
Multiple Programming Languages for Improving Computational
Thinking in CS1

Dongeun Lee
Texas A&M University-Commerce

Commerce, Texas, USA

dongeun.lee@tamuc.edu

Kaoning Hu
Texas A&M University-Commerce

Commerce, Texas, USA

kaoning.hu@tamuc.edu

Omar El Ariss
Texas A&M University-Commerce

Commerce, Texas, USA

omar.el.ariss@tamuc.edu

Kibum Kwon
Texas A&M University-Commerce

Commerce, Texas, USA

kibum.kwon@tamuc.edu

ABSTRACT

Computational thinking can be deemed as thinking in algorithmic

way, with which one can transpose given problems into computer

algorithms. Since computational thinking requires abstract reason-

ing, it should not depend on particular programming languages.

Unfortunately, introductory programming courses (CS1) often give

students false impression that their goals are to teach a particu-

lar programming language. This study shares the design of new

pedagogy for CS1 that removes dependency on a particular lan-

guage and promotes computational thinking by teaching multiple

programming languages simultaneously. Specifically, chosen pro-

gramming languages range from low-level to high-level to expose

students to different levels of abstraction from the details of com-

puter architecture. Initial student survey responses from both trial

and control groups show that there are significant improvements

for the trial groups.

1 INTRODUCTION / PROBLEM

Traditionally, introductory programming courses (CS1) focused on

the syntax and semantics of a particular programming language,

where students have to learn syntactic rules first and then un-

derstand meaning of these rules. In this environment, the course

objective naturally gravitates toward mastering a programming lan-

guage itself and it is difficult to emphasize computational thinking

that involves the process of abstract reasoning.

2 BACKGROUND / METHODS

Children are encouraged by parents to learn multiple languages.

They excel in learning all of them at the same time. We believe

that similar learning process can occur for novice learners in CS1.

When properly encouraged to do so, students may be able to learn

multiple languages at the same time, which in turn will provide the

solid foundation for computational thinking.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9433-8/23/03.
https://doi.org/10.1145/3545947.3576322

We enforce computational thinking in CS1 by removing depen-

dency on a particular programming language. We use multiple pro-

gramming languages in CS1, ranging from high-level to low-level,

simultaneously to broaden students’ horizons beyond the syntax

and semantics of programming languages. Although there have

been few efforts where students are taught multiple programming

languages in CS1 [1], those approaches were far from promoting

abstract reasoning by multiple languages. Our focus is on teaching

students computational thinking where high-level programs in any

language are mapped to the same low-level representations. Stu-

dents learn how different aspects of programming (e.g. data types

and control structures) can be represented with different levels of

abstraction.

In particular, students are first exposed to similar, but different

syntax of Python (higher level) and Java (high level). They then

understand these two codes are eventually processed the same way

by our computer architecture with the help of Java bytecode (low

level). Students build their confidence in programming by reading

three different codes at the same time and realizing they are all

semantically the same with different levels of abstraction. Here the

focus is not on contrasting the syntax of one language to others,

but on forming a general notion by abstracting from particulars.

3 RESULTS

We offered CS1 in both new pedagogy (trial group) and traditional

pedagogy (control group) where a single language is taught, for

Fall 2021 and Spring 2022 semesters. The proposed new pedagogy

turns out to be more effective than traditional pedagogy, which is

supported by student survey results regarding confidence, inter-

est, and career in computer science. We also collected open-ended

responses via the survey and identified students realize similarity

in different languages despite the difference in syntax by constant

practice of converting one language to others.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 2021446.

REFERENCES

[1] Gongbing Hong, Jenq-Foung Yao, Chris Michael, and Lisa Phillips. 2018. Amultilin-
gual and comparative approach to teaching introductory computer programming.
Journal of Computing Sciences in Colleges 33, 4 (2018), 4ś12.


	Abstract
	1 Introduction / Problem
	2 Background / Methods
	3 Results
	Acknowledgments
	References

