
FleXR: A System Enabling Flexibly Distributed Extended Reality

Jin Heo
Georgia Institute of Technology

Atlanta, Georgia, USA

jheo33@gatech.edu

Ketan Bhardwaj
Georgia Institute of Technology

Atlanta, Georgia, USA

ketanbj@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

Atlanta, Georgia, USA

ada@cc.gatech.edu

ABSTRACT

Extended reality (XR) applications require computationally demand-

ing functionalities with low end-to-end latency and high through-

put. To enable XR on commodity devices, a number of distributed

systems solutions enable offloading of XR workloads on remote

servers. However, they make a priori decisions regarding the of-

floaded functionalities based on assumptions about operating fac-

tors, and their benefits are restricted to specific deployment con-

texts. To realize the benefits of offloading in various distributed

environments, we present a distributed stream processing system,

FleXR, which is specialized for real-time and interactive workloads

and enables flexible distributions of XR functionalities. In building

FleXR, we identified and resolved several issues of presenting XR

functionalities as distributed pipelines. FleXR provides a framework

for flexible distribution of XR pipelines while streamlining devel-

opment and deployment phases. We evaluate FleXR with three XR

use cases in four different distribution scenarios. In the results, the

best-case distribution scenario shows up to 50% less end-to-end

latency and 3.9× pipeline throughput compared to alternatives.

CCS CONCEPTS

·Computingmethodologies→Distributed computingmethod-

ologies; Parallel computing methodologies; · Computer sys-

tems organization → Real-time systems.

KEYWORDS

distributed stream processing, extended reality, edge computing

ACM Reference Format:

Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska. 2023. FleXR: A System

Enabling Flexibly Distributed Extended Reality. In Proceedings of the 14th

ACMMultimedia Systems Conference (MMSys ’23), June 7ś10, 2023, Vancouver,

BC, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3587819.3590966

1 INTRODUCTION

Extended reality (XR), including augmented reality (AR) and virtual

reality (VR), involves computationally intensive functionalities such

as object detection, localization and mapping, and 3D graphics ren-

dering. Given the low-latency and high-throughput requirements of

XR applications [42, 56], their associated high computing costs limit

the XR experiences that can be supported on resource-constrained

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0148-1/23/06.
https://doi.org/10.1145/3587819.3590966

mobile devices. To address this, there have been a number of efforts

for distributed XR systems [20, 23, 33, 36ś41, 44, 52, 66]. A common

thread across them is to predetermine the functionalities that are

offloaded to the server, based on assumptions about environmen-

tal factors: the client device capacities, network conditions, and

workloads. They provide support for offloading fixed functional

components of perceptions or rendering, and their benefits can be

realized only in specific deployment contexts.

However, we argue that the distribution contexts will differ vastly

in terms of the capabilities of the user devices and offload servers,

the connectivity among them, and the XR workloads. In such sce-

narios, current solutions will be limited in their ability to provide

effective server assistance in various contexts. Applications would

need to rely on combinations of existing techniques to leverage

the server in assisting with different functionalities. It will require

significant additional development and configuration efforts.

Currently, flexibility in XR workload distribution is missing due

to a lack of adequate systems support. There are previous offload-

ing systems for flexible function migration [11, 13, 32], but it is

hard to extend their benefits to XR due to their design limitation of

function-level offloading (see ğ2 for more details). Existing stream

processing (SP) libraries can potentially enable flexible workload

distribution by creating a pipeline at runtime.While they are used in

use cases similar to XR, e.g., multimedia streaming [21] and percep-

tion pipelines [4, 47], the current SP frameworks lack some of the

necessary features to adapt distributed stream processing (DSP) for

use in XR. As described in ğ3, a DSP system for XR should support

efficient local communication for collocated pipeline components

and blocking and non-blocking communication semantics to ex-

press the pipeline dependencies and synchronization. Moreover,

it should provide queue size management and multiple network

protocol supports for data freshness requirements of distributed

XR pipelines, which are not available in existing solutions.

Simply adding the missing features to existing SP libraries is not

sufficient to enable the flexible distribution of XR pipelines. Even

if the SP libraries are extended with those DSP features, there are

still issues about how to provide the features properly across the

development and deployment phases. Specifically, in existing SP li-

braries, a pipeline can be created at runtime, and it requires a user to

connect pipeline components (compute kernels) via the developer-

specified communication ports. However, since the communication

attributes among compute kernels are determined under the user’s

pipeline context, the user (not the developer of the kernel) should

configure the communication attributes of the connection ports

when creating a distributed pipeline.

In response, we present FleXR ś an open-source, flexibly config-

urable, and high-performance system for distributed XR. To bring

flexibility, we design FleXR as a DSP system specialized for XR.

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

With FleXR, XR pipelines can be flexibly created for various distri-

bution scenarios at runtime by a user, without requiring any code

modification in pipeline kernels. We identify the key issues in using

DSP systems for XR (ğ3.1) and describe our design decisions which

provide the necessary DSP features and address them (ğ3.2). FleXR

provides a framework to enable the flexible distribution of XR func-

tionalities, streamlining the development and deployment phases.

The developers write their kernels without considering how and

where each kernel runs in user pipelines. The user can configure

the communication attributes of the given components without any

change. This feature is realized by the FleXR’s kernel design with

its port abstractions and interfaces (ğ4.2). Once the developer writes

a FleXR compute kernel, it can be flexibly deployed and executed

in diverse distribution scenarios, per user configuration.

We demonstrate the effectiveness of FleXR through experimental

evaluation with three typical XR use cases and four distribution

scenarios (ğ6). Compared to the existing distributed XR systems [9,

20, 33, 36, 37, 52, 66], FleXR is shown to support all distribution

scenarios by creating distributed pipelines with given kernels at

runtime. Our evaluation results show that the offloading effect

of each scenario is different based on the workloads, offloading

overheads, and device capacity, which support the importance of

flexibility in XR workload distributions. Overall, this paper makes

the following contributions:

• We describe the limitations of existing distributed XR systems

with respect to the need for flexibility, and identify the required

features for applying DSP to XR.

• We present FleXR, a DSP system specialized for distributed XR,

which addresses the design issues of DSP for XR and enables

flexible distributions of XR pipelines. Our evaluation in differ-

ent distribution scenarios demonstrates that FleXR practically

delivers on the promise of flexibility and performance.

• We fully open-source FleXR, hoping that it would reduce the

barriers for further research in the area of distributed XR1.

2 RELATED WORK AND MOTIVATION

Previous Work and Limitations. Flexibility in XR workload dis-

tribution is not currently supported despite extensive prior research

and commercial solutions to offload XR functionalities on remote

servers. Table 1 summarizes a number of the existing technologies

and what they support to be offloaded. For VR, graphics operations

are usually offloaded for providing realistic experiences via high-

quality rendering. Some studies make use of the characteristics of

linear perspective in 3D graphics and split the foreground and back-

ground rendering to reuse a hardly changing background [33, 39].

For AR, full and partial offloading of perception modules and graph-

ics rendering have been explored [20, 36, 52]. However, their bene-

fits can be effective only in specific deployment contexts with their

static workload distributions.

Flexibility is necessary because the complexities of XR work-

loads are not the same for each use case, e.g., AR or VR, and vary

based on concrete algorithms and applications. Figure 1 shows the

normalized execution time for the three different AR and VR appli-

cations used later in our evaluation. They are chosen to represent

1https://github.com/gt-flexr/FleXR

Table 1: Server-side workloads that can be offloaded with

the distributed architecture of existing technologies.

Technologies

Server-side Workload
Full Offloading Perceptions Application Rendering

Marvel [9] ✓

Glimpse [10] ✓

OpenRiST [20] ✓

ISAR [23] ✓

Furion [33] ✓

Liu et al. [36] ✓

Liu et al. [37] ✓

FireFly [38] ✓

Azure Custom Vision [40] ✓

Azure Remote Rendering [41] ✓

Nvidia CloudXR™ [44] ✓

Schneider et al. [52] ✓

Zhang et al. [66] ✓

AR1-Jet15W

AR1-Jet30W

AR2-Jet15W

AR2-Jet30W

VR-Jet15W

VR-Jet30W
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

70.5% 77.0%
61.2%

52.0%
64.5% 61.3%

29.5% 23.0%
38.8%

48.0%
35.5% 38.7%

Perception Rendering+App

Figure 1: The normalized execution time of our AR and VR

examples in different device power modes.

XR use cases with different complexities, which incorporate dif-

ferent algorithms and application frameworks (more detail in ğ6.2

and Figure 5). They run on NVIDIA Jetson AGX [43] with 15W and

30W power modes, which corresponds to the client device in our

testbed in ğ6.1. These results show each use case has different com-

plexities for its functionalities, and that the dominant functionality

ś rendering or perception (or both) ś depends on the workload and

the device capacity, making flexibility in offloading an important

consideration in distributed XR.

There have been prior works on flexible offloading to a remote

server, but they have limited applicability for XR. MAUI [13] pro-

posed fine-grained function offloading with the common language

runtime (CLR) of the .NET framework. By having CLR on the client

and server and requiring developers to specify offloadable functions

in application codes, the functions are executed flexibly between

the client and server. CloneCloud [11] and ThinkAir [32] leveraged

OS supports to migrate the execution context of threads running

application functions to the server’s virtual machines (VM); the

server VM provides an environment identical to the client, and the

thread execution becomes migratable.

Although these techniques offer some flexibility, their benefit for

distributed XR is limited. In their design approach, devices interact

with offloaded functions via client-server interfaces, and the applica-

tion execution flow is preserved. Since XR applications require the

processing of multimedia data across multiple functionalities, this

can introduce multiple network round trips and compromise the

benefits of reduced processing time due to offloading. In addition,

preserving the execution flow limits the opportunities to achieve

task parallelism. ThinkAir [32] provides parallelism by cloning VMs,

but allows only for data parallelism. Lastly, since these systems run

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

the application codes on a server with the same environment as the

client, they cannot benefit from hardware resources only available

on the server.

Offloading XR functionalities requires additional operations such

as data compression and network transmissions. When distributing

XR workloads, both overheads from those auxiliary operations and

the costs of the XR functionalities should be considered. Flexibility

in reconfiguration thus requires not just techniques which provide

transparent function offload, but also systems support to properly

configure and deploy the auxiliary functionality.

Motivation for FleXR. These observations motivate us to build

FleXR based on the stream processing (SP) design. SP structures an

application as a pipeline of components and provides modularity

and task parallelism to the application. A pipeline component (a

compute kernel) is the implementation of a functionality. Kernels

are pipelined via data communication ports and executed in par-

allel with dataflow. The ports are used to transmit the input and

output between the connected kernels. This modularity makes SP

extensible to distributed stream processing (DSP) in a straightfor-

ward manner; kernels can be connected via remote communication

ports. Additionally, SP provides an advantage in heterogeneous

server environments [49] since kernels can be specialized to utilize

available heterogeneous resources such as hardware accelerators.

3 DESIGN CHALLENGES FOR FLEXR

There are intuitive advantages of building an XR system as an SP

system. An XR system processes inputs as data streams from de-

vice sensors such as cameras, inertial measurement units, etc., and

provides output as data streams such as field of view content in

VR and graphic overlay in AR. The SP design provides benefits of

high throughput with pipeline parallelism and distributed compu-

tation with its modularity, but the application of SP in XR presents

non-trivial issues. In this section, we present the design space explo-

ration we conducted to address those issues when building FleXR.

3.1 Issues with Stream Processing for XR

We use an example AR pipeline in Figure 2, to articulate the is-

sues when applying SP to an XR system. The application renderer

overlays virtual objects on the camera frame based on the result

from the object detector. The objects can be manipulated using key

inputs, and the AR scene with the overlaid objects is displayed to

the end user. Using this pipeline, we discuss the main issues below.

I1: Communication Cost. As shown in Figure 2, there are a num-

ber of components in the pipeline across which data transmissions

must occur. Those data transfers need to be performed with least la-

tency because high latency lowers the application’s responsiveness

and causes discrepancies between the real and virtual worlds. How-

ever, the SP design increases the end-to-end latency as it requires

data movement across the ports of the pipelined kernels [3, 31].

Since XR functionalities process and produce large multimedia data,

the overhead of the cross-kernel communications is significant and

must be addressed in order to meet the latency constraints of XR.

I2: Communication Semantics. In Figure 2, the downstream

kernels, i.e., the renderer, has input dependencies with the upstream

kernels. Some of those dependencies are hard, i.e., an input must be

received for the downstream kernel to execute, as is the case with

Cam er a

Object
Detector

App
Render er

Send

Receive

Send
Receive

Keyboar d
Send

Receive
Display

Send

Receive

Figure 2: The example pipeline of an AR use case.

Table 2: The local communication latencies between two kernels

in milliseconds.

Libraries

Resolution
720p 1080p 1440p 2160p

ROS Pub/Sub[47] 3.4 6.9 7.1 12.5

ROS Shm Pub/Sub [65] 2.2 4.3 5.9 10.2

Python Queue [12, 60] 14.3 24.1 30.4 52.1

Python Pipe [12, 60] 9.3 17.1 29.5 52.1

Python Shm [17] 3.0 8.6 14.8 32.3

GStreamer [21] 0.1 0.1 0.1 0.1

RaftLib [4] 0.1 0.1 0.1 0.1

the camera and renderer. Other dependencies are soft, meaning

an input is not required from the particular upstream kernel, as is

the case with the keyboard or detector and renderer. This property

has implications on whether the execution of the upstream kernels

should be synchronized with the downstream kernels in terms of

their invocation frequencies. In short, the type of dependency is

specific to the functionalities that are connected, and this semantic

information must be expressed by the application and adequately

handled by the underlying system via support for appropriate com-

munication semantics.

I3: Data Recency. If the camera frames in Figure 2 are delayed due

to queuing delays when the frame data is transmitted, its freshness

decreases. As a result, the placement of the AR object would be

off, thus lowering the quality of the AR experience, which is also

established by prior work that stale data deteriorates the quality

of XR experiences [34]. Generally, as data is transmitted across

kernels of different frequencies and execution times, it may result

in queuing delays if the data is queued at any of the port buffers in a

pipeline. When the data contains real-world contexts from sensors,

e.g., camera frames, it is critical to ensure that it remains fresh with

all pipeline components that process it. Thus, the SP system for XR

must provide a way to manage data recency.

3.2 Design Decisions for The Issues

FleXR as a specialized DSP system for XR, incorporates solutions

to address the issues raised in the previous section.

D1: Efficient Local Communication. The remote communica-

tion cost is unavoidable even with data compression, but the local

communication should be efficient for low overheads. We evalu-

ated the suitability of several existing SP libraries in terms of their

communication costs: RaftLib [4], GStreamer [21], Python pipeline

libraries [12, 60], and the robot operating system (ROS) [47].

Wemeasure the communication costs with two locally connected

kernels and raw RGB frames of different resolutions. Table 2 shows

the transmission latencies of the frames. ROS and Python libraries

provide process-level SP, where each kernel runs as a separate pro-

cess and the processes communicate via interprocess communica-

tion (IPC) channels. Based on our results, the local communication

in process-level SP is hardly efficient for large multimedia data even

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

with shared memory channels [17, 65]. While the shared memory

channel reduces the number of data copies, the data still needs to be

copied between the shared memory and process memory regions.

GStreamer and RaftLib provide thread-level SP with zero-copy

communication ports. As kernel functions are threads in the same

address space, local communication can be done without copy. A

DSP system for XR should leverage a thread-level SP for efficient local

communication of collocated kernels, and extend its communication

with support for remote communication.

D2: Blocking and Non-blocking Semantics. To handle the hard

and soft dependencies and synchronize the kernel executions in a

pipeline, providing the proper communication semantics (block-

ing and non-blocking) for the local and remote communication

primitives (send and receive) is essential [14]. The design of FleXR

handles this as a first-order concern when executing XR pipelines.

The send semantics of an output port is for synchronizing the ker-

nel execution. A blocking send blocks the execution of an upstream

kernel function when the downstream kernel’s queue is full, and

this backpressure leads to flow control and implicitly synchronizes

the upstream to downstream kernels. For non-blocking semantics,

the upstream kernel continues when the downstream kernel can-

not receive data on its input port. The output port requires both

blocking and non-blocking send semantics in XR pipelines. In the

example AR pipeline of Figure 2, if only blocking semantics are

supported, the camera kernel is synchronized to the longest path

of object detection (blue line). Even if the app renderer does not

require the results from the object detector for every camera frame,

the frame stream (green line) is blocked by the object detector.

The receive semantics of an input port is for kernel dependencies.

A blocking receive waits for the message from a port, and a non-

blocking continues when there is no message. So, when the kernel

is written, the primary inputs on which the kernel depends (e.g.,

camera frame for a kernel performing frame processing) should be

specified with blocking semantics. For inputs generated by other

sources (e.g., other sensors or user events), which can impact or steer

the kernel processing but are only optionally used, the semantics

should be with non-blocking to handle them.

When only a blocking receive is available, all input streams of a

kernel are forced as mandatory. The kernel execution and pipeline

throughput are restricted by the lowest frequency input. In Figure 2,

the renderer is blocked until the key input arrives from the user

(red line). Even without the key input, the renderer execution is

governed by the object detector, and the pipeline throughput is

limited by the path with the highest latency (blue line).

Supporting both blocking and non-blocking primitives for the in-

put and output ports makes it possible to correctly describe stream

dependencies and synchronize kernel executions in XR pipelines.

D3: Queuing Management and Network Protocols. Since poor

data freshness causes discrepancies between the real and virtual

worlds, it is crucial to manage data recency in XR pipelines. This can

be achieved by minimizing the queuing delays of a pipeline [35].

For local communication, it is possible to bound the queuing

delay by limiting the number of outstanding data entries in the port

buffer. For remote communication, recency management becomes

challenging because there is no way to control the queuing mech-

anisms of unknown middleboxes across the backend network. In

this situation, recency management can be enabled by compromis-

ing communication reliability. Reliable network protocols such as

TCP [55] guarantee in-order message delivery via retransmission

and acknowledgment mechanisms. However, in cases where recent

data is prioritized (e.g., the object detection result on a live camera

frame), the reliable protocols are inappropriate, and should be re-

placed with protocols favoring data timeliness over reliability even

with data loss, e.g., RTP [53] and RTSP [54] over UDP.

Thus, the DSP system for XR should provide knobs for data recency

management via queue size management and support for multiple

network protocols for local and remote kernel communications.

4 FLEXR

4.1 Overview

To bring flexibility to XR workload distribution, we built FleXR as

a DSP system specialized for XR, taking the design benefits of mod-

ularity and task parallelism. Driven by our design decisions, FleXR

is built on top of a thread-level SP library, RaftLib [4], and pro-

vides the benefit of efficient local communication for the collocated

kernels (D1). For the communication semantics to enable kernel

synchronization and dependencies of XR pipelines, we extend the

semantics of the RaftLib port with support for non-blocking and

for remote communication (D2). For recency management of local

and remote communication, FleXR allows setting the maximum

number of messages in the local port buffer and specifying network

protocols for remote ports at runtime (D3).

Evenwith the necessary DSP features for XR, there are still issues

about providing these features properly to the system stakehold-

ers: developers writing kernels and users requesting distributed

pipelines with given kernels. FleXR enables flexibility in configuring

XR pipelines via its kernel abstraction with interfaces separating

development- and deployment-time concerns. While the developer

implements an XR kernel function and knows its input dependen-

cies, the user creates a distributed XR pipeline and configures the

connectivity of kernels (local or remote), output-port semantics,

and recency management mechanism of the pipeline context. In

addition, there can be a case where the user needs to connect an

output of a kernel into multiple downstream kernels.

Our kernel abstraction provides the interfaces allowing the devel-

oper to register input and output ports and use the registered ports

in the kernel function regardless of how they will be configured

by a user. The behavior of the registered ports becomes different

based on the user-specified communication attributes at runtime.

The user can also branch dynamically an output port with different

communication attributes and flexibly create distributed pipelines

with various topologies without modifying the kernels.

Figure 3 shows the high-level design of FleXR and how it oper-

ates. 1 The developers write kernels with our kernel abstractions

for implementing their XR functionalities or incorporating exist-

ing functionality implementations by wrapping them in kernel

functions. 2 With given kernels, the user requests a distributed

pipeline as a YAML recipe describing pipelined kernels and their

communication attributes. 3 The recipe parser parses the recipe

and generates pipeline metadata of the kernels and connection in-

formation. 4 The local pipeline metadata is passed to the pipeline

manager, and it creates a local pipeline by instantiating the kernels

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

FleXR

Device Platform

Cl ient
Ser ver

Recipe
Parser

Pipeline Manager

Pipelines

Kernel
Map

Connection
Topology

Users
Pipeline
Recipe

Recipe
Parser

Pipeline Manager

Pipelines

Kernel
Map

Connection
Topology

Request
Listener

FleXR
Plugins

FleXR
Plugins

Applications

Kernels
 (Off l ine)Developers

Kernels

Kernels

FleXR

?

?

? ?
? ?

?

?

?

Figure 3: High-level overview of FleXR.

FleXR Kernel

Execution
Function

Kernel
ID

Frequency
Manager

Por t Manager

Input Por t Map

Output Por t Map

Branched Por t Map

Logger

Flexr Por t

Por t Tag
Semantics:
 {BLOCK, NONBLOCK}
Por t Connection State:
 {LOCAL, REMOTE_PROTOCOLS}
Local Por t:
 {RaftLib Por t, Shm Por t}
Remote Por t:
 {TCP Por t, RTP Por t}

Figure 4: FleXR kernel design with port abstractions.

and configuring port connections. 5 The part of the recipe about

the remote pipeline is sent to the request listener on the server. 6

The server’s recipe parser parses the received recipe and generates

pipeline metadata. If the pipeline works with external applications,

it starts the applications. 7 Then, the server’s pipeline manager

also creates the server-side pipeline, and the remote ports of local

and remote pipelines are connected. 8 The pipelines, distributed

across the client and server, run with dataflow.

4.2 Kernel Design

In SP, the compute kernel is a pipeline component, which includes

an execution function and communication ports. To provide the

necessary DSP features for flexible configuration of the communica-

tion attributes, we design a FleXR kernel with two abstractions: the

FleXR port and port manager. They abstract the different commu-

nication channels for local and remote operation of a FleXR kernel,

allowing the developer to write kernels without specifying the

communication attributes and the user to configure the connection

at runtime without modifying kernels. A developer registers the

input and output ports of the kernel with tags via the port manager

interface, and the registered ports are instantiated and configured

by the port manager based on the user recipe.

Figure 4 shows our kernel design. Each kernel has its ID, logger,

frequency manager, execution function, and port manager. The ID

is used for the recipe parser and pipeline manager in Figure 3. The

frequency manager adjusts the execution frequency when a kernel

should run at a stable frequency, and the logger is for the developer

to log the kernel events. The execution function processes data

from the input ports and sends out the result to the output port.

Port Manager.When kernels are instantiated, the port manager

of each kernel activates and dynamically branches the FleXR ports

based on the pipeline metadata. In addition, it provides developers

with interfaces to use the FleXR ports without considering how the

ports will be configured by a user.

The port manager design is shown in Figure 4. The manager

has input and output port maps. These port maps have the map-

ping information of the port tags registered by a developer and

the FleXR ports activated with the communication attributes by a

user. A kernel function can get inputs and send outputs via the port

manager interfaces with the tag. The branched port map contains

the ports branched from the registered output port. When a regis-

tered output port needs to be connected into multiple downstream

ports with different communication attributes, the port manager

activates the branched ports and keeps their mapping information

to the registered port. When a kernel function sends an output to

the registered port, it is also sent through the branched ports by

using this mapping information.

Listing 1 shows the codes of an example kernel which a developer

implements (1 in Figure 3). In Line 4-6, the developer registers

the input and output ports with the tags. The registered ports are

used in Line 10-16 without specifying their connection types and

branching states. The port manager hides the complexities of using

the dynamically instantiated ports from developers.

FleXR Port abstracts different local and remote communication

ports and exposes a unified interface to the port manager. When

the pipeline manager creates a pipeline (4 and 7 in Figure 3), a

kernel is instantiated and its ports are configured by the port man-

ager with user-specified port connectivity, semantics, and recency

management mechanism. Since these communication attributes are

determined by the contexts of the requested pipeline, the operation

of a FleXR port should differ based on the attributes given at run-

time. We design the FleXR port abstraction as a state machine with

the integrated interfaces.

The design of a FleXR port is shown in Figure 4. Each FleXR port

has the port semantics, connection state, and local and remote ports.

The port semantics is for specifying the communication semantics:

blocking and non-blocking. The connection state indicates whether

it is local or remote, and the network protocol for the remote. The

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

1 class ExampleKernel: public FleXRKernel {

2 public:

3 ExampleKernel() {

4 portManager.registerInPortTag("in1", PortSemantics::BLOCKING);

5 portManager.registerInPortTag("in2", PortSemantics::NONBLOCKING);

6 portManager.registerOutPortTag("out");

7 }

8
9 raft::kstatus run() {

10 MsgType *in1=portManager.getInput<MsgType>("in1");

11 MsgType *in2=portManager.getInput<MsgType>("in2");

12 MsgType *out=portManager.getOutputPlaceholder<MsgType>("out");

13
14 /* Kernel Functionality ... */

15
16 portManager.sendOutput("out", out);

17 }

18 }

Listing 1: An example kernel with two input and one output ports

registered by a developer.

local and remote ports are the actual communication channels

internally used and interfaced by the FleXR port abstraction. Since

the FleXR port is an abstraction for different communication ports,

it is extensible. New network protocols and local channels can be

seamlessly integrated into distributed XR pipelines.

Listing 2 is part of an example pipeline recipe which a user

provides (2 in Figure 3). The user creates a pipeline by specifying

the kernels, their port attributes in Line 5, 7-8, 11-12, and 14-15

and connections in Line 17-22. When the pipeline is created, the

port manager activates the FleXR port. The activation instantiates

an underlying channel corresponding to the specified attributes,

and the channel is interfaced via the FleXR port. The FleXR port

provides uniform interfaces to the port manager while behaving

differently based on the underlying channel.

1 - kernel : ExampleKernel

2 id : example_kernel1

3 input :

4 - port_name: in1

5 connection_type: local

6 - port_name: in2

7 connection_type: remote

8 remote_info: [RTP, 14802]

9 output :

10 - port_name: out

11 connection_type: local

12 semantics: blocking

13 - port_name: branched_out

14 connection_type: remote

15 remote_info : [127.0.0.1, 14805, TCP]

16 branched_from: out

17 - local_connections:

18 - send_kernel: example_kernel1

19 send_port_name: out

20 recv_kernel: example_kernel2

21 recv_port_name: input

22 queue_size: 1

Listing 2: A part of the pipeline recipe for the example kernel in

Listing 1 and a connection.

4.3 Communication Semantics and Data
Recency Management

To express the relationships among kernels and their dependencies

and synchronization requirements, both blocking and non-blocking

semantics are necessary for the local and remote communication

primitives. FleXR supports the required semantics. The local com-

munication in FleXR is based on the RaftLib port. Since the send

and receive primitives of the vanilla RaftLib port are only with

blocking semantics, we extend them with non-blocking semantics

by checking the queue buffer of the connected RaftLib ports. A

non-blocking send does not wait and continues when the queue

connected to the downstream kernel is full. A non-blocking receive

continues without waiting when the queue to the upstream ker-

nel is empty. For remote communications, the socket and protocol

implementations have interfaces with different semantics, and we

map the underlying port interfaces to the FleXR port.

The data recency management mechanism in FleXR is to prevent

data from aging in the pipeline queues. For local, FleXR provides

recency management by limiting the number of messages in the

queue buffer, which puts a bound on the maximum queuing de-

lay [35]. The recency management for remote communication is

done by supporting different network protocols, currently support-

ing TCP and RTP over UDP. For TCP connection, the in-order and

reliable delivery may lead to lower data timeliness due to its retrans-

mission and acknowledgment mechanisms. RTP over UDP has the

advantage for data recency at the cost of data loss. By supporting

these different protocols and queue size management, the recency

management is achieved for remote and local communications.

4.4 Register-Activation Interface and Port-level
Configuration

We embody the necessary DSP features for XR in the FleXR kernel,

but these features should be provided properly to the stakeholders

for supporting the runtime flexibility in distributed XR pipelines.

The kernel developers know the input dependencies of their kernel

functions, but it is unknown to them how their kernels are used in a

pipeline which a user creates. When requesting a pipeline, the user

arranges the pipeline structure with the kernel communication at-

tributes. So, the user determines how the kernels operate within the

pipeline. To provide the features to the proper stakeholder, FleXR

has register-activation interfaces of the port manager at a port gran-

ularity, which streamline the development and deployment phases

but clearly separate the features provided to each phase.

Based on the information available to the development and de-

ployment phases, we identify the proper stakeholder for each fea-

ture and make the interfaces expose it. Table 3 summarizes the

provided interfaces to each stakeholder. The developers register

ports and set the input-port dependencies as they know the kernel

functionalities. The connection type, branching outstream, out-

put semantics, and recency management are specified by the user

recipe because these attributes should be configured when the port

manager activates FleXR ports by the metadata of the user pipeline.

The register-activation interfaces are enabled by the FleXR port

and port manager, and the stakeholders use the FleXR features

through them. When the developer registers the ports, the seman-

tics of input ports are set via the port manager as shown in Line 4-5

of Listing 1. The connection types, recency management, and out-

put semantics are specified by the user recipe as shown in Listing 2.

The user can branch a single registered port with separate attributes

in Line 13-16 of Listing 2. When the pipeline manager instantiates

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

Table 3: FleXR interface availability for the stakeholders to manip-

ulate the features to resolve the DSP issues in ğ3.

Feature

Stakeholder
Developer User

Port registration ✓

Port activation ✓

Output branching ✓

Input semantics ✓

Output semantics ✓

Recency management ✓

the pipeline kernels, the user-specified attributes and branching

are set for each port by the port manager.

5 IMPLEMENTATION

The current version of FleXR is implemented and tested on Ubuntu

20.04. It is written in C++ with STL, and on-node kernel manage-

ment and communication rely on RaftLib v0.7 [4]. For remote com-

munication, FleXR supports TCP using ZeroMQ [25], and RTP com-

munication using uvgRTP [2] which is based on the RFC 3550 spec-

ifications [53]. For the application functionalities, we use several

components. For object detectors in the AR applications, we use the

ArUco [50] and ORB keypoint detection algorithm of OpenCV4 [58].

Pose estimation in the VR application is implemented using ORB

SLAM3 [8] and the EuRoC dataset [7]. FleXR supports the Unreal En-

gine 5 (UE5) [18] and Unity 3D [59] game engines, which interface

with the FleXR runtime via plugins. The FleXR plugins are compat-

ible with the shared memory port in Figure 4 and make it possible

to run external applications with FleXR pipelines. The graphics

rendering in our examples uses the Mesa implementation [29] of

OpenGL [28], EGL [26], and Vulkan [27]. For hardware-accelerated

encoding and decoding of H.264 [62], we use FFmpeg [15], NVIDIA

Video Codec [45] on the server, and NVIDIA L4T [46] on Jetson.

6 EVALUATION

The main objective of FleXR is to bring flexibility in distributed

XR for realizing effective server assistance to XR use cases. For

evaluation, we implement three XR use cases in Figure 5 and set

four distribution scenarios in Figures 6 and 7. We compare FleXR

to the existing distributed XR platforms in the ability to support

the distribution scenarios. For each case, we evaluate the offloading

impact in terms of pipeline latency and throughput. Additionally,

we evaluate the benefit of the design of FleXR compared to existing

thread-level SP frameworks: GStreamer [21] and RaftLib [4].

6.1 Experimental Testbed

In our setup, the client is NVIDIA Jetson AGX Xavier [43] with 8

core ARMv8 CPU, Volta GPU, and 32 GB memory shared by CPU

and GPU. The Jetson runs in 15W and 30W power modes (Jet15W

using 4 cores and Jet30W using 8 cores). The server has Intel Core

i7-10700, 32 GB memory, and NVIDIA RTX 2070 of 8 GB GDDR6

memory. The server and client are connected via Gigabit Ethernet

of 1 Gbps bandwidth with round-trip time (RTT) of 1.5 ms.

6.2 XR Applications and Distribution Scenarios

ExampleXRApplications.We evaluate the effectiveness of FleXR

with 2 AR and 1 VR applications as shown in Figure 5. All the

applications generate rendered frames of 1080p and provide Full

HD (FHD) experiences. The AR use cases have the same pipeline

Table 4: The supportability of the existing frameworks and FleXR

to our distribution scenarios in Figure 6 and 7.

Local Perceptions Rendering+App Full Offloading

Marvel [9] ✗ ✓ ✗ ✗

OpenRiST [20] ✗ ✗ ✗ ✓

Furion [33] ✗ ✗ ✓ ✗

Liu et al. [36] ✗ ✓ ✗ ✗

Liu et al. [37] ✗ ✗ ✓ ✗

Schneider et al. [52] ✗ ✗ ✗ ✓

Zhang et al. [66] ✗ ✗ ✓ ✗

FleXR ✓ ✓ ✓ ✓

structure in Figure 6a taking 1080p camera frames, butwith different

workload characteristics. The camera frames are branched to the

object detector and renderer because the camera frame needs to be

rendered as a background. The renderer receives the background

frame in a blocking manner. The connection for the object pose

detector is non-blocking as an object might not be detected.

For the first AR case (AR1) in Figure 5a, the object detection is

done by the local feature matching processes: ORB feature extrac-

tion [51], k-nearest neighbor (KNN) descriptor matcher, homogra-

phy and transformation estimations via a perspective-n-point (PnP)

random sample consensus (RANSAC) solver [16]. The second AR

case (AR2) in Figure 5b uses the ArUco algorithm [19] for detecting

the fiducial markers. While AR2 has a less complex perception than

AR1, the application and rendering are more intensive in AR2 as

the application is implemented as a separate process by UE5 of the

physics and shaders. On the other hand, AR1 rendering is a pipeline

kernel and uses only low-level 3D graphics APIs.

For the VR use case in Figure 5c, the pose estimator gets 480p

camera frames and inertial measurement unit (IMU) data and gener-

ates the current user pose as shown in Figure 7a. The pose estimator

of the monocular-inertial SLAM has the primary input of IMU and

the camera input is optional. The renderer shows the 3D scene

captured from the estimated user pose. For all example use cases,

the user can interact with the virtual objects via keyboard inputs,

and this interaction is done by non-blocking receives because the

key event happens arbitrarily by the user.

Distribution Scenarios. We set up four distribution scenarios for

the three use cases: Local (L), Perception (P), Rendering+App

(R), and Full Offloading (P+R). The canonical XR applications

consist of perception and graphics rendering functionalities. As

summarized in Table 1, the existing distributed XR systems can be

categorized into one of our scenarios by their offloading supporta-

bility. With our scenarios, we show the flexibility benefit of FleXR

compared to the existing systems.

In Local (L), all functionalities run local on the client device

only. In Perception (P), only the perception kernels are offloaded

to the server, and in Rendering+App (R) the application rendering

are offloaded. In Full Offloading (P+R), the client only sends

the sensor data and receives the final rendered frame. Figures 6

and 7 show the configurations for the AR1/2 and VR scenarios.

Compared to existing work which targets specific distributed XR

configurations, FleXR can enable all distribution scenarios flexibly,

as shown in Table 4.

For the distributed configurations of AR1/2 and VR, the camera

and rendered frames and IMUs are transferred with RTP over UDP

for application responsiveness while the user input from the key-

board is with TCP for reliable delivery. When the sensor data is

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

(a) The first AR use case (AR1). (b) The second AR use case (AR2). (c) The VR use case (VR).

Figure 5: The screenshots of the example use cases.

Cam er a

Object
Detector

App
Render er

Keyboar d

Display

(a) Local: the pipeline runs locally.

Cam er a
Encoder

App
Render erKeyboar d Display

Decoder

Object
Detector

(b) Perception: the perception ker-
nels run on the server.

Cam er a

Encoder

DecoderKeyboar d Display

Decoder

App
Render er

Object
Detector

Encoder

(c) Rendering+App: the application
and rendering run on the server.

Cam er a Encoder
App

Render er

Keyboar d Display

Decoder
Object

Detector

Encoder

Decoder

(d) Full Offloading: all functionali-
ties run on the server.

Figure 6: The distribution scenarios of AR use cases (blue parts on the server).

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Display

IMU

(a) Local: the pipeline runs locally.

Cam er a

Pose
Est im ator

App
Render erKeyboar d Display

IMU

Decoder

Encoder

(b) Perception: the perception ker-
nels run on the server.

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Encoder
IMU

DisplayDecoder

(c) Rendering+App: the application
and rendering run on the server.

Cam er a

Pose
Est im ator

App
Render er

Keyboar d

Encoder
IMU

Decoder

DisplayDecoder

Encoder

(d) Full Offloading: all functionali-
ties run on the server.

Figure 7: The distribution scenarios of VR use case (blue parts on the server).

1 2 4 8
of Remote Connections

110
120
130
140
150
160
170
180
190
200

En
er

gy
 C

on
su

m
pt

io
ns

 (J
) GStreamer

RaftLib
FleXR

(a) Energy usage results on the server
machine.

1 2 4 8
of Remote Connections

16

19

22

25

28

31

34

En
er

gy
 C

on
su

m
pt

io
ns

 (J
) GStreamer (Jetson)

RaftLib (Jetson)
FleXR (Jetson)

(b) Energy usage results on Jetson
30W.

Figure 8: Energy consumption to send 1000 messages of 512 Bytes

every 10 ms to remote kernels on our server and Jetson 30W.

moved via local connections, its queue size is set as 1 to minimize

the queuing delay for the data recency.

6.3 Design Benefit of FleXR

As shown in Table 2, GStreamer and RaftLib provide efficient lo-

cal communication. Instead of using FleXR, a distributed pipeline

can be supported by implementing auxiliary kernels for remote

communications, branching, and synchronization. However, sup-

porting a distributed pipeline with the auxiliary kernels introduces

inefficiencies because each kernel, including the auxiliary ones, is

a separate execution unit that is parallelly scheduled and managed.

Figure 8 shows the overheads of the auxiliary kernels on our

testbed. We create a kernel sending output to multiple remote ker-

nels, and measure the energy consumption for the transmissions.

GStreamer and RaftLib need the additional kernels for remote mes-

saging and output branching; for sending output to 8 remote kernels,

9 auxiliary kernels are required (1 for branching and 8 for remote

messaging). The energy consumption with the auxiliary kernels

increases with their number. In contrast, with the FleXR kernel

design and interface, the output port registered by a developer can

be branched and configured for remote connections with different

protocols as specified by a user, not requiring additional kernels. In

FleXR, the developers also don’t need to implement these auxiliary

kernels to make their kernels operate flexibly.

Table 5 shows the number of kernels for GStreamer, RaftLib, and

FleXR to support AR1 in the different scenarios. GStreamer and

RaftLib need auxiliary kernels as local SP libraries. GStreamer, as

a multimedia framework, imposes strict synchronization across

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)
(b) The pipeline throughputs.

Figure 9: The pipeline latencies and throughputs of AR1 in our

distribution scenarios.

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24 27
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)

(b) The pipeline throughputs.

Figure 10: The pipeline latencies and throughputs of AR2 in our

distribution scenarios.

streams based on their internal timestamps and requires all kernels

to have a single synchronized stream for input and output [57].

Since RaftLib does not require such strict synchronization, it re-

quires fewer kernels. GStreamer requires two kernels for branching

the camera stream and synchronizing streams for the renderer,

while RaftLib only needs a branching kernel. For the distributed set-

tings, both need additional messaging kernels: 4 for Perceptions,

8 for Rendering+App, and 6 for Full Offloading. In FleXR, these

auxiliary kernels are not required because each port can be con-

figured for different usage, which enables the various scenarios

flexibly without the system overheads from the auxiliary kernels.

6.4 Evaluation of Example Applications

We run the example applications on our testbed of Jetson 15W and

30W with the four distribution scenarios to emulate the situations

where the client has little or moderate device capacity. We measure

the average pipeline latency and throughput of the three examples

with the scenarios, and demonstrate that the flexibility enabled by

FleXR makes it possible to achieve effective server offloading.

Costs for XR Pipeline Distribution.Distributing XR pipelines in-

cur additional costs: multimedia data compression [22], displaying

the rendered scene from a server, and network transmission [30].

Transmitting the largemultimedia data without compression causes

Table 5: The number of kernels required to support the distributed

configurations of AR1 in Figure 6.

Local Perceptions Rendering+App Full Offloading

GStreamer [21] 7 13 19 17

RaftLib [4] 6 12 18 16

FleXR 5 7 9 9

L (15W)
P (15W)

R (15W)
P+R (15W)

L (30W)
P (30W)

R (30W)
P+R (30W)

Distributed Scenarios (Power Mode)

0

50

100

150

200

250

300

350

Pi
pe

lin
e

La
te

nc
y

(m
s)

Detector
Renderer
Display
Encoding
Decoding
Network

(a) The latency breakdowns of the pipeline
components.

0 3 6 9 12 15 18 21 24 27 30
Pipeline Throughput

L (15W)

P (15W)

R (15W)

P+R (15W)

L (30W)

P (30W)

R (30W)

P+R (30W)

Di
st

rib
ut

ed
 S

ce
na

rio
s (

Po
we

r M
od

e)

(b) The pipeline throughputs.

Figure 11: The pipeline latencies and throughputs of VR in our

distribution scenarios.

high bandwidth usage with backend network delays and consumes

the battery of the user device [61, 63]. Therefore, data (de)compression

is necessary for both the client and server. Another cost is for the

client to display the rendered scene from the server. When the scene

is rendered on the server, it should be fetched from GPU memory,

sent to the client, and displayed.

The results in Figures 9-11, show a breakdown of the average end-

to-end latency and average throughput. The display latency on the

client is shown separately from the rendering latency. The compres-

sion cost is split as encoding and decoding latencies, which include

the server- and client-side compression latencies. The network

transmission latency is measured on the client when it receives the

result of the timestamped message from the server.

Pipeline Latency and Throughput. Figures 9-11 show the la-

tency and throughput results of AR1/2 and VR in the distribution

scenarios (L, P, R, and P+R). Latency is measured as how long the

pipeline takes to reflect the real-world context, and throughput is

how frequently the real-world context is reflected to the rendered

scene per second.

For AR1 (Figure 9), P shows the lowest latencies in 15W and

30W. For throughputs, P has the highest throughput in 15W while

P+R does in 30W. Since the pipeline throughput is bound by the

dominant functionality, it is possible to have lower throughput

even with lower latency. Compared to L, the throughputs can be

improved 2.1× (15W) and 1.7× (30W), and the latencies reduced by

28% (15W) and 14% (30W).

For P, the perception on the server takes 11 ms; it takes 121 ms

(15W) and 70 ms (30W) of L on the client. Rendering on the client

takes 54 ms (15W) and 19 ms (30W). P requires the client to encode

1080p camera frames, which takes 57 ms (15W) and 47 ms (30W).

Decoding on the server takes 1.8 ms. The throughputs of P in 15W

and 30W are bound by the encoding latency.

For P+R, since all rendering and perception run on the server,

requires client-side displaying, encoding, and decoding. On Jet15W,

it takes 59 ms for displaying the received FHD scene from the server,

57 ms for encoding camera frames, 12 ms for decoding the received

scene. On Jet30W, it takes 20 ms for displaying, 40 ms for encoding,

6 ms for decoding. On the server, it takes 14 ms for perception, 5

ms for rendering, 1.7 ms for decoding the received camera frame,

and 5 ms for encoding the rendered scene. So, the throughput of

P+R (15W) is bound by client-side displaying while the throughput

of P+R (30W) is bound by client encoding.

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

For AR2 (Figure 10), P+R shows the highest throughputs while

P (15W) and L (30W) present the lowest latencies. The throughput

of P+R is 1.5× of P (15W) and 1.3× of L (30W), but it has increase

in latencies of 15% (15W) and 8% (30W).

For P (15W), the perception takes 7 ms on the server while it

does 122 ms of L (15W), and the rendering takes 81 ms. In addition,

it takes 52 ms for client encoding and 1.8 ms for server decoding.

For L (30W), it takes 51 ms for perception and 47 ms for rendering.

ForP+R, on Jet15W, it takes 54ms for encoding the camera, 13ms

for decoding the rendered scene, and 57 ms displaying the received

scenes while taking 14ms for perception and 20ms rendering on the

server. On Jet30W, it takes 40 ms for encoding, 7 ms for decoding,

and 18 ms displaying. While the throughputs of P (15W) and L

(30W) are bound by rendering and perception each, the throughputs

of P+R in 15W and 30W are bound by the client encoding.

In Figure 11 of VR, P+R (15W) and P (30W) present the lowest

latencies. P+R shows the highest throughputs in 15W and 30W.

Compared to L, the throughputs can be 3.9× (15W) and 2.7× (30W),

and the latencies are 50% less (15W) and 29% less (30W).

For P, on Jet30W, it takes 54 ms for rendering, 24 ms for encoding

480p camera frames. On the server, it takes 33 ms for perception and

1.5 ms for decoding the received camera frames. On Jet15W, it takes

150 ms for rendering and 33 ms for encoding. The throughputs of

P in 15W and 30W are bound by the rendering. Since the rendering

is so challenging for Jet15W, it dominates throughput and latency.

For P+R, on Jet15W, it takes 57 ms for displaying the scene from

the server, 31 ms for encoding camera frames, 15 ms for decoding

the received scene. On Jet30W, it takes 18 ms for displaying, 20 ms

for encoding, 7 ms for decoding. On the server, it takes 36 ms for

perception, 31 ms for rendering, 1.7 ms for decoding the received

camera frame, and 5 ms for encoding the rendered scene.

For Jet15W, rendering and perception are challenging, andP+R is

beneficial in terms of latency and throughput. In the case of Jet30W,

even though P+R introduces additional overheads for the client-

side decoding and displaying, the pipeline bottleneck of rendering

is relieved compared to P (30W), enabling higher throughput.

Result Analysis. In the results in Figure 9, the optimal distribution

scenario can vary in terms of the latency and throughput even with

the same workloads by the client capacity: P and P+R in 15W and

30W. For higher throughput, it is crucial to offload the pipeline

bottleneck. There are cases where the distribution overheads are

larger than the benefits, ending up with worse performance than

the local-only scenario (e.g., R (15W) and (30W) of AR1 and AR2

in Figure 9 and 10). The server and client device capacities should

be considered because the kernels are parallelized and can cause

resource contention. For instance, the perception latencies of P+R

in AR1, AR2, and VR increase on the server compared to P. More-

over, although AR1 and AR2 are with the same pipeline structure of

Figure 6, the ideal distribution is different based on the perception

and rendering complexities of each application.

Based on our results, the effectiveness of offloading depends on

the given workloads, server and client capacities, and offloading

overheads. FleXR allows each user to configure the workload dis-

tribution flexibly at runtime and enables the optimal distribution

of an XR application for various distribution scenarios.

7 DISCUSSION

FleXR offers flexibility in how an XR workload is distributed across

a device and offload server(s). This opens up several opportunities

for innovation and new research directions.

First, while with FleXR the XR configuration can be tuned to

the specifics of the deployment context to realize optimal workload

distributions, currently, this requires manual effort from the system

users. To fully realize the potential of FleXR, future research is

needed on automated deployment and resource management. New

methods are needed to consider factors such as kernel costs, client

and server capacity, network state, and offloading overheads, as well

as to enable dynamic adaptation of the workload configurations.

Previous function offloading systems have used linear solvers and

resource profilers for offloading decisions with static analysis [11,

13], but this approach would be more complex in FleXR as the

kernel costs and offloading overheads are subject to change based

on user and server situations.

Second, by making it possible to integrate third-party compo-

nents and application frameworks with FleXR (e.g., game engines),

we make it possible to consider a future landscape of XR supported

by distributed edge-cloud infrastructure, potentially with different

performance, quality, or other properties, that can be combined in

different ways to support complex future XR use cases. This new

landscape opens up new challenges for distributed orchestration for

XR, and also promotes the reuse of service functionality in different

scenarios, thus enabling faster innovation.

Finally, while distributed service composition has been consid-

ered in other contexts [5, 24, 64], several XR-specific aspects raise

new challenges and opportunities that future work should address.

These are related to performance/timeliness and quality tradeoffs

that exist at the application level, sharing and reuse across users

(e.g., as done for specific offload services in [48]), XR-specific trans-

port protocols [1, 6], new privacy concerns, etc. By creating and

open sourcing the FleXR infrastructure, we believe our work will

facilitate such research directions.

8 CONCLUSION

In this work, we describe the limitations of the existing distributed

XR systems. We argue the need for flexibility in XR workload distri-

bution, and that the lack of flexibility in distributed XR is attributed

to the absence of adequate system supports. To address this, we

present FleXR ś a DSP system enabling the flexible distribution of

XR pipelines at runtime. We identify several issues with applying

existing DSP designs to XR, and resolve them while building FleXR.

Our experimental evaluation demonstrates that FleXR efficiently

enables different distribution scenarios for three XR use cases. The

results show the optimal workload distribution is determined by en-

vironmental factors, and FleXR makes it possible each XR use case

to benefit from edge server assistance in different environments.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers. This work has

been partially supported by NSF projects CCF-2217070 and CNS-

1909769, the Applications Driving Architectures (ADA) Research

Center, a JUMP Center co-sponsored by SRC and DARPA, and by

funding and equipment gifts from VMware and Intel.

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

REFERENCES
[1] Maha Abdallah, Carsten Griwodz, Kuan-Ta Chen, Gwendal Simon, Pin-Chun

Wang, and Cheng-Hsin Hsu. 2018. Delay-sensitive video computing in the cloud:
A survey. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 14, 3s (2018), 1ś29.

[2] Aaro Altonen, Joni Räsänen, Jaakko Laitinen, Marko Viitanen, and Jarno Vanne.
2020. Open-Source RTP Library for High-Speed 4K HEVC Video Streaming. In
2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP).
IEEE, 1ś6.

[3] Pablo Basanta-Val, Norberto Fernandez-Garcia, Luis Sanchez-Fernandez, and
Jesus Arias-Fisteus. 2017. Patterns for distributed real-time stream processing.
IEEE Transactions on Parallel and Distributed Systems 28, 11 (2017), 3243ś3257.

[4] Jonathan C Beard, Peng Li, and Roger D Chamberlain. 2017. RaftLib: a C++ tem-
plate library for high performance stream parallel processing. The International
Journal of High Performance Computing Applications 31, 5 (2017), 391ś404.

[5] Ketan Bhardwaj, Sreenidhy Sreepathy, Ada Gavrilovska, and Karsten Schwan.
2014. ECC: Edge Cloud Composites. In 2014 2nd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering. 38ś47. https://doi.org/10.
1109/MobileCloud.2014.18

[6] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan
Hui. 2017. Future networking challenges: The case of mobile augmented reality.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 1796ś1807.

[7] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. 2016. The EuRoC
micro aerial vehicle datasets. The International Journal of Robotics Research 35,
10 (2016), 1157ś1163.

[8] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. 2021. Orb-slam3: An accurate open-source library for visual,
visualśinertial, and multimap slam. IEEE Transactions on Robotics 37, 6 (2021),
1874ś1890.

[9] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
Marvel: Enabling mobile augmented reality with low energy and low latency. In
Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems.
292ś304.

[10] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155ś168.

[11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. 301ś314.

[12] Cristian Garcia. 2018. Pypeln, A simple yet powerful Python library for creating
concurrent data pipelines. https://cgarciae.github.io/pypeln/.

[13] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. Maui: making smartphones
last longer with code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services. 49ś62.

[14] Robert Cypher and Eric Leu. 1994. The semantics of blocking and nonblocking
send and receive primitives. In Proceedings of 8th International Parallel Processing
Symposium. IEEE, 729ś735.

[15] FFmpeg team. 2021. FFmpeg, A complete, cross-platform solution to record,
convert and stream audio and video. https://www.ffmpeg.org/.

[16] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381ś395.

[17] Python Software Foundation. 2021. multiprocessing.shared mem-
ory, Provides shared memory for direct access across processes.
https://docs.python.org/3/library/multiprocessing.sharedmemory.html.

[18] Epic Games. 2022. Unreal Engine: The most powerful real-time 3D creation
platform. https://www.unrealengine.com.

[19] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas,
and Manuel Jesús Marín-Jiménez. 2014. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition 47, 6 (2014),
2280ś2292.

[20] Shilpa George, Thomas Eiszler, Roger Iyengar, Haithem Turki, Ziqiang Feng, Jun-
jue Wang, Padmanabhan Pillai, and Mahadev Satyanarayanan. 2020. OpenRTiST:
End-to-End Benchmarking for Edge Computing. IEEE Pervasive Computing 19, 4
(2020), 10ś18.

[21] GStreamer Team. 2001. GStreamer: a flexible, fast and multiplatform multimedia
framework. https://gstreamer.freedesktop.org/.

[22] Jin Heo, Christopher Phillips, and Ada Gavrilovska. 2022. FLiCR: A fast and
lightweight lidar point cloud compression based on lossy ri. In 2022 IEEE/ACM
7th Symposium on Edge Computing (SEC). IEEE, 54ś67.

[23] Holo-Light. 2020. ISAR SDK ś XR Streaming. https://holo-light.com/products/
isar-sdk/.

[24] Songlin Hu, Vinod Muthusamy, Guoli Li, and Hans-Arno Jacobsen. 2008. Dis-
tributed Automatic Service Composition in Large-Scale Systems. In Proceedings
of the Second International Conference on Distributed Event-Based Systems (Rome,
Italy) (DEBS ’08). Association for Computing Machinery, New York, NY, USA,
233ś244. https://doi.org/10.1145/1385989.1386019

[25] iMatix. 2021. ZeroMQ, An open-source universal messaging library. https:
//zeromq.org/.

[26] The Khronos Group Inc. 2014. EGL, Native Platform Interface. https://www.
khronos.org/egl/.

[27] The Khronos Group Inc. 2016. Vulkan, Cross platform 3D Graphics. https:
//www.vulkan.org/.

[28] The Khronos Group Inc. 2017. OpenGL, The Industry’s Foundation for High
Performance Graphics. https://www.opengl.org/.

[29] VMware Intel, AMD. 2021. The Mesa 3D Graphics Library. https://www.mesa3d.
org/.

[30] Minsung Jang, Karsten Schwan, Ketan Bhardwaj, Ada Gavrilovska, and Adhyas
Avasthi. 2014. Personal Clouds: Sharing and Integrating Networked Resources
to Enhance End User Experiences. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications. 2220ś2228. https://doi.org/10.1109/INFOCOM.2014.
6848165

[31] Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen Zhang, Anirud-
dha Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Xenofon Koutsoukos.
2019. Linearize, predict and place: minimizing the makespan for edge-based
stream processing of directed acyclic graphs. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing. 1ś14.

[32] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
2012. Thinkair: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. In 2012 Proceedings IEEE Infocom. IEEE, 945ś953.

[33] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng
Lee. 2019. Furion: Engineering high-quality immersive virtual reality on today’s
mobile devices. IEEE Transactions on Mobile Computing 19, 7 (2019), 1586ś1602.

[34] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. 2020. Towards streaming
perception. In European Conference on Computer Vision. Springer, 473ś488.

[35] John DC Little. 1961. A proof for the queuing formula: L= 𝜆 W. Operations
research 9, 3 (1961), 383ś387.

[36] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1ś16.

[37] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang,
Lintao Zhang, and Marco Gruteser. 2018. Cutting the cord: Designing a high-
quality untethered vr system with low latency remote rendering. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Applications, and
Services. 68ś80.

[38] Xing Liu, Christina Vlachou, Feng Qian, Chendong Wang, and Kyu-Han Kim.
2020. Firefly: Untethered Multi-user VR for Commodity Mobile Devices. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
943ś957. https://www.usenix.org/conference/atc20/presentation/liu-xing

[39] Jiayi Meng, Sibendu Paul, and Y Charlie Hu. 2020. Coterie: Exploiting frame
similarity to enable high-quality multiplayer vr on commodity mobile devices. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 923ś937.

[40] Microsoft. 2019. Azure Custom Vision. https://azure.microsoft.com/en-us/
services/cognitive-services/custom-vision-service.

[41] Microsoft. 2020. Azure Remote Rendering. https://azure.microsoft.com/en-
us/services/remote-rendering/.

[42] Diego González Morín, Pablo Pérez, and Ana García Armada. 2022. Toward the
Distributed Implementation of Immersive Augmented Reality Architectures on
5G Networks. IEEE Communications Magazine 60, 2 (2022), 46ś52.

[43] Nvidia Corporation. 2018. Jetson AGX Xavier Developer Kit. https://developer.
nvidia.com/embedded/jetson-agx-xavier-developer-kit.

[44] Nvidia Corporation. 2020. NVIDIA CloudXR™ SDK. https://developer.nvidia.
com/nvidia-cloudxr-sdk.

[45] Nvidia Corporation. 2021. NVIDIA Video Codec SDK. https://developer.nvidia.
com/nvidia-video-codec-sdk.

[46] Nvidia Corporation. 2022. NVIDIA Jetson Linux Developer Guide : Introduction.
https://docs.nvidia.com/jetson/l4t.

[47] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[48] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen. 2019. ShareAR:
Communication-efficient multi-user mobile augmented reality. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks. 109ś116.

[49] Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel. 2019. Combining
it all: Cost minimal and low-latency stream processing across distributed het-
erogeneous infrastructures. In Proceedings of the 20th International Middleware
Conference. 255ś267.

[50] Francisco J Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer.
2018. Speeded up detection of squared fiducial markers. Image and vision

MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska

Computing 76 (2018), 38ś47.
[51] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An

efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564ś2571.

[52] Michael Schneider, Jason Rambach, and Didier Stricker. 2017. Augmented reality
based on edge computing using the example of remote live support. In 2017 IEEE
International Conference on Industrial Technology (ICIT). IEEE, 1277ś1282.

[53] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson. 2003.
RFC3550: RTP: A transport protocol for real-time applications.

[54] Henning Schulzrinne, Anup Rao, and Robert Lanphier. 1998. Real time streaming
protocol (RTSP). (1998).

[55] Wright Stevens et al. 1997. TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms. (1997).

[56] Tarik Taleb, Zinelaabidine Nadir, Hannu Flinck, and JaeSeung Song. 2021. Ex-
tremely interactive and low-latency services in 5G and beyond mobile systems.
IEEE Communications Standards Magazine 5, 2 (2021), 114ś119.

[57] Wim Taymans, Steve Baker, Andy Wingo, Rondald S Bultje, and Stefan Kost.
2013. Gstreamer application development manual (1.2. 3). Publicado en la Web
(2013).

[58] OpenCV team. 2021. OpenCV 4.0. https://opencv.org/opencv-4-0/.
[59] Unity Technologies. 2021. Unity Real-Time Development Platform. https://unity.

com.
[60] Velimir Mlaker. 2018. MPipe, Multiprocess Pipeline Toolkit for Python. http:

//vmlaker.github.io/mpipe/index.html.
[61] Ekhiotz Jon Vergara and Simin Nadjm-Tehrani. 2013. EnergyBox: a trace-driven

tool for data transmission energy consumption studies. In European Conference
on Energy Efficiency in Large Scale Distributed Systems. Springer, 19ś34.

[62] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560ś576.

[63] Yu Xiao, Yong Cui, Petri Savolainen, Matti Siekkinen, An Wang, Liu Yang, Antti
Ylä-Jääski, and Sasu Tarkoma. 2013. Modeling energy consumption of data
transmission over Wi-Fi. IEEE Transactions on Mobile Computing 13, 8 (2013),
1760ś1773.

[64] Xiaofei Xu, Xiao Wang, Hanchuan Xu, and Zhongjie Wang. 2021. Distributed
Service Composition in Internet of Services. In 2021 IEEE International Conference
on Services Computing (SCC). 274ś284. https://doi.org/10.1109/SCC53864.2021.
00040

[65] Yu-Ping Wang. 2017. shm transport, The shared memory transport package.
http://wiki.ros.org/shm_transport.

[66] Lei Zhang, Andy Sun, Ryan Shea, Jiangchuan Liu, and Miao Zhang. 2019. Ren-
dering multi-party mobile augmented reality from edge. In Proceedings of the
29th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video. 67ś72.

A ARTIFACT APPENDIX

A.1 Abstract

This appendix presents the software artifact of the FleXR imple-

mentation that accompanies this paper. With this artifact, the con-

cept and effectiveness of FleXR can be demonstrated ś a user can

create distributed XR pipelines with given kernels and different

kernel connections, and it does not require any modification of

the kernel codes. The latest version of the artifact is available at

https://github.com/gt-flexr/FleXR, and the corresponding documen-

tation is at the wiki page of this repository.

A.2 Artifact check-list (meta-information)
• Program: FleXR

• Compilation: CMake (> 3.10), Makefile (> 4), and gcc/g++ (> 9)

• Data set: Camera frames with ArUco markers

• Run-time environment: Ubuntu 18.04/20.04, X11, OpenGL,

OpenCV4, RaftLib, Docker

• Hardware: CPU (x86 of Intel/AMD or ARM architecture),

Nvidia GPU (optional)

• Execution: Running a distributed pipeline that is described

by a yaml file

• Metrics: Pipeline throughput and latency

• Output: The display of rendered frames of an AR application

and the logged latency and throughput

• Experiments: Demonstration of running an AR example with

4 different distributed configurations on a local machine

• How much disk space required (approximately)?: ∼6 GB with

our CPU-only docker image, ∼12 GB with our GPU-enabled

docker image

• How much time is needed to prepare workflow (approxi-

mately)?: < 30 mins with our docker images

• How much time is needed to complete experiments (approxi-

mately)?: < 1 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT license

• Archived (provide DOI)?: 10.5281/zenodo.7824232

A.3 Description
A.3.1 How delivered. We provide a set of docker images that contain all

the dependencies of FleXR and the source code for the demonstration.

While it is recommended to use the docker images, it is also possible to

setup the environment manually (https://github.com/gt-flexr/FleXR/wiki/

Installation-Instructions:-Ubuntu-18.04-&-20.04). The docker images are

available via Docker Hub (https://hub.docker.com/repository/docker/jheo4/

flexr/general). Among the available images, armv8_dev is the CPU-only

image for the ARM architecture. dev_2004 is the CPU-only image for the

x86 architecture of Intel/AMD. nv_dev_2004_114 is the image supporting

NVIDIA GPU of with CUDA 11.4.

All the images are based on Ubuntu 20.04 and contain the sample camera

frames with ArUco markers and source codes. After compiling FleXR, the

demo with an AR application and four distribution scenarios described in

ğ6.2 can be run. The step-by-step tutorial for this demo is available in our

wiki page (https://github.com/gt-flexr/FleXR/wiki/Get-Started:-Proof-of-

Concept)

A.3.2 Hardware dependencies. FleXR is compatible with x86-/ARM-based

CPUs. Among the XR kernels that we provide, there are kernels, e.g., key-

point detection and video codecs, utilizing the hardware acceleration of

NVIDIA GPUs. To use those kernels, a GPU with CUDA support is required.

However, even when the GPU is not available, FleXR can be used with the

FleXR: A System Enabling Flexibly Distributed Extended Reality MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada

CPU-only kernels; at that time, the compile setting should be modified to

disable the GPU-using kernels in CMakeLists.txt.

A.3.3 Software dependencies. OpenCV4, RaftLib, ZeroMQ, yaml-cpp, spdlog,

uvgRTP, Boost, Catch2, FFmpeg, OpenGL/Vulkan.

A.3.4 Data sets. We provide a set of sample camera frames with ArUco

markers, which are available in the container images and used by the AR

pipeline.

A.4 Installation
In this instruction, we assume the host machine with a display is Ubuntu

18.04 or 20.04 and the docker is installed already. We present the instal-

lation steps with our docker images. For manual installation, please re-

fer to our wiki page (https://github.com/gt-flexr/FleXR/wiki/Installation-

Instructions:-Ubuntu-18.04-&-20.04). After running the container, you are

set to run the demo.

1. Pull the docker image from Docker Hub. docker pull jheo4/flexr:

dev_2004 (x86 CPU-only), docker pull jheo4/flexr:nv_dev_2004_114

(x86 and GPU-enabled), or docker pull jheo4/flexr:armv8_dev (ARM

CPU-only).

2. Increase UDP buffer size on hostmachine. sudo sysctl -w net.core.

rmem_max=26214400 and sudo sysctl -w net.core.rmem_default=

26214400

3. Run the container. docker run -it –net=host –ipc=host -e

DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix/ –privileged

–name flexr_poc jheo4/flexr:dev_2004

4. If the FleXR directory does not exist in the home directory, get FleXR

source code. git clone https://github.com/gt-flexr/FleXR.git

5. Check out to the prepared branch. cd FleXR && git fetch origin

mmsys/artifact && git checkout mmsys/artifact

6. Compile FleXR. rm -r build && mkdir build && cd build &&

cmake .. && make -j$(nproc)

A.5 Experiment workflow
This workflow should be after the above installation steps.

1. If the environment is not with our docker images, get the sample im-

ages from our drive. After getting the images manually, the directory path

in the following yaml files should be modified accordingly. (https://drive.

google.com/file/d/1ObORroLVVRulgkr0CBT9CzOdlUHNGnwO/view?usp=

sharing)

2. Run the local-only configuration. ∼/FleXR/bin$./runner -y

../examples/poc/simple_local.yaml

3. Run the perception-offloaded configuration.∼/FleXR/bin$./runner

-y ../examples/poc/simple_perception.yaml

4. Run the renderer-offloaded configuration. ∼/FleXR/bin$./runner

-y ../examples/poc/simple_renderer.yaml

5. Run the full-offloading configuration. ∼/FleXR/bin$./runner -y

../examples/poc/simple_full.yaml

A.6 Evaluation and expected result
After running the experiments, the execution results of the pipelined kernels

are logged in ∼/FleXR/bin/flexr_logs. Under the log directory, there are

directories of the process IDs. Each directory contains the log files of the

corresponding pipeline kernels. In each kernel log file, the execution time

of each kernel is logged. Moreover, the message indices are also recorded

with the timestamps, and the pipeline throughput can be derived from these

records.

In this tutorial, all distribution configurations run on the local machine,

and the remote communications via ports are the inter process communi-

cations via port interfaces. Thus, the results are not hugely different from

the local-only configuration to the other configurations. To get the evalua-

tion results of this paper, the experimental testbed of the server and client

devices and experiment customization are required. Then, the yaml files

under the example/exp directory can be used to run the experiments.

A.7 Experiment customization
FleXR can be used as an end-to-end framework for distributed XR. By

enabling the flexible XR pipeline distribution, FleXR can facilitate the further

development and research around distributed XR.

As presented in this tutorial, the pipeline distribution can be differently

configured by the yaml files. Not only for the given example pipelines,

but also for the customized pipelines, the yaml files can be customized for

different distribution scenarios with other kernels that we implement. There

are example yaml files in the example directory of the FleXR repository, and

they can be used as a reference for the customization by the kernel users.

Furthermore, new kernels can be added to FleXR for new XR functional-

ities (e.g., perceptions and rendering). The kernel developer guide is also

available on our wiki page (https://github.com/gt-flexr/FleXR/wiki/Basic-

Kernel-Developer-Guide). By implementing an XR functionality as a FleXR

kernel, it can be used in diverse distributed scenarios of the customized

experiments without any modification.

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Design Challenges for FleXR
	3.1 Issues with Stream Processing for XR
	3.2 Design Decisions for The Issues

	4 FleXR
	4.1 Overview
	4.2 Kernel Design
	4.3 Communication Semantics and Data Recency Management
	4.4 Register-Activation Interface and Port-level Configuration

	5 Implementation
	6 Evaluation
	6.1 Experimental Testbed
	6.2 XR Applications and Distribution Scenarios
	6.3 Design Benefit of FleXR
	6.4 Evaluation of Example Applications

	7 Discussion
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

