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a b s t r a c t

This paper constructs steady solutions of the two-dimensional Euler equations corresponding to a
line source of vortical fluid on the impermeable boundary of a quiescent flow. The nonlinear, free-
boundary problem is solved by mapping the flow domain to the hodograph plane. A vortex dipole or,
equivalently, a source–sink doublet is superposed on the source leading to flow patterns that model
the ballooning outflows observed where rivers and straits discharge into the open ocean and in the
rotating flow experiments and numerical simulations designed to reflect these observations.
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1. Introduction

Observations by Lake et al. [1] and numerical modelling by
eardsley et al. [2], Spall and Price [3] and Marques et al. [4] show
hat fluid expelled from an outflow can gain positive or negative
elative vorticity through the stretching and squashing of the
xpelled vortex columns. Motivated by these discussions, Johnson
t al. [5] present a simple, fully nonlinear, dispersive, quasi-
eostrophic model to describe the form of coastal outflows as
he relative strength of vortex to Kelvin wave driving is var-
ed and Jamshidi and Johnson [6] give a further discussion of
inite-amplitude effects. When vertical density variations are suf-
iciently small the driving by image vorticity dominates Kelvin
ave effects and the governing equations for constant depth flow
educe to the two-dimensional Euler equations, as demonstrated
xperimentally by Hide [7]. Johnson and McDonald [8], JM here,
escribe the coastal flow development in this limit for the initial
alue problem when a line source of vortical fluid against a wall is
witched on, obtain an explicit analytical solution for the steady
low that is eventually set up and present numerical integrations,
sing the method of contour dynamics of the time-dependent
wo-dimensional Euler equations, that asymptote to the steady
olution at large time.
One feature that is apparent in experiments modelling out-

lows [9] and numerical simulations of both the experiments [10]
nd observations [11,12], but not in the steady solutions of JM, is a
ulging or ballooning of the vortical current in the neighbourhood
f the outflow. Nof and Pichevin [13] argue that outflows are
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necessarily unsteady but Johnson et al. [5] and Southwick et al.
[14] note that their momentum imbalance argument does not
always apply and that the steady flow of JM expels downstream
momentum from the source at precisely the rate that momentum
is carried away in the far-field. The aim of the present paper is to
extend the JM solutions to construct a steady ballooning outflow
that is an exact solution of the two-dimensional Euler equations.
When a vortex dipole or,equivalently, a source–sink doublet [15],
injecting upstream momentum and so decreasing the net down-
stream momentum injected by the source, is superposed on the
source then a ballooning steady recirculating region appears in
the neighbourhood of the origin.

Section 2 gives the geometry, scalings and governing equa-
tions for the motion. Section 3 derives the steady solution for
dipoles sufficiently strong for the flow to bulge near the outflow.
Section 4 considers briefly the dynamics of perturbations to the
steady solutions and Section 5 presents the numerical integration
f an initial value problem that converges to the corresponding
teady solution. The results are discussed briefly in Section 6 and
Appendix A gives the solution for weak dipoles.

2. Governing equations

Consider the two-dimensional motion driven when inviscid
fluid of uniform vorticity is expelled through a line source against
a wall into initially quiescent irrotational fluid. The flow also gives
the two-dimensional motion driven when irrotational inviscid
fluid is expelled through a line source on a wall bounding fluid
where the fluid and wall are in solid body rotation about an

axis parallel to the axis of the line source: in the rotating frame
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Fig. 1. (a) The vortical region at early time. (b) The scaling based on the final steady state.
the motion is that of a line source of fluid of constant vorticity
on a stationary wall. There is no limitation on the speed of
rotation or the strength of the outflow. Let there be superposed
on the source flow a vortex dipole or, equivalently, a source–sink
doublet directed so as to oppose the advection of vortical fluid by
its image. This closely models the experimental setup in [9] where
a source of constant-relative-vorticity fluid is located near the
wall of a rapidly rotating tank, giving a clockwise or anticyclonic
vortex which combines with its cyclonic image in the wall to give
a vortex dipole at the outflow. As noted in JM, the same effect
occurs if a source–sink pair on the tank wall is considered in the
dipole limit where the source–sink separation goes to zero while
the strengths go to infinity.

Take Cartesian axes Ox∗y∗ with the impermeable wall lying
along y∗ = 0 and fluid expelled into the half-plane y∗ > 0 from a
source, at the origin O, with area flux Q (i.e. volume flux per unit
distance perpendicular to the x∗y∗ plane). Let the vorticity of the
expelled fluid be ω and the strength of the dipole at the origin be
µ∗, with dimensions of area flux times horizontal length. Since
solutions for ω < 0 follow by reflecting those for ω > 0 about
x∗ = 0, ω can be taken as positive. The expelled fluid then
propagates to the right under the influence of its image vorticity
in the wall and so the vortex dipole is directed to the left with
negative vorticity at y∗ = 0+ opposing the expelled vorticity. All
expelled fluid eventually travels downstream in a unidirectional
current of width (2Q/ω)1/2.

The formulae derived below take their simplest form by choos-
ing the spatial scale for the flow to be the breadth of the vortical
current at its widest point, denoted here by ℓ, and introducing
the non-dimensional variables

(x∗, y∗) = ℓ(x, y), (u∗, v∗) = ωℓ(u, v), t = ωt∗, (1)

where (u∗, v∗) are the Cartesian velocity components and t∗
time. For strong dipoles the flow balloons near the origin, ℓ >
(2Q/ω)1/2 and the downstream current has non-dimensional
width α = (2Q/ωℓ2)1/2 < 1. For weak dipoles the current is
widest downstream and ℓ = (2Q/ω)1/2 as for a simple source
in JM. In both cases the strength of the dipole relative to that of
the vorticity in the expelled fluid, µ = µ∗/ωℓ3, is the sole free
parameter and is determined as part of the solution. For strong
dipoles µ is obtained in Section 3 as a function of α and for
weak dipoles in Appendix A as a function of c where c ωℓ is the
maximum downstream velocity.

Incompressibility allows the introduction of a streamfunction
ψ defined through (u, v) = (−ψy, ψx). Then at each time t the
flow consists of the vortical fluid occupying an expanding region
D (say) bounded by the wall and an advancing front Γ separating
vortical fluid from irrotational fluid (Fig. 1(a)). The streamfunction
thus satisfies

∇
2ψ =

{
1 in D
0 outside D

(2a)

ψ =

{
0 y = 0, x < 0

2 (2b)

Q/2ωℓ y = 0, x > 0

2

ψ → 0 as x2 + y2 → ∞ (outside D), (2c)

together with the superposition of an irrotational dipole at the
origin, which identically satisfies the homogeneous form of (2).
System (2), with the condition that ψ and ∇ψ are continuous
across Γ , uniquely determines ψ at each instant. The evolution
of the flow is given simply by the movement of the front Γ , with
for each (x, y) on Γ ,

ẋ = u(x, y, t), ẏ = v(x, y, t), (3)

where the overdot denotes differentiation with respect to time,
t . Section 5 presents numerical integrations of the initial value
problem for the evolution of this system when the source and
dipole are switched on in a previously quiescent fluid, compar-
ing the asymptotic state with the corresponding steady solution
derived below.

3. The exact steady state for strong dipoles

For most dipole strengths the greatest current width occurs
across the ballooning region (Fig. 1(b)) and this will be the case
presented here. The modification for weak dipoles, where the
greatest width occurs downstream is noted in Appendix A. In
steady flow the front Γ is a streamline meeting the wall at a
stagnation point S1 (say) in x < 0. Since the flow is smooth in
the neighbourhood of Γ ,

ψ = 0 on Γ . (4)

Thus ψ is identically zero outside D and the flow outside D is
stagnant. The steady solution is thus governed by (2) with (2c)
replaced by

∇ψ = 0 on Γ . (5)

Consider (following Howison and King [16])

w0(z) = z̄ − 2(v + iu) = v0 + iu0, (6)

(z = x + iy, z̄ = x − iy). It follows directly from (2) that w0(z) is
an analytic function of z in D with the exception of singularities
at the origin: a simple pole giving the fluid source and a double
pole giving the dipole. Moreover (5) shows that

w0(z) = z̄ on Γ . (7)

Thus w0(z) = S(z) (say), the Schwarz function for the curve Γ .
Equivalently, and perhaps more fundamentally, Crowdy [17]

and Crowdy [18] (chap. 24) shows that the streamfunction can
be identified as the modified Schwarz potential

ψ = −
1
4

(
zz̄ −

∫ z

S(z ′) dz ′ −
∫ z

S(z ′) dz ′
)
, (8)

with associated velocity field

u− iv = 2i
∂ψ

= −
i
[z̄ − S(z)]. (9)
∂z 2
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Fig. 2. The cut hodograph w1-plane with the cut or two-sided, semi-infinite barrier along OS1BAS2O.
Fig. 3. The w2-plane. The vortical region corresponds to the upper half-plane.
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he solutions obtained below thus appear as ‘‘case 1’’ solutions
f the 3-case taxonomy of Euler equation equilibria introduced
n [19]. The presentation in these works show that S(z) can be
obtained by mapping the flow region to an auxiliary domain
and considering the form of the mapping at special points on
the boundary. In the present problem the form of the solu-
tion at all the special points is not immediately obvious and
so the derivation below follows instead a hodograph mapping
method [20].

Introduce the function

w1(z) = v1 + iu1 = (z − w0(z))/2 = v + i(y+ u). (10)

The usual complex velocity is u1 − iv1 = −iw1 but, from
(7), definition (10) gives the simple boundary condition on the
unknown curve Γ ,

u1 = y, v1 = 0 on Γ . (11)

The flow is obtained by solving for z as a function of w1 in the
w1, or hodograph, plane, sketched in Fig. 2. From (10), (11) the
1 axis can be associated with y and the v1 axis with x. The axes
n Fig. 2 have been rotated anti-clockwise by π/2 to allow more
conomic labelling. Since w1 is analytic in D (except at the origin)
is an analytic function of w1 in the corresponding region of the
1-plane except possibly at points corresponding to the origin or

nfinity. In particular, both x and y satisfy Laplace’s equation in
he hodograph plane and a complete problem can be set up for y
s a function of u1 and v1.
Since v1 = 0 on y = 0, (11) shows that the entire boundary

f D lies along the line v1 = 0 in the w1-plane. Since the velocity
s infinite at the origin in the z-plane, O maps to the point at
nfinity in the w1-plane and the vortical flow region D maps to
he entire w1-plane. Fluid driven along the wall from the origin
rrives at the stagnation point S1 in x < 0 which, since the
elocity vanishes there, corresponds to the origin in the w1-plane.
ince neighbouring fluid moves away from the wall (v1 > 0)
he segment OS1 maps to the segment u1 < 0, v1 = 0+ in
he w1-plane with y = 0 there. Fluid then passes around the
oundary Γ of D to first reach the point of maximum width,
enoted B here, where y = 1 by construction so u1 = 1 by (11).
eighbouring fluid is again moving away from the wall (v1 > 0)
ith 0 ≤ y ≤ b so the segment S1B maps to the segment v1 = 0+,
≤ u1 ≤ 1 in the w1-plane with y = u1 there, by (11). The

oundary Γ then continues to the point at infinity in the z-plane,
enoted A here, where the current has width y = α so u1 = α by
11). Neighbouring fluid moves towards the wall (v1 < 0) with
≤ y ≤ 1 so the segment BA maps to the segment v1 = 0−,
≤ u1 ≤ 1 in the w1-plane with again y = u1 there. At A, y

umps to zero and remains there along the whole segment AO,
assing through a second stagnation point at S2. Neighbouring
luid moves towards the wall (v1 < 0) so the segment AO maps to
he segment v = 0−, u ≤ α in the w -plane with y = 0 there.
1 1 1

3

Thus y satisfies Laplace’s equation in the hodograph plane cut
long the half-line u1 ≤ 1, v1 = 0, subject to

=

{
0 (u1 ≤ 0, v1 = 0+) and (u1 ≤ α, v1 = 0−)
u1 (0 < u1 < 1, v1 = 0+) and (α < u1 < 1, v1 = 0−)

(12)

nd a condition at infinity in w1 that gives a dipole at O. Suffi-
iently close to O the velocity field is dominated by the dipole
nd so
2(u− iv) → −µ/π + (Q/πωℓ2)z + O(z2) as z → 0, (13)

here µ gives the dipole strength scaled on 2Q/ℓ = ωℓ and is
eal and positive for a dipole directed in the negative-x direction.
he condition at infinity is thus, from (6) and (10),
2w1 → −iµ/π as w1 → ∞. (14)

The solution for y follows most simply by mapping the w1-
lane to the upper half of the w2-plane through the mapping

2 = u2 + iv2 = (1+ iw1)1/2, (15)

hich maps the w1-plane to the upper half of the w2-plane
Fig. 3), opening the cut and converting the two-sided, semi-
nfinite barrier OB into the whole v2 = 0 axis. The points at
nfinity, i.e. the origin O in the z-plane, correspond; the point B in
he w1-plane maps to the origin in the w2-plane; the stagnation
oints S1,2 split mapping to u2 = ±1; and A, the point at infinity
n the z-plane, maps to u2 = −γ where γ = (1 − α)1/2 is real
nd positive. The solution for z can then be written down by
nspection (c.f. JM) as

= (1/π ){U(w2) log[(w2 − 1)/(w2 + γ )]+G(w2)} = F (w2) (say),
(16)

here U(w2) = −iw1 = 1−w2
2 and G is any function analytic in

he upper half-plane whose imaginary part vanishes on v2 = 0.
n terms of w2 the requirement (14) that there is a dipole at O
ecomes z2w2

2 → µ/π as w2 → ∞. The first term in parentheses
n (16) has the expansion,

(1+γ )w2+(1−γ 2)/2−(2−γ )(1+γ )2/(3w2)+O(w−2
2 ), w2 → ∞.

(17)

Thus G(w2) = −(1 + γ )w2 − (1 − γ 2)/2 and µ = (1/9π )(2 −

γ )2(1+ γ )4, completing the solution for the flow.
Fig. 4 shows the relative current width α as a function of

the scaled dipole strength µ. As α → 0+, i.e. γ → 1−, this
solution reduces to that for a pure dipole, given in JM, with
here µ = 16/9π ≈ 0.5659. As α increases, i.e. γ decreases,
the position where the current is broadest moves monotonically
from x = 0 when α = 0 to x = ∞ when α = 1, γ = 0
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Fig. 4. The width of the downstream current as a fraction, α, of the width of the bulge as a function of the dipole strength, µ, scaled on the expelled vorticity, with
/9π < µ ≤ 16/9π for bulging outflows.
d
c

and µ = 4/9π ≈ 0.1415. The strength of the dipole decreases
monotonically and the region of recirculating flow near the origin,
driven by the dipole, shrinks. Appendix A shows that for weaker
dipoles, µ ≤ 4/9π , the geometry in the hodograph plane is
modified to give a solution that smoothly joins that of (16) with
γ = 0 to that of the pure source in JM when µ = 0.

Since v1, v2 = 0 on Γ , w2 = u2 = ±(1− u1)1/2 = ±(1− y)1/2
there, giving the explicit expression for Γ ,

x = (1/π ){y log
[
1∓ (1− y)1/2

γ ± (1− y)1/2

]
∓(1+γ )(1−y)1/2−(1−γ 2)/2},

(18)

with upper/lower signs associated.
Fig. 5 shows outflow current boundaries for different values

of the relative dipole strength µ. Except for Fig. 7, this and
subsequent plots are isotropic with the same x and y plotting
scales. Here, and in subsequent figures, the length scale has been
taken to be the downstream current width, (2Q/ω)1/2, so the
coordinates are (x∗, y∗)(ω/2Q )1/2 = (x, y)/α, equivalent to taking
ℓ = (2Q/ωα2)1/2. With this scaling, in accord with Fig. 4, as µ in-
creases from µ = 4/9π the outflow bulge becomes larger relative
to the current width, becoming infinite when µ = 16/9π , when
the dimensional current width vanishes and the dimensional
dipole strength µ∗ = ω/α3 becomes infinite for nonzero ω.

Near the front stagnation point, y ≪ 1 and (18) gives

x =
π

8
(γ 2

− 2γ − 3)+
πy
8

[
1+ γ + 2 log

(
y

2+ 2γ

)]
+ O(y2),

(19a)
dx
dy

=
π

8
(3+ γ )+

π

4
log
(

y
2+ 2γ

)
+ O(y). (19b)

The front stagnation point thus lies at x = π (γ 2
−2γ −3)/8 and,

as dx/dy diverges logarithmically to negative infinity as y → 0+,
the interior angle between the boundary Γ and the positive-
x direction is θs = π : Γ forms a cusp with its image in the
wall. In the closely related problem of a vortex patch propagating
steadily along a wall, Saffman and Tanveer [21] and Overman [22]
show that the patch boundary meets the wall perpendicularly
(corresponding to θs = π/2 here). The difference arises from the
presence of a non-zero external flow in the co-moving frame of
the propagating patch which determines the form of the solution
local to the leading stagnation point. The absence of external flow
in the outflow problem changes the local form to that in (19).
Here, and for the propagating patch, the boundary curvature is
infinite at the wall.

Streamlines for the flow can be obtained straightforwardly by
following JM and differentiating (16) to give the particle path
 b

4

Fig. 5. Outflow current boundaries for different relative dipole strengths µ.
Horizontal distances are scaled on the downstream current width, (2Q/ω)1/2 ,
and plotted isotropically here and below. The bulge width increases with
increasing µ with here γ = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 and µ = 0.35, 0.40,
0.45, 0.50, 0.53 and 0.56.

equation

ż = F ′(w2)ẇ2, (20)

where

ż = u+ iv = iw1 − y = w2
2 − 1− ℑ{F (w2)} = w (say), (21)

from (6), (10) and (15), with overbar denoting complex conjugate
and ℑ imaginary part. Rearranging (20) and (21) gives the first
order scalar ordinary differential equation

ẇ2 = w/F ′(w2). (22)

As the right side is known explicitly, (22) can be integrated simply
numerically to give the particle paths in the w2-plane with the
corresponding streamlines in the z-plane given by z = F (w2).
Since speeds become arbitrarily large near the source it is useful
for practical integrations to change the independent variable in
the integrations to the arc length s (say) along the streamline in
the original domain, so ds = |u+ iv|dt and

dw2

ds
= w/[|w|F ′(w2)]. (23)

Fig. 6 gives streamlines computed using (23) for the largest value
in Fig. 6, γ = 0.9 for which µ = 0.5577 and α = 0.19,
giving a bulge width scaled on the current width of 5.26. Near the
origin the flow is dominated by the irrotational dipole directed
in the negative-x direction and only away from this region, over
non-dimensional distances of order unity corresponding to di-
mensional distances of order the vortical length scale (2Q/ω)1/2,
oes the fluid vorticity become important. The dipole sets up a
losed region of anticyclonic recirculating fluid, a feature that has
een noted in both experiments [9] and simulations [10].
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Fig. 6. The exact steady state for a source of positive vorticity fluid at the
origin with a superposed irrotational opposing dipole. The outer zero streamline,
marking the boundary of the expelled fluid, is thickened as is the streamline
separating the blue-shaded anticyclonic recirculating fluid from the escaping
fluid. Here γ = 0.9.

4. Perturbations of the steady state

The robustness of the exact steady solution (Section 3) can be
assessed by considering the effects of small perturbations to the
flow. JM note that in the linear approximation this corresponds
to introducing a vortex sheet along Γ and gives precisely the
problem of topographic wave evolution along an escarpment of
height unity lying along Γ [23,24]. Downstream, i.e. for x ≫ 1,
Γ can be taken as the straight line y =constant, giving a real-
valued dispersion relation for all wavelengths. All disturbances
are neutrally stable, propagating to the right with longer waves
travelling faster.

Sufficiently close to the stagnation point S1 the presence of the
wall affects the form of the waves and the geometry becomes
one of an escarpment abutting a wall, considered previously
for a straight escarpment perpendicular to a wall [23] and a
semi-circular escarpment [25]. The waves move away from the
stagnation point, speeding up, lengthening and decreasing in
energy density as they do so.

For a pure dipole in the absence of a source flow the current
boundary reattaches to the wall at a downstream stagnation point
(the reflection about the origin of the upstream stagnation point).
The solutions in [23,25] show that small disturbances propagate
towards this reattachment point magnifying in energy density
(although not amplitude, in the linear approximation) as they
slow approaching it. JM investigated whether these perturbations
could disrupt the steady solution at the rear stagnation point,
noting that the steady dipole solution appears stable over long
times to sufficiently small but finite perturbations. For larger
perturbations the dipoles were all eventually disrupted with the
time until the disruption was significant increasing without limit
as the size of the perturbation amplitude decreased. JM concluded
that the steady dipole solution is unstable at sufficiently large
times due to finite amplitude perturbations accumulating at the
wall at the rear stagnation point.

The absence of a reattachment point when any source flow
is present suggests that steady flow in the presence of a source
is stable with perturbations taking the form of neutral waves of
bounded energy density. The numerical integrations of the initial
value problem in Section 5 bear this out.

5. The initial value problem

The initial value problem for the full unsteady system of
Section 2 can be integrated numerically to high accuracy using
the method of contour dynamics [26–28] by parametrising only
the boundary Γ of the outflow. The code used here, described
in detail in [29], allows integrations to be continued to large
5

Fig. 7. The outflow boundary (solid blue line) at time t = 240 for the initial
value problem of a dipole with γ = 0.9. The length scale has been chosen to
give a coastal current of unit width. The dashed (red) line gives the outflow
boundary for the corresponding steady solution of Fig. 6. The vertical scale of
the plot has been exaggerated by a factor of 16.

times with practically no loss of accuracy by allowing bound-
ary contours to break and join through contour surgery. As in
JM, the solid wall is incorporated by introducing an equal and
opposite vortex patch in y < 0 and then using the unbounded
domain method with these two patches. The source and dipole
are incorporated by adding the velocity components for an irro-
tational dipole and an irrotational isotropic source to the velocity
components computed from the vortex patches. The expelled
fluid is taken to have unit vorticity (ω = 1), determining the
timescale through (1), with higher vorticity simply giving faster
propagation. The volume flux is taken as Q = 0.5 to give a
downstream current of width unity. Increasing Q increases the
current width. The dipole strength is taken to correspond to the
value γ = 0.9 of Fig. 6, giving α = 0.19, µ = 0.5577 and thus
a dimensional dipole strength µ∗

= µωℓ3 = µω/α3
= 81.31.

The vortex is started as a semi-circle of radius 0.1, as in Fig. 1(a),
to avoid the singular velocities at the origin associated with the
source and dipole. The results are independent of the radius of the
initial semi-circle provided it is sufficiently small but larger than
the discretisation length of the boundary curve Γ . The source is
switched on impulsively at t = 0 but, to avoid the large velocities
associated with the dipole drawing the current’s downstream
boundary into the origin, the dipole strength is ramped up using

µ̂(t) = µ∗ sin(π t/2T ), 0 ≤ t ≤ T ; µ̂(t) = µ∗, t > T ,
(24)

with T = 200. The boundary is advected using a 4th-order
Runge–Kutta method with a timestep of 0.1 (with smaller
timesteps producing graphically indistinguishable results). At
each Runge–Kutta substep it is sufficient to compute the position
of only the patch in y ≥ 0 as the position of the patch in y < 0
ollows by symmetry (although the boundary integral for the
elocity must be evaluated along both patch boundaries). Points
re redistributed along the contour after each timestep based on
he curvature of the contour with the leading and trailing points
nitially on the wall constrained to remain on the wall. Contour
urgery acts only on patches with the same value of vorticity and
o there is no interaction between the patches in y ≥ 0 and
< 0. The entire material curve surrounding the expelled fluid

s discretised and followed throughout the whole evolution. The
nfinite space Laplacian Green’s function is used in the boundary
ntegral and so no additional boundary conditions are required
n the open boundaries.
Initially the flow develops similarly to the pure source evolu-

ion of JM: the region of expelled fluid grows to form an elongated
ddy whose head splits off and propagates away to the right un-
er the influence of its image in the wall, the current established
ehind the leading eddy rapidly settles down to oscillate about
he exact steady solution with the oscillations taking the form of
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Fig. 8. The portion of Fig. 7 in the neighbourhood of the origin plotted iso-
ropically, without vertical exaggeration.

ong waves of diminishing amplitude and increasing wavelength
ropagating to the right along the interface between vortical and
rrotational fluid, as expected from the discussion of Section 4. As
he dipole strengthens the bulge near the origin grows towards
he corresponding steady solution and at t = T the curves are
raphically indistinguishable for x < 10. Fig. 7 shows the outflow
oundary at t = 240. The eddy formed at the impulsive starting
f the source lies between x = 80 and x = 90 with small regions

of shed vorticity visible in x > 60. The neutral waves propagating
along the outflow boundary are long, with wavelengths of order
8 current widths. Fig. 8 gives the portion of Fig. 7 near the
origin, showing that in this region the initial value problem has
converged to the steady solution. In fact there is no graphically
discernible change in the outflow boundary for t > T .

6. Discussion

Section 3 and Appendix A extend the solution for a source of
vortical fluid against a wall given in JM to include the effect of
an irrotational dipole superposed on the source and directed in
the opposite direction to the ensuing vortical coastal current. For
sufficiently strong dipoles this leads to a bulging outflow contain-
ing a closed anticyclonic recirculating region of similar form to
those observed in experiments and numerical simulations of the
full equations. Numerical integration of the governing unsteady
Euler equations using contour dynamics shows that the steady
solution is the final state of an initial value problem, verifying
the numerics, scalings and analysis and, incidentally, showing
that the final steady state is numerically stable. The flow rapidly
becomes steady within any finite region of the origin over times
sufficient for initial transients to be advected downstream.

The dipole imparts no net downstreammomentum to the fluid
and so the argument of Johnson et al. [5] and Southwick et al.
[14] applies directly showing that the downstream momentum
imparted to the flow by the source precisely matches that car-
ried away by the coastal current and the argument supporting
expanding outflows in [13] does not apply. Equally, knowledge
of a small number of bulk quantities, such as the mass and
momentum fluxes, is not sufficient to determine the shape of
the flow near the outflow and more detailed knowledge of the
outflow velocity profile is needed [30].
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Appendix A. Weak dipoles, µ ≤ 4/9π

Section 3 shows that as α increases from 0 to 1 and the dipole
weakens from µ = 16/9π , where the coastal current disappears,
to µ = 4/9π , the position where the current is broadest moves
monotonically from x = 0 to x = ∞. Simultaneously, the co-
located position of maximum downstream flow on the vortex
boundary moves from x = 0 to x = ∞. For weaker dipoles this
boundary speed maximum, where u = c2 (say) for c > 1, larger
than the unit value at x = ∞, occurs on y = 0 at some point C
which moves back from x = ∞ when µ = 16/9π to reach the
origin when µ = 0. Fig. A.9 gives the w1 hodograph plane for this
flow. The cut along v1 = 0 now extends to u1 < c2 and A lies at
u1 = 1. The entire curved boundary Γ , on which y = u1, maps
to the segment S1A, with the remainder of the cut corresponding
to the vortex boundary y = 0. Along CO fluid moves towards the
wall dominated by the dipole flow, so v1 = 0− but along AC fluid
moves away from the wall dominated by the expanding source
flow, so v1 = 0+. The boundary conditions on y on the cut are
thus

y =

{
0 (u1 ≤ 0 and 1 < u1 ≤ c2, v1 = 0+) and (u1 ≤ c2, v1 = 0−)

u1 (0 ≤ u1 < 1, v1 = 0+).

(A.1)

The required mapping to the upper half of the w2-plane is then

w2 = (c2 + iw1)1/2. (A.2)

Again the points at infinity correspond; the point C maps to the
origin; the stagnation points split mapping to u2 = ±c; and A
maps to u2 = γw = (c2−1)1/2 which is real and positive, sketched
in Fig. A.10. Similarly to Section 3 this gives

z = (1/π ){Uw(w2) log[(w2− c)/(w2−γw)]+Gw(w2)} = Fw(w2) (say),

(A.3)

where Uw(w2) = −iw1 = c2−w2
2 and Gw is any function analytic

in the upper half-plane whose imaginary part vanishes on v2 = 0.
The first term in parentheses in (A.3) has the expansion,

(c−γw)w2+1/2+[(2c2+1)γw−2c3]/(3w2)+O(w−2
2 ), w2 → ∞.

(A.4)

Thus G(w2) = (γw − c)w2 − 1/2 and µ = (1/9π )[(2c2 + 1)γw −

2c3]2, completing the solution for the flow. For c = 1, γw = 0
and (A.3) gives (16) with γ = 0, i.e. α = 1, as required.

Since w2 = u2 = (c2 − y)1/2 on Γ , (A.3) gives the explicit
equation for the vortex boundary

πx = y log[(c−(c2−y)1/2)/((c2−y)1/2−γw)]+(γw−c)(c2−y)1/2−1/2,

(A.5)
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Fig. A.9. The cut hodograph w1-plane for the weak dipole with the cut along OS1ACS2O.
Fig. A.10. The w2-plane for the weak dipole. The vortical region corresponds to the upper half-plane.
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Fig. A.11. The exact steady state for a source of positive vorticity fluid at the
origin with superposed opposing dipole. Evenly spaced streamlines are shown
with the outer zero streamline, marking the boundary of the expelled fluid, and
the streamline separating recirculating and escaping fluid, shown thickened as
in Fig. 6. Here c = 1.01 in (A.3) and the recirculating region is already weak.

0 ≤ y < 1. For c = 1, (A.5) reduces to solution (18) with γ = 0
as required; and for c → ∞ (A.5) reduces to

x = −[1+ y log(1/y− 1)]/π, 0 ≤ y < 1, (A.6)

the solution for a pure source in JM. Fig. A.11 gives streamlines
for the flow when c = 1.01. Even for this almost minimum value
for solution (A.3) the recirculating region is negligible, vanishing
as c → ∞.

Appendix B. An unequal source–sink pair

The same general flow pattern as above for a source at the
origin with a superposed opposing dipole can be obtained by
considering a source at the origin with a weaker sink located on
the wall downstream from the source. Thus let there be a source
of strength Q (1 + δ) at the origin, O, and a sink of strength Q δ
at O2, for x = σ > 0, where ℓ is again the maximum width of
he current, horizontal lengths are scaled on ℓ, the expelled fluid
as vorticity ω and the downstream current has width α as in

Section 2. In the neighbourhood of O and O2 the velocity field
has the form (c.f (13))

z(u− iv) → Q (1+ δ)/πωℓ2 + O(z) as z → 0, (B.1a)

z − σ )(u− iv) → −Q δ/πωℓ2 + O(z − σ ) as z → σ . (B.1b)

he velocity along the wall is infinite at O and O2 falling to a
inimum greater than 1 at a point between O and O2. Denote

his point by B2 and the speed there by β . Fig. B.12 gives the
1 hodograph plane for this flow. The boundary conditions on
along OS1BAS2O2 are precisely those in Fig. 2 along OS1BAS2O.
he additional cut along OB2O2 simply gives the speed decreasing
rom its infinite value at the source O to its local minimum of β
7

t B2 before increasing back to infinity at O2. Writing

ˆ 1 = 2(w1− i)/(β−1)− i, w1 = (β−1)(ŵ1+ i)/2+ i, (B.2)

translates the gap in Fig. B.12 along the v1 axis and dilates it
so that the gap fills the segment |u1| < 1. Then the Joukowski
mapping

w2 = i[ŵ1 ± (ŵ2
1 + 1)1/2], ŵ1 = −i(w2 + 1/w2)/2, (B.3)

opens both cuts, mapping the cut ŵ1 plane to the upper half of
the w2 plane (Fig. B.13), with the minus sign corresponding to the
half plane v1 < 0 and the plus sign corresponding to v1 > 0. The
points A, S1 thus map to w2 = a, s1 where a = â−(â2−1)1/2, s1 =
ˆ+ (ŝ2−1)1/2 for â = 1−2(α−1)/(β−1) and ŝ = (β+1)/(β−1).
This gives the solution for z as

z = (1/π ){Us(w2) log[(w2−s1)/(w2−a)]+Gs(w2)} = Fs(w2) (say),
(B.4)

where Us(w2) = −iw1 = (β+1)/2− (β−1)(w2+1/w2)/4 and Gs
is any function analytic in the upper half-plane whose imaginary
part vanishes on v2 = 0. Expanding the first term in parentheses
in (B.4) near O2 and O gives

Us(w2) log
(
w2 − s1
w2 − a

)
=

{
C1/w2 + C2 + C3w2 + O(w2

2), w2 → 0,
C4 + C5/w2 + O(w−2

2 ), w2 → ∞,

(B.5)

where

C1 = [(1− β)/4] log(s1/a),
C2 = (β − 1)(a− s1)/4as1 + [(1+ β)/2] log(s1/a),
C3 = (a− s1)[(β − 1)(a+ s1)− 4as1(1+ β)]/8a2s21

−[(β − 1)/4] log(s1/a),
C4 = (β − 1)(s1 − a)/4,
C5 = (a− s1)[4(β + 1)− (β − 1)(a+ s1)]/8. (B.6)

n terms of w2, the asymptotic forms (B.1) give

=

{
−[4Q (1+ δ)/π (β − 1)ωℓ2]/w2 + O(w2

2), w2 → 0

−[4Q (1+ δ)/π (β − 1)ωℓ2]/w2 + O(w−2
2 ), w2 → ∞.

(B.7)

omparing (B.5) and (B.7) gives Gs(w2) = −C4−C1/w2, σ = (C2−

C4)/π , Q (1+ δ)/ωℓ2 = −(β−1)C5/4 and Q δ/ωℓ2 = (β−1)C3/4.
This completes the solution in terms of the fractional current
width α and the speed β . More natural variables are perhaps α
and the source–sink displacement σ which can be obtained by

numerically inverting the equation for σ .
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Fig. B.12. The cut hodograph w1-plane for the source–sink pair with a cut along OS1BAS2O2 as in Fig. 2 and a second cut along OB2O2 .
Fig. B.13. The w2-plane for the source–sink pair. The vortical region corresponds to the upper half-plane.
Fig. B.14. Profiles of the current edge in source–sink flow. The source is at the
rigin and the red circles give the locations for the sink. With increasing β the
ink moves towards the origin and the product σδ approaches the corresponding
ipole strength µ = 0.5514 (with profile shown in blue).

On Γ , v2 = 0 so w2 = u2 = [1 + β − 2y ± 2((β − y)(1 −

))1/2]/(β−1) and (B.4) gives the explicit equation for the vortex
oundary

= (1/π ){y log[(u2 − s1)/(u2 − a)] − C4 − C5/u2}, 0 ≤ y < 1.
(B.8)

Fig. B.14 gives profiles of the current edge and corresponding
erived flow quantities for various values of β .
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