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Analysis of satellite altimetry and Argo float data leads Ni et al. (J. Geophys. Res., 125,
2020, €2020JC016479) to argue that mesoscale dipoles are widespread features of the
global ocean having a relatively uniform three-structure that can lead to strong vertical
exchanges. Almost all the features of the composite dipole they construct can be derived
from a model for multipoles in the surface quasi-geostrophic equations for which we
present a straightforward novel solution in terms of an explicit linear algebraic eigenvalue
problem, allowing simple evaluation of the higher radial modes that appear to be present
in the observations and suggesting that mass conservation may explain the observed
frontogenetic velocities.
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1. Introduction

Ni et al. (2020, henceforth NZWH) point out that mesoscale eddies account for the
majority of the ocean’s kinetic energy, noting further that dipolar eddies are perhaps the
simplest dynamically consistent and potentially ubiquitous features in the ocean. NZWH
observe from satellite altimetry and Argo float data that these dipoles have a relatively
uniform, surface-intensified, three-structure and propose a composite dipole structure
(NZWH, figure 5), reproduced in figure 1 here. From their analysis they note that dipoles
promote the vertical motions vital for supplying nutrients to the euphotic zone to support
primary production and for sequestering carbon to the deep ocean.

The goal of the present study is to show that these observations can be closely
modelled by dipole modes of the surface quasi-geostrophic equations derived from a linear
reformulation of a model presented by Muraki & Snyder (2007, henceforth MS) and solved
there by approximation of a transform function that decays slowly over an infinite interval,
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Figure 1. The composite dipole of Ni et al. (2020). (a) Composite average of surface pressure anomalies in
dipole coordinates. (b) Cross-sections along y = 0 of the surface pressure normalised by its magnitude. (¢) A
vertical cross-section along y = 0 of the composite dipole. (d) The vertical pressure variation (normalised by
its surface value) inside the composite dipole.

integration against a slowly decaying kernel function and then a nonlinear iterative search
for a root. The model differs from that of Lahaye, Zeitlin & Dubos (2020), who consider
dipoles in the thermal quasi-geostrophic equations, where, as they note, fluid moves as
vertical columns and so the motion is either barotropic, stretching from ocean surface to
floor, or confined to the upper layer of a 1%-layer flow (Warneford & Dellar 2013), making
extraction of vertical velocity fields more difficult.

This paper is organised as follows. Section2 summarises the MS derivation of the
governing dual integral equations and then demonstrates how the problem can be
expressed as the solution of a linear algebraic eigenvalue problem with simple explicit
coefficients. Numerical integrations of the nonlinear time-dependent governing equations
show that the lowest mode dipole is long-lived and the mode-two dipole breaks up
after propagating a distance of the order of three or four radii. Section3 argues that
the composite dipole of NZWH might be a combination of mode-one and mode-two
observations and shows that the observations are accurately reproduced by an 80/20
mode-one/mode-two composite model dipole. In particular, the horizontal and vertical
structures of the vertical velocity field of the composite model dipole reproduce the
reported observations.
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2. The governing equations and dipole solutions

The observed dipoles are of limited latitudinal extent, and their radii and velocities
are sufficiently small that the Rossby number € = U/fL of the flow (for U the dipole
propagation speed, L a typical eddy width and f the constant Coriolis parameter) can be
taken to be small. Take the ocean to be of depth H and let the stably stratified background
density profile have buoyancy frequency NoN(z), where N(z) has a maximum of unity.
In Cartesian coordinates Oxyz, with velocity components (u, v, w), the leading order (in
€) non-dimensional inviscid momentum equations are the geostrophic and hydrostatic
equations

u= _pya UV = Dx, O = Pz, (2.10—6‘)

where (x,y) are scaled on L, z on fL/Ng, (u,v) on U and p on pqofUL for some
representative density pg, and o is the buoyancy acceleration scaled on UNy. The equation
for the conservation of density in the absence of diffusion is

D,;o + N?w = 0, (2.2)

with D; = 0; + udyx + vy, for time 7 scaled on L/U. This balance between horizontal
advection of disturbance density and vertical advection of background density gives the

scale of w as U?/NoL = €Uf/Ny. The system is closed by the continuity equation for
incompressible flow, giving to leading order (Johnson 1978)

Dilpxx + Py + (N "2p2)] = 0, (2.3a)
Dip.]=0, z=0,—B, (2.3b)

where B = NoH /fL. The boundary conditions (2.3b) come from (2.2) and requiring that
w = 0 on the top and bottom boundaries, with the vanishing of w on the upper boundary
following by noting that the horizontal extent of the motion is sufficiently small compared
to the external Rossby radius of deformation, (gH)'/? /f (= 2000 km in the open ocean)
that the ocean surface can be taken as rigid. Equation (2.3a) describes the advection of
interior potential vorticity (iPV) and (2.3b) states that surface potential vorticity (sPV),
and thus buoyancy acceleration, is advected along the upper and lower boundaries. The
pressure field, and thus the velocity, are obtained at each instant from the iPV and the
sPV through an appropriate Dirichlet—-Neumann operator. Various forms of this operator
are given in Johnson (1978), where they are used to construct steady nonlinear eddies
in the neighbourhood of seamounts. The temporal evolution of these surface geostrophic
equations has subsequently been discussed by Held et al. (1995).

The dipoles described by NZWH decay monotonically away from a thin surface layer
and appear to be uninfluenced by the ocean floor. It is thus sufficient initially to consider
infinitely deep flows (B — 00) where the iPV vanishes, as it does for all flows started from
rest, with the maximum principle enforcing the monotonic interior decay. The horizontal
orientation of the dipole in NZWH is arbitrary, and so for ease of comparison with MS
we rotate the axes by /2 anticlockwise and consider a dipole advancing steadily in the
positive x direction at a constant scaled speed of unity into a region of undisturbed fluid.
Then, in a frame moving with the dipole, the flow is steady with uniform velocity —x at
large distances. System (2.3) then becomes, for zero iPV,

Pxx + Py + (N2p,), = 0, (2.4a)
0(y+p,p)=0, z=0, (2.4b)
p:—~ 0, z— —o0, (2.4¢)
958 R2-3
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where d(-, -) denotes the Jacobian.

Simple fully nonlinear solutions of (2.4) follow by considering solutions where the
sPV vanishes outside the modon and looking for a Lamb—Chaplygin-like (Meleshko &
van Heijst 1994) solution where the sPV inside the modon is a linear function of the
total streamfunction y + p. Nonlinear sPV—streamfunction relations can be considered
only numerically, as in the iterative solutions for vortices on coastal shelves in Crowe &
Johnson (2021), and have been observed in simulations of barotropic modon collisions
(McWilliams & Zabusky 1982). The observed dipoles appear to show an exponential
decay with depth and so attention is restricted to uniform stratification with N(z) = 1.
(The form of the solution for finite depth and non-uniform stratification is noted briefly in
Appendix A.) Consider circular dipoles of radius unity so

_|K(p+y)., 24y <1,

= 2.5
Pz {0, x2+y2>1, 25

where K is a constant wavenumber, determined as part of the solution. For steady
solutions, the boundary of the non-zero sPV is a streamline,

p+y=0 onx’+y>=1, z=0. (2.6)

To solve the system of equations (2.4a), (2.5) and (2.6), follow MS, introducing polar
coordinates (x, y) = (rcos ¢, rsin¢) and look for solutions of the form

p(r.§.2) = sing /0 P (ED) exp(E2)E dE, @.7)

where J,, is the Bessel function of the first kind of order n, so p is the Hankel transform of
p(r,/2,0). This form satisfies the governing interior equation. MS derive an integral
equation for p and, by discretising at 512 points, obtain an algebraically decaying
representation of p, evaluating the infinite integrals numerically and using a nonlinear
root-finding method to obtain K. The method here gives an economical series solution
representation of the solution, with the coefficients and the wavenumber K determined
simultaneously as the solution of an explicit standard linear algebraic eigenvalue problem
with known rational coefficients, by following Tranter’s method (Tranter 1971, p. 111) as
in Hocking, Moore & Walton (1979) and achieves the same accuracy as MS using only 12
terms with the smallest neglected coefficient of order 107°.
Substituting (2.7) in (2.5) gives the dual integral equations

/ ooA(é)h(&r) dg — K / b EA@II(Ende =Kr, 0<r<], (2.8a)
0 0

/OOA(S)Jl(Er) d =0, r>1, (2.8b)
0

where A(&) = £2p(&). Tranter’s method consists of looking for a solution for A(£) as a sum
of terms of the form & l_kJ2n+1+k(.§ ), since terms of this form satisfy (2.8b) identically.
Choosing k = 1 ensures that p, vanishes at » = 0 and is bounded at » = 1~. Thus, look
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for a solution of the form
(0,0)

AE) =Y apdonsa(®), (2.9)

n=0

where the coefficients a,, are to be determined. Now

R,(r), r<1,

2.10
0, r>1, ( )

/O Tonsa (&)1 (E7) d = {

where R, (r) is the Zernike radial function (— 1)”73%” 1 from the diffraction theory of
aberration (Born & Wolf 2019, chapter 9), a polynomial of degree 2n + 1, given by the
shifted Jacobi polynomial,

n

Ryt () = rPPV @2 — 1) =3
k=0

DML =R

ki(n+1—k)!n—k)! (2.11)

Equation (2.8b) is satisfied identically, as expected, and the problem reduces to
obtaining the eigenvalue K and coefficients a, so that (2.9) satisfies (2.8a). Substituting
(2.9) in (2.8a) gives

o

— |:;/(; ( ) 1( ) / §1;212+2(§)Jl($1)d§|_—](’ 0<r<1
n=0 0 14

Equation (2.10) provides the Hankel transform of J»,4+2(&) /&, so that inverting (2.10) gives

1
Jont2(8)/§ =/0 Ry (NI (§r)dr. (2.13)

The functions R,, are orthogonal over 0 < r < 1 with weight r and so multiplying (2.12)
by 4(m + 1)rR,,(r) and integrating from O to 1 gives the linear equation

(B—KC)a =Kc, (2.14)

where B and C are the matrices and ¢ the vector with components

o0
bmn = 4(m + 1) / §_1J2m+2($)J2n+2(§) d%' - 8mm (215)
0
o0
Cmn = 4(m + 1) f E o2 (E)opsa () dé (2.16)
0
B 16(m + 1) (= 1)+ @1
C[Cm=2n—1DC2m—=2n+ DCm+2n+3)2m+2n+5)n]’ '
1
em =4(m+1) / 7Ry (r) dr = 80, (2.18)
0
where §,,,;, is the Kronecker delta. Thus (2.14) becomes
[C— K 'Na=—c, (2.19)
958 R2-5
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where / is the identity matrix. The solution to (2.19) is made unique by the requirement
that p, is continuous across r = 1, i.e. from (2.8b) and (2.9),

XM%;MH@MQ@=XXﬂMFQ ie. ap=) (=" ay. (220)
n=0 n=0 n=1

In general, solving inhomogeneous eigenvalue problems like (2.19) and (2.20) is not
straightforward and the theory is undeveloped. However, the inhomogeneity is confined
here to the first row of (2.19) and so can be treated separately. Relation (2.20) allows ag
to be replaced in rows below the first in (2.19) to give a linear homogeneous eigenvalue
problem for a = {a,},>1, with coefficient matrix with elements

&mn = Cmn + (_l)nCmO (m>1,n>1). (2.21)

Truncating the sum (2.9) at n = N = 12 and solving by any standard method gives a
smallest eigenvalue of K = 4.1213, as obtained by nonlinear root-finding in MS. Higher
eigenvalues correspond to modon solutions with interior circular nodal lines. The vector a
is thus determined to within a multiplicative constant whose value follows from satisfying
the first row of (2.19),

oo
(co0 — K~ ao + ) conan = 1. (2.22)

n=1

This completes the solution, giving the surface buoyancy as a sum of Zernike
polynomials in x and y,

o0
sin ¢ a,R,(r), r=<a,
p(x,,0) = ; w (2.23)

0, r>a.

Appendix B shows that the sum (2.23) can be evaluated directly from a simple three-term
recurrence relation without computation of the Zernike polynomials.

The surface pressure can be expressed similarly as a sum of hypergeometric functions,
but for computational purposes it more straightforward to obtain p(x,y, 0) from (2.23)
by Fourier-transforming in x and y, to obtain p,(k, I), for horizontal wavenumber (k, [),
obtaining the transform of p(x, y, 0) as

p=p/Vk*+ 2, (2.24)

and inverting for p.

Figure 2 shows p, p, and K(p + r) and the corresponding surface pressure field for the
lowest and second modes. The graphs of p, and K(p + r) coincide for r < 1, verifying
that the solution indeed satisfies (2.5).

The stability of these steadily propagating solutions can be investigated numerically
using the Dedalus package (Burns et al. 2020) to solve system (2.3) for infinite depth
and zero iPV, i.e. the unsteady version of system (2.4), on the plane z =0 with p
obtained from p, at any instant through the Dirichlet-Neumann operator (2.24), and
initial conditions for p and p, set by (2.23). We take a doubly periodic grid with
(x,y) € [-25.6,25.6) x [—25.6,25.6) using 2048 grid points in each direction. The
domain size is chosen so that there is no significant influence on the vortex from the
periodicity. Solutions are integrated for times 0 < 7 < 50 using a (3 — €)-order three-stage
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Figure 2. (a,b) Plots of p, p. and K(p + r) along x = 0 for (a¢) mode one (K = 4.1213) and (b) mode two
(K = 7.3421). (c,d) The corresponding surface pressure fields.

Runge—Kutta scheme. A small hyperdiffusion term with hyperdiffusivity of 3.9 x 10710 is
included for numerical stability. Long-time integrations for mode one show no tendency to
break up. The evolution for a mode-two vortex in figure 3 shows that the vortex is unstable
and breaks down in approximately 3.5 time units, corresponding to the time taken to travel
3.5 radii. This breakdown time varies weakly with grid resolution and hyperdiffusivity,
and solutions may break down faster in a full three-dimensional simulation. The mode-two
solutions here are unstable exact solutions of the equations of motion and so survive longer
than the ‘coated’ dipole solutions of Couder & Basdevant (1986), which do not satisfy the
steady equations and immediately evolve away from their initial state. It is thus possible
that mode-two solutions may survive sufficiently long to be observed transiently in the
ocean.

Multiplying the governing equation by y and integrating over the domain shows that the
fluid impulse is conserved during the motion:

1 ©©
n=- / ypzrdrdg = —m / > @Ry (r)r* dr = —§mag. (2.25)
0 n=0

For mode one this gives & 4.8744 and for mode two p ~ 4.0257. Similarly, multiplying
the governing equation by p and integrating over the domain shows that the fluid energy is
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Figure 3. The evolution of the surface buoyancy, p,, of a mode-two modon at times (left to right) r = 2, 3,

3.5 and 4.
conserved during the motion:
E 1f drdg ”/2d+1 " [ 52 de + » (2.26)
= — rar = — rar - = - .
> pp; 2K P; 2/1 2K Pz ZM
© 2
1
S e e (2.27)

T8K4L~n+1 2
n=0

by (2.15). For mode one this gives E &~ 9.7488 and for mode two E &~ §.0513.

3. Modelling the observations

It is possible that the composite dipole of NZWH might combine instantaneous
observations of both mode-one and mode-two vortices. Figure 4(a) shows a comparison
between the NZWH composite dipole, reproduced in figure 1(b,d) here, and a model
composite formed from 80 % mode-one and 20 % mode-two of § 2. Following NZWH,
we have rescaled both modons so the first maximum occurs at y = 1 and the maximum
pressure is unity. The model composite dipole is then determined by fitting an arbitrary
linear combination of the two modes to the profiles in figure 1 to give the optimum 80/20
composite used in figure 4(a) and subsequently. Note that this model composite vortex
is not put forward as a solution of the equations of motion. It is simply suggested that
approximately 80 % of the observed modons could be mode one while approximately 20 %
are the less stable mode two, with the averaging giving the observed composite dipole.

Figure 4(b) gives a comparison between the vertical structure of the model composite
dipole and the reported vertical structure in NZWH, where the vertical decay scale for
the model dipole is determined by fitting the model solution to the vertical profile from
NZWH. The small discrepancies near the surface are probably due to the presence of
a surface mixed layer in the observations. Figure 4(b) includes also the vertical profiles
for modes one and two individually, showing that each separately captures the observed
behaviour, with mode one differing little from the composite modon.

Figure 5 shows the full surface and vertical structure of the model composite. Results
have been scaled to match the maximum values and the vertical decay scale of NZWH,
reproduced in figure 1(a,c) here.

Figure 6 shows the vertical velocity at a non-dimensional depth of z = —0.185
corresponding to a dimensional depth of —680 m, calculated from the density equation
(2.2), which becomes here

w=203(pzp+Yy), 3.1)
958 R2-8
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Figure 4. Profiles of normalised pressure for the model (solid black lines) and observed (dashed black lines)
composite dipoles. The model composite dipole consists of 80 % mode-one and 20 % mode-two modons.
(a) Horizontal, scaled on distance to the first vorticity maximum. (b) Vertical, in metres, including also the
decay of the first (red) and second (blue) modes individually.

(a) -0.15 -0.10 —0.05 0 005 0.10 0.15 (p) -0.15 -0.10 —0.05 0.10 0.15

HE S = T _:_
3 0
2 250
1 500
x 0 2 (m) ~750
1 1000
o 1250
5 4 3 2 -1 S 0 1 2 3 4 s

y

y

Figure 5. Profiles of normalised pressure for the model composite dipole. (a) The surface pressure scaled on
distance to the first vorticity maximum. (b) A vertical section along x = 0 of the pressure, with depth in metres.

giving w vanishing on the top surface (z = 0) from (2.4b) by construction, and showing, as
noted in § 2, that in this model the vertical velocity is determined by the balance between
horizontal advection of disturbance density and vertical advection of background density.
Figure 6 agrees closely with figure 8 in NZWH, suggesting that this frontogenetic vertical
velocity is well captured by surface quasi-geostrophic dynamics. The maximum value of w
varies with the vortex speed and radius, so we have taken a value here which corresponds
to the value in figure 8 in NZWH.

4. Discussion

We have presented a fast and simple linear explicit method to solve the nonlinear
problem for a surface geostrophic dipole posed by MS. The method gives higher-order
dipoles directly and we show that a composite model dipole formed from a combination
of mode-one and mode-two dipoles fits well the composite dipole put forward from
observations by NZWH. Vertical velocities in the model composite dipole arise from
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Figure 6. The frontogenetic vertical velocity (m day~' ) inside the model composite dipole. () The
horizontal pattern of w at 680 m depth. (b) A vertical section along x = —0.7.

the balance between horizontal advection of disturbance density and vertical advection
of background density and appear to fit well the observed frontogenetic velocities.
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Appendix A. Finite depth and exponential stratification

Observed profiles of buoyancy frequency vary significantly with depth. In terms of the
present variables, the profile proposed by Garrett & Munk (1972) for N below the mixed
layer can be written as

N(z) = No exp(uz), (A1)
where Ny = N exp(—H/Hy) and u = fL/NoHy, for stratification scale height Hy. Garrett

& Munk (1972) give typical values as N=3 cycles per hour and Hy = 1.3 km. For finite
B and density profile (A1), equations (2.7) and (2.8a) become

p(r,¢,2) = sin¢/0 PE(ENKE, z; n, B)E d& (A2)
and
o * k(&,0; u, B) B
/0 A (Er)d§ _K/() mf\(é)]l(a)dé = Kr, (A3)

for the kernel function (Johnson 1978)
958 R2-10


https://orcid.org/0000-0001-7129-8471
https://orcid.org/0000-0001-7129-8471
https://orcid.org/0000-0002-9916-2653
https://orcid.org/0000-0002-9916-2653
https://doi.org/10.1017/jfm.2023.87

https://doi.org/10.1017/jfm.2023.87 Published online by Cambridge University Press

Oceanic dipoles in a surface quasi-geostrophic model

e KoGe P/l (Ee /) + Top(e P /K (et /)
KoEe HB/ )l (§/1) 4+ To(se=#B /1)Ky (§/ 1)

where I,, and K, are the modified Bessel functions of order n of the first and second kinds.
The integrals corresponding to (2.15)—(2.18) must now be evaluated numerically, but the
remainder of the analysis is unaltered, and the economy of the expansion and solution
remains.

For weakly stratified flows, where B < 1 with z/B fixed, k(&¢, 0; u, B) /k;(€,0; u, B) —
f;‘_z, the inverse Laplace operator. The exact solution of (A2), (A3) and (2.8b) follows as
the depth-independent Lamb—Chaplygin vortex, as demonstrated numerically by MS.

k(¢,z; u,B) =¢ , (A4)

Appendix B. Evaluation of the series (2.23)
The recurrence relation for the radial polynomials gives the three-term recurrence relation

R, (r) = oy (r)Ry—1(r) + yuRu—2(r), (BD)

where
4n* — (8n* — 2)r? __@n4Dn-1
Cn—Dm+1D > ""T @n=Dm+1)’

The Clenshaw algorithm (Press ef al. 2007, § 5.4.2) then gives, at fixed r, the recurrence
relation for the numbers Si:

(B2a,b)

ay(r) =

Sn+2 =0, Sny1 =0, (B3a,b)

Sk = o+1(N)Sk41 + Vig2Ski2 +ax, k=N,N—1,..., 1, (B4)
N

> aRu(r) = Q2r = 3r7)S1 + (ag — 552/9)r. (BS)
n=0

This gives the sPV as a polynomial in (x, y),

N
P y) =sing Y auRy(r) = (2 — 381 + (g — 552/9)]. (B6)
n=0
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