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Abstract—Accurate and robust localization is crucial for 
supporting high-level driving automation and safety. Modern 
localization solutions rely on various sensors, among which GPS 
has been and will continue to be essential. However, GPS can be 
vulnerable to malicious attacks and GPS spoofing has been 
identified as a high threat. With transportation infrastructure 
becoming increasingly important in supporting emerging vehicle 
technologies and systems, this study explores the potential of 
applying infrastructure data for defending against GPS spoofing. 
We propose an infrastructure-enabled framework using roadside 
units as an independent, secured data source. A real-time detector, 
based on the Isolation Forest, is constructed to detect GPS 
spoofing. Once spoofing is detected, GPS measurements are 
isolated, and the potentially compromised location estimator is 
corrected using secure infrastructure data. We test the proposed 
method using both simulation and real-world data and show its 
effectiveness in defending against various GPS spoofing attacks, 
including stealthy attacks that are proposed to fail the production-
grade autonomous driving systems. 

 
Index Terms—Cybersecurity, GPS spoofing, Infrastructure-
enabled defense solution, Roadside unit.  

I. INTRODUCTION 
ECHNOLOGIES supporting advanced driving systems 
have been evolving at an unprecedented pace in recent 
years. Among them, accurately localizing a vehicle’s 

global positions is critical for its core role in vehicle routing and 
control. To support high-level driving automation and safety, 
localization modules must be robust in various driving 
scenarios, which demand advanced sensors and algorithms. 
Modern localization modules rely on multiple sensors, 
including, for example, Global Positioning System (GPS), 
Inertial Measurement Unit (IMU), Light Detection and Ranging 
(LiDAR), and camera [1]. However, sensors on vehicles are 
vulnerable to malicious attacks [2]. For example, GPS spoofing, 
which broadcasts falsified GPS signals, has been a long-
recognized high threat [3]; LiDAR can be compromised by 
replay attacks that deceive receivers with recorded (thus 
outdated) data [4]; cameras are sensitive to blinding attacks that 
emit light into the camera [5]. Despite the disclosed 
vulnerabilities, solutions to addressing them are still limited. 

This study focuses on GPS spoofing detection and correction 
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as GPS has been and will continue to be an essential technique 
for vehicle localization [6]. Attacks on GPS have long been 
recognized, notably jamming, replaying, and spoofing attacks. 
GPS jamming prevents the receivers from receiving signals 
properly, while a replaying attack records authentic signals and 
replays the outdated or irrelevant signals to interrupt the proper 
operation of vehicles. GPS spoofing aims to forge signals to 
mislead a vehicle to deviate from its planned path [9, 10], hence 
endangering the safety of passengers and other road users. 
Section II-A provides a detailed comparison of these attacks. 
Being a false data injection attack (see a full taxonomy of 
attacks in [2]), GPS spoofing can be the most effective among 
the three types of attacks as it allows the attacker to dictate the 
victim vehicle’s positions to achieve specific goals [9]. Despite 
being a real threat, defending against GPS spoofing is still an 
open security problem from both prevention and detection 
perspectives [3]. From the prevention perspective, a 
fundamental measure to prevent GPS spoofing is to apply 
cryptographic techniques to civilian GPS infrastructure [10]. 
However, it requires considerable modifications or even 
reconstruction of the existing satellite infrastructure and GPS 
receivers, which is impractical. From the detection perspective, 
the defense methods vary by the source of information used for 
detecting malicious attacks. The classical techniques are based 
on collecting and analyzing GPS signals in real time, such as 
accurate clock information or angle of arrival [9], [11]. Though 
effective, these techniques may not be generalizable as each 
technique is designed for specific attacks and may need a large 
budget for installing dedicated devices (e.g., multiple antennae) 
on individual vehicles. Another open question is how to recover 
accurate navigation after an attack is detected [10].  

With various sensors increasingly prevalent in vehicles, 
detecting sensor (e.g., GPS) attacks via cross-comparing 
multiple data sources has attracted considerable attention in 
recent years [12]–[14]. One typical approach is to detect 
anomalies in received real-time measurements by comparing 
them with patterns in previously recorded data. This is often 
done by a supervised machine learning model or a statistical 
model corresponding to specific attacks from these records and 
applying the learned model to real-time anomaly detection [15]. 
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One challenge of implementing such methods is the lack of 
labeled records for model training or the imbalance between 
benign and adversarial records. To address this challenge, some 
studies have developed methods based on one-class 
classification where anomaly detection models are trained using 
only benign data [16]. In practice, the methods may be difficult 
to implement as extracting features for one-class classification 
training is not trivial [16]. Another type of approaches to detect 
attacks is to integrate other real-time data sources (e.g., IMU 
data) with the vehicle’s (mathematical) motion model [6]. An 
anomaly/attack is detected if data from the subject sensor 
deviate too much from the predicted output (e.g., vehicle’s 
position) from the motion model [17]. However, the motion 
model could be compromised when GPS spoofing occurs (and 
before spoofing is detected), leading to unreliable predictions 
[18]; see also the numerical results and discussions later in 
Section VI-B. One mitigation is to simultaneously run multiple 
models on redundant sensors (e.g., GPS, LiDAR and camera) 
and detect attacks via cross-validation. Yet, implementing and 
cross-validating multiple models can be complicated, 
especially for identifying the attack source [14, 19]. Installing 
multiple redundant sensors can also be costly, given the vast 
number of vehicles on roads and constrained onboard resources. 

Besides emerging vehicle-based sensors and technologies, 
transportation infrastructure is becoming increasingly 
important in supporting various functionalities of advanced 
vehicle technologies, especially Connected and Automated 
Vehicles (CAVs)  [19]–[21]. It is widely accepted now that 
infrastructure-vehicle cooperation is probably a more viable 
path to implement emerging systems, e.g., automated driving, 
compared with that using driverless vehicle technologies solely. 
For this, the communication and data transmission between 
vehicles and infrastructure will play a central role. Indeed, V2X 
messages (e.g., the basic safety message (BSM)) have already 
been defined for data transmitted between vehicles and 
“everything” (including other vehicles, the infrastructure, and 
other users of the roadway), and secure data transmission 
schemes (e.g., the secure credential management system 
(SCMS) [22]) have also been proposed for V2X data. Emerging 
V2X communication systems, such as 5G-based Cellular V2X, 
are capable of supporting real-time decisions in, for example, 
collision avoidance systems and positioning of vehicles. 
Leveraging secure data from the infrastructure may help defend 
against cybersecurity attacks, including GPS spoofing attacks. 
Therefore, while we should continue to encourage research on 
more effective GPS spoofing defense methods based on signal 
processing, anomaly detection, and data fusion (some recent 
methods can be found in [8], [13], [23]), we should also 
welcome methods via exploring the use of secure infrastructure 
data for GPS spoofing detection and mitigation.  

This study focuses on such a new exploration by proposing 
an infrastructure-enabled defense (IED) framework via 
utilizing roadside units (RSU) as an independent, secure data 
source. An RSU broadcasts locational information (similar to 
or could be part of the V2X data from RSU); vehicles in the 
broadcast range can use the information to estimate their 

locations periodically (see Section V-A for more details). Such 
secure, independent data from RSUs enables new ways to 
detect and mitigate GPS spoofing, which we will explore and 
elaborate more in the remainder of this paper. The proposed 
IED framework has several unique features compared with 
existing solutions. First, it takes advantage of the 
communication modules between vehicles and infrastructure 
(e.g., existing or newly deployed V2X devices), instead of 
requiring sophisticated in-vehicle GPS receivers or redundant 
sensors for cross-validation. Second, enabled by the secure data 
from infrastructure, it is feasible to design a simpler yet 
effective defense solution to detect and correct GPS spoofing. 
Computed from secure RSU data, the features for attack 
detection are also “protected” (i.e., safe from attackers’ 
manipulation), relieving the challenge of developing attack-
resilient algorithms [24]. Third, it is more practical to secure the 
information from RSUs than to secure the established civilian 
GPS satellite infrastructure (see Section II-D for more 
discussions). Therefore, the proposed IED solution provides a 
new and valuable alternative to addressing GPS spoofing 
issues. Furthermore, exploring IED solutions for GPS spoofing 
may provide helpful insights to address other data-related 
cybersecurity issues in transportation, which we will elaborate 
more in later sections. We note here that, while we focus on 
GPS spoofing on ground vehicles in this paper, GPS spoofing 
has also been studied for aircraft and marine vehicles (ships) 
[7]. In fact, an infrastructure-based GPS spoofing mitigation 
idea for aircraft was also reported in [25]. However, due to the 
distinct characteristics/operations of ground vehicles and 
aircraft (or ships), their safety requirements, and the drastically 
different space they are operated in, methods for aircraft or 
ships cannot be applied directly to ground vehicles (e.g., the 
idea in [25] does not apply to ground transportation). 

We first introduce the design of secure RSU data and the 
method of how a vehicle interacts with the infrastructure to 
obtain secure, global position measurements. Based on the 
secure measurements, we develop and compute multiple 
features, with which a real-time detector, based on the Isolation 
Forest, is constructed to detect GPS spoofing. Once spoofing is 
detected, GPS measurements are isolated, and the potentially 
compromised location estimator is corrected using the RSU 
data. We design the detection and correction methods under the 
situation that RSU data is not always available due to certain 
constraints (e.g., a limited budget to install RSUs all over the 
road network). If RSU data are not available, an RSU-based 
prediction model utilizes the last available RSU measurement 
and the vehicle motion model to predict vehicle locations, 
preserving timely attack detection. We test the proposed IED 
framework using both simulation and real-world data and show 
its performance compared with state-of-the-art solutions in 
defending various types of GPS spoofing, including a stealthy 
attack that is proposed to fail the production-grade autonomous 
driving systems [16]. The major contributions of this paper are 
summarized as follows. 
1) This study explores and proposes an IED framework for 

detecting and correcting GPS spoofing that complements 
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existing methods that mainly rely on (likely insecure) 
vehicular data.  

2) By integrating both GPS and RSU data, we develop a 
machine learning-based spoofing detection method that is 
simple yet effective in detecting GPS spoofing, adding new 
tools to the current toolbox for GPS spoofing. 

3) A new correction model is also developed leveraging the 
RSU data, which results in much-reduced location errors 
when GPS spoofing attacks occur. 

In the rest of this paper, we review related works in Section 
II. In Section III, we present the problem statement and major 
assumptions and some preliminaries on which our problem is 
constructed. Section IV introduces GPS spoofing attack 
models. Section V presents the proposed IED framework and 
Section VI evaluates it using both simulation and real-world 
data. Concluding remarks are discussed in Section VII.  

II. LITERATURE REVIEW 

A. GPS Spoofing Attacks 
Existing studies have revealed potential vulnerabilities of 

localization sensors to malicious attacks [13], [16]. GPS is 
particularly prone to attacks, including jamming, replaying, and 
spoofing [2]. GPS jamming can prevent vehicles from receiving 
GPS signals properly by, e.g., transmitting radio signals that 
overpower the (weak) authentic GPS signals. Jamming could be 
addressed by implementing beam/null-steering antenna arrays 
that can filter out jamming signals [26]. Replaying attacks aim 
to confuse vehicles by recording and rebroadcasting GPS 
signals that could be outdated or irrelevant to the vehicles’ real-
time operation. False signals in such attacks could be identified 
by monitoring the receiver’s clock bias over time [26]. GPS 
spoofing misleads vehicles’ trajectories by forging counterfeit 
GPS signals, which could be done by intercepting and falsifying 
authentic signals before sending them to GPS receivers [3]. 
GPS spoofing falls into the broad category of false data 
injection attacks, which compromise sensor readings stealthily 
so that undetected errors are introduced into state predictions. 
A full taxonomy of various types of attacks can be found in [2]. 
It is well recognized that GPS spoofing can be stealthy to be 
detected among these attacks and is still an open challenge in 
the cybersecurity community.  

Before discussing existing defense solutions against GPS 
spoofing, we summarize common types of GPS spoofing in 
recent studies[10], [13], [14]. 
• Instant: One GPS measurement that is unexplainable and 

significantly different from previous ones. 
• Noise: A consecutive sequence of GPS measurements 

with increased variance. Noise attack occurs across 
multiple successive sensor readings.  

• Constant bias: A sequence of GPS measurements with a 
constant offset from the vehicle’s true locations.  

• Gradual drift (stealthy attack): A sequence of GPS 
measurements that are modified to gradually deviate the 
vehicle from its true trajectory during a period of time. 

The references above also discuss in detail the consequences 
of each type of GPS spoofing attacks. Among these attacks, the 

constant bias and gradual drift attacks have received the most 
attention. In particular, the gradual drift attack is one type of 
stealthy attacks, which is more deceptive than other attacks: it 
can result in a large deviation between the true trajectory and 
the falsified trajectory over time. Sophisticated stealthy attacks 
have been proposed in recent studies, making them difficult to 
be detected. For example, stealthy GPS spoofing is proposed in 
[13] to gradually drift the true vehicle position according to its 
kinematic model. In [1], a stealthy GPS spoofing attack (named 
FusionRipper) is designed to fail production-grade autonomous 
driving systems (e.g., Baidu’s Apollo system) with an over 90% 
success rate. FusionRipper targets the predominantly adopted 
Multi-Sensor Fusion (MSF) algorithms and performs 
exponential spoofing, which injects mild deviations at the 
beginning to gradually compromise MSF and then aggressive 
deviations with exponential growths. The deviations injected 
over time are controlled by two parameters which are tuned 
according to MSF’s configuration. In this study, we implement 
FusionRipper as a stealthy attack to test the IED framework. 

B. Detection Methods against GPS Spoofing 
Defending GPS spoofing could be done from the prevention 

perspective, i.e., enhancing data security via techniques such as 
encryption and user authentications. Preventing GPS spoofing 
this way requires significant modifications of the civilian GPS 
satellite infrastructure (i.e., satellites, GPS receivers, and their 
communication that is currently without any encryption 
scheme) that has been widely deployed and used for decades. 
Clearly, doing so would be very costly and impractical [3]. As 
well recognized and adopted extensively in previous studies [9], 
[11], [27], practical GPS spoofing defense solutions contain 
two major steps: spoofing detection and spoofing correction 
(mitigation). We review detection methods here, while 
correction methods are covered in the next subsection.  

Classical GPS spoofing detection methods focus on 
collecting and processing rich information in GPS signals, such 
as accurate clock information, signal power and arrival angle 
[9], [23]. These methods have been shown effective in detecting 
specific types of attacks. However, they often require 
dedicatedly designed GPS receivers in vehicles (e.g., receivers 
with moving or multiple antennae) and may not be 
generalizable to sophisticated attacks that largely mimic 
authentic GPS signals [3]. Meanwhile, how to correct the 
compromised location estimator and recover accurate 
localization after attack detection is still an open question [10].  

In recent years, sensors are increasingly installed in vehicles 
and this has promoted studies that detect spoofing attacks (i.e., 
anomalies) via cross-validating multiple data sources [12], [13], 
[16]. Such studies can be categorized into two groups: data-
driven and model-based [16]. The former relies on prepared 
(historical) data to learn a set of patterns or rules, with which 
the real-time sensor data is determined as benign or adversarial 
[12], [14]. The rules could be learned by formulating a 
supervised learning problem, where a classifier is learned using 
the labeled training data. The trained classifier serves as the 
detector to detect whether a sensor is under attack or not [15]. 
Such supervised learning algorithms have been shown effective 
in detecting spoofing attacks on real-time localization systems 
implemented on a wheeled robot [28]. Recently, deep learning 



4 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
methods have been applied to detecting anomalies in speed 
sensors [14]. Despite their success in specific applications, 
supervised-learning-based methods have two limitations [15]: 
i) the training data requires labeled (at least two classes of) 
records, which can be challenging to prepare; and ii) the trained 
model may not be generalizable to address new types of attacks 
that are not represented in the training data. To address these 
limitations, recent studies propose to perform unsupervised 
learning or one-class classifications (OCC) that are trained only 
on normal data and thus do not require specific labels associated 
with the data [29]. Then, real-time sensor data is fed into the 
learned classifier to detect attacks or anomalies. In [7], the 
authors formulated attack detection as an unsupervised binary 
classification problem and applied K-means to cluster the data 
into two groups, one for attack and the other for non-attack. 
Applying K-means to detect stealthy GPS spoofing can be 
challenging, as it requires predetermining the feature space and 
distance function for measuring the distance between data 
points. In [13], a One-Class Support Vector Machine (OCSVM) 
model is proposed to detect anomalies in vehicular sensor 
readings. Though robust in detecting inconsistencies among 
data sources, studies have shown that OCSVM could be 
sensitive to outliers and tends to produce false-positive errors 
[30]. Meanwhile, OCC-based detectors do not address another 
limitation associated with the data-driven methods: the detector 
may detect the existence of anomalies but could fail to identify 
their source (i.e., which sensor is under attack). This may make 
it challenging to design and implement mitigation measures 
(e.g., isolating the attacked sensor).  

Model-based detection methods involve modeling and 
continuously predicting a vehicle’s motion dynamics using 
real-time measurements from the vehicle [31], [32]. The basic 
idea is that if a sensor measurement deviates from the expected 
value from the vehicle dynamic model too much, the sensor 
may be compromised. The 𝜒2-test-based detection is often used 
to determine whether the deviation is large enough to claim the 
sensor being an outlier or under attack [33]. The detection test 
is a statistical test, based on the statistic Normalized Estimation 
Error Squared (NEES) that follows a 𝜒2 distribution [8], [34]. 
The 𝜒2-test-based detection can be sensitive to sensor noises, 
resulting in a high rate of false positives (i.e., outliers that are 
incorrectly identified as attacks due to sensor noises). To 
mitigate this issue, a cumulative sum (CUSUM) discriminator 
is recently proposed to detect attacks on GPS and LiDAR [16]. 
CUSUM detects an attack by inspecting multiple consecutive 
sensor measurements instead of one measurement only: if the 
inconsistency between the sensor measurement and the 
expected vehicle position appears continuously, the sensor is 
likely under attack. There are some limitations with CUSUM in 
real-world applications. First, it requires two tuning parameters 
that can be challenging to determine in real-world 
implementations. Second, being a model-based method, it relies 
on a prediction model that may be compromised by stealthy 
attacks. Specifically, an attack can carefully manipulate the 
input to the prediction model such that the generated predictions 
are corrupted. If this occurs, the features computed from the 
predictions are no longer reliable indicators of attacks. In the 
numerical experiments in this paper, we show the weakness of 
CUSUM when facing stealthy attacks.  

C. Mitigation/Correction Methods against GPS Spoofing 
Existing studies are mainly on attack detection and have 

limited discussions on mitigating/correcting the errors caused 
by the attack [28], [31]. The typical strategy is to run a fail-safe 
mechanism (e.g., handing over control to the human driver) if 
an attack is detected [35]. However, such a fail-safe mechanism 
can be costly as it interrupts the system or may not be applicable 
in certain scenarios (e.g., automated driving).  

Another typical solution is to deploy multiple sensors, such 
that an attacked sensor is isolated and the system relies on the 
rest of the sensors [36]. For example, a vehicle equipped with 
GPS and LiDAR will rely on LiDAR for localization if GPS 
spoofing is detected [16]. However, there are some limitations 
to such solutions. First, as noted above, identifying the attack 
source (i.e., which sensor is under attack) in the multi-sensor 
setting is often challenging, especially when all sensors are 
vulnerable. Consequently, isolating the attacked sensor is not 
trivial. Second, in the presence of detection lag, the data fusion 
framework would have been partially compromised before 
noticing an attack and isolating the attacked sensor [1]. 
Previous studies only emphasize isolating the attacked sensor 
but lack discussions on correcting the compromised data fusion 
framework. One possible solution is to run a secondary system 
(e.g., a localization module independent of GPS sensor) so that 
the system under attack is isolated and replaced by the 
secondary system [35]. Yet, deploying and running redundant 
systems could be economically and computationally costly. 

D. Methods of Obtaining Secure Infrastructure Data 
Infrastructure plays an increasingly important role in modern 

driving systems, facilitating their various advanced functions, 
such as detecting pedestrians and efficient driving at 
intersections [12], [37]. The proposed IED framework in this 
paper requires secure infrastructure data (RSU data). Yet, the 
infrastructure data itself can be vulnerable to malicious attacks, 
including DoS attacks and spoofing attacks. Fortunately, active 
research has been conducted on securing infrastructure and 
practical security strategies are currently available [38].  

Infrastructure data collection and transmission can be 
secured by applying a variety of state-of-the-art secure channels 
that use advanced encryption algorithms (e.g., DES, 3DES, 
AES, RSA and Blowfish [39]). These existing encryption 
methods can be evaluated in transportation applications and 
revised, if needed, to fit transportation scenarios better. In 
practice, secure data communication is becoming a standard in 
CAV development and deployment. For example, a recent 
review in [38] summarizes the integrity of V2X communication 
from different contexts, such as reputation analysis and 
message integrity checking. In [22], SCMS is presented to 
secure V2X data. SCMS issues digital certificates to vehicles 
and RSUs to secure their communications while maintaining 
efficient revocation of misbehaving or malfunctioning vehicles. 
SCMS may be readily used for secure data transmission in our 
proposed IED framework. Besides data transmission, the 
received secure infrastructure data may also be encrypted 
before storage (and decoded before using them), ensuring data 
security even if the system (hardware) is hacked [40].  

These existing studies suggest that secure data transmission 
between vehicles and the infrastructure can be reasonably done. 
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As we focus on developing GPS spoofing detection and 
mitigation methods using infrastructure data, in this paper, we 
apply the state-of-the-art encryption method to set up secure 
channels for secure data transmission between an RSU and its 
nearby vehicles. Specifically, we implement an Advanced 
Encryption Standard (AES) scheme [41] in terms of the process 
of encrypting and decrypting transmitted data with user 
authentication, which is similar to the SCMS scheme for secure 
V2X transmission. See Section V-A and Section VI-A for more 
detailed discussions on this. 

III. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem Statement 
Fig. 1 illustrates the problem setup and the general idea of 

the IED framework against GPS spoofing. We consider a 
simple yet common localization solution, where a vehicle can 
be tracked by a typical motion model with high-frequency local 
measurements from a low-end IMU and takes low-frequency 
global measurements from GPS for correcting location errors 
periodically. Low-end IMUs are pervasive nowadays and are 
widely deployed in smartphones and vehicles. The problem 
setting here ensures the generality of the study since one can 
obtain IMU measurements from a vehicle’s OBD portal [42], 
without installing additional sensors or utilizing the data from 
such sensors even if they are installed. GPS could be spoofed in 
an adversarial environment. The vehicle could deviate from the 
desired trajectory if spoofing is not detected. Our goal here is to 
propose an IDE method with which the vehicle can utilize the 
secure data from RSUs to timely detect GPS spoofing and 
correct location errors incurred by the attacks. Section V-A 
provides more details about the data provided by the RSU.  

 
Fig. 1. ILLUSTRATION OF GPS SPOOFING AND IED SOLUTION. 

B. Assumptions 
We impose the following assumptions to simplify our 

discussion and clarify the focus of this study.  
1) GPS spoofing studied here belongs to data security, which 

is orthogonal to attacks/defenses of hacking into software 
or hardware systems, or physical network security [38], 
[43]. To focus on the research challenges and methods of 
GPS spoofing, we assume in this paper that other attacks 
have been mitigated with proper countermeasures. The 
only exception is the methods for secure data transmission 
between vehicles and the infrastructure; see 2) below. 

2) Vehicles can obtain secure RSU data to calculate their 
global locations. As discussed in Section II-D and more in 
Section V-A, we assume that secure RSU data can be 
readily available by applying (or tailoring) existing 

security schemes [38]. This paper directly applies AES 
[41] to secure the data and focuses on developing and 
testing detection and correction methods.  

3) We assume that IMU is secure due to assumption 1) above. 
IMU measurements are typically accessed via a wired 
channel; thus, their exposure to potentially adversarial 
environments is low unless in the presence of physical 
attacks against in-vehicle hardware. This assumption has 
also been widely adopted in recent cybersecurity research 
involving IMUs [9], [17]. 

C. EKF-based Localization Model 
Estimating vehicle positions from multiple sensors can be 

achieved by a Kalman Filter (KF)-based method or its variants 
[44]. Here we briefly describe the KF-based localization model 
used in this paper to combine GPS (global) and IMU (local) 
data. Vehicle (global) location at time 𝑘 is represented by the 
KF’s state 𝒙̂𝑘 and uncertainty with a covariance matrix 𝑷̂𝑘 . Due 
to the non-linearity of the vehicle motion model, we adopt an 
Extended Kalman Filter (EKF) applied in [1].  

Following initialization at 𝑘 = 0, EKF estimates the vehicle 
positions by iterating a prediction step and an update step. The 
prediction step iterates the motion model (1) to predict the 
vehicle positions using IMU data; the process is often referred 
to as dead-reckoning. This prediction step is expressed as a 
discretized vehicle motion model (1) together with the 
propagation of uncertainty (2) [45]. 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘), (1) 
𝑷𝑘 = 𝑭𝑘−1𝑷̂𝑘−1𝑭𝑘−1

𝑇 + 𝑳𝑘−1𝑸𝑳𝑘−1
𝑇 . (2) 

Here, 𝒙𝑘  and 𝑷𝑘  represent the vehicle position and its 
uncertainty at time step 𝑘 , respectively. 𝒖𝑘  gives the IMU 
measurement containing white noises 𝒘𝑘  with covariance 
matrix 𝑸. 𝑭𝑘−1 =

𝜕𝑓𝑘−1

𝜕𝒙𝑘−1
|𝒙̂𝑘−1

, 𝑳𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝒘𝑘−1
|𝒙̂𝑘−1

are the partial 
derivative matrices corresponding to the state and noises that 
are obtained by linearizing the system model (1).  

The update step is for periodically correcting the cumulated 
errors in the prediction steps once GPS data 𝒛𝑘

𝐺𝑃𝑆 is received. 
The measurement model for GPS data is given by [16]: 

𝒛𝑘
𝐺𝑃𝑆  =  𝑯 × 𝒙𝑘 + 𝒆𝑘

𝐺𝑃𝑆 . (3) 
Here matrix 𝑯 maps vehicle position to the measurement space. 
𝒆𝑘

𝐺𝑃𝑆 is the measurement noise which is assumed to be additive 
white noise with covariance matrix 𝑹𝐺𝑃𝑆. 

As shown in (4), the update step takes a GPS measurement 
𝒛𝑘  and its uncertainty 𝑹𝐺𝑃𝑆  as input to compute the Kalman 
gain 𝑲𝑘, which is then used to correct the predicted state [1]. 

               𝑲𝑘 = 𝑷𝑘𝑯𝑇(𝑯𝑷𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆)−1 
(4)                 𝒙̂𝑘 = 𝒙𝑘 + 𝑲𝑘(𝒛𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘)𝒓𝑘
𝐺𝑃𝑆 

                𝑷̂𝑘 = 𝑷𝑘 − 𝑲𝑘𝑯𝑷𝑘 . 

IV. ATTACK MODELS 
Attack models are essential for investigating attack detection 

and mitigation. We consider two types of GPS spoofing attacks: 
the constant bias attack and the stealthy attack. As shown in the 
results section, these two attack models allow for evaluating the 
IED framework under stealthy and non-stealthy attacks, 
generating some interesting insights. Other types of spoofing 
attacks on GPS discussed in Section II-A (including instant and 
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noise attacks) are not implemented in this study, since they 
either fall out of the scope of this study (e.g., DoS attacks) or 
can be approximated by the constant bias or stealthy attacks 
[14] (also briefly discussed below).  

A. Constant Bias Attack 
A constant bias attack injects a constant bias into the true 

measurements, causing the GPS readings to deviate from the 
true ones temporarily. In practice, attackers could launch a bias 
attack to mislead a vehicle by adding a lateral offset or a 
longitudinal offset (or both) to the true GPS readings 𝒛𝑘

𝐺𝑃𝑆 . 
Mathematically, the received GPS measurement would be:  

𝒛̃𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝑪 (𝑘 ∈  [𝑡𝑠 , 𝑡𝑒]), (5) 
where 𝒛̃𝑘

𝐺𝑃𝑆 is the spoofed GPS data, and 𝑪 is a constant vector 
that can be added to the true GPS readings. 𝑡𝑠 and 𝑡𝑒 represent 
the start time and end time of the attack, respectively. With a 
constant bias attack, the vehicle may be deceived by believing 
that it is at the wrong location on the roadway and thus takes 
faulty actions. Notice that an instant attack can be implemented 
by taking 𝑡𝑒 = 𝑡𝑠 + 1.  

B. Stealthy Attack 
A stealthy attack injects a sequence of increasing deviations 

into true measurements, such that the vehicle gradually drifts 
away from its true trajectory. Mathematically, the received GPS 
measurement can be expressed as:  

𝒛̃𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝒄𝑘  (𝑘 ∈  [𝑡𝑠 , 𝑡𝑒]), (6) 
where 𝒄𝑘  is carefully designed to avoid triggering an attack 
detector. Stealthy attacks are more deceptive than constant bias 
attacks; multiple such strategies have been proposed for GPS 
spoofing. To implement a noise attack, one could generate 𝒄𝑘  
by sampling a random distribution (e.g., norm distribution) with 
a large variance. 

As noted in Section II-A, we implement FusionRipper, the 
state-of-the-art stealthy spoofing strategy that is recognized by 
top-tier cybersecurity communities [1]. In this study, the 
implementation of FusionRipper is simplified since our 
localization solution includes no LiDAR as in the original 
study. Specifically, we skip the vulnerability profiling step (for 
determining when GPS measurements dominate the location 
estimator) and implement the aggressive spoofing step directly. 
The aggressive spoofing performs exponential spoofing that 
increases the deviation 𝒄𝑘  exponentially. As shown by (7), the 
deviation 𝒄𝑘  is a function of time 𝑘 , controlled by two 
parameters: m and n (with n slightly larger than 1). At the 
beginning of the attack, the deviation is small, making it 
difficult to be detected. As a result, the spoofed GPS 
measurements would be fused and corrupt the data fusion 
framework (i.e., EKF). Once this occurs, aggressive deviations 
can be injected without alerting the detection algorithm.   

𝒄𝑘 = 𝑚 ∗ 𝑛𝑘 (7) 

V. INFRASTRUCTURE-ENABLED DEFENSE METHOD  
An overview of the IED framework is shown in Fig. 2.  

Besides the EKF-based localization model that continuously 
localizes the vehicle (Section III-C), there are three new 
components. The first component aims to obtain secure, global 
measurements of vehicle positions from RSUs. The second one 

(RSU-enabled detection component) runs a real-time detector 
to monitor whether a received GPS measurement is spoofed or 
not. The third component is to correct the vehicle location using 
RSU data. In the following, we describe each of the three 
components in detail. 

 
Fig. 2. IED SOLUTION FOR GPS SPOOFING DETECTION AND 
CORRECTION.  

A. Secure RSU Data from the Infrastructure 
1) Design of Secure RSU Data 

Methods for obtaining secure RSU data include two major 
aspects: (i) what data to collect and how to collect them; and (ii) 
how to secure data collection and transmission. We focus on (i) 
in this study. For (ii), as discussed in Section II-D, we apply the 
AES scheme, one of state-of-the-art encryption methods, to 
design dedicated secure channels for secure data collection and 
transmissions, focusing on testing its performance in spoofing 
detection and correction in Section VI. 

The design of secure RSU data ensures that a vehicle can use 
the data to obtain a global position measurement similar to GPS, 
denoted as 𝒙𝑘

𝑅𝑆𝑈 . This has been extensively studied in the field 
of GPS-free localization [46]–[48]. A common practice is to 
first estimate the vehicle’s relative position to the RSU via 
ranging methods and then compute the vehicle’s global position 
given the (global) coordinates of the RSU [38]. In a ranging 
method, the distance between a radio transmitter (the RSU here) 
and a receiver can be inferred from the properties of the radio 
wave observed at the receiver [47]. Note that this distance is 
termed as range following the literature. The widely known 
ranging methods include those collecting and utilizing received 
signal strength (RSS), arrival time or arrival angle [46]. For 
CAVs that can communicate with RSUs, such range 
information can be readily available on the vehicle side. 
Following [46], we use 𝑀(•) to express a ranging method that 
obtains the range information 𝑧𝑘

𝑅𝑆𝑈  at time k: 
𝑧𝑘

𝑅𝑆𝑈  =  𝑀(𝒙𝑘 , 𝐶𝑟𝑑𝑅𝑆𝑈)  + 𝑒𝑘
𝑅𝑆𝑈 . (8) 

Here, 𝑀(•) is essentially a measurement model depending on 
the vehicle’s (true) global position 𝒙𝑘  and the RSU’s 
coordinates 𝐶𝑟𝑑𝑅𝑆𝑈 . 𝑒𝑘

𝑅𝑆𝑈  is the measurement noise in a 
Gaussian distribution with covariance matrix 𝜎𝑅𝑆𝑈 . In [46], a 
recent review of RSU-assisted localization methods is 
provided, which vary with the RSU data types and 
configurations of signal transmitters on RSUs and receivers on 
vehicles. There are also real-world implementations in GPS-
absent environments (e.g., Waze’s Beacon program to provide 
navigation for drivers underground [49]). The RSU-assisted 
localization methods could reach an accuracy in centimeters, 
much higher than that of GPS [47].  

In this study, we implement an efficient and low-cost V2X-
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based vehicle localization method by Ma et al. [50].  See a 
discussion of its efficiency in terms of computational latency 
below. It is low cost as it needs only a single data transmitter on 
the RSU side and a single receiver on the vehicle (i.e., it is 
similar to and can be implemented via the current V2X 
framework), compared with other ranging methods using 
multiple transmitters or receivers to collect information such as 
angle of arrivals [50]. Ma et al. [50] assumes that the RSU 
broadcasts its coordinates, and a vehicle receives the message 
and extracts associated range information (i.e., the relative 
distance information). Then the vehicle computes its global 
position 𝒙𝑘

𝑅𝑆𝑈 using a sequence of range information 𝑧𝑘
𝑅𝑆𝑈 . 

Therefore, this method may be readily deployed based on the 
current V2X systems without additional hardware requirements 
(the range information does need to be extracted from the 
receiver on the vehicle side). Omitting the details, we denote 
this method with function 𝐺(•) [50]: 
(𝒙𝑘

𝑅𝑆𝑈 , 𝑹𝑘
𝑅𝑆𝑈) =

𝐺([𝒛𝑘
𝑅𝑆𝑈 , 𝒛𝑘−1

𝑅𝑆𝑈 , … , 𝒛𝑘−𝑜
𝑅𝑆𝑈 ], 𝐶𝑟𝑑𝑅𝑆𝑈 , [𝒖𝑘 , 𝒖𝑘−1, … , 𝒖𝑘−𝑜]). 

(9) 

[𝒛𝑘
𝑅𝑆𝑈 , 𝒛𝑘−1

𝑅𝑆𝑈 , … , 𝒛𝑘−𝑜
𝑅𝑆𝑈]  is the sequence of range information 

associated with the messages from an RSU. 
[𝒖𝑘 , 𝒖𝑘−1, … , 𝒖𝑘−𝑜]  is a sequence of local measurements 
containing either speeds or local displacements. These local 
measurements can be easily accessible from either the vehicle’s 
own wheel encoder or IMU. Covariance matrix 𝑹𝑘

𝑅𝑆𝑈 considers 
the uncertainty associated with the estimated position 𝒙𝑘

𝑅𝑆𝑈 , 
which may be affected by the sequence length and noises in the 
range information. It is reported that the error of 𝒙𝑘

𝑅𝑆𝑈  is less 
than one meter. In our study, we conduct sensitivity analysis in 
Section VI to test whether RSU-assisted location accuracy will 
play a role in detecting and correcting GPS spoofing attacks.  

Lastly, the latency needs to be considered when 
implementing the AES scheme to set up the secure channel 
between an RSU and vehicles. Here latency stems from three 
sources: the communication latency, the latency due to 
encrypting and decrypting the transmitted data, and the 
computational time to derive the vehicle’s global position. One 
main contribution to the communication latency is the V2X 
technology involved, such as the Dedicated Short-Range 
Communication (DSRC) and the emerging 5G-based Cellular-
V2X (C-V2X) system. Previous studies have reported that the 
DSRC communication latency ranges from 10ms to 100ms 
[51], [52] and the C-V2X communication latency would not 
exceed 60ms even when there are 150 vehicles in the same 
communication channel [51], [53]. In our implementation, the 
run times for encrypting/ decrypting the transmitted data and 
deriving vehicle’s global position are negligible (0.60ms and 
0.13ms, respectively), when evaluated from an average of 1000 
runs on a personal computer (with a 3.60GHz AMD Ryzen 7 
CPU). This suggests that the latency of the designed secure 
RSU data is dominated by the communication latency. In this 
paper, we use 100ms, the largest reported communication 
latency in the numerical experiments. 

2) RSU-based Location Prediction  
The relative vehicle position measured by RSU, 𝑧𝑘

𝑅𝑆𝑈 , would 
not always be available, depending on the availability of RSUs 
along the road. Due to budget limits in a real-world setting, 
RSUs may be spatially sparse in the road network and RSU data 

is only available when vehicles are within an RSU’s service 
range. In this study, we assume the distance between two 
consecutive RSUs, denoted as 𝐷𝑅𝑆𝑈, is uniform, and the service 
range 𝑑𝑅𝑆𝑈  is fixed. In Section VI, we conduct sensitivity 
analyses on how the spacing of RSUs will impact the 
performance of the proposed methods. 

If RSU data are unavailable, we utilize the last available RSU 
data and vehicle motion model to predict a vehicle’s location, 
enabling us to continuously monitor GPS measurements and 
timely detect attacks. The prediction should not involve GPS 
measurements that may have been compromised at the time 
when attacks are detected. However, since the vehicle location 
may change dramatically following commands from the 
vehicle’s actuator (e.g., throttle, brake and steer), predicting the 
vehicle location can be challenging. 

We build an RSU-based prediction model leveraging RSU 
data and the vehicle motion model to address this challenge. 
Specifically, given the most recent vehicle (global) position 
information (𝒙𝑘

𝑅𝑆𝑈 ; see (9)) enabled by the RSU at time 𝑘, we 
predict vehicle location at 𝑘 + ∆𝑘 . For this, we start a 
standalone vehicle motion model at 𝑘, initialize it with 𝒙𝑘

𝑅𝑆𝑈  
and then iterate it using IMU data 𝒖𝑡 (𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘]) as 
the input. Note that besides predicting vehicle locations, we also 
propagate the errors in IMU data to gain the prediction 
uncertainty that is represented by a covariance matrix 𝑷𝑡

𝑅𝑆𝑈 . 
The iterations of 𝒙𝑡

𝑅𝑆𝑈  and 𝑷𝑡
𝑅𝑆𝑈  are expressed in (10). We will 

use this prediction model in Section V-B to detect GPS 
spoofing and in Section V-C to correct the vehicle location 
when GPS spoofing is detected. 

       𝒙𝑡
𝑅𝑆𝑈  =  𝑓(𝒙𝑡−1

𝑅𝑆𝑈  , 𝒖𝑘)  
       𝑷𝑡

𝑅𝑆𝑈  = 𝑭𝑡−1𝑷𝑡−1
𝑅𝑆𝑈 𝑭𝑡−1

𝑇 + 𝑳𝑡−1𝑸𝑳𝑡−1
𝑇  

(10) 

       𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘] 
Here, 𝑭𝑡−1 =

𝜕𝑓𝑡−1

𝜕𝒙𝑡−1
|𝒙𝑡−1

𝑅𝑆𝑈 and 𝑳𝑡−1 =
𝜕𝑓𝑡−1

𝜕𝒘𝑡−1
|𝒙𝑡−1

𝑅𝑆𝑈 are the partial 
derivative matrices w.r.t. the state 𝒙 and IMU noises 𝒘.  

B. iForest Model-base Attack Detection 
Given the RSU data, the spoofing detection is formulated as 

a real-time anomaly detection problem, containing two parts: 1) 
generating real-time features, and 2) building a machine 
learning model that determines whether a GPS measurement is 
anomalous or not given the features at k.  

1) Feature Generation  
- The classical feature NEES 

We start with the classical feature for GPS spoofing 
detection, called NEES (Section II-B). It is computed as the 
normalized deviation of the received (possibly spoofed) GPS 
𝒛̃𝑘

𝐺𝑃𝑆 from the predicted location 𝒙̂𝑘, denoted as 𝒓𝑘
𝐺𝑃𝑆 , as below. 

𝒓𝑘
𝐺𝑃𝑆 = 𝒛̃𝑘

𝐺𝑃𝑆 − 𝑯𝒙̂𝑘 
            𝑺𝑘

𝐺𝑃𝑆 = 𝑯𝑷̂𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆 
                   𝑁𝐸𝐸𝑆𝑘

𝐺𝑃𝑆 = (𝒓𝑘
𝐺𝑃𝑆)𝑇(𝑺𝑘

𝐺𝑃𝑆)−1𝒓𝑘
𝐺𝑃𝑆 

(11) 

Note that 𝑯 and 𝑷̂𝑘  are defined in Section III-C, and 𝑺𝑘
𝐺𝑃𝑆 is a 

covariance matrix reflecting the uncertainty of 𝒓𝑘
𝐺𝑃𝑆 . 

It has been proven that if the noises in measurements follow 
a normal distribution, NEES follows a 𝜒2  distribution [34]. 
Therefore, in previous studies, the 𝜒2 -test-based detection 
using 𝑁𝐸𝐸𝑆𝑘

𝐺𝑃𝑆  is often applied to detect GPS spoofing. 
However, NEES could be impacted by noisy GPS 
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measurements, making it hard to differentiate attacks from 
noises [18]. Furthermore, the 𝜒2-test-based detection could be 
ineffective for stealthy attacks [1]. This is because attackers 
could inject a sequence of false information into the authentic 
GPS measurements; each piece of false information alone may 
not lead to a large enough NEES to trigger the alarm, but these 
errors together could successfully deviate the vehicle. If this 
happens, the 𝜒2 -test-based detector itself may also be 
compromised, making it less likely to detect spoofing attacks. 
- Features generated from RSU data  

We can create new features based on the measurements from 
RSUs, without involving GPS measurements, to address the 
issues associated with NEES. A straightforward way to create 
new features is to compute the difference between RSU and 
GPS measurements. However, as noted earlier, measurements 
from RSUs and GPS may not be at the same frequency, with 
the former not always being available. As a result, the two 
would not be directly comparable.  

We address this issue by utilizing the RSU-based location 
prediction (see Section V-A). The predicted location is 
generated whenever a GPS measurement is received and needs 
to be validated. Then, new features are created by comparing 
the GPS measurement with RSU-based prediction in (10). Since 
the prediction in (8) does not involve GPS measurements, these 
features are ‘protected’ as they are immune to GPS spoofing 
attacks. Specifically, using the RSU-based location prediction 
𝒙𝑘

𝑅𝑆𝑈  and the associated covariance matrix 𝑷𝑘
𝑅𝑆𝑈  (see Section 

V-A), we first compute the residual between the GPS 
measurement and the prediction 𝒓𝑘

𝐺𝑃𝑆  as well as the uncertainty 
of the residual 𝑺𝑘

𝑅𝑆𝑈, following (12). Then we generate two new 
(scalar) features 𝑟𝑘

𝑅𝑆𝑈 and 𝑆𝑘
𝑅𝑆𝑈 , as shown in (13).  

                𝒓𝑘
𝑅𝑆𝑈 = 𝒛̃𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘
𝑅𝑆𝑈  

                𝑺𝑘
𝑅𝑆𝑈 = 𝑯𝑷𝑘

𝑅𝑆𝑈 𝑯𝑇 + 𝑹𝑅𝑆𝑈  
(12) 

                 𝑟𝑘
𝑅𝑆𝑈 =  ‖𝒓𝑘

𝑅𝑆𝑈 ‖  

                𝑆𝑘
𝑅𝑆𝑈 = |𝑺𝑘

𝑅𝑆𝑈| 
(13) 

Here, ‖•‖ and |•| compute the L2 norm of a vector and the 
determinant of a matrix, respectively. 

2) Building an Isolation Forest as the Detector 
The attack detection is treated as a real-time anomaly 

detection problem, for which we apply an unsupervised 
machine learning model to learn anomalies from the data. 
Specifically, we detect GPS spoofing by building an Isolation 
Forest (iForest) that takes all the above features 𝑨𝑘 = 
(𝑁𝐸𝐸𝑆𝑘

𝐺𝑃𝑆 , 𝑟𝑘
𝑅𝑆𝑈 , 𝑆𝑘

𝑅𝑆𝑈) at time k as the input. Note that though 
𝑁𝐸𝐸𝑆𝑘

𝐺𝑃𝑆 may be corrupted due to GPS spoofing and thus not 
a reliable feature alone, valuable information can be generated 
by comparing it with the other features, providing additional 
dimensions of inconsistency (anomaly) check.  

iForest produces binary outputs: 𝛿𝑘 = 1 indicates being 
under attack and 𝛿𝑘 = −1 indicates otherwise. Compared with 
other unsupervised learning methods, iForest has multiple 
advantages [54]. First, it has shown superior performance in 
detecting anomalies in extensive empirical studies. Second, 
iForest is easy to train in terms of selecting hyperparameters 
and can scale up to massive applications due to its linear time 
complexity and low memory consumption, making it suitable 
to run on vehicles with constrained resources.  

The intuition behind iForest is that anomalous (or malicious) 

samples are easier to separate (i.e., isolate) from others 
compared with benign samples. In order to isolate a sample, the 
algorithm recursively generates partitions on all the samples by 
randomly setting a split (e.g., a threshold with a random feature) 
until all samples are separated. The recursive partitioning 
process is represented by growing a tree structure 
named Isolation Tree (iTree), with the leaves (or terminating 
nodes) being separated samples and intermediate nodes being 
attribute splits. Then, the length of the path to reach a sample 
starting from the root of an iTree approximates the number of 
partitions required to isolate the sample; a short length suggests 
a sample suspicious to be anomalous (as it is easier to separate). 
By constructing a large number of (random) iTrees based on the 
training dataset, we build an iForest. Using this iForest, we can 
identify samples that tend to have shorter path lengths in iTrees 
than others as anomalous. Anomaly detection with iForest 
consists of two stages: 1) a training dataset is used to build a 
forest of iTrees (i.e., iForest), and 2) each testing sample is 
passed through these iTrees, and an average anomaly score is 
assigned to the sample, which is further classified as a binary 
value. Readers are referred to [54] for more details. 

An unsupervised learning method, the iForest can be trained 
without labeling the data; thus, the training data can be easily 
prepared. In this study, we generate training samples by running 
vehicles and collecting the features at each time step. It is worth 
noting that iForest works in scenarios where the training dataset 
does not contain any anomalies. Therefore, we could prepare 
training samples using historical data, which may or may not be 
attacked. In this study, the training data is collected by running 
vehicles without GPS spoofing. The trained iForest can then be 
applied to detect GPS spoofing attacks in real-time. As 
expressed by (14), to check whether the GPS measurement at 
time k is spoofed, we compute a set of real-time features 𝑨𝑘  and 
input them to the trained iForest. An attack is detected if 𝛿𝑘 =1.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (14) 
In applications where GPS noise is large, we improve the 

robustness of the iForest-based detector by accounting for the 
temporal pattern of the features. Specifically, we apply a sliding 
window to use not only the features at time k but also the ones 
at the previous time steps. In our experiment study where GPS 
noises are assumed large, features at the previous two steps (i.e., 
𝑨𝑘−2, 𝑨𝑘−1) are incorporated to detect attacks at time k, as it is 
not common to observe three outliers consecutively (15). One 
may adopt a wider sliding window at the cost of a higher false-
negative rate.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘−2, 𝑨𝑘−1, 𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (15) 
Note that using the new features calculated from RSU data, 
similar machine learning methods, such as OCSVM (see 
Section II), can also be used to develop the detector, with their 
specific challenges addressed properly (e.g., choosing proper 
kernel functions and associated parameters for OCSVM [55]). 

C. Infrastructure-enabled Correction 
Measurements from RSUs can also be used to correct vehicle 

positions, which is triggered either (a) when RSU data is 
received, or (b) when the detector detects GPS spoofing; see 
Fig. 2. In (b), the RSU-based location predictions will be used 
for correction if a vehicle is outside of the service range of 
RSUs. We introduce each case in detail in the following.  
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1) When RSU Data is Received 
When a vehicle enters the service range of an RSU, the 

vehicle periodically obtains measurements from the RSU, 
which can be used to correct the location estimation. The 
correction is done by directly initializing the state of EKF 
(𝒙̂𝑘 , 𝑷̂𝑘) following (16).  

(𝒙̂𝑘 , 𝑷̂𝑘) =  (𝒙𝑘
𝑅𝑆𝑈 , 𝑷𝑘

𝑅𝑆𝑈)  (16) 
Here, (𝒙𝑘

𝑅𝑆𝑈 , 𝑷𝑘
𝑅𝑆𝑈  ) is the secure location estimation from RSU 

data in (9). An alternative way to correct vehicle position using 
RSU data is to follow the EKF’s update step as introduced in 
Section III-C. However, this may not be reliable in stealthy 
attacks, which may bypass the attack detector and gradually 
corrupt the EKF [1]. The proposed method can effectively 
remove an attack’s negative effects via direct initialization. 

2) When GPS Spoofing is Detected 
When the detector detects an attack, besides isolating the 

GPS sensor, it corrects the EKF estimator as well. If RSU data 
is available, (16) is followed to correct the EKF location 
estimator; if not, the predicted location from the RSU-based 
prediction model is used. Specifically, when GPS spoofing is 
detected starting at 𝑘 + ∆𝑘 but RSU data is not available, the 
predicted position 𝒙𝑘+∆𝑘

𝑅𝑆𝑈  and its covariance matrix 𝑷𝑘+∆𝑘
𝑅𝑆𝑈  in 

(10) are used by directly initializing the EKF state.  
Since the RSU-based prediction model does not involve GPS 

measurements that may have been spoofed, the predicted 
location is able to correct errors resulting from a delayed 
detection, where the EKF estimator may have been 
compromised already. We show in Section VI-B that this brings 
benefits in defending stealthy attacks that are often detected 
with a delay. This is distinctively different from existing 
spoofing defense methods without RSU data: without removing 
the negative effect of the spoofed GPS measurements, they tend 
to generate deviated location estimations even if the vehicle 
successfully detects and isolates falsified GPS measurements. 

VI. EXPERIMENTAL STUDY 

A. Experiment Settings 
1) General Settings 
We test the proposed IED framework using both simulation 

data and real-world data. Simulation data is from the 
Downtown Seattle simulation model (Fig. 3a) built in 
Simulation Urban Mobility (SUMO). Fifty-three passenger 
vehicles are randomly selected for testing. Their trajectories 
allow us to capture diverse driving scenarios, including 
highways and local streets, where road geometries and vehicle 
dynamics vary considerably. The real-world GPS data contains 
trajectories from 15 vehicles, including both delivery trucks and 
passenger cars. Passenger car trajectories were collected from 
two field experiments conducted in Albany, NY, which were 
originally for measuring traffic performance [56]. Truck 
trajectories were provided by several anonymous logistic 
companies. Each vehicle trajectory comprises a sequence of 
time, location and speed reports, collected every 1 s.  

Taking a trajectory as the input, the MATLAB Navigation 
Toolbox (MNT) is used to simulate necessary sensor 
measurements along the trajectory, including local (e.g., IMU), 
global (e.g., GPS data) and range measurements (e.g., RSU 
data). GPS data are manipulated following the attack models 

(Section IV) to simulate GPS spoofing attacks. The parameters 
of the IMU and GPS sensors (e.g., accuracy levels and 
resolutions) are set as MNT’s default values, which reflect real-
world sensor properties to a large extent. See details of MNT’s 
sensor models in MATLAB documentation [57]. IMU and GPS 
measurements are sampled at 10Hz and 1Hz, respectively. 
RSUs are located along the road at an equal distance, and the 
service range of an RSU is represented by a circle with a radius 
of 500 meters centering at the RSU. Under the service range of 
an RSU, radio signal-to-noise ratio (SNR) in dB is simulated 
using the ground-truth range (i.e., the distance between the 
vehicle and the RSU) and following the measurement model 
𝑆𝑁𝑅 = 10 log10(|𝒛𝑅𝑆𝑈|2/(𝜎𝑅𝑆𝑈)2) as in [50] (essentially the 
reverse of the ranging method). Here, |𝒛𝑅𝑆𝑈| is the Euclidean 
distance between the vehicle and RSU and 𝜎𝑅𝑆𝑈 represents the 
uncertainty (see Section V-A), which will be investigated 
further in our sensitivity analysis. The encryption, decryption 
and transmission process for data security is simulated via an 
AES scheme assuming a 100ms latency as noted earlier.  

Fig. 3. (a) ROAD NETWORK OF DOWNTOWN SEATTLE IN SUMO 
BASED ON OPEN STREET MAP [58]; (b) SENSOR MEASUREMENTS 
ALONG A TRAJECTORY.  
 

Fig. 3b illustrates an example of a ground-truth trajectory 
together with IMU, GPS and RSU measurements to help 
understand the sensor data. The measurements are visualized at 
where they are received/computed. It can be observed that GPS 
measurements are periodically received along the trajectory 
while RSU measurements are not spatially continuous but 
clustered around where RSUs are installed. 

To simulate GPS spoofing, we randomly select the start time 
and duration of an attack (a uniform distribution ranging from 
5 to 35 seconds). The attack modifies the true GPS data and 
passes the modified data to the vehicle for location estimation. 
We simulate the two types of attacks in Section IV. For constant 
bias attacks, GPS measurements are modified to deviate them 
by four meters, which is roughly the lane width. For stealthy 
attacks, m=1.0 and n=1.07, respectively. We choose the two 
values so that the maximum deviation is comparable with the 
one in the constant bias attack (e.g., four meters) for an average 
attack duration of 20 seconds. These values also approximate 
the ones used in the original study [1].  

2) Overview of the Experiments and Key Metrics 
We compare the iForest-based IED method with benchmark 

methods (see Section II) that include the 𝜒2-test-based detector, 
the CUSUM detector, the OCSVM detector implemented 

1000 meters

North

Seattle 
Downtown

(a) (b)
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following [13] without using RSU data, and the OCSVM 
detector that uses the RSU data (hereafter referred to as the 
“OCSVM-based IED method” as it uses the same set of features 
as the iForest method). For a detector that requires tuning 
parameters, we search around the parameters suggested in the 
original work and take the ones that yield the best performance. 
The performance is averaged over all tested trajectories with 
random attack times (i.e., attack starting time and duration). The 
similarities and differences of results from simulated and real-
world trajectories are summarized. Lastly, we present results 
from sensitivity analysis of the iForest-based IED method under 
three influential factors, i.e., RSU spacing 𝐷𝑅𝑆𝑈 , 
hyperparameter of iForest 𝛼 , and the error in RSU-assisted 
localization 𝜎𝑅𝑆𝑈 . 

Several common metrics are adopted to evaluate the 
performance of the methods, including the F1 score, precision, 
recall, detection lag, and Rooted Mean Square Error (RMSE) 
of location estimations. The first three evaluate detection 
accuracy, ranging from 0 to 1. Precision calculates the ratio of 
true positives (TP) over all the identified positives, and recall, 
also termed as the correct detection probability, is the ratio of 
true positives (TP) to all ground-truth positives. A higher 
precision and recall mean a lower false-positive (FP) rate and a 
higher TP rate, respectively. A higher F1 means better detection 
performance in terms of balancing FP and TP. 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (17) 

Starting from the beginning of a spoofing, detection lag 
counts the number of GPS measurements (at 1Hz) missed by 
the detector before the attack is detected. If GPS measurements 
are spoofed but not detected timely, the victim vehicle 
assimilates them for location estimation, leading to a deviated 
trajectory. RMSE measures the location estimation error along 
a trip by computing the distance between the estimated 
locations 𝒙̂𝑘 and true locations 𝒙𝑘: 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ ‖𝒙̂𝑘 − 𝒙𝑘‖2

𝐾
𝑘=0   (18) 

Here, ‖𝒙̂𝑘 − 𝒙𝑘‖2 is the distance between the true location and 
estimated location at time k. K is the duration of the trajectory.  

B. Testing Results Using Simulated Trajectories 
Table I evaluates the proposed method using simulated 

trajectories. Under the constant bias attacks, it can be found that 

all the methods can detect the start of attacks with no lag. Yet, 
given its strength in balancing FP and false negatives (FN) 
errors, the IED methods give F1 scores of 0.86 and 0.83, 
respectively, which are much better than the other three non-
IED methods. The precision and recall of the IED methods 
indicate that they could nearly identify all the spoofed GPS 
measurements while generating some FPs possibly due to 
noises in GPS sensors. As shown later in the sensitivity 
analysis, we can reduce FNs while curbing FPs by tuning the 
hyperparameter. On the other hand, the low precisions by the 
three non-IED methods suggest that they produce many FPs. 
The conventional OCSVM has high recalls with low precisions, 
as it tends to produce FPs. The performance of OCSVM-based 
IED method, by utilizing RSU data, can be boosted 
significantly, which is similar to the performance of the iForest-
based IED method. OCSVM has a lower F1 score due to its 
sensitivity to outliers as discussed in Section II-B. The results, 
especially the similar performances between iForest-based and 
OCSVM-based IED methods, suggest it is the new features 
computed from infrastructure data, not the specific learning 
methods, that lead to the improved performances of the IED 
methods. With effective detection and correction, the IED 
methods can dramatically reduce location errors compared to 
non-IED methods.  

Under stealthy attacks, the IED methods give F1 scores of 
0.78 and 0.72 respectively, again much better than the three 
non-IED methods. These findings suggest that the IED methods 
can effectively detect the attacks, despite the fact that the 
measurements from RSUs are not always available. Some 
interesting findings can be observed by comparing the 
performance under the two types of attacks. First, it is 
reasonable to observe that all the tested methods perform worse 
under stealthy attacks. Noteworthy is that though being 
downgraded, the IED’s performance under stealthy attacks is 
still promising: the recall of 0.84 (or 0.86 for OCSVM-based 
IED) suggests that 84% (or 86%) of spoofed GPS 
measurements can be successfully detected. Second, unlike 
constant bias attacks, all the tested methods experience 
detection lags under stealthy attacks. Both IED methods miss 
two spoofed GPS measurements, as indicated by the detection 
lag in Table I. This is due to the attacks’ stealthy design, where 
added perturbations are small at the early stage of attacks. 
Although missed by the detector, the two spoofed GPS 

TABLE I  
PERFORMANCE OF THE PROPOSED AND BENCHMARK METHODS ON SIMULATED TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 
Conventional 
OCSVM 
(No RSU data) 

OCSVM-based 
IED 

iForest-based 
IED  

Constant bias 
attack 

F1 Score  0.56 0.69 0.70 0.83 0.86 
Precision  0.52 0.60 0.55 0.72 0.77 
Recall  0.69 0.86 0.95 0.98 0.99 
Detection lag 0 0 0 0 0 
RMSE 5.74 4.53 5.02 0.36 0.43 

Stealthy attack 

F1 score  0.47 0.21 0.48 0.72 0.78 
Precision  0.53 0.30 0.45 0.62 0.76 
Recall  0.49 0.22 0.57 0.86 0.84 
Detection lag  3 14 4 2 2 
RMSE 5.69 4.58 5.01 0.36 0.42 
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measurements only bring small deviations to the location 
estimation, which are corrected once attacks are detected. 

C. Testing Results using Real-world Trajectories 
We further evaluate the proposed methods using real-world 

GPS trajectories, and the results are reported in Table II. It can 
be found that the IED methods still outperform the other three 
methods under both types of attacks. The F1 scores under 
stealthy attacks decrease, suggesting that all the methods are 
less effective compared with detecting constant bias attacks.   

The F1 scores are close to those of the tests using simulated 
trajectories, suggesting the IED methods are also effective in 
dealing with real-world data. In detecting stealthy attacks, the 
IED methods have smaller recalls while larger precisions, 
compared with results from those on simulated data. The 
smaller recalls also lead to longer detection lags. In the 
following sensitivity analyses, we show that the trade-off 
between precision and recall can be adjusted according to the 
practical needs by varying hyperparameters of attack detectors.  

D. Sensitivity Analysis 
Multiple factors may impact the performance of the IED 

methods, such as the distance between two consecutive RSUs, 
the hyperparameters, and the accuracy of RSU-assisted 
localization. Here we conduct sensitivity analyses on how these 
factors influence the iForest-based IED method. Simulated data 
are used for the analysis unless noted otherwise. 

1) Distance Between Two Consecutive RSUs 
Given its reliance on RSU data, the IED method is expected 

to be influenced by RSU’s deployment strategy. Specifically, 
out of the RSU service range, the vehicle relies on RSU-based 
location prediction for attack detection and correction. Table III 
shows the performance of varying RSU distance 𝐷𝑅𝑆𝑈  under 
attacks. Note that we stop at 2000m as most of the trajectories 
are shorter than 2000m and a larger 𝐷𝑅𝑆𝑈 does not reduce the 
performance further. As expected, the performance (such as F1 
score and RMSE) downgrades as 𝐷𝑅𝑆𝑈  increases. Yet, the 
iForest-based IED method still maintains an advantage over the 
benchmark methods as 𝐷𝑅𝑆𝑈 increases. 

Fig. 4 and Fig. 5 show the sensitivity of the false alarm rate 
and recall (correct detection probability) with 𝐷𝑅𝑆𝑈  (and the 
other two factors as well). It can be observed that a larger 𝐷𝑅𝑆𝑈 
leads to a larger false alarm rate for both attacks. Under constant 

bias attacks, the recall stays close to 1, and the detection lags 
are zero, suggesting that these attacks can be easily and timely 
identified regardless of 𝐷𝑅𝑆𝑈 Under stealthy attacks, increasing 
𝐷𝑅𝑆𝑈 from 1000m to 1500m does not affect recall significantly, 
while a larger 𝐷𝑅𝑆𝑈 (at 2000m) drops it. 

 
TABLE III 

INFLUENCE OF RSU SPACING ON IFOREST-BASED IED METHOD 
𝑫𝑹𝑺𝑼 = 1000m 1500m 2000m 

Constant bias 
attack 

F1 Score 0.92 0.86 0.82 
Precision 0.86 0.77 0.72 
Recall 0.99 0.99 0.99 
Detection lag 0 0 0 
RMSE 0.10 0.43 0.54 

Stealthy 
attack 

F1 score 0.83 0.78 0.62 
Precision 0.83 0.76 0.64 
Recall 0.83 0.84 0.65 
Detection lag 3 2 6 
RMSE 0.10 0.42 0.60 
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Fig. 4. EFFECTS OF INFLUENTIAL FACTORS ON FALSE ALARM 
RATE. 
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Fig. 5. EFFECTS OF INFLUENTIAL FACTORS ON RECALL. 
 

TABLE II 
PERFORMANCES OF THE PROPOSED AND BENCHMARK METHODS ON REAL-WORLD TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 
Conventional 
OCSVM 
(No RSU data) 

OCSVM-based 
IED 

iForest-based 
IED  

Constant bias 
attack 

F1 Score  0.54 0.66 0.64 0.80 0.93 
Precision  0.64 0.61 0.48 0.67 0.88 
Recall  0.52 0.75 0.95 1.00 1.00 
Detection lag 0 0 0 0 0 
RMSE 2.52 1.90 2.04 0.12 0.17 

Stealthy attack 

F1 score  0.44 0.22 0.45 0.69 0.73 
Precision  0.64 0.54 0.38 0.67 0.83 
Recall  0.38 0.14 0.58 0.76 0.67 
Detection lag  6 16 6 4 6 
RMSE 2.02 1.19 1.90 0.17 0.17 
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2) Hyperparameter of the Attack Detector 

In the iForest-based IED method, one key hyperparameter 
associated with iForest is contamination (denoted as 𝛼) which 
specifies the proportion of spoofed samples in the data set. 
Table IV summarizes the performance of the IED method with 
different 𝛼, ranging from 0 to 0.5. 0 means no anomalies and 
0.5 means that half of the data samples are anomalies. A range 
from 0.1 to 0.3 in Table IV captures a fairly large range of 𝛼.  

TABLE IV 
IMPACTS OF IFOREST HYPERPARAMETER  

𝜶 =  0.1 0.2 0.3 

Constant 
bias attack 

F1 Score 0.91 0.86 0.8 
Precision 0.86 0.77 0.69 
Recall 0.99 0.99 0.99 
Detection lag 0 0 0 
RMSE 0.25 0.43 0.31 

Stealthy 
attack 

F1 score 0.71 0.78 0.71 
Precision 0.8 0.76 0.62 
Recall 0.65 0.84 0.86 
Detection lag 6 3 2 
RMSE 0.35 0.42 0.45 

 
Under the constant bias attacks, recalls remain unchanged 

(near 1), suggesting that the method can robustly detect spoofed 
GPS data under such attacks for a wide range of 𝛼 (Table IV 
and Fig. 5). Meanwhile, a sensitive detector with a large 𝛼 tends 
to reduce the detection lag. Yet, under both constant bias and 
stealthy attacks, a larger 𝛼 leads to more FPs, as indicated by 
the increase in the false alarm rate (Fig. 4) and the decrease in 
precision (Table IV). On the other hand, a larger 𝛼  brings 
benefits to detecting stealthy attacks, since i) more spoofed GPS 
measurements can be detected (as indicated by the larger 
recall), and ii) the detection lag is shorter.  

In summary, a proper 𝛼  can help balance precisions and 
recalls. The proper 𝛼 depends on the types of attacks: a small 𝛼 
is good for detecting constant bias attacks but encourages FNs 
in stealthy attacks, reducing recalls. Given the high threat of 
stealthy attacks, it would be beneficial to set a relatively large 
𝛼  to effectively detect such attacks. In our experiments, a 
balance between precisions and recalls under the stealthy attack 
can be reached around 𝛼=0.2. 

3) Accuracy of RSU-assisted Localization 

Vehicle localization assisted by the RSU can be more 
accurate (in centimeters) than GPS measurements (in meters). 
In practice, the accuracy of RSU-assisted localization could 
depend on factors such as the ranging method applied, how 
RSUs are configured, and the real-time driving environments. 
Here, we check how the accuracy of RSU-assisted localization 
may impact the performance of the proposed method. 

Table V shows three accuracy levels of RSU-based 
localization obtained by tuning the uncertainty parameter 𝜎𝑅𝑆𝑈 
(Section V-A). 𝜎𝑅𝑆𝑈 =0.5 means that about 95% of location 
errors are within one meter, which is often considered as the 
worst scenario for RSU-assisted localization [48]. It can be 
observed that compared with the baseline (𝜎𝑅𝑆𝑈 =0.25), the 
higher accuracy in RSU-assisted localization (𝜎𝑅𝑆𝑈 =0.1) has 
nearly no effect on detecting constant bias attacks but does 
improve the performance of detecting stealthy attacks that add 
tiny deviations at the beginning of an attack. A lower location 

accuracy (𝜎𝑅𝑆𝑈=0.5) reduces the performance in both types of 
attacks, with a higher false alarm rate (Fig. 4) and leading to 
larger location estimation errors (in RSME).  

TABLE V 
IMPACTS OF THE ACCURACY OF RSU-BASED LOCALIZATION 

𝝈𝑹𝑺𝑼 =  0.1 0.25 0.5 

Constant 
bias attack 

F1 Score  0.86 0.86 0.71 
Precision  0.75 0.77 0.55 
Recall  0.98 0.99 0.99 
Detection lag 0 0 0 
RMSE 0.41 0.43 0.81 

Stealthy 
attack 

F1 score  0.77 0.78 0.72 
Precision  0.71 0.76 0.59 
Recall  0.85 0.84 0.94 
Detection lag 3 3 0 
RMSE 0.42 0.42 0.54 

 

VII. CONCLUSION AND DISCUSSIONS 
In this paper, we proposed an infrastructure-enabled defense 

(IED) framework that utilizes secure RSU data for detecting 
GPS spoofing and correcting location errors from the spoofing. 
Timely detection is achieved by designing and training an 
iForest model using real-time features computed from both 
RSU data and (possibly spoofed) GPS data. Once spoofing is 
detected, GPS data is isolated and the compromised vehicle 
locations are corrected using RSU data. Experimental results 
using both simulation and real-world GPS data demonstrated 
that the IED framework enhances timely detection and 
correction even when RSU data is not spatially continuous. We 
showed that the IED framework is effective in defending 
against state-of-the-art stealthy GPS spoofing models. 
Furthermore, sensitivity analyses produced insights into how 
RSU deployment, hyperparameters, and the accuracy of RSU-
assisted localization impact the IED’s performance.  

The IED framework for GPS spoofing distinguishes itself 
from non-IED methods in three major aspects. First, it relaxes 
the requirement of vehicular sensors, making detectors more 
robust when dealing with spoofing attacks. Second, enabled by 
the secure RSU data, a relatively simple detector based on an 
unsupervised learning algorithm (e.g., iForest or OCSVM) can 
effectively detect GPS spoofing attacks. The advantage stems 
from the fact that the features computed from secure RSU data 
for attack detection are “protected”, relieving the challenges of 
developing attack-resilient algorithms. This advantage could be 
exploited to defend against false data injection attacks in 
general since the GPS spoofing setting adopted in this paper is 
general and can represent other false data injection attacks [9]. 
That is, if the observation deviates too much from “the expected 
value” that is computed using secure infrastructure data, the 
observation is likely under attack.  

Several limitations of the proposed IED framework call for 
future research. First, the detection and correction methods may 
be enhanced by more advanced learning approaches (such as 
deep learning) to further improve their performances. Second, 
more research efforts are needed to design optimal strategies for 
deploying the RSUs. In this study, we assumed RSUs are 
deployed evenly on the roadside and conducted sensitivity 
analyses to understand the impact of the distance between two 
consecutive RSUs on the IED’s performance. For future 
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research, the optimal RSU deployment problem may be studied 
to produce RSU deployment strategies that systematically 
consider the deployment cost, traffic environments, road 
geometry, and the performance of the spoofing defense method. 
Third, future investigations are needed to test the IED’s 
performance in real-world driving scenarios where GPS 
spoofing attacks, infrastructure (RSU and implementation of 
the ranging method in Section V-A), and the IED framework 
are implemented and tested. Fourth, the IED framework may be 
enhanced by incorporating additional (and easily obtained) data 
sources for more robust location estimation and/or attack 
detection. This is particularly so for scenarios where the 
distance between RSUs is large. For instance, the geometric 
outlines of roads may be used as constraints to improve location 
estimation/prediction, which may further improve detection 
accuracy. Last but not least, as infrastructure is becoming more 
important in transportation, the idea of the proposed IED 
framework may be applied to other applications. This may 
include vehicular computer vision systems that are vulnerable 
to data attacks, e.g., adding adversarial images to onboard 
cameras [59], or spoofing attacks on LiDAR data [4]. The 
proposed IED framework may be applied to these applications 
by i) designing specific secure infrastructure data including 
what data to collect and how to secure data transmission, ii) 
computing new features from the infrastructure data to help 
develop effective attack detection methods, and iii) correcting 
possibly corrupted data by using infrastructure data. The 
authors will pursue these research directions, and results may 
be reported in subsequent papers.  
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