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Geological processes at subduction zones and their associated geohazards (e.g., mega-
thrust earthquakes, submarine landslides, tsunamis, and arc volcanism) are, to a large
extent, controlled by the structure, physical properties and fluid content of the subducting
plate, the accreted sediments, and the overriding plate. In these settings, modern seismic
modeling and imaging techniques based on controlled-source, multicomponent ocean-
bottom seismometer (OBS) data are some of the best tools available for determining
the subseafloor elastic properties, which can be linked to the aforementioned properties.
Here, we present CASIE21-OBS, a controlled-source marine wide-angle OBS data set
recently collected across the Cascadia convergent margin as part of the larger
CAscadia Seismic Imaging Experiment 2021 (CASIE21). The main component of CASIE21
is a long-offset multichannel seismic (MCS) survey of the Cascadia margin conducted in
June–July 2021 onboard R/V M.G. Langseth (cruise MGL2104) aiming to characterize
the incoming plate, the plate interface geometry and properties, and the overlying sedi-
ment stratigraphy and physical properties. CASIE21-OBS was conducted during R/V M.G.
Langseth cruiseMGL2103 (May 2021) and R/VOceanus cruise OC2106A (June–July 2021). It
consisted of 63 short-period four-component OBSs deployed at a total 120 stations along
10 across-trench profiles extending from ∼ 50 km seaward of the deformation front to the
continental shelf, and from offshore northern Vancouver Island to offshore southern
Oregon. The OBSs recorded the airgun signals of the CASIE21-MCS survey as well as natu-
ral seismicity occurring during the deployment period (24May 2021 19:00 UTC–9 July 2021
09:00 UTC). The OBS data are archived and available at the
Incorporated Research Institutions for Seismology Data
Management Center under network code YR_2021 for con-
tinuous time series (miniSEED) and identifier 21-008 for
assembled data set (SEG-Y).

Introduction
The potential for great megathrust earthquakes at subduction
zones is influenced by a variety of factors, including the structure
and properties of the incoming plate. For example, large-magni-
tude earthquakes (Mw ≥ 7:5) are thought to occur preferentially
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where thick incoming sediments contribute to a smooth plate
interface, which favors rupture propagation (Heuret et al.,
2012; Scholl et al., 2015; Seno, 2017; van Rijsingen et al.,
2018). Incoming sediment composition and physical proper-
ties also play a role in décollement development, extent of up-
dip megathrust rupture, and potential for tsunamigenic slip
to the trench (Dean et al., 2010; Gulick et al., 2011; Chester et
al., 2013; Geersen et al., 2013; Hüpers et al., 2017; Vannucchi
et al., 2017). Features characterizing the downgoing plate’s
crust and mantle such as seamounts, pseudofaults, and frac-
ture zones represent hydration anomalies that may influence
the seismogenic behavior of a subduction system. For exam-
ple, pre- and postseismic activity in the Mw 8.3 Illapel, Chile,
earthquake region was associated with hydrated slab struc-
tures (Poli et al., 2017); the extent of bending-related faulting
and inferred hydration off the Alaska Peninsula correlate with
changes in incoming plate seismicity and deformation
(Shillington et al., 2015); and variations in pore-fluid pressure
at the plate interface in the region of the 2010 Mw 8.8 Maule,
Chile, earthquake, which are attributed to dehydration of a
subducted fracture zone, may control the degree of interseis-
mic locking and slip distribution of large earthquake ruptures
(Moreno et al., 2014).

The Cascadia convergent margin represents an end member
of the global subduction zone system where the young, warm,
and heavily sedimented Explorer-Juan de Fuca-Gorda oceanic
plate system subducts beneath western North America (e.g.,
Wada and Wang, 2009; Fig. 1). Despite the lack of Cascadia
megathrust events since 1700 and the generally low levels
of instrumentally recorded plate interface seismicity (e.g.,
McCrory et al., 2016), paleoseismology studies provide evi-
dence for repeated subduction-related earthquakes and tsuna-
mis in the past (e.g., Atwater, 1987; Goldfinger et al., 2012;
Walton et al., 2021). The Cascadia margin shows along-strike
changes in the thickness of incoming sediments (e.g.,
Hyndman et al., 1990; Gulick et al., 1998; Han et al., 2018),
crustal hydration (Horning et al., 2016; Canales et al., 2017;
Boulahanis et al., 2022), extent of plate-bending faulting
(Han et al., 2016), strength and consolidation state of accreted
sediments and amount of sediment subduction (Gulick et al.,
1998; Han et al., 2017; Peterson and Keranen, 2019), and pres-
ence of subducting seamounts (Tréhu et al., 2012; Morton et
al., 2018) and mid-ocean-ridge-inherited propagator wakes
(Wilson, 2002; Nedimović et al., 2009). These variations in
incoming plate and accretionary prism structure, together with
along-strike changes in upper plate properties—including the
variable location of the crystalline Siletzia terrain, which forms
the backstop for the accretionary wedge, are thought to influ-
ence the along-strike variability of many of the properties
of the Cascadia subduction zone (CSZ; e.g., Delph et al.,
2018), such as density of episodic tremor and slip
(Brudzinski and Allen, 2007; Wech, 2010), plate interface lock-
ing (Schmalzle et al., 2014), structural vergence (MacKay,

1995; Gulick et al., 1998; Gutscher et al., 2001; Adam et al.,
2004; Yelisetti et al., 2017; Watt and Brothers, 2020), incoming
plate and intermediate-depth seismicity (McCrory et al., 2012;
Stone et al., 2018), and arc volcanic and geochemical segmen-
tation (Schmidt et al., 2008; Pitcher and Kent, 2019). Thus,
advancing research on CSZ structure, processes, and geoha-
zards requires comprehensive investigations of the structure
and physical properties of the incoming and subducted
Explorer-Juan de Fuca-Gorda plate system, as well as of the
accretionary prism. Such investigations should systematically
encompass the full length of the CSZ to adequately address
the along-strike variability in structure and physical properties
in Cascadia.

The CAscadia Seismic Imaging Experiment 2021 (CASIE21)
ocean-bottom seismometer (OBS) deployment (hereinafter
referred to as CASIE21-OBS) is a National Science Foundation
(NSF-) and U.S. Geological Survey (USGS)-supported con-
trolled-source marine seismic survey conducted offshore
Cascadia in May–July 2021. The main goal of CASIE21-OBS
was to collect a modern, open-access wide-angle seismic reflec-
tion and refraction data set that would enable scientists to
develop P- and S-wave velocity models (VP and VS, respec-
tively) of the structure of the accretionary prism and downgoing
plate along most of the Cascadia margin between northern
Vancouver Island and southern Oregon (Fig. 1). Such models
will be ideally suited for, among other objectives: (1) docu-
menting variations in accretionary wedge site response,
which is critical for predicting shaking along the submarine
Cascadia margin under hypothetical scenarios of future mega-
thrust earthquake rupture. Variability in shaking properties may
affect the distribution of slope failures, which influences tsunami
hazard assessment (Gomberg, 2018). Understanding the vari-
ability in shaking properties along the Cascadia margin can also
shed light onto proposed linkages between recurrence and rup-
ture size of Cascadia paleo great earthquakes and the distribu-
tion of shaking-triggered turbidites (e.g., Goldfinger et al., 2012,
2017), and the capacity for amplifying shaking from distant
great earthquakes, potentially triggering small slope failures
and turbidity currents (Johnson et al., 2017). (2) Modeling
the incoming and downgoing plate structure and extent of alter-
ation, and their variability along the margin, which could help
quantifying the contribution of downgoing plate structure
(Horning et al., 2016; Canales et al., 2017; Boulahanis et al.,
2022) to the volcanic and geochemical segmentation of the
Cascades arc (e.g., Schmidt et al., 2008; Pitcher and Kent,
2019) and to other properties such as nonvolcanic tremor den-
sity (e.g., Wech, 2010), intermediate-depth seismicity (e.g.,
McCrory et al., 2012), and fore-arc lower crustal velocity
anomalies (Delph et al., 2018). (3) Investigating potential rela-
tionships and links between accretionary wedge sediment physi-
cal properties (VP, VS, density, porosity, and fluid pore
pressure), seafloor seepage (Johnson et al., 2019), fluidmigration
through deep-seated fracture networks (Baumberger et al.,
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2018), and variability in struc-
tural deformation style (land-
ward vs. seaward) of the
accretionary prism (e.g.,
MacKay, 1995; Johnson et al.,
2006; Han et al., 2017).

CASIE21-OBS data were
primarily collected along 10
trench-crossing 2D profiles
(Fig. 1). Similar surveys have
been conducted in the past in
Cascadia (Flueh et al., 1998;
Parsons et al., 1998; Gerdom
et al., 2000; Horning et al.,
2016; Canales et al., 2017;
Boulahanis et al., 2022).
However, one of the novelties
of CASIE21-OBS is the quasi
regular and close spacing of
the primary 2D profiles along
most of the length of the
Cascadia margin, which will
allow investigating along-strike
variability in a systematic man-
ner that had not been possible
to date. Furthermore, record-
ings from out-of-plane profiles
may be suitable for 3D model-
ing along some sections of the
margin (Fig. 1). CASIE21-OBS
leveraged and was conducted
in coordination with the
NSF-supported CASIE21-MCS
(multichannel seismic), a
long-offset MCS reflection sur-
vey of the Cascadia margin
designed to provide regional-
scale characterization of the off-
shore portion of the CSZ. Here,
we present a description of
these coordinated surveys and
their scientific motivation and
an overview of the CASIE21-
OBS data quality, corrections,
known issues, initial observa-
tions, and data availability.
The intent of this publication
is to promote and facilitate
the use of this unique open-
access data set by the larger geo-
physical community to advance
research in CSZ structure, proc-
esses, and geohazards.

–130° –129° –128° –127° –126° –125° –124° –123° –122°

41°

42°

43°

44°

45°

46°

47°

48°

49°

50°

SENSOR

X

0 100 km

Pacific

Oregon

G
o
rd

a
 r

id
g

e

Blanco TF

Gorda

Juan de Fuca

Explorer

PD02

PD04

PD05

PD07

PD10

PD12

PD13

PD16

PD18

PD19

Nootka
 F

Z
Jd

F
 r

id
g

e

E
xp

l. 
ri
d

g
e

California

Washington

British ColumbiaVancouver Island

Mendocino TJ

CASIE-21 seismic surveys: MCS+OBSMCS

–4 –3 –2 –1 0 1 2 3 4 km

Figure 1. CAscadia Seismic Imaging Experiment 2021 multichannel seismic (CASIE21-MCS) and
ocean-bottom seismometer (OBS) seismic surveys over bathymetry and elevation map of Cascadia
basin, accretionary prism and subaerial fore-arc. Profiles aligned with 2D OBS arrays are labeled and
shown in bold. Open symbols denote OBS locations: circles for Scripps Institution of Oceanography
(SIO) LCs, inverted triangles for Woods Hole Oceanographic Institution (WHOI) D2s. Green OBSs on
PD04 and PD16 correspond to sites S075 (Fig. 7) and S051 (Fig. 8), respectively. Blue OBSs on PD10
and PD19 correspond to sites S006 (Fig. 6e,f), S042 (Fig. 6c,d), and S034 (Fig. 6g,h). Red X on
westernmost OBS on PD16 locates S044, which only returned ∼7% of data (supplemental material).
Gray box at the center of PD13 locates the extent of the 2022 SENSOR array. Blue dashed line locates
the Cascadia deformation front. Semitransparent purple symbols locate Advanced National Seismic
System catalog seismicity (magnitude ≥1) during the duration of the CASIE21-OBS deployment (from
24May 2021 19:00 UTC to 9 July 2021 09:00 UTC), sized according tomagnitude. Focal mechanism
plots mark epicenters and source mechanisms for the two 4 June 2021Mw 5.9 Gorda plate events.
The color version of this figure is available only in the electronic edition.
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Instrument
Deployment and
Details
Overview of CASIE21
experiments
CASIE21 is a multicomponent
project aiming to acquire
open-access marine seismic
reflection and wide-angle seis-
mic reflection and refraction
data sets across the Cascadia
accretionary wedge encompass-
ing the full length of the margin,
except the portion offshore
northern California. The data
sets consist of an MCS survey
(Carbotte, Boston, and Han,
2022), an OBS survey to facili-
tate wide-angle reflection and
refraction studies (this publica-
tion), and a more localized sea-
floor seismic nodal array for
denser sampling in a particularly
interesting region that will be
published at a later date.

The primary component of
CASIE is an ultra-long-offset
MCS survey of the Cascadia
margin (CASIE21-MCS), led
by scientists from the Lamont–
Doherty Earth Observatory
(LDEO) of Columbia
University, the University of
Texas at Austin, and Woods
Hole Oceanographic Institution
(WHOI; Carbotte, Boston, and
Han, 2022). CASIE21-MCS
took place in June and July
2021 onboard R/V Marcus G.
Langseth (cruise MGL2104)
and collected ∼5350 line km
of MCS data using a 12–15-
km-long hydrophone streamer
and a 6600 in3 airgun array
(Fig. 2).

CASIE21-OBS consisted of
63 short-period OBSs each
equipped with a three-compo-
nent geophone and a hydro-
phone, deployed at a total of
120 stations located along 10
of the CASIE21-MCS dip
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Figure 2. CASIE21-MCS profiles colored according to airgun array volume. Nomenclature key: D, dip
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profiles (Fig. 1). Deployments and recoveries were conducted
in two cruises led by USGS personnel: R/V M.G. Langseth
MGL2103 (May 2021) and R/V Oceanus cruise OC2106A
(June–July 2021). The OBS instruments were provided and oper-
ated by the U.S. Ocean-Bottom Seismic Instrument Center
(OBSIC). The primary goal of the OBS deployment was to
increase the scientific return of the acoustic signals produced
by the R/V Langseth airgun array during the CASIE21-MCS sur-
vey by acquiring a wide-angle seismic reflection and refraction
data set that would enable investigations of the physical proper-
ties of the accretionary wedge, and structure and extent of alter-
ation of the incoming and downgoing plates, among others.
Reporting the CASIE21-OBS data set is the main objective of this
publication.

The third component of CASIE21 is a high-resolution,
controlled-source wide-angle survey conducted in April
2022 using a SEafloor Nodal Seismic array off ORegon
(SENSOR) led by WHOI scientists onboard R/V Langseth
(cruise MGL2201). CASIE22-SENSOR consisted of the deploy-
ment of a dense array of 107 short-period multicomponent
(three-component geophone and a hydrophone) ocean-
bottom nodes (OBNs) leased from Geospace Technologies.
The OBNs were deployed at 500 m spacing along the central
part of CASIE21-MCS dip line PD13 (Fig. 1) using a commer-
cial remotely operated vehicle (ROV) from Pelagic Research
Services. The OBNs recorded the signals from the R/V
Langseth airgun array triggered every 75 m along a 2D profile
coincident with PD13. The CASIE22-SENSOR data set is still
undergoing quality controls and will be reported elsewhere.

In addition to these marine seismic surveys, an NSF- and
USGS-supported complementary, temporary deployment of
862 onshore 5 Hz nodal seismometers along the southern
Washington and Oregon Cascadia fore-arc also recorded the
CASIE21-MCS airgun signals (Ward and Tréhu, 2020).

CASIE21-MCS experiment
CASIE21-MCS took place from 1 June to 11 July 2021,
onboard R/V M.G. Langseth (cruise MGL2104), and acquired
2D MCS data along: (1) 18 primary dip profiles oriented
perpendicular to the margin and spaced along the margin
at 50–75 km intervals, (2) one multisegment strike profile
along the Oregon, southern-central Washington, and central
Vancouver Island continental shelf, and (3) two strike profiles
∼6–10 km seaward from the deformation front offshore cen-
tral-southern Oregon and Vancouver Island (Figs. 1, 2). In
addition, 19 auxiliary profiles were collected while transiting
between the main profiles, resulting in a total of 5347 line km
of MCS data. The data were collected using a 15-km-long,
1200-channel hydrophone streamer during the first part of
the survey (lines PD09, 10, 11, 12, and PS01A, B, and transits
in between; Fig. 2), and with a 12-km-long, 960-channel
hydrophone streamer during the rest of the survey. The air-
gun sources were towed at 12 m below the sea surface and

triggered every 37.5 m, which corresponds to repetition rates
of ∼18.2–20.3 s when the ship was towing the 15-km-long
streamer at speeds of 3.6–4.0 knots and ∼15.5–16.2 s when
the ship was towing the 12-km-long streamer at speeds of
4.5–4.7 knots. Most of the primary lines were shot with four
airgun arrays with a total volume above 6000 in3 at 2000 psi,
although lines PD15, 16, 17, 18, and a large portion of PS01B
were shot with three arrays with a total volume that varied
between 4730 and 4950 in3 (Fig. 2) because rough weather
conditions prohibited getting a misfunctioning gun array
on deck for repairs (Carbotte et al., 2021). A number of other
airgun array volume changes occurred throughout the survey
due to technical issues and in response to marine mammal
and other wildlife mitigation procedures (i.e., source shut-
downs and rump-ups; Table S1, available in the supplemental
material to this article).

CASIE21-OBS experiment
OBS instrumentation. CASIE21-OBS used a total of 63
OBS instruments from OBSIC. About 45 of the instruments
were provided and operated by the Scripps Institution of
Oceanography (SIO); the other 18 instruments were provided
and operated by the WHOI. The SIO instruments were
“LC4 × 4” (low-cost [LC]) short-period OBSs, which record
velocity data from three-component (vertical and two horizontal)
Sercel L-28 4.5 Hz geophones and pressure data from aHigh Tech
HTI-90-U hydrophone on an SIO-designed LC4 × 4 24-bit
digitizer, with timing provided by a Seascan digitally tempera-
ture-compensated crystal oscillator (DTCXO). The WHOI
instruments were “D2” short-period OBSs, which carry three-
component Geospace GS-11D 4.5 Hz geophones and High
TechHTI-90-U hydrophone, recorded by a Quanterra Q330 data-
logger with timing from a Seascan DTCXO clock. All instruments
were programmed to record at 200 Hz. Clocks were synchronized
to Global Positioning System time before deployments and after
recovery, which allows for a linear clock drift correction.

Cruise activities. R/V Langseth cruise MGL2103 departed
Newport, Oregon, on 24 May 2021, for the initial deployment
of OBSs offshore Oregon. Langseth deployed 60 of the 63 avail-
able OBSs along lines PD10, PD12, PD13, PD18, and PD19
(Fig. 1) and returned to Newport, Oregon, on 28 May 2021.
Langseth then returned to sea on cruise MGL2104 on 1
June 2021 to start airgun and streamer operations.

The original experiment plan included deployment of
densely spaced OBNs along the central portions of lines
PD10, PD13, and PD18. These deployments were attempted
by ROV from 23 to 31 May 2021, on R/V Oceanus cruise
OC2105A, but technical problems led to cancelation of the origi-
nal OBN component. (The OBN experiment was reattempted
and successfully completed along line PD13 in April 2022 by
the CASIE22-SENSOR project; see the Overview of CASIE21
experiments section.) The decision to cancel OC2105A was
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made while MGL2103 was still at sea, which allowed planned
OBS sites to be redistributed to fill the OBN section of PD10.

A second R/V Oceanus leg—cruise OC2106A—was tasked
with recovering 57 of the 60 OBSs deployed by Langseth and
redeploying 60 instruments farther north. Because of the short-
ened OBN leg (OC2105A), Oceanus was able to depart earlier
than planned on OC2106A from Newport, Oregon, on 19 June
2021. The extra time allowed Oceanus to recover four instru-
ments from the seaward end of PD12 and deploy a total of six
instruments to fill the OBN portion of PD13 prior to Langseth
shooting PD13. However, the OBN portion of PD18 could not
be filled, thus resulting in an OBS distribution gap of ∼37 km
along PD18 between sites S059 and S060 (Fig. 1, Table S2).
After filling in PD13 and waiting for Langseth to complete
shooting each line, Oceanus recovered all OBSs from lines
PD16, PD18, PD19, and PD13 offshore Oregon. Then,
Oceanus moved north to deploy OBS on lines PD02, PD04,
and PD05. Next, Oceanus recovered the remaining instru-
ments on PD12 and PD10 and deployed on PD07. As
Langseth completed shooting the northern lines, Oceanus
finally recovered OBS from lines PD02, PD04, PD05, and
PD07 and ended OC2106A in Port Angeles, Washington,
on 11 July 2021. A detailed list of deployment and recovery
times and locations for all OBS sites is included in Table
S2. The OBS recording period, from the first deployment of
cruise MGL2103 to the last recovery of cruise OC2106A,
was from 24 May 2021 19:00 UTC to 9 July 2021 09:00 UTC.

Data Quality and Availability
The CASIE21-OBS data set complies with the Memorandum
of Agreement between the U.S. Navy and the NSF for Ocean
Observing System Security. Immediately after data collection,
the data set was sent to the U.S. Navy’s Commander Undersea
Surveillance for screening, and redacted if deemed appropriate.
The redacted data set was returned to OBSIC and the PIs in
December 2021. Of the WHOI OBS data, a total of 57,408
data-hours (four channels) were screened, and 0.2% of them
redacted. Of the SIO OBS data, a total of 167,424 data-hours
(four channels) were screened, and 0.12% of them redacted.
Archived data (see Data and Resources) and data descriptions
in this publication all refer to the screened and redacted
data set.

Instrument and data problems
LC ID 305 deployed at station S044 on PD16 (Fig. 1) was
recovered with a flooded data logger, returning only ∼7% of
the expected data volume. SEG-Y data for lines PD09, PD10,
TD09D10, and TD10D11 are the only data available from this
instrument. LC ID 302 (station S053) also returned with a wet
data logger, but all data were intact and recoverable. Because of
the wet data loggers in these two OBSs, no time synchroniza-
tion could be done after recovery. Therefore, the data from
these two instruments have not been corrected for clock drift.

Data quality control revealed the presence of data gaps
(i.e., missing or excess samples) in some of the segments in
the miniSEED data files from two of the SIO LC instruments:
LC ID 56 (deployed at stations S002 and S110) and LC ID 224
(deployed at station S058; Table S5). The origin of these data
gaps seems to be related to faulty hardware in the instruments,
not to data extraction and transcription. These data gaps, if left
uncorrected, result in SEG-Y receiver gathers with timing
errors, as evidenced by near-offset direct water waves arriving
too early (even at negative times) when compared to predicted
travel times (Fig. S1a,c), and by abrupt time shifts (Fig. S1a).
Detailed inspection of data from these instruments indicates
that for data segments with sample gaps, the time stamp of
the first sample in the segment is correct, but the time stamp
of the last sample in the segment is offset by the number of
missing samples. We cannot assess how the time misfit varies
from the first to the last sample in the miniSEED segment, but
it is reasonable to assume that the variation in time misfit is
linear along the data segment. With this assumption, we have
created gap-corrected SEG-Y files for stations S002, S058, and
S110. The corrected data match pretty well with the predicted
direct water wave arrivals, and the abrupt time shifts are elim-
inated (Fig. S1b,d). Thus, we are confident that our correction
for the miniSEED data gaps is accurate. Assembled data
(SEG-Y) available at the Incorporated Research Institutions
for Seismology Data Management Center (IRIS-DMC) for sta-
tions 002, 058, and 110 include these corrections. However, for
the sake of preserving the original data, the continuous data in
miniSEED format are archived uncorrected.

Instrument relocation
The OBSs were dropped over the side of the ship and left to sink
to the seafloor. No acoustic ranging surveys were conducted to
interrogate the OBSs and triangulate their positions during
deployment or prior to recovery (e.g., Russell et al., 2019).
Determination of their final positions on the seafloor was
achieved by instrument relocation using the observed travel
times of direct waves for shot-receiver offsets ≤3 km. We con-
ducted an iterative grid-search method to find a relocated posi-
tion that minimizes the difference between predicted and
observed travel times (Δt). We first made an initial estimate
of the average water sound speed by least-squares fitting the
direct wave travel times as a function of distance from sources
to the initial drop location. We then conducted a grid search of
points on the seafloor regularly spaced every 1 m within a 500-
m-radius search area to find the location that resulted in the
minimum Δt. Depths were taken from the multibeam bathym-
etry data collected during cruise MGL2104. We then repeated
the estimation of the water sound speed using the new relocated
position and conducted a new grid search. These steps were
repeated iteratively until the root mean square of Δt did not
decrease significantly anymore; five iterations were typically suf-
ficient. An error ellipse was estimated at each relocated position
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by selecting all grid-search positions that resulted in travel-time
residuals with χ2 ≤ 1, accounting for uncertainties in travel-time
picks (5 ms) and shot locations (5 m). Figure 3 shows two exam-
ples of the relocation results. In the few cases for which OBSs
were located near crossing profiles with different azimuth, relo-
cated position uncertainties are small (Fig. 3a–c), but in the
majority of cases for which OBSs were located near only one
shooting profile, uncertainties in the direction orthogonal to
the shooting profile are larger (Fig. 3d–f).

Drop and relocated positions, as well as their uncertainty
estimates, are listed in Table S2. For the majority of instru-
ments, relocated positions are within ∼40–120 m from the
drop location (Fig. 4). For instruments for which there were
no shots within 3 km of the drop location, no relocation
has been attempted. In these cases, the relocated position
reported in Table S2 corresponds to the drop location, which
is assumed to be accurate enough as most of these instruments
were located in shallow water on the continental shelf. Only
two instruments in deeper water could not be relocated: station
S015 on PD12 because of airgun shutdowns in its vicinity
(Fig. 2, Table S1), and station S044 on PD16 because of partial
data recovery (see the Instrument and data problems section).

Instrument orientation
Orientation of the geophone horizontal components has been
estimated using the method described in Anderson et al.
(1987) and Duennebier et al. (1987). Figure 5 illustrates
the procedure using site 107 as an example. First, the angle
to rotate data from channels EL1 and EL2 to radial and trans-
verse components was calculated by linear fitting the particle
motion hodograms of channel EL1 versus EL2 measured in a
120 ms time window starting 20 ms before the direct wave
arrivals for traces within 20 km shot-receiver offsets
(Fig. 5e,f). For each instrument, the orientation of EL1 (α)
was derived by subtracting the back azimuth θ (Fig. 5d) from
the estimated EL1-to-radial rotation angle (Fig. 5g), and

averaging across offsets after excluding outliers and data
points for very near offsets (<0.75 times instrument depth)
for which the back azimuth is highly sensitive to the uncer-
tainties in instrument location (Fig. 5j). Orientation results
were then validated by transforming EL1 and EL2 channels
into radial and transverse components (Fig. 5h,i) and inspect-
ing the ratio between radial and transverse component ampli-
tudes (Fig. 5l) as well as the polarity of the radial component
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relative to that of the hydrophone. The polarity was defined
using the cross-correlation coefficients between the hydro-
phone and radial geophone components (Fig. 5k), following
a convention that the coefficients should be negative or
positive for shots located to the west or east, respectively,
of the OBS. In the instances where the opposite pattern
was observed, we corrected the EL1 orientation by 180° or
−180° to ensure that α ∈ �−180°,180°�.

We report OBS orientation as the angle α that rotates chan-
nel EL1 to east, with positive values indicating counterclock-
wise rotation from EL1 to east (Table S2). CASIE21-OBS data
users may test other methods for estimating instrument
orientation, as using arrivals from other acoustic sources
(Trabattoni et al., 2020), or from low-frequency Rayleigh
waves (Stachnik et al., 2012; Zha et al., 2013; Janiszewski
and Abers, 2015; Doran and Laske, 2017).

Power spectra
We use IRIS MUSTANG service (Casey et al., 2018) to obtain
power spectral density (PSD) estimates of the data set at each
station. Figure 6a,b shows average median PSD estimates in
1-hr-long records for the full duration of the deployment
for each station. At long periods (0.02–0.1 Hz), the shallowest
instruments (∼<500 m) show significant noise levels in all geo-
phone channels, whereas deeper instruments have lower noise
levels in this band. The microseismic peak (0.1–2 Hz) shows a
similar pattern for the vertical channels but is less clear for the
horizontal channels. The higher noise levels for long periods
for shallow instruments are probably due to the “surf beat,”

which is long-period energy trapped within 1 km of the coast-
line into waveguides formed by the sloping bathymetry (Webb,
1998). At short periods (>2 Hz), there is no clear dependence
on instrument depth of the PSD when averaged for the full
duration of the experiment.

To illustrate the PSD of the data set during the periods of
airgun activities, we show PSD estimates for three instruments
located in shallow (S042, Fig. 5c,d), intermediate (S006, Fig. 5e,

Figure 5. Determination of horizontal components’ orientation for
site 107 on line PD07. (a) Map view of site 107, shots along PD07
within 20 km offset and the local coordinate system centered at
site 107. Right-handed convention (positive angles for counter-
clockwise rotation) is assumed in the analysis. (b,c,e,f) show the
band-pass filtered (4–60 Hz) direct arrival data in hydrophone
(EDH), vertical (ELZ), and two horizontal (EL1 and EL2) geophone
components, respectively. (d) The radial direction with respect to
east (back azimuth θ in panel a, θ ∈ �−90°,90°��. (g) The rotation
angle from EL1 to radial (estimated by linear fitting of the EL1 and
EL2 particle motion hodogram) rendered to [−90°, 90°], which is
equivalent to α� θ as shown in panel (a). (h,i) Rotated radial (RAD)
and transverse (TRA) components. (j) The angle between channel
EL1 and east (α in panel a, α ∈ �−180°,180°�� is calculated by
subtracting data in panel (d) from data in panel (g) and averaging
across offsets after removing outliers. (k) Cross-correlation coef-
ficients between the hydrophone and radial components, used for
polarity check and correction. We follow a convention where the
coefficient is negative or positive at negative or positive offsets,
respectively. (l) Comparison of root mean square amplitude of the
radial and transverse components. The color version of this figure
is available only in the electronic edition.
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f), and deep water (S034,
Fig. 5g,h) from data recorded
while airgun shooting along
the profiles over these stations.
As expected, PSD levels at
short periods show a clear
dependence with distance from
the instrument to the air-
gun array.

Data formats
After extraction from the
datalogger, the data were refor-
matted as continuous time
series in miniSEED format
(International Federation of
Digital Seismograph Networks
[FDSN], 2012). Data from each
station and channel are split
across miniSEED files each
containing 1-day-long records.
Filenames for data download-
able from the IRIS-DMC
(see Data and Resources) for
SIO and WHOI instruments
are as following, respectively:
STAT.CHA.2021.DAY.00.59.
59.msd and YR_STAT_CHA
__2021_DAY.msd, in which
STAT is a four-character sta-
tion identifier (e.g., S001,
S002, …, S120), CHA is a
three-character channel identi-
fier (EL1, EL2, ELZ, or EDH),
and DAY corresponds to three-
digit Julian day.

As is standard for con-
trolled-source seismic data sets,
the continuous time series have
been cut into SEG-Y receiver
gathers to facilitate phase iden-
tification and travel-time pick-
ing. Data from each station,
channel, and airgun shooting
transect (Fig. 2) were gathered
into receiver gather files con-
taining 90-s-long traces. File
nomenclature for the SEG-Y
data downloadable from the
IRIS-DMC (see Data and
Resources) is as follows:
MGL2104LINE_STAT_CHA.s-
egy, in which LINE is the
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Figure 6. Power spectral density (PSD) estimates. (a,b) Median PSD for all stations during the full
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The color version of this figure is available only in the electronic edition.
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identifier of the MGL2104 airgun profiles (Fig. 2, Table S3). The
SEG-Y files contain most of the standard trace headers
(Table S4).

As is standard practice, instrument response corrections have
not been applied to either the continuous miniSEED or cut
SEG-Y data. Nominal responses for the SIO and WHOI instru-
ments are included in StationXML format with the continuous
data archive.

Initial Observations
Controlled-source data
The primary technical goal of the CASIE21-OBS deployment
was for the OBSs to record the MGL2104 airgun signals along
the collocated profiles, and this was accomplished for 119 of 120
deployments (see the Instrument and data problems section).
Although the rapid shot interval resulted in significant pre-
vious-shot noise (Nakamura et al., 1987; Christeson et al.,
1996), the receiver gathers display very good quality data with
clearly identifiable sedimentary, crustal, and mantle arrivals
(Figs. 7, 8). These include P-wave refractions such as Pg and
Pn and reflections from the igneous basement and the Moho
(PmP) (Figs. 7b,c and 8b,c). These data are particularly well
suited for modeling the VP structure of the oceanic plate down
to the upper mantle prior to subduction and below the offshore
fore-arc, as well as of the accretionary prism and continental
shelf. The regular and close spacing of the primary profiles along
most of the length of the Cascadia margin as well as the spacing
of instruments along these profiles are a first-order improvement
relative to similar past surveys (Flueh et al., 1998; Parsons et al.,
1998; Gerdom et al., 2000; Horning et al., 2016; Canales et al.,
2017; Boulahanis et al., 2022). In addition to recording data from
the collocated profiles, the OBS deployments were long enough
such that the OBSs also recorded shots from many offline pro-
files. This will enable studies of the 3D architecture in some sec-
tions of the margin. This data set will enable researchers to
investigate subduction zone processes occurring between the
deformation front and the coast with unprecedented detail sys-
tematically along the margin. Crustal-scale seismic velocity mod-
els along the Cascadia margin will enable investigations of links
between incoming plate variability and a number of CSZ proper-
ties (e.g., Delph et al., 2018), such as density of episodic tremor
and slip (Brudzinski and Allen, 2007; Wech, 2010), plate inter-
face locking (Schmalzle et al., 2014), structural vergence
(MacKay, 1995; Gulick et al., 1998; Gutscher et al., 2001;
Adam et al., 2004; Yelisetti et al., 2017), intermediate-depth seis-
micity (McCrory et al., 2012; Stone et al., 2018), and arc volcanic
and geochemical segmentation (Schmidt et al., 2008; Pitcher and
Kent, 2019).

The data also contain arrivals from S-converted waves, such
as PSS and PPS modes (P-to-S conversions at the basement on
the downgoing and upgoing paths, respectively) (Figs. 7d, 8d).
These arrivals will help constrain the VS structure of the
incoming and accreted sediments and of the oceanic crust

and mantle (Kumar et al., 2007; Peacock et al., 2010; Dash and
Spence, 2011; Tsuji et al., 2011; Zhu et al., 2020). VP and VS

models will allow investigating physical properties such poros-
ity and fluid pore pressure, which can be related to basal sedi-
ment consolidation and fluid expulsion and/or retention (e.g.,
Han et al., 2017), fluid drainage structures and their relation to
wedge structural style (e.g., seaward vs. landward thrusting)
and observations of seafloor fluid seepage (e.g., Johnson et al.,
2006, 2019; Baumberger et al., 2018). For example, data from
OBS S075 located a few kilometers seaward from the deforma-
tion front (Fig. 7a) show clear Sg, SmS, and Sn arrivals from
shots located to the west of the instrument but not for shots
located over the wedge slope (Fig. 7d), suggesting that the
physical properties at the plate boundary (the likely interface
for efficient P-to-S conversion) vary across the deformation
front (e.g., Peterson and Keranen, 2019).

Seismicity
Although the CASIE21-OBS was primarily a controlled-source
experiment, the instruments also recorded the natural seismic-
ity during the period of the deployment (24 May 2021 19:00
UTC to 9 July 2021 09:00 UTC). The USGS National
Earthquake Information Center indicates that seismicity dur-
ing this time period was concentrated along the Blanco trans-
form fault, the Mendocino triple junction, the Cascadia fore-
arc with predominance beneath western Washington, and the
interior of the Gorda plate (Fig. 1). In the latter region, two
Mw 5.9 events took place on 4 June 2021, at 07:52 UTC
and 08:17 UTC at 14–17 km depth, with a series of aftershocks
occurring in the nearby region during the following 13 days
(Fig. 1). The OBSs of the first CASIE21-OBS deployment
(cruise MGL2103, see the Cruise activities section)—that is,
those located along the profiles on the Oregon margin PD10,
PD12, PD13, PD16, PD18, and PD19—were deployed prior to,
and recovered after, this sequence of Gorda events and, there-
fore, recorded these earthquakes and their aftershocks (Fig. 9).

Records of natural seismicity registered in the CASIE21
OBSs will expand existing regional seismic catalogs developed
from previous OBS deployments (e.g., Morton et al., 2018;
Stone et al., 2018), and can be used for a variety of studies
including seismicity of the plate interface (e.g., Gong and
McGuire, 2018; Alongi et al., 2021) and oceanic plate structure
(e.g., VanderBeek and Toomey, 2019). The data set will also
allow researchers to investigate variability in seafloor shaking
attributes (i.e., site response) both along the margin as well
as across the accretionary prism (Gomberg, 2018). Such infor-
mation is critical for predicting shaking offshore the western
United States under hypothetical scenarios of future mega-
thrust earthquake rupture, for assessing tsunami hazards
due to megathrust earthquakes and associated submarine
landslides, and to test proposed linkages between paleo great
earthquakes and distribution of shaking-triggered turbidites
(Johnson et al., 2017; Priest et al., 2017; Gomberg, 2018).
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Summary
The CASIE21-OBS survey is the largest controlled-source
wide-angle seismic reflection and refraction experiment con-
ducted off the Cascadia margin to date, and the first of its kind
to systematically sample this margin along most of its length,
from northern Vancouver Island to southern Oregon. This
unique data set is optimal for obtaining seismic VP and VS

models of the incoming and downgoing Explorer-Juan de
Fuca-Gorda plate system and the Cascadia accretionary wedge
along 10 trench-crossing 2D profiles, and in some areas for 3D
imaging. Our initial assessment indicates that the data are of
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Figure 7. Receiver gathers from instrument S075 located on the
abyssal plain near the Cascadia deformation front on profile PD04
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color version of this figure is available only in the electronic edition.

Volume XX • Number XX • – 2023 • www.srl-online.org Seismological Research Letters 11

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220230010/5861892/srl-2023010.1.pdf
by Dalhousie Univ Libraries Serials/Killam Library user
on 24 May 2023



excellent quality, making them suitable for geophysical inves-
tigations using traditional seismic techniques such as travel-
time tomography (e.g., Canales et al., 2017; Gase et al.,
2021) as well as state-of-the-art methods such as full waveform
inversion (Guo et al., 2021, 2022; Jian et al., 2021).

The data are currently being used for investigating hydra-
tion of the incoming and downgoing Explorer-Juan de Fuca-
Gorda plate system using 2D travel-time tomography (Mann
et al., 2022). CASIE21-OBS data set will be open-access and
available to the community upon acceptance of this article.
The models that researchers will develop from this data set
will enable multiple scientific questions of high importance
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Figure 8. Receiver gathers from instrument S051 located on the
upper slope of the accretionary prism on profile PD16 (see
location in Fig. 1). Data are band-pass filtered (3–5–20–25 Hz).
(a) Bathymetry along profile. (b) Hydrophone channel EDH, with
time reduced by 7 km/s. (c) Vertical channel ELZ, with time
reduced by 7 km/s. (d) Radial component obtained from
rotating horizontal channels EL1 and EL2, with time reduced by
4.1 km/s. Main refracted and reflected phases are labeled. The
color version of this figure is available only in the electronic
edition.
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to be addressed by, for example: (1) documenting variations in
accretionary wedge earthquake shaking properties; (2) model-
ing the crustal and mantle seismic structure and extent of alter-
ation of the incoming and downgoing plates, and their
variability along the margin; and (3) determining accretionary
wedge sediment properties such as VP , VS, density, porosity,
and fluid pore pressure.

Data and Resources
The supplemental material includes tables and figures describing cruise
MGL2104 airgun volume changes (Table S1), ocean-bottom seismom-
eter (OBS) site information (Table S2), profile information (Table S3),
SEG-Y trace headers (Table S4), and data gaps in miniSEED segments
(Table S5, Fig. S1). The CAscadia Seismic Imaging Experiment 2021
ocean-bottom seismometer (CASIE21-OBS) data set is archived and
available at the Incorporated Research Institutions for Seismology
Data Management Center (IRIS-DMC; Canales et al., 2021): doi: 10
.7914/SN/YR_2021. Continuous time series in miniSEED have assigned
network code YR_2021 (https://ds.iris.edu/mda/YR_2021). Assembled
data in SEG-Y format have assigned identifier 21-008 (https://
ds.iris.edu/mda/21-008/). Details on airgun operations are included in
Carbotte et al. (2021) and multichannel seismic (MCS) data are archived
and available at the Marine Geoscience Data System (MGDS): shot data,
doi: 10.26022/IEDA/330905 (Carbotte, Boston, and Han, 2022); shot-
time files, doi: 10.26022/IEDA/330901 (Carbotte, Han, and
Boston,2022). All websites were last accessed in May 2023.
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