

characteristics of the human eyes to remove the data with

minimal impacts to visual quality as much as possible; one

example is to convert an image into the frequency domain

via discrete cosine transform (DCT) or fast Fourier transform

(FFT) and the high frequency has more loss than the low-

frequency data [14], [16], [57]. While the techniques that

leverage the nature of human vision work well for normal

images, the point cloud details are effectively lost as a result

of the frequency-domain loss in LiDAR RIs.

Figure 5 shows the reconstructed point clouds from the RIs

encoded and decoded via H.264 with different quantization

parameters (QP). QP regulates how much spatial detail is

retained and is set from 0 for lossless to 51 for the most lossy

compression. As QP increases, the spatial detail is aggregated

so that the encoded bit rate drops at the expense of data

loss, resulting in lower quality [14]. The reconstructed point

clouds become vague and noisy with high QPs. Table III

shows the averaged compression ratio and quality metrics of

5

the reconstructed point cloud with different QPs. With the

visual results of the reconstructed point clouds, the PSNR and

CD results become worse drastically while the compression

ratio increases moderately. Considering that the quantization

parameter such as QP or CRF of video streaming is usually set

around 20 and 30 as a rule of thumb (FFmpeg’s H.264 default

CRF is 23 [58]), these results show the current human-vision

codecs are unsuitable for the RI compression. For preserving

the quality of point clouds, the codec quantization parameter

should be set for lossless (QP 0), but it is at the cost of

the lower compression efficiency, as Google Draco achieves

∼33% higher compression ratio in Table I.

TABLE IV: The existing quality metrics with sampling error

(SE) for the subsampled RIs of 8 bpp.

2048×64 1024×64 512×64 256×64
PSNR (dB) 62.4 61.41 58.61 53.71

CD (cm) 5.37 9.23 15.22 36.17
SE 21.03% 58.77% 78.95% 89.22%

(a) Point cloud from 2048×64 RI.

(b) Point cloud from 1024×64 RI.

(c) Point cloud from 512×64 RI.

(d) Point cloud from 256×64 RI.

Fig. 6: The visualizations of the point clouds reconstructed from the
subsampled RIs of Figure 2a corresponding to 4500×64 RI.

B. RI Quantization and Subsampling

RI has been used for losslessly mapping LiDAR point

clouds to 2D frames, and previous work only applies quantiza-

tion of bit-per-point (bpp) [26]±[29], [32], [33]. In these prior

works, the main objective is to maximize the compression

efficiency while maintaining the point cloud quality as high as

possible. However, we argue that there are more optimization

RI (float value)
PC2RI

Conversion Quantization

RI (float value)
RI2PC

Conversion

Dequantization

Lossless
Deflation

Lossless
Inflation

Compressed Bytestream

Original Point Cloud

Reconstructed Point Cloud

Sampling Error

Quantization Error

Fig. 7: FLiCR compression steps with lossy RIs of subsampling and
quantization and lossless compression algorithms.

opportunities with lossy RI to decrease not only the data size

but the downstream compression tasks’ complexities. Specifi-

cally, the RI resolution is determined by the sensor’s precisions

as mentioned in Section IV, and the subsampling of point

clouds can be done by adjusting the precision parameters;

the 3D points are coarsely mapped to a 2D frame. Figure 6

shows the visualizations of reconstructed point clouds from the

subsampled RIs. From the raw point cloud of Figure 2a, we

reduced the precision parameters to map it to the RIs of four

different lower resolutions. Even with the lowest subsampled

RI of 16 KB with 8 bpp, the shapes of scanned objects are

recognizable.

While the subsampled and quantized RI has advantages for

data reduction and compression with lower latencies, it would

affect the performance of the perception tasks. So, a quality

metric for the point clouds from lossy RIs needs to reflect both

the quantization and subsampling errors. The currently used

metrics, PSNR and CD, reflect the quantization error well, but

the sampling error of lossy RIs is not represented effectively

as these metrics are defined with the point-to-point distances

between point clouds (see Section VI for more details).

Table IV shows PSNR, CD, and sampling error (SE) of

the point clouds from four RI resolutions. In the results, the

changes of PSNR and CD exhibit different trends from SE

because SE is about the number of lost points from the original

point cloud (the entropy-wise quality) while PSNR and CD are

with the distances of the closest point pairs between two point

clouds (the point-wise quality).

The current metrics’ issue is they only count the point-

to-point distances, and each point distance is calculated by

finding the nearest point in the comparing point cloud. So,

when the point clouds have different numbers of points, they

are limited to represent this difference in the total number

of points in the point clouds. To address the limitations of

the existing metrics, we propose a unified metric for both

the point-wise quality and the information amount to measure

quantitatively the impacts on the downstream perceptions from

lossy RIs in Section VI.

6

C. Lossless Compression with Lossy RIs

As shown in Section V-A, the application of lossy video

codecs to RIs results in lower compression efficiency or can

distort the point clouds in the 3D space. The previous RI com-

pression methods apply the image compression algorithm at

lower efficiencies or propose effective lossless RI compression

algorithms via spatial and temporal optimizations [26]±[29],

[32], [33]. However, they partially leverage the opportunities

of lossy RIs only with bit quantization, and their complex

algorithms have downsides in terms of latency and overheads,

while showing high compression ratios. For satisfying the low-

latency, lightweight, and efficiency requirements, we use the

existing bytestream compression algorithm, dictionary coding,

and enhance its efficiency by fully leveraging the RI quanti-

zation and subsampling.

Dictionary coding is a lossless compression algorithm for

bytestreams and deflates the bytestream by replacing the

repeating patterns with shorter references. Dictionary coding

algorithms have been extensively studied with corpus text

data, and they are with simple bit/byte operations and lower

computation complexities in terms of the space-time trade-

off [59]. So, they provide the benefits of being lightweight and

low-latency, with simple operations and do not distort point

clouds unexpectedly. Even with such advantages, the direct

application of bytestream compressions to the raw point cloud

and unquantized RIs of floating values is inefficient in terms

of the compression ratio (RLE and Dict Coding in Table I and

Figure 8a).

To improve the efficiency, we fully utilize both quantization

and subsampling. The underlying assumption of our approach

is dictionary coding uses the repeating features in a bytestream

and there is a higher probability of recurring patterns when

limiting the representation space of quantized RIs. The com-

pression pipeline is shown in Figure 7. FLiCR with dictionary

coding has similarity to previous RI-based works in terms of

leveraging local spatial features, but it is more advantageous

in meeting the requirements with its simplicity. Explicitly,

compared to the recent RI-based compression (RT-ST [32] in

Table I), FLiCR shows lower encoding and decoding latencies

and energy usage, with the higher compression ratio, as shown

in Table V.

Among the dictionary coding algorithms, we use LZ77 [46]

and compare it with RLE. We measure the efficiency im-

provement and quality reduction by the quantization and

subsampling with LZ77 and RLE, and Figure 8 shows the

results of different resolutions of RIs quantized by 8 bpp.

While the end-to-end latencies of the whole compression

pipeline can decrease only with subsampling (see Figure 8b),

both quantization and subsampling are required to improve

the compression ratios effectively, as shown in Figure 8a.

Then, dictionary coding shows larger growth than RLE, and

these results support our assumption about the performance

improvement of dictionary coding with lossy RIs.

Although FLiCR achieves compression efficiency and re-

duced latency, it is at the cost of degradation of the point

cloud quality by the quantization and subsampling errors, as

shown in Figures 8c and 8d. Since the reduced point cloud

quality can have an impact on the downstream perceptions, we

evaluate FLiCR with the state-of-the-art LiDAR perceptions

and analyze the errors’ impacts in Section VII.

Figure 9 shows the latency breakdowns of FLiCR on our

testbed. In the case where Jetson is a mobile client and the

desktop is a server, the end-to-end latency is ∼39 ms (∼60%

of Google Draco [42]) even with the highest RI resolution; it

takes 27 ms for client encoding and 12 ms for server decoding.

With the 256×64 resolution, the end-to-end latency is ∼10 ms

which is ∼16% of Draco. Since the large portion of the end-to-

end latency is the conversion time between the point cloud and

RI, the end-to-end latencies can be largely reduced if a device

has a dedicated hardware logic for the RI conversion. As the

RI resolution gets lower, the quantization and compression

latencies decrease. These results show FLiCR fully leverages

the synergistic effect by quantization and subsampling for the

bytestream compressions.

VI. EPSNR: QUALITY METRIC FOR LIDAR POINT

CLOUDS

The errors in the RI conversion process can affect the

performance of LiDAR perceptions. PSNR and CD (or RMSE)

have been broadly used as the quality metrics of 3D point

clouds [26], [27], [30], [32]±[34], [40], but by definition they

are point-wise quality metrics and do not reflect the point

loss effectively. In the context of our approach with lossy

RIs, we argue a metric for both point-wise quality and overall

information amount is essential.

Dist(p, C) = min
pc

(

(pc − p)2
)

(2)

MSE(C1, C2) =
1

∥C2∥

∥C2∥−1
∑

i=0

{Dist(pc2 , C1)} (3)

Both PSNR and CD use the mean squared error (MSE)

of the point-wise distances between two point clouds. When

C1 is the original point cloud and C2 is the reconstructed

point cloud, the distance between a point in C2 and the

corresponding point in C1 is calculated by Equation 2. So,

the corresponding point in C1 is of the shortest distance to the

point in C2. Then, MSE between two point clouds is defined

by Equation 3.

CD(Corig, Ccomp) = MSE(Corig, Ccomp) +MSE(Ccomp, Corig)

(4)

PSNR(Corig, Ccomp) = 10 log
(

Max2

MSE(Corig,Ccomp)

)

(5)

Then, PSNR and CD are defined as Equation 4 and 5. CD

is the sum of reciprocal MSEs between two point clouds, and

PSNR is the ratio of the peak LiDAR sensor range to MSE.

As indicated by their definitions, these metrics are based on

7

4500x64 4096x64 2048x64 1024x64 512x64 256x64
RI Resolution

2
17
32
47
62
77
92

107
122
137
152
167
182
197
212

Co
m

pr
es

sio
n

Ra
tio

DictCoding
DictCoding - Quant (FLiCR)
RLE
RLE - Quant

(a) The compression ratios with and without quanti-
zation in different RI resolutions.

4500x64 4096x64 2048x64 1024x64 512x64 256x64
RI Resolution

0

10

20

30

40

50

60

70

La
te

nc
y

(m
s)

DictCoding
DictCoding - Quant (FLiCR)
RLE
RLE - Quant
Jet:DictCoding
Jet:DictCoding - Quant (FLiCR)
Jet:RLE
Jet:RLE - Quant

(b) The end-to-end latencies with and without quan-
tization in different RI resolutions.

4500x64 4096x64 2048x64 1024x64 512x64 256x64
RI Resolution

50

54

58

62

66

PS
NR

 (d
B)

PSNR
PSNR with Quantization

(c) The PSNR results with and without quantization
in different RI resolutions.

4500x64 4096x64 2048x64 1024x64 512x64 256x64
RI Resolution

0

5

10

15

20

25

30

35

40

CD
 (c

m
)

CD
CD with Quantization

(d) The CD results with and without quantization in
different RI resolutions.

Fig. 8: The quantization and subsampling impacts on the lossless bytestream compressions.

MSE and are determined by the point-to-point distance. They

natively represent the quality loss by the quantization error, but

the subsampling error is not effectively represented even if the

impact of SE is shown mildly as some nearest points can be

lost in the reconstructed point cloud. Specifically, in the current

metrics, it is possible to get a high-quality result even with a

few points of small distances to a point cloud of large number

of points. It is caused by the unstructured nature of the LiDAR

point cloud; there is no point-to-point correspondence between

LiDAR point clouds having different numbers of points. In the

case of the normal images, the total number of pixels is fixed

without SE and the point-wise metrics work well.

SE =
∥Corig − Ccomp∥

∥Corig∥
, 0 ≤ SE ≤ 1 (6)

Based on our observation, we argue it is inappropriate to use

the metrics representing only the point-wise quality for LiDAR

point clouds. To address the limitation of the current metrics,

we propose a new single-number metric, entropy-reflecting

PSNR (ePSNR), by extending PSNR. ePSNR is designed

to indicate both the point-wise and entropy-wise quality of

a point cloud.

SE is related to the total information (entropy) loss in a point

cloud because it is the percent of the lost points, as in Equa-

tion 6. One naive way of making PSNR reflect the entropy is to

multiply 1−SE to PSNR with the assumption that the entropy

is 1−SE and SE is exactly the same with the actual entropy

loss, LSE . However, instead of the naive way, we extend

PSNR by estimating LSE . Our underlying assumption is LSE

is not exactly the same with SE and follows the exponential

distribution as Equation 7. The intuition for this assumption

is that SE can have minimal impacts on the downstream

perceptions as far as the total amount of necessary information

is preserved for the perception algorithms. It means there

would be a knee of the curve in the graph of the entropy

function.

Assumption : LSE ∼ exp(β) (7)

When LSE follows the exponential distribution, the en-

tropy function F(SE) can be defined with the cummulative

distribution function (CDF) of the exponential distribution as

Equation 8. This entropy function is a probability function

estimating the actual entropy of the remaining points in a point

cloud with the given SE.

8

4500x64 4096x64 2048x64 1024x64 512x64 256x640

5

10

15

20

25

La
te

nc
y

(m
s)

PC2RI Conversion
RI Quantization
Deflation
Inflation
RI Dequantization
RI2PC Conversion

(a) The latency breakdown of our method on desktop.

4500x64 4096x64 2048x64 1024x64 512x64 256x640

5

10

15

20

25

30

35

40

45

50

La
te

nc
y

(m
s)

PC2RI Conversion
RI Quantization
Deflation
Inflation
RI Dequantization
RI2PC Conversion

(b) The latency breakdown of our method on Jetson
AGX.

Fig. 9: The end-to-end latency breakdowns of FLiCR.

F(SE) = P(E > x) = e−
x
β where x = 1− SE (8)

With our entropy function, ePSNR is defined as Equation 9.

Since it is based on PSNR, the point-wise quality with the

quantization error is represented while reflecting the entropy

with the given SE. When SE is small, ePSNR would be

almost same with the original PSNR, but would start to

decrease exponentially when SE gets larger, by its definition.

ePSNR has two parameters: α as a derivative adjusting factor

to prevent too steep or shallow distribution and β of the

exponential distribution.

ePSNR(Corig, Ccomp) = PSNR× {1− (SE × (F(SE) + α))} ,

0 ≤ F(SE) + α ≤ 1
(9)

VII. EVALUATION

The goal of this section is to demonstrate that our approach

appropriately meets the requirements of the LiDAR point

cloud compression for enabling edge-assisted online percep-

tions. We compare FLiCR with several existing compression

method. Since FLiCR affects the quality of the point clouds, its

impact is evaluated with the state-of-the-art LiDAR perception

algorithms for 3D objection detection and LiDAR odometry

and mapping (LOAM). We also evaluate ePSNR and demon-

strate its effectiveness compared to PSNR and the naive way of

combining PSNR and SE. All experiments are done by using

the LiDAR point clouds of the KITTI dataset [20], which are

captured from Velodyne HDL-64E [49].

A. Experimental Testbed

The testbed consists of two machines, an NVIDIA Jetson

AGX Xavier and a high-end desktop. The Jetson has ARMv8

CPU and 32 GB memory, and we set its power mode as

15W. The desktop has Intel Core i7-10700, 32 GB memory,

and NVIDIA RTX 2070 GPU. Both run Ubuntu 18.04, and

the energy usage is measured with perf on desktop and

tegrastats on Jetson.

B. FLiCR Benchmark

As shown in Table I, Google Draco [42] is the most

suitable compression method for online perceptions in terms of

compression ratio, latency, and energy usage. So, we compare

FLiCR with different RI resolutions to Draco. We benchmark

FLiCR and measure the compression ratio, SE, PSNR, ePSNR

(α = −0.15, β = 0.5), latencies, and energy usage. The

compression level parameter of Draco is set as 10 which is

maximum. For FLiCR, each RI is quantized by 8 bpp. The

benchmark results are shown in Table V.

FLiCR achieves higher compression ratios across all resolu-

tions than Draco, and it is ∼25% higher even with the highest

resolution. As highlighted in Table V, FLiCR with little

subsampling starts to outperform Draco in the compression

ratio, latency, and energy usage. One characteristic of Draco

is its encoding process takes longer and uses more energy

than decoding while with FLiCR it is similar in most cases.

Considering the use case of edge-assisted perceptions, it is the

client who encodes and sends data, and the server receives and

decodes the encoded data to feed it to perception modules.

When the client is Jetson and the server is the desktop in

our testbed, Draco introduces ∼60 ms end-to-end latency,

and with FLiCR it ranges from ∼11 ms for 256×64 to ∼40

ms for 4500×64. Therefore, FLiCR is more advantageous

for the latency-performance tradeoff of online perceptions

for commodity mobile devices, given its higher compression

efficiency in terms of compression ratios and energy usage.

To satisfy the aforementioned requirements, we compromise

the quality of point clouds with lossy RIs. Since Draco

quantizes each point as 11 bpp, it shows a higher PSNR,

and ePSNR is almost same with PSNR as it has small SE.

One issue about SE is that the highest resolution RIs have

∼8% SE even though its resolution is with the maximum

sensor precision of HDL64 specified in the spec sheet [49].

We presume this SE is caused by the sensor’s measurement

error and noise as the LiDAR point clouds are captured by

running cars. In Table V, PSNR barely changes with 1024×64

RIs which have 58.8% SE while ePSNR reflects it. Since

the reduced quality affects the performance of downstream

9

TABLE V: The comparison between Google Draco and FLiCR of different RI resolutions.

Google Draco
FLiCR

4500×64
FLiCR

4096×64
FLiCR

2048×64
FLiCR

1024×64
FLiCR

512×64
FLiCR

256×64
Compression Ratio 17.05 21.26 24.75 46.18 80.88 131.13 215.85
SE 6.7% 8.4% 9.1% 21% 58.8% 78.9% 89.2%
PSNR (dB) 67.29 63.18 63.09 62.4 61.41 58.61 53.71
ePSNR (dB) 67.27 63.13 63.01 61.64 51.38 35.4 22.29
Enc Time (ms) 21.1 (48.4) 10.48 (26.83) 7.69 (23.41) 4.3 (16.03) 3.37 (12.26) 2.35 (10.46) 1.99 (9.54)
Dec Time (ms) 9.44 (18.6) 12.52 (21.94) 7.44 (20.97) 4.67 (17.09) 2.47 (15.13) 2.01 (11.06) 1.36 (10.11)
Enc Energy Usage (J) 0.83 (0.14) 0.36 (0.09) 0.27 (0.07) 0.16 (0.04) 0.13 (0.03) 0.09 (0.03) 0.07 (0.02)
Dec Energy Usage (J) 0.36 (0.05) 0.48 (0.05) 0.3 (0.05) 0.19 (0.04) 0.13 (0.04) 0.09 (0.03) 0.08 (0.02)

perceptions, we also evaluate our compression and metric with

the state-of-the-art LiDAR perceptions.

C. End-to-end Evaluation

We evaluate our method and metric with two perception

tasks: 3D object detection and LOAM. For 3D object de-

tection, we use machine learning (ML) models pre-trained

with the original point clouds from the KITTI dataset from

the Model Zoo of OpenPCDet [60]. We use the following

models: Part-A2 Net [61], PointPillars [62], PointRCNN [63],

PV-RCNN [64], SECOND [65], Voxel R-CNN [66]. These

models are trained with 7481 samples, and the testset is 7518

LiDAR scans. For LOAM [67], we use the A-LOAM imple-

mentation [68]. For checking the impacts of RI quantization

and subsampling, we generate the LiDAR point cloud dataset

reconstructed from different resolution RIs. Then, we feed our

dataset to those perception models. Since the object detection

models are trained with the original LiDAR data and A-LOAM

is implemented and tested by using the original dataset, we can

quantitatively measure the impacts of lossy RIs in FLiCR on

the perception performance.

3D Object Detection. 3D object detection is the task of

detecting objects from 3D point clouds. Each algorithm of the

models we use has a different network architecture, but there

is a commonality between them: a backbone network extracts

features from the point clouds and the extracted features

are used by the regional proposal networks (RPN). As the

backbone networks of these models, PointNet++ [69] is used

to extract the point-level features. For the voxel-level features,

the voxel feature encoder (VFE) layer and 3D sparse convolu-

tional networks [70] are used. When each model produces the

region proposals of the detected objects, they are compared

with the region of the ground truth objects. The result recall

is determined by the detected objects corresponding to the

ground truth object with the IoU threshold.

Table VI shows the recall for the detected objects of the

models. With the highlighted example of PointPillars, the

performance reductions between the original and 4500×64 RIs

show the impact of the quantization error. In the case of IoU

threshold 0.7, it shows ∼23% performance reduction while it

is ∼2% with threshold 0.3. This shows the results of higher

IoU thresholds are more sensitive to the quantization error,

and 3D object detection with a higher IoU threshold requires

input point clouds of almost the same quality as the original

training data.

4500x64
(8%)

4096x64
(9%)

2048x64
(21%)

1024x64
(58%)

512x64
(79%)

256x64
(89%)

RI Resolutions with SE

0

20

40

60

80

100

3D
 O

bj
ec

t D
et

ec
tio

n
Re

ca
ll

(%
)

Part-A2

PointPillars
PointRCNN

PV-RCNN
SECOND
Voxel R-CNN

PSNR
ePSNR
PSNR*(1-SE)

0

10

20

30

40

50

60

70

De
cib

el
 (d

B)

Fig. 10: The results of PSNR, ePSNR, and the naively-entropy-
reflecting PSNR with the 3D object detection results of the IoU
threshold 0.5 for the models.

The results across the different resolutions show the impacts

of SE. One noticeable thing is the performance results decrease

little with 2048×64 RIs compared to 4500×64 RIs, and this

trend is for all IoU thresholds. These results support our

assumption for ePSNR in Section VI; there is a knee of the

curve in the entropy loss by SE. Moreover, Table V shows the

ePSNR results drop drastically from 1024×64 RIs as does the

performance of the 3D objection detection models.

Figure 10 shows the object detection recall values, and

PSNR, ePSNR, and the naive way of making PSNR capture

entropy, PSNR×(1−SE), as described in Section VI. The IoU

threshold is 0.5 for all detection models, and the parameters

of ePSNR are α (-0.15) and β (0.5). For the changes of SE

and recalls, PSNR mildly changes across the RI resolutions,

and PSNR×(1−SE) shows more drastic decreases compared

to the perception results. On the other hand, ePSNR shows a

similar trend with the performance reduction of the perception

models. These results demonstrate the effectiveness of ePSNR

with the probability function estimating the actual entropy by

using SE, as a single-number metric for the point-wise and

entropy-wise qualities of a point cloud.

LiDAR Odometry and Mapping. LOAM (or LiDAR SLAM)

10

TABLE VI: The 3D object detection performances with different IoU threshold and reconstructed point clouds from the RIs. The number
in each cell is the recall for the detected objects in the scene.

Original 4500×64 RI 4096×64 RI 2048×64 RI 1024×64 RI 512×64 RI 256×64 RI

IoU Threshold
0.3

Part-A2 Net 95.1 88.4 88.3 87.9 76.2 75.5 56.1
PointPillars 94 92.6 92.4 91.5 82 76.1 54.8

PointRCNN 89.8 70.7 71.2 71.7 68.8 62.9 47.5
PV-RCNN 96.8 94.6 94.4 94 89.9 82.8 70.2
SECOND 94.9 92.7 92.6 92.1 88.4 79.4 60.2

Voxel R-CNN 95.4 93.6 93.6 93.5 89 87.5 76.1

IoU Threshold
0.5

Part-A2 Net 91.2 82.3 82.2 81.1 71.4 63.7 41.3
PointPillars 88.7 82.7 82.5 81 69.8 57.8 30.8

PointRCNN 87.1 65.5 66 66.2 63.8 57 38.5
PV-RCNN 93.4 88.9 88.8 87.6 81.8 71.2 53
SECOND 89.1 83.8 83.7 82.3 76.8 61.9 38

Voxel R-CNN 94.9 91.1 91.1 90.5 85.2 79.4 58.4

IoU Threshold
0.7

Part-A2 Net 73.6 59.9 59.8 57.4 46 38.1 21.6
PointPillars 63.9 49.6 49.3 46 33.4 18.4 5.5

PointRCNN 73.3 46.8 47.3 46.9 43.9 36.4 20.8
PV-RCNN 75.9 60.6 60.4 57.4 49 33.3 16.7
SECOND 66.5 52.4 52.3 49.1 41.5 26.3 10.3

Voxel R-CNN 84.6 67.9 67.9 64 54.1 37.1 16.4

TABLE VII: The LOAM averaged results of the error metrics:
Position (m) and Rotation (degree).

ATEpos ATErot REpos RErot

Original 0.316 0.57 0.389 0.82
4500×64 RI 0.321 0.2 0.387 0.83
4096×64 RI 0.313 0.21 0.39 0.84
2048×64 RI 0.294 0.17 0.388 0.82
1024×64 RI 0.394 0.17 0.388 0.82
512×64 RI 0.610 0.17 0.388 0.82
256×64 RI 0.596 0.2 0.387 0.82

is a 3D mapping technique running the odometry, point

matching, and registration (mapping) algorithms simultane-

ously [67]. LOAM, and other SLAM algorithms that use dif-

ferent sensors, are widely used in various use cases, including

autonomous vehicle, extended reality, and 3D reconstruction,

and are one of the key perception tasks. We evaluate the

quality impacts of point clouds reconstructed from different

RI resolutions with A-LOAM [68] and the evaluator [71].

The experiments are with a sequence of 1101 LiDAR point

clouds from the KITTI dataset. We show our evaluation results

using two metrics: absolute trajectory error (ATE) and relative

error (RE). While ATE calculates the root mean squared

errors (RMSE) of position (ATEpos) and rotation (ATErot)

to the groundtruth, RE measures the relative relations of sub-

trajectories in position (REpos) and rotation (RErot) [72].

Table VII shows the evaluation results of A-LOAM with

different RIs. Based on the results, the LOAM algorithm works

well even with high quantization and subsampling errors.

Except for the increased ATEpos for 512×64 and 256×64,

other results are almost same with the result of the original

data. Moreover, the LOAM paths of all cases are almost

identical to each other as shown in Figure 11. After thorough

analysis of the A-LOAM implementation, we find the mapping

resolutions of A-LOAM are attributed to these results; the line

and plane mapping resolutions of A-LOAM are 0.4 m and

0.8 m [68]. The increased ATEpos for 512×64 and 256×64

100 50 0 50 100
x[m]

0

25

50

75

100

125

150

175

y[
m

]

Top-View

Original Path
4500x64 Path
4096x64 Path
2048x64 Path
1024x64 Path
512x64 Path
256x64 Path
/ground_truth

Fig. 11: The path results of LOAM with point clouds of different
RIs.

are because the coarser subsampling causes loss of the sparse

regions in the scene. Specifically, in Figure 6, the points over

long distances are lost with coarser subsampling. The distance

errors are reflected in ATEpos because ATE calculates the

RMSE over the whole path; there is no global reference in

LOAM, and the early small errors can contribute to ATE more

than the later errors [72]±[74]. For REpos, it calculates the

averaged errors of separate sub-trajectories, and the distance

errors are not accumulated over the whole path.

Summary. Based on the experiments, we demonstrate that

FLiCR is suitable for enabling edge-assisted online percep-

tions to mobile users. Compared to the existing LiDAR

point cloud compressions, it is fast in terms of the end-to-

end compression/decompression latency, and lightweight and

efficient in terms of energy usage and compression ratio.

FLiCR achieves these benefits by affecting the quality of the

point clouds using RI quantization and subsampling errors, and

the end-to-end experiments of 3D object detection and LOAM

11

show the impacts of the quality degradation on the downstream

perception algorithms and their parameters. Even though the

lossy RIs have a different effect on the perception performance

based on each algorithm setting, ePSNR is able to quantify

the point-wise and entropy-wise quality of a point cloud

effectively. Thus, when optimizing the compression method,

it would be crucial to co-design the compression system with

awareness of the impact on downstream perceptions, and we

leave this for future work.

VIII. RELATED WORK

Given the popularity of 3D point clouds, there are many

point cloud compression methods. Firstly, there are MPEG

standard specifications: video-based point cloud compression

(V-PCC) and geometry-based PCC (G-PCC) [31]. V-PCC

converts 3D point clouds into 2D frames and compresses the

frames with MPEG video codecs. G-PCC directly leverages

the octree structure as the intermediate representation (IR),

and compresses the octree of point clouds. Other than G-

PCC, Google Draco [42] and Point Cloud Library (PCL)

compressors [38] utilize tree structures including k-d tree and

octree. After generating the tree structure from a point cloud,

the occupancy information with the leaf nodes is coded, and

entropy or arithmetic coding is applied to compress the coded

information [39], [75]. For range image compression, Tu et

al. present direct mapping of sensor data to 2D frames by

each laser ID with precision and compress these raw RIs using

image compression methods [26]. Other RI-based compression

methods convert the raw sensor data from Cartesian coordi-

nates into spherical coordinates by using the LiDAR sensor

design [28], [29], [32]. Feng et al. propose spatial encoding

in the plane granularity and temporal optimization with scene

alignment and prediction by using IMU fusion. Even though

these existing compression methods show decent compression

performance, it is hard to apply them to our target use case

of online remote perceptions because of their high latency

magnitudes, as described in Section III.

Recently, there has been research to utilize machine learn-

ing (ML) for LiDAR point cloud compression. One popular

approach is with the octree because the high compression

ratio can be achieved by coding the tree into a more com-

pact bytestream with well-predicted occupancy information

of a given tree [75]. By fully utilizing the relationship of

neighboring nodes in the octree, the state-of-the-art works

train the ML models to predict the distribution of the octree

nodes [30], [34], [40], [41]. With the predicted distribution,

the occupancy information and nodes are effectively coded by

assigning proper bits to each node of non-empty child nodes.

For RI-based ML approaches, the spatial optimization is done

by using the encoder and decoder networks trained with RIs

of point clouds [27], [33]. Some of these ML algorithms

achieve sufficiently low latency to run in real-time [30], [34].

However, they are not practical for mobile users, because they

rely on high-end processors and GPUs, which are usually

unavailable for mobile devices. Even if a mobile device has

such computing resources, there is another issue with its

limited battery.

IX. LIMITATIONS AND FUTURE WORK

Although we show the effectiveness of FLiCR and ePSNR,

there are still some remaining limitations. Firstly, as we

observed with the end-to-end experiments, perception models

pre-trained with the original data lose their predictive perfor-

mance when used with point clouds reconstructed from lossy

RIs. To alleviate this issue, there is an opportunity to make

the perception models robust to point clouds from different

RI resolutions. Another opportunity is to develop dedicated

hardware logic for the processing steps in Figure 7. As shown

in Figure 9, the RI conversion takes a large portion of the

end-to-end latency. Accelerating the conversion process would

further improve the latency benefits of FLiCR. In addition,

ePSNR has a limitation. While ePSNR as a single-number

metric effectively represents the point-wise and entropy-wise

point cloud qualities, it requires two parameters: α and β. We

manually set these parameters for our experiments, but it is

not scalable. Therefore, there is a need to further develop a

tuning methodology for these parameters, or to further refine

the quality metric for LiDAR point clouds.

X. CONCLUSION

We describe the limitations of the existing point cloud

compression methods for enabling LiDAR online perception

on the edge. We propose a lightweight, low-latency, and

efficient compression method by using RI and dictionary

coding. For achieving the requirements, FLiCR fully leverages

lossy RIs with quantization and subsampling. To quantify the

quality loss by quantization and subsampling, we introduce

a new metric, ePSNR, which reflects both the point-wise

and entropy-wise qualities of a point cloud. We evaluate

our compression method and demonstrate FLiCR is more

appropriate for edge-assisted LiDAR online perceptions than

the state-of-the-art compression algorithms. Compared to the

existing algorithm most suitable for the target use case, FLiCR

takes up to 80 percent less end-to-end latency while presenting

12×compression ratio. Our evaluation results with 3D object

detection and LOAM show the impact of lossy RIs on the

downstream perceptions and the effectiveness of ePSNR com-

pared to the current quality metrics to capture this impact.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers. We are

grateful to JosÂe AraÂujo, HÂector Caltenco, Bob Forsman, Per-

Erik Brodin, and Gregoire Phillips for providing valuable

feedback on this work and helping us improve its presentation.

This work has been partially supported by NSF projects

CCF-2217070 and CNS-1909769, the Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA, and by funding and equipment

gifts from VMware and Intel.

12

REFERENCES

[1] Timothy Lee, ªLidar used to cost $ 75,000Ðhere’s how apple brought
it to the iphone,º 2020.

[2] Velodyne Lidar, ªVelabit: Velodyne’s smallest lidar sensor,º https://
velodynelidar.com/products/velabit/, 2021.

[3] Intel, ªIntel realsense™ lidar camera l515,º https://www.intelrealsense.
com/lidar-camera-l515/, 2021.

[4] Apple, ªApple unveils new ipad pro with breakthrough lidar scanner and
brings trackpad support to ipados,º 2020.

[5] M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch,
S. Milz, and H. Michael Gross, ªComplexer-yolo: Real-time 3d object
detection and tracking on semantic point clouds,º in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops, 2019, pp. 0±0.
[6] M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, ªComplex-yolo:

An euler-region-proposal for real-time 3d object detection on point
clouds,º in Proceedings of the European Conference on Computer Vision

(ECCV) Workshops, 2018, pp. 0±0.
[7] M. Ye, S. Xu, and T. Cao, ªHvnet: Hybrid voxel network for lidar

based 3d object detection,º in Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, 2020, pp. 1631±1640.
[8] B. Yang, W. Luo, and R. Urtasun, ªPixor: Real-time 3d object detection

from point clouds,º in Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2018, pp. 7652±7660.
[9] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh,

ªPolarnet: An improved grid representation for online lidar point clouds
semantic segmentation,º in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 9601±9610.
[10] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, ªEdge

computing: A survey,º Future Generation Computer Systems, vol. 97,
pp. 219±235, 2019.

[11] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
ªGlimpse: Continuous, real-time object recognition on mobile devices,º
in Proceedings of the 13th ACM Conference on Embedded Networked

Sensor Systems, 2015, pp. 155±168.
[12] L. Liu, H. Li, and M. Gruteser, ªEdge assisted real-time object detec-

tion for mobile augmented reality,º in The 25th Annual International

Conference on Mobile Computing and Networking, 2019, pp. 1±16.
[13] J. Heo, K. Bhardwaj, and A. Gavrilovska, ªPoster: Enabling flexible

edge-assisted xr,º in 2021 IEEE/ACM Symposium on Edge Computing

(SEC), 2021, pp. 465±467.
[14] I. E. Richardson, H. 264 and MPEG-4 video compression: video coding

for next-generation multimedia. John Wiley & Sons, 2004.
[15] A. Grange, P. De Rivaz, and J. Hunt, ªVp9 bitstream & decoding process

specification,º Version 0.6, March, 2016.
[16] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ªOverview of

the high efficiency video coding (hevc) standard,º IEEE Transactions

on circuits and systems for video technology, vol. 22, no. 12, pp. 1649±
1668, 2012.

[17] Intel, ªIntel quick sync video, create, edit, and share video in a flash,º
2011.

[18] Qualcomm, ªSnapdragon 855+/860 mobile platform,º 2021.
[19] Nvidia Corporation, ªNvidia video codec sdk,º 2021.
[20] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ªVision meets robotics:

The kitti dataset,º The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231±1237, 2013.

[21] Y. Xiao, Y. Cui, P. Savolainen, M. Siekkinen, A. Wang, L. Yang,
A. YlÈa-JÈaÈaski, and S. Tarkoma, ªModeling energy consumption of data
transmission over wi-fi,º IEEE Transactions on Mobile Computing,
vol. 13, no. 8, pp. 1760±1773, 2013.

[22] E. J. Vergara and S. Nadjm-Tehrani, ªEnergybox: a trace-driven tool for
data transmission energy consumption studies,º in European Conference

on Energy Efficiency in Large Scale Distributed Systems. Springer,
2013, pp. 19±34.

[23] X. Zhang and K. G. Shin, ªE-mili: Energy-minimizing idle listening in
wireless networks,º IEEE Transactions on Mobile Computing, vol. 11,
no. 9, pp. 1441±1454, 2012.

[24] M. Li, Y.-X. Wang, and D. Ramanan, ªTowards streaming perception,º
in European Conference on Computer Vision. Springer, 2020, pp. 473±
488.

[25] K. Mammou, P. A. Chou, D. Flynn, M. KrivokuÂca, O. Nakagami, and
T. Sugio, ªG-pcc codec description v2,º ISO/IEC JTC1/SC29/WG11

N18189, 2019.

[26] C. Tu, E. Takeuchi, C. Miyajima, and K. Takeda, ªCompressing contin-
uous point cloud data using image compression methods,º in 2016 IEEE

19th International Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2016, pp. 1712±1719.

[27] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, ªPoint cloud compres-
sion for 3d lidar sensor using recurrent neural network with residual
blocks,º in 2019 International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 3274±3280.

[28] J.-K. Ahn, K.-Y. Lee, J.-Y. Sim, and C.-S. Kim, ªLarge-scale 3d
point cloud compression using adaptive radial distance prediction in
hybrid coordinate domains,º IEEE Journal of Selected Topics in Signal

Processing, vol. 9, no. 3, pp. 422±434, 2014.

[29] H. Houshiar and A. NÈuchter, ª3d point cloud compression using
conventional image compression for efficient data transmission,º in
2015 XXV International Conference on Information, Communication

and Automation Technologies (ICAT). IEEE, 2015, pp. 1±8.

[30] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, ªOctsqueeze:
Octree-structured entropy model for lidar compression,º in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, 2020, pp. 1313±1323.

[31] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, ªAn overview of ongoing point cloud compression stan-
dardization activities: video-based (v-pcc) and geometry-based (g-pcc),º
APSIPA Transactions on Signal and Information Processing, vol. 9,
2020.

[32] Y. Feng, S. Liu, and Y. Zhu, ªReal-time spatio-temporal lidar point cloud
compression,º in 2020 IEEE/RSJ international conference on intelligent

robots and systems (IROS). IEEE, 2020, pp. 10 766±10 773.

[33] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, ªReal-time streaming
point cloud compression for 3d lidar sensor using u-net,º IEEE Access,
vol. 7, pp. 113 616±113 625, 2019.

[34] Z. Que, G. Lu, and D. Xu, ªVoxelcontext-net: An octree based frame-
work for point cloud compression,º in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp.
6042±6051.

[35] X. Sun, S. Wang, M. Wang, Z. Wang, and M. Liu, ªA novel coding archi-
tecture for lidar point cloud sequence,º IEEE Robotics and Automation

Letters, vol. 5, no. 4, pp. 5637±5644, 2020.

[36] X. Sun, H. Ma, Y. Sun, and M. Liu, ªA novel point cloud compression
algorithm based on clustering,º IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 2132±2139, 2019.

[37] F. Song, Y. Shao, W. Gao, H. Wang, and T. Li, ªLayer-wise geometry
aggregation framework for lossless lidar point cloud compression,º IEEE

Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 12, pp. 4603±4616, 2021.

[38] R. B. Rusu and S. Cousins, ª3d is here: Point cloud library (pcl),º in
2011 IEEE international conference on robotics and automation. IEEE,
2011, pp. 1±4.

[39] O. Devillers and P.-M. Gandoin, ªGeometric compression for interactive
transmission,º in Proceedings Visualization 2000. VIS 2000 (Cat. No.

00CH37145). IEEE, 2000, pp. 319±326.

[40] S. Biswas, J. Liu, K. Wong, S. Wang, and R. Urtasun, ªMuscle: Multi
sweep compression of lidar using deep entropy models,º Advances in

Neural Information Processing Systems, vol. 33, pp. 22 170±22 181,
2020.

[41] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ªMultiscale
deep context modeling for lossless point cloud geometry compression,º
in 2021 IEEE International Conference on Multimedia & Expo Work-

shops (ICMEW). IEEE, 2021, pp. 1±6.

[42] Google, ªDraco: 3d data compression,º 2018.

[43] K. He, G. Gkioxari, P. DollÂar, and R. Girshick, ªMask r-cnn,º in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961±2969.

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. DollÂar, and C. L. Zitnick, ªMicrosoft coco: Common objects in
context,º in European conference on computer vision. Springer, 2014,
pp. 740±755.

[45] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., ªArgoverse: 3d tracking
and forecasting with rich maps,º in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.
8748±8757.

13

[46] J. Ziv and A. Lempel, ªA universal algorithm for sequential data
compression,º IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337±343, 1977.

[47] Z. C. Marton, R. B. Rusu, and M. Beetz, ªOn fast surface reconstruction
methods for large and noisy point clouds,º in 2009 IEEE international

conference on robotics and automation. IEEE, 2009, pp. 3218±3223.

[48] L. Dagum and R. Menon, ªOpenmp: an industry standard api for shared-
memory programming,º IEEE computational science and engineering,
vol. 5, no. 1, pp. 46±55, 1998.

[49] Velodyne Lidar, ªVelodyne lidar hdl-64e,º 2018.

[50] M. Shevtsov, A. Soupikov, and A. Kapustin, ªHighly parallel fast kd-tree
construction for interactive ray tracing of dynamic scenes,º in Computer

Graphics Forum, vol. 26, no. 3. Wiley Online Library, 2007, pp. 395±
404.

[51] D. Wehr and R. Radkowski, ªParallel kd-tree construction on the gpu
with an adaptive split and sort strategy,º International Journal of Parallel

Programming, vol. 46, no. 6, pp. 1139±1156, 2018.

[52] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
ªFast bvh construction on gpus,º in Computer Graphics Forum, vol. 28,
no. 2. Wiley Online Library, 2009, pp. 375±384.

[53] T. Karras, ªMaximizing parallelism in the construction of bvhs, octrees,
and k-d trees,º in Proceedings of the Fourth ACM SIGGRAPH/Euro-

graphics conference on High-Performance Graphics, 2012, pp. 33±37.

[54] Z. Wu, F. Zhao, and X. Liu, ªSah kd-tree construction on gpu,º in
Proceedings of the ACM SIGGRAPH Symposium on High Performance

Graphics, 2011, pp. 71±78.

[55] N. Salman, M. Yvinec, and Q. MÂerigot, ªFeature preserving mesh
generation from 3d point clouds,º in Computer graphics forum, vol. 29,
no. 5. Wiley Online Library, 2010, pp. 1623±1632.

[56] B. Guan, S. Lin, R. Wang, F. Zhou, X. Luo, and Y. Zheng, ªVoxel-based
quadrilateral mesh generation from point cloud,º Multimedia Tools and

Applications, vol. 79, no. 29, pp. 20 561±20 578, 2020.

[57] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, ªAn
overview of jpeg-2000,º in Proceedings DCC 2000. Data Compression

Conference. IEEE, 2000, pp. 523±541.

[58] FFmpeg team, ªFfmpeg, h.264 video encoding guide,º 2022.

[59] S. Shanmugasundaram and R. Lourdusamy, ªA comparative study of
text compression algorithms,º International Journal of Wisdom Based

Computing, vol. 1, no. 3, pp. 68±76, 2011.

[60] O. D. Team, ªOpenpcdet: An open-source toolbox for 3d object detection
from point clouds.º

[61] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, ªFrom points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,º IEEE transactions on pattern analysis and machine intelli-

gence, 2020.

[62] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
ªPointpillars: Fast encoders for object detection from point clouds,º
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 12 697±12 705.

[63] S. Shi, X. Wang, and H. Li, ªPointrcnn: 3d object proposal generation
and detection from point cloud,º in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2019, pp. 770±
779.

[64] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, ªPv-
rcnn: Point-voxel feature set abstraction for 3d object detection,º in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 10 529±10 538.

[65] Y. Yan, Y. Mao, and B. Li, ªSecond: Sparsely embedded convolutional
detection,º Sensors, vol. 18, no. 10, p. 3337, 2018.

[66] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, ªVoxel r-
cnn: Towards high performance voxel-based 3d object detection,º arXiv

preprint arXiv:2012.15712, 2020.

[67] J. Zhang and S. Singh, ªLoam: Lidar odometry and mapping in real-
time.º in Robotics: Science and Systems, vol. 2, no. 9, 2014.

[68] C. S. Qin Tong, ªAdvanced implementation of loam.º

[69] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ªPointnet++: Deep hierarchical
feature learning on point sets in a metric space,º Advances in neural

information processing systems, vol. 30, 2017.

[70] B. Graham, M. Engelcke, and L. van der Maaten, ª3d semantic segmen-
tation with submanifold sparse convolutional networks,º CVPR, 2018.

[71] H. Gim, D. Cho, and J. Hong, ªA framework for lidar slam algorithm
evaluation.º

[72] Z. Zhang and D. Scaramuzza, ªA tutorial on quantitative trajectory eval-
uation for visual (-inertial) odometry,º in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
7244±7251.

[73] R. KÈummerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, ªOn measuring the accuracy of slam algorithms,º
Autonomous Robots, vol. 27, no. 4, pp. 387±407, 2009.

[74] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. KÈummerle, C. Dorn-
hege, M. Ruhnke, A. Kleiner, and J. D. TardÈos, ªA comparison of
slam algorithms based on a graph of relations,º in 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE,
2009, pp. 2089±2095.

[75] R. Schnabel and R. Klein, ªOctree-based point-cloud compression.º in
PBG@ SIGGRAPH, 2006, pp. 111±120.

14

