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ABSTRACT

Ultra-massive white dwarf stars are currently being discovered at a considerable rate, thanks to surveys such as the Gaia space
mission. These dense and compact stellar remnants likely play a major role in Type la supernova explosions. It is possible
to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs,
general relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation
calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses
ranging from 1.29 to 1.369 M with the aim of assessing the impact of general relativity on the adiabatic gravity (g)-mode
period spectrum of very high mass ZZ Ceti stars. Employing the relativistic Cowling approximation for the pulsation analysis,
we find that the critical buoyancy (Brunt—Viiséld) and acoustic (Lamb) frequencies are larger for the relativistic case, compared
to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar
mass. In addition, the g-mode periods are shorter in the relativistic case than those in the Newtonian computations, with relative
differences of up to ~50 per cent for the highest mass models (1.369 M) and for effective temperatures typical of the ZZ Ceti
instability strip. Hence, the effects of general relativity on the structure, evolution, and pulsations of white dwarfs with masses

larger than ~1.29 M cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars.

Key words: asteroseismology —relativistic processes — stars: evolution —stars: interiors — stars: oscillations — white dwarfs.

1 INTRODUCTION

77 Ceti variables are pulsating DA (H-rich atmosphere) white dwarf
(WD) stars with effective temperatures in the range 10500 K <
Ter S 13500 K and surface gravities in the interval 7.5 Slogg <
9.35. They exhibit periods from ~100 to ~1400 s due to non-
radial gravity (g) modes with harmonic degrees £ =1 and ¢ =2
(Fontaine & Brassard 2008; Winget & Kepler 2008; Althaus et al.
2010). The interiors of these compact stars, which constitute the
evolutionary end of most stars in the Universe, can be investigated
through the powerful tool of asteroseismology by comparing the
observed periods with theoretical periods computed using large grids
of WD stellar models (e.g. Cdrsico et al. 2019).

Although most ZZ Ceti stars have masses between ~0.5 and
~0.8 Mg, at least seven ultra-massive (M, = 1.05 My) ZZ Ceti
stars have been discovered so far: BPM 37093 (M, = 1.13 Mg;
Kanaan et al. 1992; Bédard, Bergeron & Fontaine 2017), GD 518
(M, = 1.24 M; Hermes et al. 2013), SDSS J084021.23+522217.4
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(M, =1.16 Mg; Curd et al. 2017), WD J212402.03—600100.05
(M, = 1.16 Mg; Rowan et al. 2019), J0204+8713 and J0551+4135
(M, =1.05 Mg and M, = 1.13 Mg, respectively; Vincent, Berg-
eron & Lafreniere 2020), and WD J004917.14—252556.81 (M, ~
1.30 Mg; Kilic et al. 2023b). With such a high stellar mass, the latter
is the most massive pulsating WD currently known. The discovery
and characterization of pulsating ultra-massive WDs through aster-
oseismology is important for understanding the supernovae Type Ia
explosions. We know that accreting CO-core WDs are the progenitors
of these explosions (e.g. Nugent et al. 2011; Maoz, Mannucci &
Nelemans 2014), but we have not been able to probe the interior
structure of such WDs near the Chandrasekhar limit.

Modern photometric data of pulsating WDs collected by space-
crafts, such as the ongoing Transiting Exoplanet Survey Satellite
(TESS) mission (Ricker et al. 2014) and the already finished Ke-
pler/K2 space mission (Borucki et al. 2010; Howell et al. 2014),
brought along revolutionary improvements to the field of WD
asteroseismology in at least two aspects (Cérsico 2020, 2022). First,
the space missions provide pulsation periods with an unprecedented
precision. Indeed, the observational precision limit of TESS for
the pulsation periods is of the order of ~107* s or even smaller
(Giammichele, Charpinet & Brassard 2022). Secondly, these space
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missions also enable the discovery of large numbers of new pulsating
WDs. For example, Romero et al. (2022) used the TESS data from
the first 3 yr of the mission, for Sectors 1 through 39, to identify 74
new ZZ Ceti stars, which increased the number of already known ZZ
Cetis by ~20 per cent. It is likely that many more pulsating WDs, not
only average-mass (M, ~ 0.60 M) objects but also ultra-massive
WDs, will be identified by TESS and other future space telescopes
such as the Ultraviolet Transient Astronomy Satellite (ULTRASAT;
Ben-Ami et al. 2022) in the coming years, though TESS’s relatively
small aperture limits its ability to observe intrinsically fainter massive
WDs. In addition, large-scale wide-field ground-based photometric
surveys like the Vera C. Rubin Observatory’s Legacy Survey of Space
and Time and the BlackGEM (Groot et al. 2022) will significantly
increase the population of WD pulsators, including massive WDs.

The use of space telescopes for WD asteroseismology has opened
up a new window into the interiors of these stars and led to some
new and interesting questions. For example, the availability of
pulsation periods with high precision supplied by modern space-
based photometric observations has, for the first time, raised the
question of whether it is possible to detect very subtle effects in the
observed period patterns, such as the signatures of the current exper-
imental ">C(a, )'°O reaction rate probability distribution function
(Chidester, Farag & Timmes 2022), or the possible impact of general
relativity (GR) on the pulsation periods of ZZ Ceti stars (Boston,
Evans & Clemens 2023). In particular, the possibility that relativistic
effects can be larger than the uncertainties in the observed periods
when measured with space missions has led Boston et al. (2023)
to conclude that, for average-mass WDs, the relative differences
between periods in the Newtonian and relativistic calculations can
be larger than the observational precision with which the periods
are measured. Hence, to fully exploit the unprecedented quality of
the observational data from TESS and similar space missions, it is
necessary to take into account the GR effects on the structure and
pulsations of WDs.

The impact of GR is stronger as we consider more massive WD
configurations, in particular WDs with masses close to the Chan-
drasekhar mass (Mc, ~ 1.4 M)). Carvalho, Marinho & Malheiro
(2018), Nunes, Arbaiil & Malheiro (2021), and Althaus et al.
(2022) used static WD models and evolutionary ONe-core WD
configurations, respectively, to explore the effects of GR on the
structure of ultra-massive WDs. These investigations found that GR
strongly impacts the radius and surface gravity of ultra-massive WDs.
In addition, Althaus et al. (2022) found that GR leads to important
changes in cooling ages and in mass—radius relationships when
compared with Newtonian computations. Furthermore, Althaus et al.
(2023) have extended the relativistic computations to CO-core ultra-
massive WD models.

In this work, we aim to assess the impact of GR on the g-
mode period spectra of ultra-massive ZZ Ceti stars with masses
21.29 M. This is the lower limit for the WD mass from which
the effects of GR begin to be relevant (Althaus et al. 2022). Our
analysis is complementary to that of Boston et al. (2023), which is
focused on average-mass pulsating DA WDs (~0.60 M¢; the bulk
of pulsating WD population). For these average-mass DA WDs,
the difference of Newtonian physics and GR was shown to be of
the order of the surface gravitational redshift z ~ 10~*, though for
stars with very high central concentration of mass this difference
could be an order of magnitude larger. Since the ultra-massive WDs
are highly centrally condensed, GR might be even more important
for these objects. The study of ultra-massive WDs is of particular
interest at present, given the increasing rate of discovery of these
objects (Gagné et al. 2018; Hollands et al. 2020; Kilic et al. 2020,
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2021, 2023a; Caiazzo et al. 2021; Torres et al. 2022) and the
prospect of finding pulsating ultra-massive WDs more massive than
WD J004917.14—-252556.81 (Kilic et al. 2023b). This last point is
particularly relevant in view of the capabilities of the current (e.g.
TESS) and upcoming (e.g. ULTRASAT, LSST (Legacy Survey of
Space and Time), and BlackGEM) surveys.

The formalism of stellar pulsations in GR began with Thorne &
Campolattaro (1967), using the Regge—Wheeler gauge to treat the
pulsations as linear perturbations on top of a static, spherically
symmetric background (Regge & Wheeler 1957). The result was a
reduction in the Einstein field equations (EFEs) that describe space-
time curvature in GR to only five complex-valued equations for the
perturbation amplitudes. Further theoretical work showed that this
system was only fourth-complex-order, with two degrees of freedom
describing the fluid perturbations and two describing the gravita-
tional perturbations (Ipser & Thorne 1973). Later, Detweiler &
Lindblom (1985) (see also Lindblom & Detweiler 1983) reduced
the perturbed EFEs to the explicit form of four first-order complex-
valued equations describing the normal mode perturbations. For
quadrupole modes or higher (¢ > 2), the two gravitational degrees
of freedom at the surface produce outgoing gravitational radiation
(i.e. gravitational waves) that will gradually damp any excitations,
so that stellar perturbations in GR can be at best quasi-normal.

In asteroseismology, the outgoing gravitational radiation is largely
an undesired complication, requiring specialized methods to avoid
carrying the boundary condition out to spatial infinity (Fackerell
1971; Chandrasekhar & Detweiler 1975; Andersson, Kokkotas &
Schutz 1995; Lindblom, Mendell & Ipser 1997). The outgoing
gravitational waves can be easily removed using a form of the
Cowling approximation within GR, first developed by McDermott,
van Horn & Scholl (1983) and further studied by Lindblom & Splinter
(1990), McDermott et al. (1985), and Yoshida & Lee (2002). In
this relativistic Cowling approximation, the gravitational degrees
of freedom are set to zero, retaining only the fluid perturbations.
Further, there is no intrinsic damping, so that the problem becomes
real-valued and the modes are stationary. This treatment is widely
used to study the pulsation and stability of compact stellar objects
in situations where knowledge of the outgoing gravitational waves
is irrelevant, and especially in stars with surface crystallization
(Yoshida & Lee 2002; Flores, Hall & Jaikumar 2017). Another
approach to include the relativistic effects in stellar pulsations is
to use the post-Newtonian approximation (Cutler 1991; Poisson &
Will 2014; Boston et al. 2023). This approach is able to include
gravitational perturbations in the form of two scalar potentials and
a vector potential, without also producing gravitational radiation
(Boston 2022).

Most interest in pulsations of relativistic stars has focused on neu-
tron stars (e.g. McDermott, van Horn & Hansen 1988; Lindblom &
Splinter 1989a; Cutler & Lindblom 1992). The earliest calculations of
pulsations in WDs involving GR tried to address the origin of radio
sources discovered by Hewish et al. (1968), as an alternative to a
neutron star origin (Thorne & Ipser 1968). These studies, which date
back to the late 1960s, were devoted to computing the fundamental
radial pulsation mode of Hamada—Salpeter WD models (Hamada &
Salpeter 1961) including GR effects (Faulkner & Gribbin 1968;
Skilling 1968; Cohen, Lapidus & Cameron 1969). Boston et al.
(2023) have recently renewed interest in this topic by focusing on
relativistic pulsations of ZZ Ceti stars and other pulsating WDs,
concentrating on average-mass WDs. In this paper, we study the
impact of GR on realistic evolutionary stellar models of ultra-massive
DA WDs computed by Althaus et al. (2022), which are representative
of very high mass ONe-core ZZ Ceti stars. As a first step, in this work
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we adopt the relativistic Cowling approximation described above to
incorporate relativistic effects in the pulsation calculations, following
the treatment provided in Yoshida & Lee (2002). In future papers,
we plan to examine the post-Newtonian and full fourth-order GR
equations, applied to ultra-massive ONe-core WDs and to ultra-
massive CO-core WDs (Cérsico et al., in preparation).

The paper is organized as follows. In Section 2, we briefly describe
the relativistic WD models computed by Althaus et al. (2022),
emphasizing the impact of GR on the stellar structure. We devote
Section 3 to describe our approach for the relativistic non-radial stel-
lar pulsations, particularly the formalism of the relativistic Cowling
approximation (Sections 3.1, 3.2, 3.3, and 3.4). The pulsation results
for our ultra-massive WD models are described in Section 4. Finally,
in Section 5 we summarize our findings. We present in Appendix A
a derivation of the relativistic version of the ‘modified Ledoux’
treatment of the Brunt—Viisild frequency, and in Appendix B the
results of a validation of the main results of the paper using a toy
model based on Chandrasekhar’s models.

2 RELATIVISTIC ULTRA-MASSIVE WD
MODELS

To determine whether to employ GR or Newtonian gravity in a
system like a star, a qualitative general criterion commonly used
is to assess the magnitude of the ‘relativistic correction factor’, &,
defined as ¢ = GM, /c*R,, where G is the Newtonian gravitational
constant, ¢ is the speed of light, and M, and R, are the stellar
mass and radius, respectively (Poisson & Will 2014).! The larger
the value of ¢, the worse the approximation of Newtonian gravity.
For instance, for a neutron star, £ is of the order of ~0.1, while
for a black hole, ¢ ~ 1. For average-mass (~0.6 M) WDs, ¢ is
~107*, and that is why until recently the relativistic effects have
been neglected in the calculation of their structures. If we instead
consider an ultra-massive WD star with M ~ 1.3 M and ¢ ~ 0.001,
at first glance, it is not clear whether the relativistic effects should
be included or not. However, Carvalho et al. (2018) showed that
for the most massive WDs, the importance of GR for their structure
and evolution cannot be ignored. In fact, numerous works based on
static WD structures have shown that GR effects are relevant for the
determination of the radius of massive WDs (Rotondo et al. 2011;
Mathew & Nandy 2017; Carvalho et al. 2018; Nunes et al. 2021). In
particular, these studies have demonstrated that for fixed values of
mass, deviations of up to 50 per cent in the Newtonian WD radius
are expected compared to the GR WD radius. Recently, Althaus et al.
(2022) have presented the first set of constant-rest-mass ONe-core
ultra-massive WD evolutionary models with masses greater than
~1.30 Mg (and up to 1.369 M) that fully take into account the
effects of GR. This study demonstrates that the GR effects must be
considered to assess the structural and evolutionary properties of the
most massive WDs. This analysis has been extended recently by
Althaus et al. (2023) to ultra-massive WDs with CO cores that result
from the complete evolution of single progenitor stars that avoid
C-ignition (Althaus et al. 2021; Camisassa et al. 2022).

Althaus et al. (2022) employed the LPCODE stellar evolution code,
appropriately modified to take into account relativistic effects. They
considered initial chemical profiles as predicted by the progenitor
evolutionary history (Siess 2007, 2010; Camisassa et al. 2019), and
computed model sequences of 1.29, 1.31, 1.33, 1.35, and 1.369 Mg

IThe parameter ¢ is nothing more than the surface gravitational redshift in
the Newtonian limit, z.
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Figure 1. The stellar radius (upper panels) and gravity (bottom panels) in
terms of the outer mass fraction coordinate corresponding to ultra-massive
DA WD models with M, = 1.29Mg (left) and M, = 1.35Mg, (right), the
GR case (black curves) and the N case (red curves) (Tegr ~ 12 000 K).

WDs. The standard equations of stellar structure and evolution
were generalized to include the effects of GR following Thorne
(1977). In particular, the modified version of LPCODE computes the
dimensionless GR correction factors 7#%# and %, which turn to unity
in the Newtonian limit. These factors correspond, respectively, to the
enthalpy, gravitational acceleration, volume, and redshift correction
parameters. For comparison purposes, Althaus et al. (2022) have
also computed the same WD sequences for the Newtonian gravity
case. All these sequences included the energy released during the
crystallization process, both due to latent heat and the induced
chemical redistribution, as in Camisassa et al. (2019).

We briefly describe below some of the properties of the represen-
tative models of ultra-massive ONe-core WD stars, emphasizing the
impact of GR on their structure. We refer the reader to the paper by
Althaus et al. (2022) for a detailed description of the effects of GR
on the structural properties of these models. Here, we choose two
template WD models characterized by stellar masses M, = 1.29 M,
and M, = 1.35 M@, H envelope thickness of log(My/M,) ~ —6,
and an effective temperature of 7. ~ 12000 K, typical of the ZZ
Ceti instability strip. We distinguish between two cases: one in
which we consider Newtonian WD models (N case), and another
one in which the WD structure is relativistic (GR case). In Fig. 1,
we plot the run of the stellar radius and gravity in terms of the
outer mass fraction coordinate, corresponding to WD models with
M, = 1.29 M (left-hand panels) and M, = 1.35 M, (right-hand
panels), for the GR case (black curves) and the N case (red curves).
Clearly, GR induces smaller radii and larger gravities, and this effect
is much more pronounced for larger stellar masses.

In Table 1, which is a shortened version of table 1 of Althaus et al.
(2022), we include the values of the stellar radius and the surface
gravity for models with T = 10000 K and masses between 1.29
and 1.369 M, in the GR and N cases. As can be seen, the impact of
GR on the radius and gravity of the models is noticeable. In Fig. 2,
we plot the relative differences AR, = |RSR — RN|/RCR (left-hand
panel) and Ag = (g%R — g"N)/gR (right-hand panel) in terms of the
stellar mass. The stellar radius is lower by ~3 percent (1.29 M)
to ~34 percent (1.369 M), and the surface gravity is higher by
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Table 1. Stellar masses, radii, and surface gravities of the ultra-massive
ONe-core WD models at T.is = 10000 K in the relativistic and Newtonian
cases.

M, /Mg ROR RN log gOR log gN
(x10% cm) (x10% cm) (cms™2) (cms™2)
1.29 2.609 2.685 9.401 9.375
1.31 2.326 2.426 9.507 9.470
1.33 2.005 2.157 9.643 9.579
1.35 1.543 1.829 9.878 9.728
1.369 1.051 1.409 10.217 9.961
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Figure 2. Left: the absolute relative difference between relativistic and
Newtonian stellar radii versus stellar mass. Right: the relative difference
between the relativistic and Newtonian surface gravities in terms of the stellar
mass.

~6 per cent (1.29 M) to ~44 per cent (1.369 M) compared to the
case where GR is neglected. The typical observational uncertainties
in the radii and surface gravities of the most massive WDs in the
Montreal White Dwarf Database 100 pc sample (Kilic et al. 2021)
are 3 and 6 percent, respectively. Hence, the differences between
the GR and N cases can be detected observationally for WDs with
masses above ~1.3 M. These discrepancies must have important
consequences for the pulsational properties of ultra-massive WDs,
as we will see in Section 4.2.

3 RELATIVISTIC NON-RADIAL STELLAR
PULSATIONS IN WDS

In order to incorporate the relativistic effects in the pulsations of
WDs, we adopt the relativistic Cowling approximation in the form
developed by Yoshida & Lee (2002), and follow the GR formalism
provided in Boston (2022).

3.1 The relativistic Cowling approximation

The Cowling approximation of Newtonian non-radial pulsations
(named after T. G. Cowling’s pioneer paper; Cowling 1941) is
based on neglecting the gravitational potential perturbations during
the fluid oscillations. This approximation has been widely used in
Newtonian non-radial pulsation computations in the past, because
it constitutes a second-order differential eigenvalue problem, thus
simplifying the complete fourth-order problem (Unno et al. 1989).
It is also a very good approximation to periods of g modes in WDs,
which are primarily envelope modes (Montgomery et al. 1999).
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The Cowling approximation has been frequently used in asymptotic
treatment of stellar pulsations (see, for instance, Tassoul 1980), and
also in numerical treatments of g-mode pulsations in rapidly rotating
WDs (e.g. Saio 2019; Kumar & Townsley 2023), although it has
fallen out of use in the context of present-day numerical calculations
of Newtonian non-radial stellar pulsations and asteroseismology.
The relativistic Cowling approximation (McDermott et al. 1983),
on the other hand, is generally employed in the field of pulsations
of relativistic objects such as neutron stars (Lindblom & Splinter ;
Yoshida & Lee 2002; Sotani & Takiwaki 2020) and hybrid (hadron
plus quark matter phases) neutron stars (Tonetto & Lugones 2020;
Zheng et al. 2023).

In the next sections, we first describe the relativistic correction fac-
tors involved in the pulsation problem. Then, we provide relativistic
expressions to calculate the critical frequencies (Brunt—Viisild and
Lamb frequencies), after which we assess the coefficients of the pul-
sation differential equations in the relativistic Cowling form. Finally,
we provide the two first-order differential equations to be solved,
along with the boundary conditions of the eigenvalue problem.

3.2 Relativistic correction factors %, 7, and potentials v and A

We start by considering the Schwarzschild metric of GR for space-
time inside and around a star (Thorne 1977):

2G
ctr

-1
ds? = 2/ 2dr® + (1 - ) dr? 4 r’dQ?, M
where m is the ‘total mass inside radius r’, which includes the
rest mass, nuclear binding energy, internal energy, and gravity. ®
is a gravitational potential, which in the Newtonian limit ¢ — oo
corresponds to the scalar Newtonian potential.

Following Thorne (1977) in his treatment of relativistic stellar
interiors, it is convenient to write the metric in the form

ds? = =22 c2de® + PPdr? + r2d92, )

where the redshift correction factor % and the volume correction
factor ¥ are defined as (Thorne 1977)

) —-1/2
B =e®, Y= (1— G’") . 3)

ctr

The metric is usually written also as a function of two relativistic
gravitational potentials v and A (Oppenheimer & Volkoff 1939;
Tolman 1939), so that

ds? = —e"c?dr? + e*dr? + r2dQ>. )

Equating equations (1) and (4), we have

20 2Gm
V= and A:—ln(l— > (®)]

ct’ ctr

We obtain v and A in terms of the variables &% and ¥, which are
the output of the relativistic LPCODE version (Althaus et al. 2022) by
equating equations (2) and (4):

B =ce", V=c¢, (6)
so that
v=2In#Z r=2In%Y. @)

In the Newtonian limit, we have Z = ¢"/2 — land ¥ = e*/? — 1,
so that v, A — 0.
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We compute the derivatives of v and A by calculating the numerical
derivatives of Z and ¥ as

v _ 2 /dzy o, _dh_ 2 (dY ®
"EeT2\a ) T T v\a )

The numerical derivatives of % and ¥, as well as V' and A/, are
usually noisy when computed following equation (8). To avoid this,
we compute v’ and A’ by employing solutions to the EFE for the
static, spherically symmetric distribution of matter, given by Tolman
(1939) and Oppenheimer & Volkoff (1939) (see also Tooper 1964):

e H i )L/ i — 87G c? )
rr r 2 pe
—x 1 + v 1 87TGP (10)
e —+— | -== ,
rr r? ct
r [, 1,, , , 2 871G
7¢ [v +§(u—x) v—|—; = P, (11)

where P is the pressure and p is the mass-energy density (not just
the mass density). With some rearranging, we can write

1 871G 1

x:7+< ik ,Or—f)el, (12)
r C r

, 1 87G 1

V=—+ —Pr+- )¢, (13)
r C r

, lexG . 1, ./, 2\ dv

V= Pe —E(V—}»)(V +;)=E' (14)

To summarize, in our numerical treatment we employ equa-
tions (12) and (13) to compute A" and v’ using the value of A calculated
with equation (7). We employ equation (14) to assess v” using X, A/,
and V' derived above. The quantity v” is required to compute one of
the coefficients of the pulsation differential equations (Section 3.4).

3.3 Relativistic adiabatic exponent, sound speed, and Lamb
and Brunt-Viisili frequencies

The relativistic adiabatic exponent, defined as '} = (?,ll‘;ggi ) ,
ad

where n is the baryonic number density, can be expressed as
(Meltzer & Thorne 1966; Thorne 1967)

_ PP/ (g) _ o+ P/ (alogP>
ad ad

r 15)

P ap P dlogp

This should be compared with the Newtonian case, where 'y =
(BlogP ) K The relativistic sound speed, v, is given by (Curtis 1950)
al

dlogp
P
vl = 172 (16)
p+(P/c?)
whereas in the Newtonian case, v? = (%—P> =I,Z
0 ad P

The squared Lamb and Brunt—Viisili critical frequencies of the
non-radial stellar pulsations, L% and N2, can be written as (Boston
2022)

v?
L%:Z(f—f—])—s, (17)
r

2 1 (dlogP dl
N= e | - (S2E) P 22PN as)
2r Iy \ dlogr o+ (P/c*) \dlogr
This expression for N2 is analogous to the Newtonian version of N

2 .. e . _
for ¢ — 5 v’ and an additional relativistic correction factor e *,

The relativistic prescription given by equation (18) for the assess-
ment of the Brunt—Viisili frequency is not well defined numerically,
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due to the high degree of electronic degeneracy prevailing in the core
of the ultra-massive WDs, similar to the case of Newtonian pulsations
(Brassard et al. 1991). In particular, the use of equation (18)
leads to unacceptable numerical noise of N, which can lead to
miscalculations of the adiabatic g-mode periods. To avoid this
problem, we employ a numerically convenient relativistic expression,
analogous to the Newtonian recipe known as the modified Ledoux
prescription (Tassoul, Fontaine & Winget 1990). The appropriate
relativistic expression for N2, which is derived in Appendix A, is

2 2 2
P
N e (%v) 7p+;/c)f{l[vw—v+81, (19)

where B is the Ledoux term, defined as

3 (20)

M being the number of different atomic species with fractional
abundances X; that satisfy the constraint Ef‘i ]1 X;+ Xy =1.The
compressibilities xr, x,, and xy, are defined as, similar to the
Newtonian problem,

(BlnP) (8lnP> <BlnP>
Xt =\ T+ s Xn= y XXi= | 37w .
T/, )" \dlnn )y AnX; )z,

@n

Using (dInp/dInn) = (p + P/c?)/p (equation 5.90 of Boston
2022; see also Thorne 1967), the compressibility x, can be computed
as

P 2
Xn = wxm (22)

where y, = (2P . Here, V,4 and V are the adiabatic and
P dlnp T.(X:)

i

actual temperature gradients, respectively, defined as

V. — olnT
W=\ omP ad,(X,-}’

Equation (19) is completely analogous to the Newtonian
expression for the squared Brunt-Viisild frequency, N2 =
gz(p/P)(XT/Xp) [Vaa — V 4 B]. In the relativistic formula, g has
been replaced by ¢?v’/2, and the ratio p/ P becomes (o + P/c?)/P.
There is an additional relativistic factor, e™*, and the compressibility
X, 1s replaced by x,, where n is the baryonic number density.

_dlnT
T dlnP’

(23)

3.4 Differential equations of the relativistic Cowling
approximation

Here, we formulate the system of differential equations of the non-
radial pulsations in the relativistic Cowling approximation form
that results when we ignore Eulerian metric perturbations in the
pulsation equations (McDermott et al. 1983). This reduces the
fourth-complex-order problem of non-radial pulsations in GR to
a second-real-order problem, which can be written as two real,
first-order differential equations. Following Yoshida & Lee (2002),
we define the dimensionless variables w, y;, and y,, analogous to
Dziembowski’s variables in Newtonian pulsations (Dziembowski
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1971):2

2 _ ; o2 _& oot
oM’ T
where &, and &, correspond to the Lagrangian radial and horizontal
displacements, respectively. We also define the following dimen-
sionless functions, analogous to Dziembowski’s coefficients (Dziem-

bowski 1971), calculated with respect to the stellar equilibrium model
(Boston 2022):

. oy =ECwle™ (24)

1 (dlogP p+(P/cA)rc?
Vo(r) = —— = - 25
« =5 (dlogr) re 2 25)
Uir) =2 +r>, (26)
v

Us(r) =rd/, 27

GM, 2r _,
Ci(r)= R AR (28)
and (Thorne 1966)

1 log P 1 2
A=t (g Py p dlogp) _ *N" i (29

Iy \ dlogr o+ (P/c*) \ dlogr c?'/2

In the Newtonian limit, A*, V,, and C; will limit to their conventional
expressions (Unno et al. 1989). On the other hand, in the Newtonian
limit we have that U, tends to U, which is defined in Unno et al.
(1989), and U, — 0. Using these definitions, and defining x = r/R,,
the resulting differential equations for the relativistic Cowling
approximation (McDermott et al. 1983; Lindblom & Splinter ;
Yoshida & Lee 2002; Boston 2022) are

dy; 0+ 1)
(v, —3+4U L 30
X i ( 2 + 2) yi+ ( Cro? g) 2, 30)
d
X2 = (00— AT) 3+ (L4 A7 = U)o, 31)

In the Newtonian limit, we have e¢* — 1 and U, — 0, and the
equations adopt exactly the form of the Newtonian Cowling
approximation (Cowling 1941; Unno et al. 1989). The boundary
conditions for this system of differential equations are at the stellar
(fluid) centre (x = 0)

y1C1ow* — £y, =0, (32)
and at the stellar surface (x = 1)
yi—y>» =0, and y; =1 (normalization condition). (33)

These are the same boundary conditions as for the Newtonian
Cowling approximation.

For the ultra-massive WD models considered in this work, the
stellar core is crystallized, so that the so-called hard-sphere boundary
conditions (Montgomery et al. 1999) may be adopted, which exclude
the g-mode oscillations from the solid core regions. In that case,
equation (32) is replaced by the condition

y1 =0 and y, = arbitrary, 34

at the radial shell x = x.y, associated with the outward-moving
crystallization front, instead of the centre of the star (x = 0). To
maintain consistency between Newtonian and GR calculations and
for a clean comparison, we assume the same internal boundary

2 At variance with Boston (2022), we use o for the physically meaningful
oscillation frequency and w for the dimensionless frequency, following Unno
et al. (1989).
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Figure 3. The relativistic potentials v (black) and A (blue), in terms of
the outer mass fraction coordinate, corresponding to two template ONe-
core WD models with masses M, =1.29M@ and M, = 1.35M¢), and
effective temperature Terr ~ 12000 K. Note the high peaks in the stellar
centre, indicating the increased gravitational strength of the core, and that the
more massive star shows more extreme values. At the surface, v — —A.

1x10"° 1.29 M, - 1.35M, —
8x10™"
6x10™"
4x10™"

2x10™"

6 6
-log(1-M,/M.) -log(1-M,/M.)
Figure 4. The derivatives of the relativistic potentials V' (black) and A’
(blue), in terms of the outer mass fraction coordinate, corresponding to the
same template models shown in Fig. 3. Note again the sharp peaks in the
core, and more extreme values in the more massive star.

condition for the GR case as for the N case that the eigenfunctions
are approximately zero in the solid core, and can be treated with a
hard-sphere boundary condition.

In this work, to take into account the relativistic effects on g-
mode pulsations of crystallized ultra-massive WD models, the LpP-
PUL pulsation code (Cérsico & Althaus 2006) has been appropriately
modified to solve the problem of relativistic pulsations in the Cowling
approximation as given by equations (30) and (31), with boundary
conditions given by equations (33) and (34).

4 PULSATION RESULTS

4.1 Properties of template models

It is illustrative to examine the metric parameters v, A, v’, 1/, and v".
In Figs 3,4, and 5, we show the v and A and their derivatives V', A’, and
v”, in terms of the outer mass fraction coordinate, corresponding to
the two template WD models with masses M, = 1.29 M (left) and
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Figure 5. The second derivative of v, that is, v”, in terms of the outer mass
fraction coordinate, corresponding to the same template models shown in
Fig. 3.

M, = 1.35Mg (right), and effective temperature T ~ 12000 K.
As can be seen, v and A quantities are very small throughout the star,
being of a similar order with ¢ ~ 0.001. However, in the centre the
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gravitational values are more extreme than near the surface, pointing
to the high central concentration of the mass of these stars.

The chemical profiles (abundances by mass, X;) of the different
nuclear species corresponding to the template models are plotted
in the upper panels of Fig. 6 as a function of the fractional outer
mass. In the lower panels, we depict the logarithm of the squared
Brunt—Viisild (black lines) and dipole (£ = 1) Lamb (red lines)
frequencies for the GR case (solid lines) and the N case (dashed
lines). We have emphasized the crystallized regions of the core
with grey. The chemical interface of 12¢, 160, and % Ne, which is
located at —log(1 — M, /M,) ~ 1.5, is embedded in the crystalline
part of the core for both template models. Since we assume that
g-mode eigenfunctions cannot penetrate the solid regions (due to
the hard-sphere boundary condition, equation 34), this chemical
interface is not relevant for the mode-trapping properties of the
models. The chemical transition region between 12C, 190, and “He
[—log(1 — M,/M,) ~ 4.5], which is located in the fluid region
in both models, also does not have a significant impact on the
mode-trapping properties. Thus, mode-trapping properties are almost
entirely determined by the presence of the *He/'H transition, which
is located in the fluid external regions, at —log(1 — M, /M,) ~ 6.

By closely inspecting Fig. 6, we conclude that the Brunt—Viisild
and Lamb frequencies for the N and GR cases are similar for the

1 T | T | T | | T | T
0.8 — H

_0.6 2c
0.4 — o ]
0.2 — ,Na ]

| | IMQ| 1

N w A 0o
I

‘I_.ﬂ. B 2

_ oL o — log N" (GR)
ull | o 2

N 1_§ — logL"_, (GR)
g re [ - 2
o~ 05 >~

z g

o -1—

i)

-4 A IR IR A NN T N

T
crystallized core

0 2 4 6 8 10
-log(1-M/M.,)

4 6 8 10 12
-log(1-M/M,)

Figure 6. Upper panels: abundances by mass of the different chemical species as a function of the fractional mass, corresponding to the template WD
models with masses M, = 1.29M¢ (left) and M, = 1.35M¢ (right), and effective temperature Tegr ~ 12000 K. Lower panels: logarithm of the squared
Brunt—Viisild and Lamb (¢ = 1) frequencies for the GR case (solid lines) and the N case (dashed lines). The grey areas correspond to the crystallized core

regions, in which ¢ modes cannot propagate.
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4.5

41

crystallized core
T
crystallized core

Figure 7. Logarithm of the quantity V, for the GR case (black solid lines),
defined by equation (25), as a function of the fractional mass, corresponding
to the template WD models with masses M, = 1.29 Mg, (left) and M, =
1.35 Mgy (right), and effective temperature Tegr ~ 12 000 K. For comparison,
we include the function V, computed for the N case (red dashed lines).
The vertical dashed blue line indicates the location of the boundary of the
crystallized core region (grey zone).
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Figure 8. Same as Fig. 7, but for the quantity U; (equation 26).

model with M, = 1.29 M, although they are significantly different
for the M, = 1.35 M model, with both critical frequencies being
higher for the GR case than for the N case. Because of this, it
is expected that g-mode frequencies shift to larger values so that
all periods experience a global offset towards shorter values in
the relativistic case, compared to the Newtonian case. This will be
verified with the calculations of the g-mode period spectra in both
situations (Section 4.2).

We close this section by comparing the coefficients of the differ-
ential equations of the relativistic Cowling approximation with their
Newtonian counterparts. In Figs 7-11, we depict with black curves
the dimensionless functions V,, U;, U, Cy, and A* in the GR case,
as defined by equations (25) to (29), along with the same quantities
corresponding to the N case (red curves), computed according to
their definition (see e.g. Unno et al. 1989). We include the cases of
the two template WD models with M, = 1.29 M, (left-hand panel)
and M, = 1.35Mg (right-hand panel). We marked the crystallized
region in each model with a grey area with a dashed blue boundary.
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Figure 9. Same as Fig. 7, but for the quantity U, (equation 27). Since Ua
has no counterpart in the Newtonian pulsation equations, only the GR case is
plotted (black curves).
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Figure 10. Same as Fig. 7, but for the quantity C; (equation 28).

These figures demonstrate that the dimensionless quantities in the
GR case are very similar to the ones for the N case, and this is true
for both of the representative models. This is not surprising, since
the relativistic correction factors v and X and their derivatives v, A/,
and v”, which are included in the calculation of the dimensionless
coefficients, are small. For the specific case of A*, some numerical
noise is observed in the core regions. This is irrelevant for the
purposes of this investigation, since those regions are contained in the
crystallized core and do not affect the g modes, which are prevented
from propagating in the solid phase.

4.2 Newtonian and relativistic g-mode period spectra

We computed N and GR non-radial g-mode ¢ = 1 adiabatic pulsation
periods in the range 50 s < IT < 2000 s using an updated version of
the LP-PUL pulsation code that includes the capability to solve the pul-
sation equations in the relativistic Cowling approximation described
in Section 3.1. The N-case pulsation periods were calculated by
solving the differential problem of the Newtonian non-radial stellar
pulsations (Unno et al. 1989). We emphasize that in the GR case we
are using evolutionary WD models calculated in GR with relativistic,
second-order Cowling mode pulsations that ignore gravitational
(i.e. spacetime) perturbations, while in the N case we are using
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Figure 11. Same as Fig. 7, but for the logarithm of the quantity A*
(equation 29).

evolutionary WD models calculated with Newtonian gravity and
Newtonian, fourth-order mode pulsations that include gravitational
perturbations.® We have also computed Newtonian periods by solving
the second-order Newtonian Cowling approximation (Unno et al.
1989). For g modes, these second-order periods are sufficiently
similar to the fourth-order periods used in the N case, in that the
results are not impacted.

In the analysis below, to study the dependence of the relativistic
effects on the stellar mass, we compare the g-mode period spectra
calculated according to the N and GR cases for ultra-massive WD
models of different stellar masses at effective temperatures typical
of the ZZ Ceti instability strip.

Before analysing the behaviour of the periods, we first examine
the impact of GR on the period spacing of g modes. According to
the asymptotic theory of stellar pulsations, and in the absence of
chemical gradients, the pulsation periods of the g modes with high
radial order k (long periods) are expected to be uniformly spaced
with a constant period separation given by (Tassoul 1980; Tassoul
et al. 1990)

AT = T/ /2 + 1), (35)

where

N —1
Iy = 272 U —dr} , (36)
fluid 7

with the integral in equation (36) calculated only in the fluid part
of the star. Fig. 12 depicts the asymptotic period spacing for the
sequences of 1.29, 1.31, 1.33, 1.35, and 1.369 My WD models in
terms of the effective temperature along the ZZ Ceti instability strip.
We find that ATIY, the asymptotic period spacing, is smaller for the
relativistic WD sequences compared to the Newtonian sequences.
This is expected, since the asymptotic period spacing is inversely
proportional to the integral of the Brunt—Viisild frequency divided
by the radius. Since the Brunt—Viisild frequency is larger for the
relativistic case (see Fig. 6), the integral is larger and its inverse
is smaller than in the Newtonian case. The differences of AIT{
between the GR and the N cases are larger for higher stellar masses,

3This is at variance with the preliminary results presented in Corsico,
Althaus & Camisassa (2023), in which Newtonian equations were used for
the g modes, with a fully relativistic WD as the background.
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Figure 12. Dipole ¢ = 1 asymptotic period spacing for ultra-massive WD
sequences with different stellar masses for the relativistic (GR) and Newtonian
(N) cases in terms of Tefr through the whole ZZ Ceti instability strip (light
grey area).
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Figure 13. Upper panel: £ = 1 g-mode periods in terms of the radial order (k)
for a WD model with M, = 1.29 M, and Tegr ~ 12000 K for the relativistic
(GR, black dots) and Newtonian (N, red dots) cases. Lower panel: the absolute
value of the relative difference between the periods of the GR and the N cases,
8 = |Ilgr — In|/TIGr (blue).

reaching a minimum difference of ~0.6 s (which represents a relative
variation in period spacing of ~3 percent) for 1.29 M), and a
maximum difference of ~3 s (that constitutes a relative variation
of ~48 per cent) for 1.369 M, for effective temperatures within the
ZZ Ceti instability strip.

Since there are substantial differences in the separation of g-mode
periods in the GR and N cases, it is natural to expect significant
differences in the individual pulsation periods (IT). In the upper
panels of Figs 13 and 14, we compare the periods of the GR and
N cases for the less massive (1.29 M) and the most massive
(1.369 M) WD models considered in this work (7. ~ 12000
K). M, = 1.369 M, corresponds to the maximum possible value in

MNRAS 524, 5929-5943 (2023)

€20z laquialdasg /(0 uo Jasn ewoyepQ 10 AusisAlun Aq 9081 £22/626S/v/12S/e1onie/seiuw/woo dnoolwepese//:sdiy woll papeojumod



5938 A. H. Corsico et al.

2000 T T T T T 1
- M.=1.369 M,
1500~ 1~ 12000 K
| |I=1g modes

500

Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ I
0O 20 40 60 80 100 120 140 160 180 200 220
Radial order, k

Figure 14. Same as Fig. 13, but for the case of a WD model with M, =
1.369M@.

the calculations of Althaus et al. (2022), above which the models
become unstable with respect to GR effects. It is clear from these
figures that the periods in the relativistic case are shorter than those in
the Newtonian case, with the absolute differences becoming larger
with increasing k. This is mainly due to the structural differences
of the equilibrium models in the GR case in relation to the N case
(smaller radii and larger gravities characterizing the relativistic WD
models, see Fig. 1) and, to a much lesser extent, due to the differences
in the relativistic treatment of the pulsations in comparison with the
Newtonian one.

To quantify the impact of GR on the period spectrum, we have
plotted in the lower panel of each figure the absolute value of the
relative differences between the GR periods and the N periods, § =
[TTgr — In|/TIgRr, versus the radial order. These differences are
smaller than ~0.035 for the less massive model (1.29 M@, Fig. 13),
but they become as large as ~0.5 for the most massive models
(1.369 M@, Fig. 14). We conclude that, for ultra-massive WDs with
masses in the range 1.29 < M, /M@ < 1.369, the impact of GR on
the pulsations is important, resulting in changes from ~4 per cent to
~50 per cent in the values of g-mode periods.

Another way to visualize the impact of GR on the pulsation periods
is to plot the periods for the GR and N cases in terms of stellar mass.
We display in the upper panel of Fig. 15 the periods of selected g
modes (with radial orders k = 5, 10, 20, 40, and 70) in terms of the
stellar mass for the GR and the N cases. In the lower panel, we show
the absolute value of the relative difference § (percent) between
the relativistic and Newtonian periods, as a function of the stellar
mass. The relative differences in the periods exhibit an exponential
growth with stellar mass, without appreciable dependence on the
radial order (see also Figs 13 and 14). The behaviour of § with the
stellar mass visibly mirrors the exponential increase in the relative
differences between the relativistic and Newtonian stellar radii and
surface gravities, as seen in Fig. 2.

At first glance, the relative differences § might seem larger than
expected, given recent work on periods in average-mass WDs by
Boston et al. (2023). For the simple models considered there, it was
shown that § ~ z ~ 10~ for a WD with M, ~ 0.6 M. However,
considering their fig. 4, it is possible for stars with high central
concentrations, such as ultra-massive WDs, that § can be larger
than z, consistent with our present findings. To confirm this, we
also carried out pulsational calculations on a simplified stratified
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Figure 15. Upper panel: the periods of selected £ =1 g modes (k =
5, 10, 20, 40, and 70) in terms of the stellar mass, for the GR case (solid
lines with filled dots) and the N case (dashed lines with hollow dots). Lower
panel: the absolute value of the relative difference & (per cent) between the
relativistic and Newtonian periods, as a function of the stellar mass.
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Figure 16. Dipole (¢ = 1) forward period spacing (AIT = x4+ — Ik)
versus periods, corresponding to a WD model with M, = 1.29M¢ and
Tege ~ 12000 K for the relativistic case (red), and the Newtonian case (black).
The horizontal dashed lines correspond to the asymptotic period spacings for
both cases.

Chandrasekhar-type equilibrium model that mimics a ~1.3 Mg
ultra-massive WD, in the case of Newtonian gravity and in the post-
Newtonian approximation, following the process in Boston et al.
(2023). These calculations and their results are presented in the
Appendix B. The comparison of the periods in both cases indicates a
relative difference of the order of 1072, in complete agreement with
the results obtained here for our WD models of 1.29 and 1.31 Mg
(see Figs 13 and 15).

It is interesting to examine how the period spacings versus periods
change depending on whether we consider the GR case or the N
case. We define the forward period spacing as AIT = [Ty, — I,.
The dipole (¢ = 1) forward period spacing in terms of the periods is
plotted in Figs 16-20 for WD models with stellar masses between
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Figure 17. Same as Fig. 16, but for a WD model with M, = 1.31 M.
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Figure 18. Same as Fig. 16, but for a WD model with M, = 1.33 M.
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Figure 19. Same as Fig. 16, but for a WD model with M, = 1.35M¢).

1.29 and 1.369 M, and T, = 12000 K. We have adopted the same
range in the y—axis in order to make the comparison of the results
between the different stellar masses clearer. These figures show that,
in general, the period spacing is larger in the N case than that in the
GR case, and that this difference becomes larger as the stellar mass
increases. This is expected based on the behaviour of the asymptotic
period spacing (see Fig. 12), which is indicated with horizontal
dashed lines.

4.3 The case of the ultra-massive ZZ Ceti star WD J0049—2525

The ultra-massive DA WD star WD J004917.14—252556.81 (T, =
13020 460 K and log g = 9.341 £ 0.036) is the most massive
pulsating WD known to date (Kilic et al. 2023b). It shows only
two periods, at ~209 and ~221 s, which are insufficient to find a
single seismological model that would give us details of its internal
structure. Extensive follow-up time-series photometry could allow
discoveries of a significant number of additional pulsation periods
that would help to probe its interior. Considering the ONe-core WD
evolutionary models of Althaus et al. (2022), WD J0049—2525
has M, = 1.283 +0.008 M, in the Newtonian gravity, or M, =
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Figure 20. Same as Fig. 16, but for a WD model with M, = 1.369 M.

1.279 &£ 0.007 My if we adopt the GR treatment. This heavyweight
77 Ceti, in principle, could be considered as an ideal target to explore
the relativistic effects on ultra-massive WD pulsations. However, the
difference between the relativistic and Newtonian masses of this
target is tiny. A difference of only 0.004 M is even smaller than the
uncertainties in the mass estimates. This small difference is due to the
star being just slightly below the lower mass limit for the relativistic
effects to be important.*

Fig. 15 (see also Fig. 16) demonstrates that the effects of the GR
on the g-mode periods of WD J0049—2525 are less than ~1 per cent.
Although extremely important for being the most massive pulsating
WD star known, WD J0049—2525 is not massive enough for the
exploration of the GR effects on WD pulsations. We conclude that,
to be able to study the effects of GR on WD pulsations, we have to
wait for the discovery and monitoring of even more massive pulsating
WDs, especially the ones with M, 2 1.33 M.

~

4.4 Prospects for finding pulsating WDs where GR effects are
significant

Fig. 21 shows the masses and effective temperatures for high-
probability (Pwp > 0.9) WD candidates with M, > 1.3 Mg, in the
Gaia EDR3 WD sample from Gentile Fusillo et al. (2021) assuming
CO cores. Here, we limit the sample to the temperature range near the
Z7 Ceti instability strip. The blue and red lines show the boundaries
of the instability strip from Vincent et al. (2020) extrapolated to
higher masses. There are 78 objects in this sample, including 7
spectroscopically confirmed DA WDs (labelled in the figure) and 6
magnetic or DC WDs. Kilic et al. (2023a) found that only 48 per cent
of the M, =~ 1.3 My WDs within 100 pc are DA WDs, with the rest
being strongly magnetic (40 percent of the sample) or WDs with
unusual atmospheric compositions (hot DQ, DBA, DC, etc.). Hence,
follow-up spectroscopy is required to identify the DA WDs in this
sample.

Kilic et al. (2023a) presented time-series photometry for the five
DA WDs cooler than 13000 K in Fig. 21. They did not detect any
significant variations in four of the targets, and their observations
were inconclusive for J0959—1828. Nevertheless, there are a number
of relativistic ultra-massive WD candidates that may fall within
the ZZ Ceti instability strip, and therefore may exhibit pulsations.
The masses shown here are based on the CO-core evolutionary
models; for ONe cores, the masses would be lower on average by
0.04—0.05 Mg,. Even then, there are nine candidates with M, > 1.35

4That is, M, ~ 1.3 Mg, the lower limit of the mass regime of the so-called
relativistic ultra-massive WDs (Althaus et al. 2023).
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Figure 21. Masses and effective temperatures for high-probability WD
candidates with M, > 1.3 Mg, in the Gaia EDR3 WD sample from Gentile
Fusillo et al. (2021) assuming CO cores. For ONe cores, the masses would
be lower on average by 0.04—0.05 Mg. The blue and red lines show the
empirical boundaries of the ZZ Ceti instability strip from Vincent et al. (2020)
extrapolated to higher masses. Blue and red dots show the spectroscopically
confirmed DA and DC/magnetic WDs, respectively.

and up to 1.39 Mg, (assuming a CO core) near the instability strip.
If confirmed, such targets would be prime examples of objects
where GR effects would have a significant impact on their pulsation
properties.

Unfortunately, the observational errors in temperatures and masses
of these targets based on Gaia photometry and parallaxes (Gentile
Fusillo et al. 2021) are too large to effectively identify the best
targets for follow-up. For example, 64 of the 78 objects shown here
have temperature errors larger than 2000 K, roughly the width of
the instability strip, and 62 have errors in mass that are larger than
0.1 Mg. Hence, further progress on understanding the GR effects on
WD pulsation will require spectroscopic and time-series observations
of arelatively large sample of candidates to identify genuine pulsating
ultra-massive WDs with M, 2 1.33 M. In addition, the median G-
band magnitude for these 78 objects is 20.25 mag. Hence, 4-8 m
class telescopes would be needed to confirm pulsating DA WDs in
this sample.

5 SUMMARY AND CONCLUSIONS

In this paper, we have assessed for the first time the impact of GR
on the g-mode period spectra of ultra-massive ZZ Ceti stars. To this
end, we pulsationally analysed fully evolutionary ONe-core ultra-
massive WD models with masses from 1.29 to 1.369 M, computed
in the frame of GR (Althaus et al. 2022). We employed the LPCODE
and LP-PUL evolutionary and pulsation codes, respectively, adapted
for relativistic calculations. In particular, for the pulsation analysis,
we considered the relativistic Cowling approximation. Our study is
consistent with Boston et al. (2023), considering the high central
compactness of the stars studied here. The study of pulsating ultra-
massive WDs in the context of GR is timely considering the increas-
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ing rate of discovery of very high mass objects (e.g. Hollands et al.
2020; Kilic et al. 2020, 2021, 2023a; Caiazzo et al. 2021; Torres et al.
2022), the discovery of the ZZ Ceti WD J004917.14—252556.81 (the
most massive pulsating WD currently known; Kilic et al. 2023b),
and the possibility of finding even more massive pulsating objects
in the near future. This is particularly relevant in view of the space-
based surveys like TESS and ULTRASAT and wide-field ground-
based surveys like the LSST and BlackGEM.

We find that the Brunt—Viisild and Lamb frequencies are larger
for the relativistic case compared to the Newtonian case, as a result
of relativistic models having smaller radii and higher gravities. This
has the important consequence that the typical separation between
consecutive g-mode periods is smaller in the relativistic case than
that in the Newtonian computations, with percentage differences of
up to 48 per cent in the case of the most massive model (1.369 M).
We assessed the dipole period spectrum of g modes of our ultra-
massive WD models for the Newtonian and the relativistic cases,
and found that the periods in the GR case are shorter than those in
the Newtonian computations. In particular, for the less massive model
(1.29 M), these relative differences are smaller than ~0.035, but
the variations reach values as large as ~0.5 for the most massive
model (1.369 M@)).

We conclude that, for ultra-massive DA WD models with masses in
the range that we have considered in this paper (1.29 < M, /Mg <
1.369) and effective temperatures typical of the ZZ Ceti instability
strip, GR does matter in computing the adiabatic g-mode pulsations,
resulting in periods that are between ~4 and ~50 per cent shorter,
depending on the stellar mass, when a relativistic treatment is adopted
instead of a Newtonian one. This suggests that the effects of GR on
the structure and pulsations of WDs with masses 21.29 M cannot
be ignored in asteroseismological analysis of ultra-massive ZZ Ceti
stars and likely other classes of pulsating WDs.
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APPENDIX A: RELATIVISTIC EXPRESSION
FOR THE BRUNT-VAISALA FREQUENCY IN
THE ‘MODIFIED LEDOUX’ PRESCRIPTION

We start from the relativistic expression for the Brunt—Viisild
frequency, obtained according to its definition (equation 18). This
expression can be derived by considering slight buoyant perturbations
of a fluid packet within the stellar medium, as detailed in Boston
(2022). In the GR case, N? is given by

2 ., 1 dp 1 dp
N=—Sver|—— (L) (D)), (A1)
2 o+ P/ct \ dr P\ dr

which reduces to the Newtonian result in the limit ¢ — o0. In what
follows, we will derive expressions for the first and second members
inside the brackets of equation (A1). In the Newtonian case, if stellar
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plasma is composed by M atomic species with fractional abundances
X, the equation of state can be written as

P =P(p. T, {Xi}), (A2)

wherei =1,--- , M — 1, andzl | X + X = 1. In the relativis-
tic case, we have, instead,

P=Pn,T,{X;}), (A3)
where n is the baryonic number density. Following Brassard et al.
(1991), we can differentiate P from equation (A3) and write
M-1
dinP = y,dinn + xrdIn T + > xx,dInX;, (Ad)
i=1
where xr, x., and xx, are given by equation (21). Now, from
equation (A4) we have

M—1

dinn 1 dIn X;
- fv S . AS
dnP ZXX‘ dln P (A5)

The relativistic adiabatic exponent, I'}, is defined as

dln P
I = ) (A6)
dlnn /4

Following Kippenhahn & Weigert (1990, equations 6.6 and 13.24),

we can write
1
= , A7
1=y (A7)

where

dl dl
= (£8P s (ER2) (A8)
dinP /, dinT /,
From the definition of x7 and x, (equation 21), and using the property

of the partial derivatives (3 f/0y), = —(d f/0x), - (3x/dy)s, we
have

a=L, 5= X, (A9)
Xn Xn

so that I"; can be written as

1 (= xrVa)

r Xn .

The first law of thermodynamics in GR can be written (equa-
tion 2.12 of Thorne 1967, converted to standard, non-geometrized
units) as

o+ P/c?
=

(A10)

dp = dn + Zzn ds—|—z,ukn dXg, (Al1l1)
¢ k
where T, s, and p; are the temperature, the entropy per baryon, and
the nuclear chemical potential of the species k, respectively.
If we now assume isentropic changes (ds = 0) and suppose that
the abundances of the nuclear species do not change (dX; = 0;
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equation 2.14 of Thorne 1967), then by differentiating with respect
to r, we finally have

d P
do _[p+P/c (A12)
dr n dr-
Equation (A12) can be written as

1 dp 1dn
—_— = | = (A13)
p+ P/c? \ dr n dr

Substituting equation (A13) in equation (A1), using the static TOV

(Tolman-Oppenheimer-Volkoff) equation of GR (Oppenheimer &
Volkoff 1939; Tolman 1939),

ar 1 N Py ,, (Ald)
dar = 2 P c? ov
and employing equations (AS) and (A10), we obtain

v = (Lo e (PEPICN 2
2 P Xn

M-1

1 dIn Xi
Vyg—V— — _
ad XT;XX' dln P

X (A15)

where the last term inside the brackets is the Ledoux term B
(equation 20). Thus, we finally obtain

1 2 P
N2 = (Eczv’) e (#) CVu- VBl (AIG

APPENDIX B: VALIDATION WITH A TOY
MODEL BASED ON CHANDRASEKHAR’S
MODELS

As validation of the results presented in this paper, in particular the
size of the relative difference in the periods, we have carried out
pulsation calculations on a toy model based on Chandrasekhar’s
models, with a stellar mass M, ~ 1.3Mg. This model has a
cold degenerate-electron equation of state featuring a near-surface
chemical transition from p, = 2 to p. = 1, simulating a surface H
layer. Thus, this simple model mimics the structure of a stratified
realistic ultra-massive WD model. Following the post-Newtonian
method described in Boston et al. (2023), we have compared the
fourth-order non-radial Newtonian pulsations to the non-radial GR
pulsations for this toy model for several g, f, and p modes with
low radial orders k for harmonic degrees ¢ = 1,2, and 3. We
show the results in Table B1. The relative differences we obtain
for g modes are, on average, ~2.65 x 1072 (column 4), which is
consistent with the results shown in Figs 13 and 15 for the cases of
ultra-massive WD models with M, = 1.29M@p and M, = 1.31 M,
respectively.
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Table B1. Periods for several low-order p, f, and g modes corresponding
to the Newtonian gravity computations (column 2) and the GR computations
(column 3) for a stratified degenerate-electron gas model, both with M, =
1.299 66 M. The Newtonian model uses yg = 6.385, with z = 6.6012 x
10_4, while the GR model uses yp = 6.779, with z = 6.3047 x 1074,
Column 3 gives the relative difference, which is commensurate with those in

Fig. 13.
Newtonian Post-Newtonian

Mode; « I (s) I (s) Rel. diff.
P11 1.049 5784 0.9782581 1.52 x 1073
g1l 16.267 5050 14.786 5834 2.66 x 1072
81,2 35.7515552 32.493 2485 2.67 x 1072
81,3 54.426 4093 49.468 6549 2.67 x 1072
81,4 729174383 66.277 8687 2.66 x 1072
81,5 91.3355203 83.021 1550 2.66 x 1072
g1.6 109.716 9819 99.731 3589 2.66 x 1072
81,7 128.077 3819 116.422 5439 2.66 x 1072
g1.8 146.424 5279 133.101 7651 2.65 x 1072
f 1.290 9440 1.1915768 1.12 x 1072
82,1 9.416 4937 8.5607991 2.64 x 1072
222 20.682 5679 18.800 0960 2.66 x 1072
82,3 31.477 1109 28.612 8454 2.66 x 1072
824 42.164 2251 38.328 3552 2.65 x 1072
82,5 52.808 3359 48.004 9281 2.65 x 1072
226 63.4306072 57.6617194 2.65 x 1072
827 74.040 1429 67.306 9695 2.65 x 1072
82,8 84.6415378 76.944 8380 2.65 x 1072
f3 1.079 6099 1.000 3529 7.39 x 1073
3.1 6.6828617 6.077 1126 2.62 x 1072
832 14.664 7687 13.3323883 2.64 x 1072
833 22.308 7624 20.281 5701 2.64 x 1072
83,4 29.8754567 27.160 6785 2.64 x 1072
83,5 37.4108454 34.0113796 2.64 x 1072
83,6 44.9300978 40.8474210 2.64 x 1072
837 52.4397798 47.674 7566 2.64 x 1072
83,8 59.9432319 54.4964175 2.64 x 1072
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