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Infrastructure-enabled GPS Spoofing Detection and
Correction
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Abstract—Accurate and robust localization is crucial for
supporting high-level driving automation and safety. Modern
localization solutions rely on various sensors, among which GPS
has been and will continue to be essential. However, GPS can be
vulnerable to malicious attacks and GPS spoofing has been
identified as a high threat. With transportation infrastructure
becoming increasingly important in supporting emerging vehicle
technologies and systems, this study explores the potential of
applying infrastructure data for defending against GPS spoofing.
We propose an infrastructure-enabled framework using roadside
units as an independent, secured data source. A real-time detector,
based on the Isolation Forest, is constructed to detect GPS
spoofing. Once spoofing is detected, GPS measurements are
isolated, and the potentially compromised location estimator is
corrected using secure infrastructure data. We test the proposed
method using both simulation and real-world data and show its
effectiveness in defending against various GPS spoofing attacks,
including stealthy attacks that are proposed to fail the production-
grade autonomous driving systems.

Index Terms—Cybersecurity, GPS spoofing, Infrastructure-
enabled defense solution, Roadside unit.

1. INTRODUCTION

ECHNOLOGIES supporting advanced driving systems
have been evolving at an unprecedented pace in recent
years. Among them, accurately localizing a vehicle’s
global positions is critical for its core role in vehicle routing and
control. To support high-level driving automation and safety,
localization modules must be robust in various driving
scenarios, which demand advanced sensors and algorithms.
Modern localization modules rely on multiple sensors,
including, for example, Global Positioning System (GPS),
Inertial Measurement Unit (IMU), Light Detection and Ranging
(LiDAR), and camera [1]. However, sensors on vehicles are
vulnerable to malicious attacks [2]. For example, GPS spoofing,
which broadcasts falsified GPS signals, has been a long-
recognized high threat [3]; LiDAR can be compromised by
replay attacks that deceive receivers with recorded (thus
outdated) data [4]; cameras are sensitive to blinding attacks that
emit light into the camera [5]. Despite the disclosed
vulnerabilities, solutions to addressing them are still limited.
This study focuses on GPS spoofing detection and correction
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as GPS has been and will continue to be an essential technique
for vehicle localization [6]. Attacks on GPS have long been
recognized, notably jamming, replaying, and spoofing attacks.
GPS jamming prevents the receivers from receiving signals
properly, while a replaying attack records authentic signals and
replays the outdated or irrelevant signals to interrupt the proper
operation of vehicles. GPS spoofing aims to forge signals to
mislead a vehicle to deviate from its planned path [9, 10], hence
endangering the safety of passengers and other road users.
Section II-A provides a detailed comparison of these attacks.
Being a false data injection attack (see a full taxonomy of
attacks in [2]), GPS spoofing can be the most effective among
the three types of attacks as it allows the attacker to dictate the
victim vehicle’s positions to achieve specific goals [9]. Despite
being a real threat, defending against GPS spoofing is still an
open security problem from both prevention and detection
perspectives [3]. From the prevention perspective, a
fundamental measure to prevent GPS spoofing is to apply
cryptographic techniques to civilian GPS infrastructure [10].
However, it requires considerable modifications or even
reconstruction of the existing satellite infrastructure and GPS
receivers, which is impractical. From the detection perspective,
the defense methods vary by the source of information used for
detecting malicious attacks. The classical techniques are based
on collecting and analyzing GPS signals in real time, such as
accurate clock information or angle of arrival [9], [11]. Though
effective, these techniques may not be generalizable as each
technique is designed for specific attacks and may need a large
budget for installing dedicated devices (e.g., multiple antennae)
on individual vehicles. Another open question is how to recover
accurate navigation after an attack is detected [10].

With various sensors increasingly prevalent in vehicles,
detecting sensor (e.g., GPS) attacks via cross-comparing
multiple data sources has attracted considerable attention in
recent years [12]-[14]. One typical approach is to detect
anomalies in received real-time measurements by comparing
them with patterns in previously recorded data. This is often
done by a supervised machine learning model or a statistical
model corresponding to specific attacks from these records and
applying the learned model to real-time anomaly detection [15].
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One challenge of implementing such methods is the lack of
labeled records for model training or the imbalance between
benign and adversarial records. To address this challenge, some
studies have developed methods based on one-class
classification where anomaly detection models are trained using
only benign data [16]. In practice, the methods may be difficult
to implement as extracting features for one-class classification
training is not trivial [16]. Another type of approaches to detect
attacks is to integrate other real-time data sources (e.g., IMU
data) with the vehicle’s (mathematical) motion model [6]. An
anomaly/attack is detected if data from the subject sensor
deviate too much from the predicted output (e.g., vehicle’s
position) from the motion model [17]. However, the motion
model could be compromised when GPS spoofing occurs (and
before spoofing is detected), leading to unreliable predictions
[18]; see also the numerical results and discussions later in
Section VI-B. One mitigation is to simultaneously run multiple
models on redundant sensors (e.g., GPS, LiDAR and camera)
and detect attacks via cross-validation. Yet, implementing and
cross-validating multiple models can be complicated,
especially for identifying the attack source [14, 19]. Installing
multiple redundant sensors can also be costly, given the vast
number of vehicles on roads and constrained onboard resources.

Besides emerging vehicle-based sensors and technologies,
transportation infrastructure is becoming increasingly
important in supporting various functionalities of advanced
vehicle technologies, especially Connected and Automated
Vehicles (CAVs) [19]-[21]. It is widely accepted now that
infrastructure-vehicle cooperation is probably a more viable
path to implement emerging systems, e.g., automated driving,
compared with that using driverless vehicle technologies solely.
For this, the communication and data transmission between
vehicles and infrastructure will play a central role. Indeed, V2X
messages (e.g., the basic safety message (BSM)) have already
been defined for data transmitted between vehicles and
“everything” (including other vehicles, the infrastructure, and
other users of the roadway), and secure data transmission
schemes (e.g., the secure credential management system
(SCMS) [22]) have also been proposed for V2X data. Emerging
V2X communication systems, such as 5G-based Cellular V2X,
are capable of supporting real-time decisions in, for example,
collision avoidance systems and positioning of vehicles.
Leveraging secure data from the infrastructure may help defend
against cybersecurity attacks, including GPS spoofing attacks.
Therefore, while we should continue to encourage research on
more effective GPS spoofing defense methods based on signal
processing, anomaly detection, and data fusion (some recent
methods can be found in [8], [13], [23]), we should also
welcome methods via exploring the use of secure infrastructure
data for GPS spoofing detection and mitigation.

This study focuses on such a new exploration by proposing
an infrastructure-enabled defense (IED) framework via
utilizing roadside units (RSU) as an independent, secure data
source. An RSU broadcasts locational information (similar to
or could be part of the V2X data from RSU); vehicles in the
broadcast range can use the information to estimate their

locations periodically (see Section V-A for more details). Such
secure, independent data from RSUs enables new ways to
detect and mitigate GPS spoofing, which we will explore and
elaborate more in the remainder of this paper. The proposed
IED framework has several unique features compared with
existing solutions. First, it takes advantage of the
communication modules between vehicles and infrastructure
(e.g., existing or newly deployed V2X devices), instead of
requiring sophisticated in-vehicle GPS receivers or redundant
sensors for cross-validation. Second, enabled by the secure data
from infrastructure, it is feasible to design a simpler yet
effective defense solution to detect and correct GPS spoofing.
Computed from secure RSU data, the features for attack
detection are also “protected” (i.e., safe from attackers’
manipulation), relieving the challenge of developing attack-
resilient algorithms [24]. Third, it is more practical to secure the
information from RSUs than to secure the established civilian
GPS satellite infrastructure (see Section II-D for more
discussions). Therefore, the proposed IED solution provides a
new and valuable alternative to addressing GPS spoofing
issues. Furthermore, exploring IED solutions for GPS spoofing
may provide helpful insights to address other data-related
cybersecurity issues in transportation, which we will elaborate
more in later sections. We note here that, while we focus on
GPS spoofing on ground vehicles in this paper, GPS spoofing
has also been studied for aircraft and marine vehicles (ships)
[7]. In fact, an infrastructure-based GPS spoofing mitigation
idea for aircraft was also reported in [25]. However, due to the
distinct characteristics/operations of ground vehicles and
aircraft (or ships), their safety requirements, and the drastically
different space they are operated in, methods for aircraft or
ships cannot be applied directly to ground vehicles (e.g., the
idea in [25] does not apply to ground transportation).

We first introduce the design of secure RSU data and the
method of how a vehicle interacts with the infrastructure to
obtain secure, global position measurements. Based on the
secure measurements, we develop and compute multiple
features, with which a real-time detector, based on the Isolation
Forest, is constructed to detect GPS spoofing. Once spoofing is
detected, GPS measurements are isolated, and the potentially
compromised location estimator is corrected using the RSU
data. We design the detection and correction methods under the
situation that RSU data is not always available due to certain
constraints (e.g., a limited budget to install RSUs all over the
road network). If RSU data are not available, an RSU-based
prediction model utilizes the last available RSU measurement
and the vehicle motion model to predict vehicle locations,
preserving timely attack detection. We test the proposed IED
framework using both simulation and real-world data and show
its performance compared with state-of-the-art solutions in
defending various types of GPS spoofing, including a stealthy
attack that is proposed to fail the production-grade autonomous
driving systems [16]. The major contributions of this paper are
summarized as follows.

1) This study explores and proposes an IED framework for
detecting and correcting GPS spoofing that complements
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existing methods that mainly rely on (likely insecure)
vehicular data.

2) By integrating both GPS and RSU data, we develop a
machine learning-based spoofing detection method that is
simple yet effective in detecting GPS spoofing, adding new
tools to the current toolbox for GPS spoofing.

3) A new correction model is also developed leveraging the
RSU data, which results in much-reduced location errors
when GPS spoofing attacks occur.

In the rest of this paper, we review related works in Section
II. In Section III, we present the problem statement and major
assumptions and some preliminaries on which our problem is
constructed. Section IV introduces GPS spoofing attack
models. Section V presents the proposed IED framework and
Section VI evaluates it using both simulation and real-world
data. Concluding remarks are discussed in Section VII.

II. LITERATURE REVIEW

A. GPS Spoofing Attacks

Existing studies have revealed potential vulnerabilities of
localization sensors to malicious attacks [13], [16]. GPS is
particularly prone to attacks, including jamming, replaying, and
spoofing [2]. GPS jamming can prevent vehicles from receiving
GPS signals properly by, e.g., transmitting radio signals that
overpower the (weak) authentic GPS signals. Jamming could be
addressed by implementing beam/null-steering antenna arrays
that can filter out jamming signals [26]. Replaying attacks aim
to confuse vehicles by recording and rebroadcasting GPS
signals that could be outdated or irrelevant to the vehicles’ real-
time operation. False signals in such attacks could be identified
by monitoring the receiver’s clock bias over time [26]. GPS
spoofing misleads vehicles’ trajectories by forging counterfeit
GPS signals, which could be done by intercepting and falsifying
authentic signals before sending them to GPS receivers [3].
GPS spoofing falls into the broad category of false data
injection attacks, which compromise sensor readings stealthily
so that undetected errors are introduced into state predictions.
A full taxonomy of various types of attacks can be found in [2].
It is well recognized that GPS spoofing can be stealthy to be
detected among these attacks and is still an open challenge in
the cybersecurity community.

Before discussing existing defense solutions against GPS
spoofing, we summarize common types of GPS spoofing in
recent studies[10], [13], [14].

e [Instant: One GPS measurement that is unexplainable and
significantly different from previous ones.

e  Noise: A consecutive sequence of GPS measurements
with increased variance. Noise attack occurs across
multiple successive sensor readings.

e  Constant bias: A sequence of GPS measurements with a
constant offset from the vehicle’s true locations.

o Gradual drift (stealthy attack): A sequence of GPS
measurements that are modified to gradually deviate the
vehicle from its true trajectory during a period of time.

The references above also discuss in detail the consequences
of each type of GPS spoofing attacks. Among these attacks, the

constant bias and gradual drift attacks have received the most
attention. In particular, the gradual drift attack is one type of
stealthy attacks, which is more deceptive than other attacks: it
can result in a large deviation between the true trajectory and
the falsified trajectory over time. Sophisticated stealthy attacks
have been proposed in recent studies, making them difficult to
be detected. For example, stealthy GPS spoofing is proposed in
[13] to gradually drift the true vehicle position according to its
kinematic model. In [1], a stealthy GPS spoofing attack (named
FusionRipper) is designed to fail production-grade autonomous
driving systems (e.g., Baidu’s Apollo system) with an over 90%
success rate. FusionRipper targets the predominantly adopted
Multi-Sensor Fusion (MSF) algorithms and performs
exponential spoofing, which injects mild deviations at the
beginning to gradually compromise MSF and then aggressive
deviations with exponential growths. The deviations injected
over time are controlled by two parameters which are tuned
according to MSF’s configuration. In this study, we implement
FusionRipper as a stealthy attack to test the IED framework.

B. Detection Methods against GPS Spoofing

Defending GPS spoofing could be done from the prevention
perspective, i.e., enhancing data security via techniques such as
encryption and user authentications. Preventing GPS spoofing
this way requires significant modifications of the civilian GPS
satellite infrastructure (i.e., satellites, GPS receivers, and their
communication that is currently without any encryption
scheme) that has been widely deployed and used for decades.
Clearly, doing so would be very costly and impractical [3]. As
well recognized and adopted extensively in previous studies [9],
[11], [27], practical GPS spoofing defense solutions contain
two major steps: spoofing detection and spoofing correction
(mitigation). We review detection methods here, while
correction methods are covered in the next subsection.

Classical GPS spoofing detection methods focus on
collecting and processing rich information in GPS signals, such
as accurate clock information, signal power and arrival angle
[9], [23]. These methods have been shown effective in detecting
specific types of attacks. However, they often require
dedicatedly designed GPS receivers in vehicles (e.g., receivers
with moving or multiple antennae) and may not be
generalizable to sophisticated attacks that largely mimic
authentic GPS signals [3]. Meanwhile, how to correct the
compromised location estimator and recover accurate
localization after attack detection is still an open question [10].

In recent years, sensors are increasingly installed in vehicles
and this has promoted studies that detect spoofing attacks (i.e.,
anomalies) via cross-validating multiple data sources [12], [13],
[16]. Such studies can be categorized into two groups: data-
driven and model-based [16]. The former relies on prepared
(historical) data to learn a set of patterns or rules, with which
the real-time sensor data is determined as benign or adversarial
[12], [14]. The rules could be learned by formulating a
supervised learning problem, where a classifier is learned using
the labeled training data. The trained classifier serves as the
detector to detect whether a sensor is under attack or not [15].
Such supervised learning algorithms have been shown effective
in detecting spoofing attacks on real-time localization systems
implemented on a wheeled robot [28]. Recently, deep learning
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methods have been applied to detecting anomalies in speed
sensors [14]. Despite their success in specific applications,
supervised-learning-based methods have two limitations [15]:
i) the training data requires labeled (at least two classes of)
records, which can be challenging to prepare; and ii) the trained
model may not be generalizable to address new types of attacks
that are not represented in the training data. To address these
limitations, recent studies propose to perform unsupervised
learning or one-class classifications (OCC) that are trained only
on normal data and thus do not require specific labels associated
with the data [29]. Then, real-time sensor data is fed into the
learned classifier to detect attacks or anomalies. In [7], the
authors formulated attack detection as an unsupervised binary
classification problem and applied K-means to cluster the data
into two groups, one for attack and the other for non-attack.
Applying K-means to detect stealthy GPS spoofing can be
challenging, as it requires predetermining the feature space and
distance function for measuring the distance between data
points. In [13], a One-Class Support Vector Machine (OCSVM)
model is proposed to detect anomalies in vehicular sensor
readings. Though robust in detecting inconsistencies among
data sources, studies have shown that OCSVM could be
sensitive to outliers and tends to produce false-positive errors
[30]. Meanwhile, OCC-based detectors do not address another
limitation associated with the data-driven methods: the detector
may detect the existence of anomalies but could fail to identify
their source (i.e., which sensor is under attack). This may make
it challenging to design and implement mitigation measures
(e.g., isolating the attacked sensor).

Model-based detection methods involve modeling and
continuously predicting a vehicle’s motion dynamics using
real-time measurements from the vehicle [31], [32]. The basic
idea is that if a sensor measurement deviates from the expected
value from the vehicle dynamic model too much, the sensor
may be compromised. The y?-test-based detection is often used
to determine whether the deviation is large enough to claim the
sensor being an outlier or under attack [33]. The detection test
is a statistical test, based on the statistic Normalized Estimation
Error Squared (NEES) that follows a y? distribution [8], [34].
The y?-test-based detection can be sensitive to sensor noises,
resulting in a high rate of false positives (i.e., outliers that are
incorrectly identified as attacks due to sensor noises). To
mitigate this issue, a cumulative sum (CUSUM) discriminator
is recently proposed to detect attacks on GPS and LiDAR [16].
CUSUM detects an attack by inspecting multiple consecutive
sensor measurements instead of one measurement only: if the
inconsistency between the sensor measurement and the
expected vehicle position appears continuously, the sensor is
likely under attack. There are some limitations with CUSUM in
real-world applications. First, it requires two tuning parameters
that can be challenging to determine in real-world
implementations. Second, being a model-based method, it relies
on a prediction model that may be compromised by stealthy
attacks. Specifically, an attack can carefully manipulate the
input to the prediction model such that the generated predictions
are corrupted. If this occurs, the features computed from the
predictions are no longer reliable indicators of attacks. In the
numerical experiments in this paper, we show the weakness of
CUSUM when facing stealthy attacks.

C. Mitigation/Correction Methods against GPS Spoofing

Existing studies are mainly on attack detection and have
limited discussions on mitigating/correcting the errors caused
by the attack [28], [31]. The typical strategy is to run a fail-safe
mechanism (e.g., handing over control to the human driver) if
an attack is detected [35]. However, such a fail-safe mechanism
can be costly as it interrupts the system or may not be applicable
in certain scenarios (e.g., automated driving).

Another typical solution is to deploy multiple sensors, such
that an attacked sensor is isolated and the system relies on the
rest of the sensors [36]. For example, a vehicle equipped with
GPS and LiDAR will rely on LiDAR for localization if GPS
spoofing is detected [16]. However, there are some limitations
to such solutions. First, as noted above, identifying the attack
source (i.e., which sensor is under attack) in the multi-sensor
setting is often challenging, especially when all sensors are
vulnerable. Consequently, isolating the attacked sensor is not
trivial. Second, in the presence of detection lag, the data fusion
framework would have been partially compromised before
noticing an attack and isolating the attacked sensor [1].
Previous studies only emphasize isolating the attacked sensor
but lack discussions on correcting the compromised data fusion
framework. One possible solution is to run a secondary system
(e.g., a localization module independent of GPS sensor) so that
the system under attack is isolated and replaced by the
secondary system [35]. Yet, deploying and running redundant
systems could be economically and computationally costly.

D. Methods of Obtaining Secure Infrastructure Data

Infrastructure plays an increasingly important role in modern
driving systems, facilitating their various advanced functions,
such as detecting pedestrians and efficient driving at
intersections [12], [37]. The proposed IED framework in this
paper requires secure infrastructure data (RSU data). Yet, the
infrastructure data itself can be vulnerable to malicious attacks,
including DoS attacks and spoofing attacks. Fortunately, active
research has been conducted on securing infrastructure and
practical security strategies are currently available [38].

Infrastructure data collection and transmission can be
secured by applying a variety of state-of-the-art secure channels
that use advanced encryption algorithms (e.g., DES, 3DES,
AES, RSA and Blowfish [39]). These existing encryption
methods can be evaluated in transportation applications and
revised, if needed, to fit transportation scenarios better. In
practice, secure data communication is becoming a standard in
CAV development and deployment. For example, a recent
review in [38] summarizes the integrity of V2X communication
from different contexts, such as reputation analysis and
message integrity checking. In [22], SCMS is presented to
secure V2X data. SCMS issues digital certificates to vehicles
and RSUs to secure their communications while maintaining
efficient revocation of misbehaving or malfunctioning vehicles.
SCMS may be readily used for secure data transmission in our
proposed IED framework. Besides data transmission, the
received secure infrastructure data may also be encrypted
before storage (and decoded before using them), ensuring data
security even if the system (hardware) is hacked [40].

These existing studies suggest that secure data transmission
between vehicles and the infrastructure can be reasonably done.
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As we focus on developing GPS spoofing detection and
mitigation methods using infrastructure data, in this paper, we
apply the state-of-the-art encryption method to set up secure
channels for secure data transmission between an RSU and its
nearby vehicles. Specifically, we implement an Advanced
Encryption Standard (AES) scheme [41] in terms of the process
of encrypting and decrypting transmitted data with user
authentication, which is similar to the SCMS scheme for secure
V2X transmission. See Section V-A and Section VI-A for more
detailed discussions on this.

III. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Fig. 1 illustrates the problem setup and the general idea of
the IED framework against GPS spoofing. We consider a
simple yet common localization solution, where a vehicle can
be tracked by a typical motion model with high-frequency local
measurements from a low-end IMU and takes low-frequency
global measurements from GPS for correcting location errors
periodically. Low-end IMUs are pervasive nowadays and are
widely deployed in smartphones and vehicles. The problem
setting here ensures the generality of the study since one can
obtain IMU measurements from a vehicle’s OBD portal [42],
without installing additional sensors or utilizing the data from
such sensors even if they are installed. GPS could be spoofed in
an adversarial environment. The vehicle could deviate from the
desired trajectory if spoofing is not detected. Our goal here is to
propose an IDE method with which the vehicle can utilize the
secure data from RSUs to timely detect GPS spoofing and
correct location errors incurred by the attacks. Section V-A
provides more details about the data provided by the RSU.

<l Desired
trajectory

rajectory if GPS
spoofing attack is

RSU service range not detected.

Fig. 1. [ILLUSTRATION OF GPS SPOOFING AND [ED SOLUTION.

B. Assumptions

We impose the following assumptions to simplify our
discussion and clarify the focus of this study.

1) GPS spoofing studied here belongs to data security, which
is orthogonal to attacks/defenses of hacking into software
or hardware systems, or physical network security [38],
[43]. To focus on the research challenges and methods of
GPS spoofing, we assume in this paper that other attacks
have been mitigated with proper countermeasures. The
only exception is the methods for secure data transmission
between vehicles and the infrastructure; see 2) below.

2) Vehicles can obtain secure RSU data to calculate their
global locations. As discussed in Section II-D and more in
Section V-A, we assume that secure RSU data can be
readily available by applying (or tailoring) existing

security schemes [38]. This paper directly applies AES
[41] to secure the data and focuses on developing and
testing detection and correction methods.

3) We assume that IMU is secure due to assumption 1) above.
IMU measurements are typically accessed via a wired
channel; thus, their exposure to potentially adversarial
environments is low unless in the presence of physical
attacks against in-vehicle hardware. This assumption has
also been widely adopted in recent cybersecurity research
involving IMUs [9], [17].

C. EKF-based Localization Model

Estimating vehicle positions from multiple sensors can be
achieved by a Kalman Filter (KF)-based method or its variants
[44]. Here we briefly describe the KF-based localization model
used in this paper to combine GPS (global) and IMU (local)
data. Vehicle (global) location at time k is represented by the
KF’s state X, and uncertainty with a covariance matrix Pj. Due
to the non-linearity of the vehicle motion model, we adopt an
Extended Kalman Filter (EKF) applied in [1].

Following initialization at k = 0, EKF estimates the vehicle
positions by iterating a prediction step and an update step. The
prediction step iterates the motion model (1) to predict the
vehicle positions using IMU data; the process is often referred
to as dead-reckoning. This prediction step is expressed as a
discretized vehicle motion model (1) together with the
propagation of uncertainty (2) [45].

X = f(Xp—1, W), (1)
Py = Fk—1i5k—1F£—1 + Lk—lQLE—r 2
Here, x;, and P, represent the vehicle position and its

uncertainty at time step k, respectively. u, gives the IMU

measurement containing white noises wj with covariance

: Ofk— Of k-
matrix Q. Fy_, = k=1 = Yk
Oxg—1 Owg_1

derivative matrices corresponding to the state and noises that
are obtained by linearizing the system model (1).

The update step is for periodically correcting the cumulated
errors in the prediction steps once GPS data z§’* is received.
The measurement model for GPS data is given by [16]:

28" = H x x,, + eSS, 3)
Here matrix H maps vehicle position to the measurement space.
e5P? is the measurement noise which is assumed to be additive
white noise with covariance matrix RS,

As shown in (4), the update step takes a GPS measurement
z, and its uncertainty RS as input to compute the Kalman
gain K, which is then used to correct the predicted state [1].

K, =P H"(HP H™ + R6P5)~1
Xy = X, + K (2" — Hx )ri™ “)

Pk:Pk_KkHPk'

l2,_,> Lk—1 |2,_, are the partial

IV. ATTACK MODELS

Attack models are essential for investigating attack detection
and mitigation. We consider two types of GPS spoofing attacks:
the constant bias attack and the stealthy attack. As shown in the
results section, these two attack models allow for evaluating the
IED framework under stealthy and non-stealthy attacks,
generating some interesting insights. Other types of spoofing
attacks on GPS discussed in Section II-A (including instant and
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noise attacks) are not implemented in this study, since they
either fall out of the scope of this study (e.g., DoS attacks) or
can be approximated by the constant bias or stealthy attacks
[14] (also briefly discussed below).

A. Constant Bias Attack

A constant bias attack injects a constant bias into the true
measurements, causing the GPS readings to deviate from the
true ones temporarily. In practice, attackers could launch a bias
attack to mislead a vehicle by adding a lateral offset or a
longitudinal offset (or both) to the true GPS readings z%/.
Mathematically, the received GPS measurement would be:

z{™ = {7 + C (k € [t t,]), ®)

where Z5P is the spoofed GPS data, and C is a constant vector
that can be added to the true GPS readings. t, and t, represent
the start time and end time of the attack, respectively. With a
constant bias attack, the vehicle may be deceived by believing
that it is at the wrong location on the roadway and thus takes
faulty actions. Notice that an instant attack can be implemented
by taking t, = t; + 1.

B. Stealthy Attack

A stealthy attack injects a sequence of increasing deviations
into true measurements, such that the vehicle gradually drifts
away from its true trajectory. Mathematically, the received GPS
measurement can be expressed as:

2375 = 287 + ¢ (k € [ts,t,)), ©)
where ¢, is carefully designed to avoid triggering an attack
detector. Stealthy attacks are more deceptive than constant bias
attacks; multiple such strategies have been proposed for GPS
spoofing. To implement a noise attack, one could generate ¢y,
by sampling a random distribution (e.g., norm distribution) with
a large variance.

As noted in Section II-A, we implement FusionRipper, the
state-of-the-art stealthy spoofing strategy that is recognized by
top-tier cybersecurity communities [1]. In this study, the
implementation of FusionRipper is simplified since our
localization solution includes no LiDAR as in the original
study. Specifically, we skip the vulnerability profiling step (for
determining when GPS measurements dominate the location
estimator) and implement the aggressive spoofing step directly.
The aggressive spoofing performs exponential spoofing that
increases the deviation ¢; exponentially. As shown by (7), the
deviation ¢, is a function of time k, controlled by two
parameters: m and n (with n slightly larger than 1). At the
beginning of the attack, the deviation is small, making it
difficult to be detected. As a result, the spoofed GPS
measurements would be fused and corrupt the data fusion
framework (i.e., EKF). Once this occurs, aggressive deviations
can be injected without alerting the detection algorithm.

c, =mx*nk

(7

V. INFRASTRUCTURE-ENABLED DEFENSE METHOD

An overview of the IED framework is shown in Fig. 2.
Besides the EKF-based localization model that continuously
localizes the vehicle (Section III-C), there are three new
components. The first component aims to obtain secure, global
measurements of vehicle positions from RSUs. The second one

(RSU-enabled detection component) runs a real-time detector
to monitor whether a received GPS measurement is spoofed or
not. The third component is to correct the vehicle location using
RSU data. In the following, we describe each of the three
components in detail.

_ 2. Attack Detection!

Fig. 2. IED SOLUTION FOR GPS SPOOFING DETECTION AND
CORRECTION.

A. Secure RSU Data from the Infrastructure

1) Design of Secure RSU Data

Methods for obtaining secure RSU data include two major
aspects: (i) what data to collect and how to collect them; and (ii)
how to secure data collection and transmission. We focus on (i)
in this study. For (ii), as discussed in Section II-D, we apply the
AES scheme, one of state-of-the-art encryption methods, to
design dedicated secure channels for secure data collection and
transmissions, focusing on testing its performance in spoofing
detection and correction in Section VI.

The design of secure RSU data ensures that a vehicle can use
the data to obtain a global position measurement similar to GPS,
denoted as xfSU . This has been extensively studied in the field
of GPS-free localization [46]-[48]. A common practice is to
first estimate the vehicle’s relative position to the RSU via
ranging methods and then compute the vehicle’s global position
given the (global) coordinates of the RSU [38]. In a ranging
method, the distance between a radio transmitter (the RSU here)
and a receiver can be inferred from the properties of the radio
wave observed at the receiver [47]. Note that this distance is
termed as range following the literature. The widely known
ranging methods include those collecting and utilizing received
signal strength (RSS), arrival time or arrival angle [46]. For
CAVs that can communicate with RSUs, such range
information can be readily available on the vehicle side.
Following [46], we use M () to express a ranging method that

obtains the range information zRSY at time k:
zBY = M(xy, CrdRSY) + efSU. 8)

Here, M (o) is essentially a measurement model depending on
the wvehicle’s (true) global position x, and the RSU’s
coordinates Crd®U . efSU is the measurement noise in a
Gaussian distribution with covariance matrix %5V In [46], a
recent review of RSU-assisted localization methods is
provided, which vary with the RSU data types and
configurations of signal transmitters on RSUs and receivers on
vehicles. There are also real-world implementations in GPS-
absent environments (e.g., Waze’s Beacon program to provide
navigation for drivers underground [49]). The RSU-assisted
localization methods could reach an accuracy in centimeters,
much higher than that of GPS [47].

In this study, we implement an efficient and low-cost V2X-
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based vehicle localization method by Ma et al. [50]. See a
discussion of its efficiency in terms of computational latency
below. It is low cost as it needs only a single data transmitter on
the RSU side and a single receiver on the vehicle (i.e., it is
similar to and can be implemented via the current V2X
framework), compared with other ranging methods using
multiple transmitters or receivers to collect information such as
angle of arrivals [50]. Ma et al. [50] assumes that the RSU
broadcasts its coordinates, and a vehicle receives the message
and extracts associated range information (i.e., the relative
distance information). Then the vehicle computes its global
position xRV using a sequence of range information zFU .
Therefore, this method may be readily deployed based on the
current V2X systems without additional hardware requirements
(the range information does need to be extracted from the
receiver on the vehicle side). Omitting the details, we denote
this method with function G (e) [50]:

(xBSU, RRSU) = 9)

RSU _RSU RSU RSU
G([zy>", zp2q, s ZR20], Crd ™", [Wy, Up—q,y oo, Uge—o ).

[285Y, 2859, ..., z8U] is the sequence of range information
associated  with the messages from an  RSU.
[, upe_q, ..., ug_o] is a sequence of local measurements

containing either speeds or local displacements. These local
measurements can be easily accessible from either the vehicle’s
own wheel encoder or IMU. Covariance matrix RF°V considers
the uncertainty associated with the estimated position x5°U,
which may be affected by the sequence length and noises in the
range information. It is reported that the error of xF°U is less
than one meter. In our study, we conduct sensitivity analysis in
Section VI to test whether RSU-assisted location accuracy will
play a role in detecting and correcting GPS spoofing attacks.

Lastly, the Ilatency needs to be considered when
implementing the AES scheme to set up the secure channel
between an RSU and vehicles. Here latency stems from three
sources: the communication latency, the latency due to
encrypting and decrypting the transmitted data, and the
computational time to derive the vehicle’s global position. One
main contribution to the communication latency is the V2X
technology involved, such as the Dedicated Short-Range
Communication (DSRC) and the emerging 5G-based Cellular-
V2X (C-V2X) system. Previous studies have reported that the
DSRC communication latency ranges from 10ms to 100ms
[51], [52] and the C-V2X communication latency would not
exceed 60ms even when there are 150 vehicles in the same
communication channel [51], [53]. In our implementation, the
run times for encrypting/ decrypting the transmitted data and
deriving vehicle’s global position are negligible (0.60ms and
0.13ms, respectively), when evaluated from an average of 1000
runs on a personal computer (with a 3.60GHz AMD Ryzen 7
CPU). This suggests that the latency of the designed secure
RSU data is dominated by the communication latency. In this
paper, we use 100ms, the largest reported communication
latency in the numerical experiments.

2) RSU-based Location Prediction

The relative vehicle position measured by RSU, zZ5Y, would
not always be available, depending on the avallablhty of RSUs
along the road. Due to budget limits in a real-world setting,
RSUs may be spatially sparse in the road network and RSU data

U

is only available when vehicles are within an RSU’s service
range. In this study, we assume the distance between two
consecutive RSUs, denoted as Dggy, is uniform, and the service
range dpsy is fixed. In Section VI, we conduct sensitivity
analyses on how the spacing of RSUs will impact the
performance of the proposed methods.

If RSU data are unavailable, we utilize the last available RSU
data and vehicle motion model to predict a vehicle’s location,
enabling us to continuously monitor GPS measurements and
timely detect attacks. The prediction should not involve GPS
measurements that may have been compromised at the time
when attacks are detected. However, since the vehicle location
may change dramatically following commands from the
vehicle’s actuator (e.g., throttle, brake and steer), predicting the
vehicle location can be challenging.

We build an RSU-based prediction model leveraging RSU
data and the vehicle motion model to address this challenge.
Specifically, given the most recent vehicle (global) position
information (x%5Y; see (9)) enabled by the RSU at time k, we
predict vehicle location at k+ Ak . For this, we start a
standalone vehicle motion model at k, initialize it with xg°U
and then iterate it using IMU datau, (t € [k + 1,k + Ak]) as
the input. Note that besides predicting vehicle locations, we also
propagate the errors in IMU data to gain the prediction
uncertainty that is represented by a covariance matrix PFSU.
The iterations of x2SV and PESY are expressed in (10). We will
use this prediction model in Section V-B to detect GPS
spoofing and in Section V-C to correct the vehicle location
when GPS spoofing is detected.

x%Y = (] )

(10)
PRSU =F, 1PRSUFT 1+ L 1QLY,
€ [k+ 1,k + Ak]
_0fe- _ofe .
Here, Ft__1 = axz_i |x1te_slu and L,_; = V: |x§_slu are the partial

derivative matrices w.r.t. the state x and IMU noises w.

B. iForest Model-base Attack Detection

Given the RSU data, the spoofing detection is formulated as
areal-time anomaly detection problem, containing two parts: 1)
generating real-time features, and 2) building a machine
learning model that determines whether a GPS measurement is
anomalous or not given the features at k.

1) Feature Generation

- The classical feature NEES

We start with the classical feature for GPS spoofing
detection, called NEES (Section II-B). It is computed as the
normalized deviation of the received (possibly spoofed) GPS

Z2PS from the predicted location X, denoted as 57, as below.
rCPS = 56PS _ R,
SGPS = HP,H" + R°PS (11)
NEESGPS (rGPS)T(SGPS) 1 GPS

Note that H and P, are defined in Section III C, and $¢7 is a
covariance matrix reflecting the uncertainty of 7g"S.

It has been proven that if the noises in measurements follow
a normal distribution, NEES follows a y? distribution [34].
Therefore, in previous studies, the y? -test-based detection
using NEESEPS is often applied to detect GPS spoofing.
However, NEES could be impacted by noisy GPS
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measurements, making it hard to differentiate attacks from
noises [18]. Furthermore, the y?-test-based detection could be
ineffective for stealthy attacks [1]. This is because attackers
could inject a sequence of false information into the authentic
GPS measurements; each piece of false information alone may
not lead to a large enough NEES to trigger the alarm, but these
errors together could successfully deviate the vehicle. If this
happens, the x? -test-based detector itself may also be
compromised, making it less likely to detect spoofing attacks.
- Features generated from RSU data

We can create new features based on the measurements from
RSUs, without involving GPS measurements, to address the
issues associated with NEES. A straightforward way to create
new features is to compute the difference between RSU and
GPS measurements. However, as noted earlier, measurements
from RSUs and GPS may not be at the same frequency, with
the former not always being available. As a result, the two
would not be directly comparable.

We address this issue by utilizing the RSU-based location
prediction (see Section V-A). The predicted location is
generated whenever a GPS measurement is received and needs
to be validated. Then, new features are created by comparing
the GPS measurement with RSU-based prediction in (10). Since
the prediction in (8) does not involve GPS measurements, these
features are ‘protected’ as they are immune to GPS spoofing
attacks. Specifically, using the RSU-based location prediction
xRSV and the associated covariance matrix PRV (see Section
V-A), we first compute the residual between the GPS
measurement and the prediction 775 as well as the uncertainty
of the residual SFSU, following (12). Then we generate two new

(scalar) features ¥V and SRSY, as shown in (13).

r;(?SU — ngS _ Hx;(?SU

S}];\:SU — HP;(?SUHT + RRSU (12)
i o
Sk = Sk

Here, ||¢|| and |¢| compute the L2 norm of a vector and the
determinant of a matrix, respectively.

2) Building an Isolation Forest as the Detector

The attack detection is treated as a real-time anomaly
detection problem, for which we apply an unsupervised
machine learning model to learn anomalies from the data.
Specifically, we detect GPS spoofing by building an Isolation
Forest (iForest) that takes all the above features A; =
(NEESEPS, rRSU SRSUY at time k as the input. Note that though
NEESEPS may be corrupted due to GPS spoofing and thus not
a reliable feature alone, valuable information can be generated
by comparing it with the other features, providing additional
dimensions of inconsistency (anomaly) check.

iForest produces binary outputs: §; = 1 indicates being
under attack and §;, = —1 indicates otherwise. Compared with
other unsupervised learning methods, iForest has multiple
advantages [54]. First, it has shown superior performance in
detecting anomalies in extensive empirical studies. Second,
iForest is easy to train in terms of selecting hyperparameters
and can scale up to massive applications due to its linear time
complexity and low memory consumption, making it suitable
to run on vehicles with constrained resources.

The intuition behind iForest is that anomalous (or malicious)

samples are easier to separate (i.e., isolate) from others
compared with benign samples. In order to isolate a sample, the
algorithm recursively generates partitions on all the samples by
randomly setting a split (e.g., a threshold with a random feature)
until all samples are separated. The recursive partitioning
process is represented by growing a tree structure
named Isolation Tree (iTree), with the leaves (or terminating
nodes) being separated samples and intermediate nodes being
attribute splits. Then, the length of the path to reach a sample
starting from the root of an iTree approximates the number of
partitions required to isolate the sample; a short length suggests
a sample suspicious to be anomalous (as it is easier to separate).
By constructing a large number of (random) iTrees based on the
training dataset, we build an iForest. Using this iForest, we can
identify samples that tend to have shorter path lengths in iTrees
than others as anomalous. Anomaly detection with iForest
consists of two stages: 1) a training dataset is used to build a
forest of iTrees (i.e., iForest), and 2) each testing sample is
passed through these iTrees, and an average anomaly score is
assigned to the sample, which is further classified as a binary
value. Readers are referred to [54] for more details.

An unsupervised learning method, the iForest can be trained
without labeling the data; thus, the training data can be easily
prepared. In this study, we generate training samples by running
vehicles and collecting the features at each time step. It is worth
noting that iForest works in scenarios where the training dataset
does not contain any anomalies. Therefore, we could prepare
training samples using historical data, which may or may not be
attacked. In this study, the training data is collected by running
vehicles without GPS spoofing. The trained iForest can then be
applied to detect GPS spoofing attacks in real-time. As
expressed by (14), to check whether the GPS measurement at
time & is spoofed, we compute a set of real-time features 4;, and
input them to the trained iForest. An attack is detected if &, =1.

6, = iForest(A4), & € {—1,1}. (14)

In applications where GPS noise is large, we improve the
robustness of the iForest-based detector by accounting for the
temporal pattern of the features. Specifically, we apply a sliding
window to use not only the features at time & but also the ones
at the previous time steps. In our experiment study where GPS
noises are assumed large, features at the previous two steps (i.e.,
A _,, Ay _1) are incorporated to detect attacks at time £, as it is
not common to observe three outliers consecutively (15). One
may adopt a wider sliding window at the cost of a higher false-
negative rate.

6 = iForest(Ay_5, Ay_1,A;), 8, € {—1,1}. (15)
Note that using the new features calculated from RSU data,
similar machine learning methods, such as OCSVM (see
Section II), can also be used to develop the detector, with their
specific challenges addressed properly (e.g., choosing proper
kernel functions and associated parameters for OCSVM [55]).

C. Infrastructure-enabled Correction

Measurements from RSUs can also be used to correct vehicle
positions, which is triggered either (a) when RSU data is
received, or (b) when the detector detects GPS spoofing; see
Fig. 2. In (b), the RSU-based location predictions will be used
for correction if a vehicle is outside of the service range of
RSUs. We introduce each case in detail in the following.
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1) When RSU Data is Received

When a vehicle enters the service range of an RSU, the
vehicle periodically obtains measurements from the RSU,
which can be used to correct the location estimation. The
correction is done by directly initializing the state of EKF
(X, P) following (16).

X Pr) = (Y, PRY) (16)

Here, (xR5Y, PRSU') is the secure location estimation from RSU
data in (9). An alternative way to correct vehicle position using
RSU data is to follow the EKF’s update step as introduced in
Section III-C. However, this may not be reliable in stealthy
attacks, which may bypass the attack detector and gradually
corrupt the EKF [1]. The proposed method can effectively
remove an attack’s negative effects via direct initialization.

2) When GPS Spoofing is Detected

When the detector detects an attack, besides isolating the
GPS sensor, it corrects the EKF estimator as well. If RSU data
is available, (16) is followed to correct the EKF location
estimator; if not, the predicted location from the RSU-based
prediction model is used. Specifically, when GPS spoofing is
detected starting at k + Ak but RSU data is not available, the
predicted position x84, and its covariance matrix PRSY, in
(10) are used by directly initializing the EKF state.

Since the RSU-based prediction model does not involve GPS
measurements that may have been spoofed, the predicted
location is able to correct errors resulting from a delayed
detection, where the EKF estimator may have been
compromised already. We show in Section VI-B that this brings
benefits in defending stealthy attacks that are often detected
with a delay. This is distinctively different from existing
spoofing defense methods without RSU data: without removing
the negative effect of the spoofed GPS measurements, they tend
to generate deviated location estimations even if the vehicle
successfully detects and isolates falsified GPS measurements.

VI. EXPERIMENTAL STUDY

A. Experiment Settings

1) General Settings

We test the proposed IED framework using both simulation
data and real-world data. Simulation data is from the
Downtown Seattle simulation model (Fig. 3a) built in
Simulation Urban Mobility (SUMO). Fifty-three passenger
vehicles are randomly selected for testing. Their trajectories
allow us to capture diverse driving scenarios, including
highways and local streets, where road geometries and vehicle
dynamics vary considerably. The real-world GPS data contains
trajectories from 15 vehicles, including both delivery trucks and
passenger cars. Passenger car trajectories were collected from
two field experiments conducted in Albany, NY, which were
originally for measuring traffic performance [56]. Truck
trajectories were provided by several anonymous logistic
companies. Each vehicle trajectory comprises a sequence of
time, location and speed reports, collected every 1 s.

Taking a trajectory as the input, the MATLAB Navigation
Toolbox (MNT) is used to simulate necessary sensor
measurements along the trajectory, including local (e.g., IMU),
global (e.g., GPS data) and range measurements (e.g., RSU
data). GPS data are manipulated following the attack models

(Section IV) to simulate GPS spoofing attacks. The parameters
of the IMU and GPS sensors (e.g., accuracy levels and
resolutions) are set as MNT’s default values, which reflect real-
world sensor properties to a large extent. See details of MNT’s
sensor models in MATLAB documentation [57]. IMU and GPS
measurements are sampled at 10Hz and 1Hz, respectively.
RSUs are located along the road at an equal distance, and the
service range of an RSU is represented by a circle with a radius
of 500 meters centering at the RSU. Under the service range of
an RSU, radio signal-to-noise ratio (SNR) in dB is simulated
using the ground-truth range (i.e., the distance between the
vehicle and the RSU) and following the measurement model
SNR = 101log,(]z"Y|?/(a®5Y)?) as in [50] (essentially the
reverse of the ranging method). Here, |2zR5Y| is the Euclidean
distance between the vehicle and RSU and oR5V represents the
uncertainty (see Section V-A), which will be investigated
further in our sensitivity analysis. The encryption, decryption
and transmission process for data security is simulated via an
AES scheme assuming a 100ms latency as noted earlier.
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Fig. 3. (a) ROAD NETWORK OF DOWNTOWN SEATTLE IN SUMO
BASED ON OPEN STREET MAP [58]; (b) SENSOR MEASUREMENTS
ALONG A TRAJECTORY.

Fig. 3b illustrates an example of a ground-truth trajectory
together with IMU, GPS and RSU measurements to help
understand the sensor data. The measurements are visualized at
where they are received/computed. It can be observed that GPS
measurements are periodically received along the trajectory
while RSU measurements are not spatially continuous but
clustered around where RSUs are installed.

To simulate GPS spoofing, we randomly select the start time
and duration of an attack (a uniform distribution ranging from
5 to 35 seconds). The attack modifies the true GPS data and
passes the modified data to the vehicle for location estimation.
We simulate the two types of attacks in Section I'V. For constant
bias attacks, GPS measurements are modified to deviate them
by four meters, which is roughly the lane width. For stealthy
attacks, m=1.0 and n=1.07, respectively. We choose the two
values so that the maximum deviation is comparable with the
one in the constant bias attack (e.g., four meters) for an average
attack duration of 20 seconds. These values also approximate
the ones used in the original study [1].

2) Overview of the Experiments and Key Metrics

We compare the iForest-based IED method with benchmark
methods (see Section II) that include the y?-test-based detector,
the CUSUM detector, the OCSVM detector implemented
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TABLE I
PERFORMANCE OF THE PROPOSED AND BENCHMARK METHODS ON SIMULATED TRAJECTORIES

x?%-test-based CUSUM
F1 Score 0.56 0.69
. Precision 0.52 0.60
Constantbias —— p ca 0.69 0.86
attack .
Detection lag 0 0
RMSE 5.74 4.53
F1 score 0.47 0.21
Precision 0.53 0.30
Stealthy attack Recall 0.49 0.22
Detection lag 3 14
RMSE 5.69 4.58

following [13] without using RSU data, and the OCSVM
detector that uses the RSU data (hereafter referred to as the
“OCSVM-based IED method” as it uses the same set of features
as the iForest method). For a detector that requires tuning
parameters, we search around the parameters suggested in the
original work and take the ones that yield the best performance.
The performance is averaged over all tested trajectories with
random attack times (i.c., attack starting time and duration). The
similarities and differences of results from simulated and real-
world trajectories are summarized. Lastly, we present results
from sensitivity analysis of the iForest-based IED method under
three influential factors, i.e., RSU spacing DRV
hyperparameter of iForest a, and the error in RSU-assisted
localization o®SY.

Several common metrics are adopted to evaluate the
performance of the methods, including the FI score, precision,
recall, detection lag, and Rooted Mean Square Error (RMSE)
of location estimations. The first three evaluate detection
accuracy, ranging from 0 to 1. Precision calculates the ratio of
true positives (TP) over all the identified positives, and recall,
also termed as the correct detection probability, is the ratio of
true positives (TP) to all ground-truth positives. A higher
precision and recall mean a lower false-positive (FP) rate and a
higher TP rate, respectively. A higher '/ means better detection
performance in terms of balancing FP and TP.

F1= Z*pre'CL'.slon*recall (17)
precision+recall

Starting from the beginning of a spoofing, detection lag
counts the number of GPS measurements (at 1Hz) missed by
the detector before the attack is detected. If GPS measurements
are spoofed but not detected timely, the victim vehicle
assimilates them for location estimation, leading to a deviated
trajectory. RMSE measures the location estimation error along
a trip by computing the distance between the estimated
locations X, and true locations x;:

(18)

Here, ||X; — xi ||, is the distance between the true location and
estimated location at time £. K is the duration of the trajectory.

1 ~
RMSE = LI ol%, - %l

B. Testing Results Using Simulated Trajectories

Table I evaluates the proposed method using simulated
trajectories. Under the constant bias attacks, it can be found that

gténsv\e;rltllonal OCSVM-based iForest-based
IED IED
(No RSU data)
0.70 0.83 0.86
0.55 0.72 0.77
0.95 0.98 0.99
0 0 0
5.02 0.36 0.43
0.43 0.72 0.78
0.45 0.62 0.76
0.57 0.86 0.84
4 2 2
5.01 0.36 0.42

all the methods can detect the start of attacks with no lag. Yet,
given its strength in balancing FP and false negatives (FN)
errors, the IED methods give F1 scores of 0.86 and 0.83,
respectively, which are much better than the other three non-
IED methods. The precision and recall of the IED methods
indicate that they could nearly identify all the spoofed GPS
measurements while generating some FPs possibly due to
noises in GPS sensors. As shown later in the sensitivity
analysis, we can reduce FNs while curbing FPs by tuning the
hyperparameter. On the other hand, the low precisions by the
three non-IED methods suggest that they produce many FPs.
The conventional OCSVM has high recalls with low precisions,
as it tends to produce FPs. The performance of OCSVM-based
IED method, by utilizing RSU data, can be boosted
significantly, which is similar to the performance of the iForest-
based IED method. OCSVM has a lower F1 score due to its
sensitivity to outliers as discussed in Section II-B. The results,
especially the similar performances between iForest-based and
OCSVM-based IED methods, suggest it is the new features
computed from infrastructure data, not the specific learning
methods, that lead to the improved performances of the IED
methods. With effective detection and correction, the IED
methods can dramatically reduce location errors compared to
non-IED methods.

Under stealthy attacks, the IED methods give F1 scores of
0.78 and 0.72 respectively, again much better than the three
non-IED methods. These findings suggest that the IED methods
can effectively detect the attacks, despite the fact that the
measurements from RSUs are not always available. Some
interesting findings can be observed by comparing the
performance under the two types of attacks. First, it is
reasonable to observe that all the tested methods perform worse
under stealthy attacks. Noteworthy is that though being
downgraded, the IED’s performance under stealthy attacks is
still promising: the recall of 0.84 (or 0.86 for OCSVM-based
IED) suggests that 84% (or 86%) of spoofed GPS
measurements can be successfully detected. Second, unlike
constant bias attacks, all the tested methods experience
detection lags under stealthy attacks. Both IED methods miss
two spoofed GPS measurements, as indicated by the detection
lag in Table I. This is due to the attacks’ stealthy design, where
added perturbations are small at the early stage of attacks.
Although missed by the detector, the two spoofed GPS
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TABLE II
PERFORMANCES OF THE PROPOSED AND BENCHMARK METHODS ON REAL-WORLD TRAJECTORIES

x2-test-based CUSUM
F1 Score 0.54 0.66
. Precision 0.64 0.61
fti’;sl:am DS pecall 0.52 0.75
Detection lag 0 0
RMSE 2.52 1.90
F1 score 0.44 0.22
Precision 0.64 0.54
Stealthy attack Recall 0.38 0.14
Detection lag 6 16
RMSE 2.02 1.19

measurements only bring small deviations to the location
estimation, which are corrected once attacks are detected.

C. Testing Results using Real-world Trajectories

We further evaluate the proposed methods using real-world
GPS trajectories, and the results are reported in Table II. It can
be found that the IED methods still outperform the other three
methods under both types of attacks. The F1 scores under
stealthy attacks decrease, suggesting that all the methods are
less effective compared with detecting constant bias attacks.

The F1 scores are close to those of the tests using simulated
trajectories, suggesting the IED methods are also effective in
dealing with real-world data. In detecting stealthy attacks, the
IED methods have smaller recalls while larger precisions,
compared with results from those on simulated data. The
smaller recalls also lead to longer detection lags. In the
following sensitivity analyses, we show that the trade-off
between precision and recall can be adjusted according to the
practical needs by varying hyperparameters of attack detectors.

D. Sensitivity Analysis

Multiple factors may impact the performance of the IED
methods, such as the distance between two consecutive RSUs,
the hyperparameters, and the accuracy of RSU-assisted
localization. Here we conduct sensitivity analyses on how these
factors influence the iForest-based IED method. Simulated data
are used for the analysis unless noted otherwise.

1) Distance Between Two Consecutive RSUs

Given its reliance on RSU data, the IED method is expected
to be influenced by RSU’s deployment strategy. Specifically,
out of the RSU service range, the vehicle relies on RSU-based
location prediction for attack detection and correction. Table I11
shows the performance of varying RSU distance Dggy; under
attacks. Note that we stop at 2000m as most of the trajectories
are shorter than 2000m and a larger Dgg; does not reduce the
performance further. As expected, the performance (such as F1
score and RMSE) downgrades as Dggy increases. Yet, the
iForest-based IED method still maintains an advantage over the
benchmark methods as Dgg;; increases.

Fig. 4 and Fig. 5 show the sensitivity of the false alarm rate
and recall (correct detection probability) with Dpgy (and the
other two factors as well). It can be observed that a larger DRSU
leads to a larger false alarm rate for both attacks. Under constant

gglsvér;:[wnal OCSVM-based iForest-based
IED IED
(No RSU data)
0.64 0.80 0.93
0.48 0.67 0.88
0.95 1.00 1.00
0 0 0
2.04 0.12 0.17
0.45 0.69 0.73
0.38 0.67 0.83
0.58 0.76 0.67
6 4 6
1.90 0.17 0.17

bias attacks, the recall stays close to 1, and the detection lags
are zero, suggesting that these attacks can be easily and timely
identified regardless of DRSY Under stealthy attacks, increasing
DRSU from 1000m to 1500m does not affect recall significantly,
while a larger DRSY (at 2000m) drops it.

TABLE III
INFLUENCE OF RSU SPACING ON IFOREST-BASED IED METHOD
Dgsy = 1000m  1500m  2000m

F1 Score 0.92 0.86 0.82

bi Precision 0.86 0.77 0.72

actf;skmt 185 Recall 099 099  0.99
Detection lag 0 0 0

RMSE 0.10 0.43 0.54

F1 score 0.83 0.78 0.62

Precision 0.83 0.76 0.64

S&Zﬁhy Recall 0.83 084  0.65
Detection lag 3 2 6

RMSE 0.10 0.42 0.60

—a— Constant bias attack
—e— Stealthy attack
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Fig. 4. EFFECTS OF INFLUENTIAL FACTORS ON FALSE ALARM
RATE.
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2) Hyperparameter of the Attack Detector

In the iForest-based IED method, one key hyperparameter
associated with iForest is contamination (denoted as a) which
specifies the proportion of spoofed samples in the data set.
Table IV summarizes the performance of the IED method with
different , ranging from 0 to 0.5. 0 means no anomalies and
0.5 means that half of the data samples are anomalies. A range
from 0.1 to 0.3 in Table IV captures a fairly large range of .

TABLE IV
IMPACTS OF IFOREST HYPERPARAMETER
a= 0.1 0.2 0.3
F1 Score 0.91 0.86 0.8
Constant Precision 0.86 0.77 0.69
bias attack Recall 0.99 0.99 0.99
Detection lag 0 0 0
RMSE 0.25 0.43 0.31
F1 score 0.71 0.78 0.71
Stealth Precision 0.8 0.76 0.62
o Recall 0.65 0.84  0.86
Detection lag 6 3 2
RMSE 0.35 0.42 0.45

Under the constant bias attacks, recalls remain unchanged
(near 1), suggesting that the method can robustly detect spoofed
GPS data under such attacks for a wide range of a (Table IV
and Fig. 5). Meanwhile, a sensitive detector with a large a tends
to reduce the detection lag. Yet, under both constant bias and
stealthy attacks, a larger « leads to more FPs, as indicated by
the increase in the false alarm rate (Fig. 4) and the decrease in
precision (Table IV). On the other hand, a larger a brings
benefits to detecting stealthy attacks, since i) more spoofed GPS
measurements can be detected (as indicated by the larger
recall), and ii) the detection lag is shorter.

In summary, a proper « can help balance precisions and
recalls. The proper o depends on the types of attacks: a small «
is good for detecting constant bias attacks but encourages FNs
in stealthy attacks, reducing recalls. Given the high threat of
stealthy attacks, it would be beneficial to set a relatively large
a to effectively detect such attacks. In our experiments, a
balance between precisions and recalls under the stealthy attack
can be reached around a=0.2.

3) Accuracy of RSU-assisted Localization

Vehicle localization assisted by the RSU can be more
accurate (in centimeters) than GPS measurements (in meters).
In practice, the accuracy of RSU-assisted localization could
depend on factors such as the ranging method applied, how
RSUs are configured, and the real-time driving environments.
Here, we check how the accuracy of RSU-assisted localization
may impact the performance of the proposed method.

Table V shows three accuracy levels of RSU-based
localization obtained by tuning the uncertainty parameter o?SY
(Section V-A). g®U=0.5 means that about 95% of location
errors are within one meter, which is often considered as the
worst scenario for RSU-assisted localization [48]. It can be
observed that compared with the baseline (a®5U=0.25), the
higher accuracy in RSU-assisted localization (¢?SU=0.1) has
nearly no effect on detecting constant bias attacks but does
improve the performance of detecting stealthy attacks that add
tiny deviations at the beginning of an attack. A lower location

accuracy (o”5Y=0.5) reduces the performance in both types of

attacks, with a higher false alarm rate (Fig. 4) and leading to
larger location estimation errors (in RSME).

TABLE V
IMPACTS OF THE ACCURACY OF RSU-BASED LOCALIZATION
oRSU = 0.1 0.25 0.5
FI Score 0.86 0.86 0.71
Constant Precision 0.75 0.77 0.55
bias attack Recall 0.98 0.99 0.99
Detection lag 0 0 0
RMSE 0.41 0.43 0.81
F1 score 0.77 0.78 0.72
Stealthy Precision 0.71 0.76 0.59
-, Recall 0.85 0.84 0.94
Detection lag 3 3 0
RMSE 0.42 0.42 0.54

VII. CONCLUSION AND DISCUSSIONS

In this paper, we proposed an infrastructure-enabled defense
(IED) framework that utilizes secure RSU data for detecting
GPS spoofing and correcting location errors from the spoofing.
Timely detection is achieved by designing and training an
iForest model using real-time features computed from both
RSU data and (possibly spoofed) GPS data. Once spoofing is
detected, GPS data is isolated and the compromised vehicle
locations are corrected using RSU data. Experimental results
using both simulation and real-world GPS data demonstrated
that the IED framework enhances timely detection and
correction even when RSU data is not spatially continuous. We
showed that the IED framework is effective in defending
against state-of-the-art stealthy GPS spoofing models.
Furthermore, sensitivity analyses produced insights into how
RSU deployment, hyperparameters, and the accuracy of RSU-
assisted localization impact the IED’s performance.

The IED framework for GPS spoofing distinguishes itself
from non-IED methods in three major aspects. First, it relaxes
the requirement of vehicular sensors, making detectors more
robust when dealing with spoofing attacks. Second, enabled by
the secure RSU data, a relatively simple detector based on an
unsupervised learning algorithm (e.g., iForest or OCSVM) can
effectively detect GPS spoofing attacks. The advantage stems
from the fact that the features computed from secure RSU data
for attack detection are “protected”, relieving the challenges of
developing attack-resilient algorithms. This advantage could be
exploited to defend against false data injection attacks in
general since the GPS spoofing setting adopted in this paper is
general and can represent other false data injection attacks [9].
That is, if the observation deviates too much from “the expected
value” that is computed using secure infrastructure data, the
observation is likely under attack.

Several limitations of the proposed IED framework call for
future research. First, the detection and correction methods may
be enhanced by more advanced learning approaches (such as
deep learning) to further improve their performances. Second,
more research efforts are needed to design optimal strategies for
deploying the RSUs. In this study, we assumed RSUs are
deployed evenly on the roadside and conducted sensitivity
analyses to understand the impact of the distance between two
consecutive RSUs on the IED’s performance. For future
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research, the optimal RSU deployment problem may be studied
to produce RSU deployment strategies that systematically
consider the deployment cost, traffic environments, road
geometry, and the performance of the spoofing defense method.
Third, future investigations are needed to test the IED’s
performance in real-world driving scenarios where GPS
spoofing attacks, infrastructure (RSU and implementation of
the ranging method in Section V-A), and the IED framework
are implemented and tested. Fourth, the IED framework may be
enhanced by incorporating additional (and easily obtained) data
sources for more robust location estimation and/or attack
detection. This is particularly so for scenarios where the
distance between RSUs is large. For instance, the geometric
outlines of roads may be used as constraints to improve location
estimation/prediction, which may further improve detection
accuracy. Last but not least, as infrastructure is becoming more
important in transportation, the idea of the proposed IED
framework may be applied to other applications. This may
include vehicular computer vision systems that are vulnerable
to data attacks, e.g., adding adversarial images to onboard
cameras [59], or spoofing attacks on LiDAR data [4]. The
proposed IED framework may be applied to these applications
by i) designing specific secure infrastructure data including
what data to collect and how to secure data transmission, ii)
computing new features from the infrastructure data to help
develop effective attack detection methods, and iii) correcting
possibly corrupted data by using infrastructure data. The
authors will pursue these research directions, and results may
be reported in subsequent papers.
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