Multiple Programming Languages for Improving Computational
Thinking in CS1

Dongeun Lee
Texas A&M University-Commerce
Commerce, Texas, USA
dongeun.lee@tamuc.edu

Omar El Ariss
Texas A&M University-Commerce
Commerce, Texas, USA
omar.el.ariss@tamuc.edu

ABSTRACT

Computational thinking can be deemed as thinking in algorithmic
way, with which one can transpose given problems into computer
algorithms. Since computational thinking requires abstract reason-
ing, it should not depend on particular programming languages.
Unfortunately, introductory programming courses (CS1) often give
students false impression that their goals are to teach a particu-
lar programming language. This study shares the design of new
pedagogy for CS1 that removes dependency on a particular lan-
guage and promotes computational thinking by teaching multiple
programming languages simultaneously. Specifically, chosen pro-
gramming languages range from low-level to high-level to expose
students to different levels of abstraction from the details of com-
puter architecture. Initial student survey responses from both trial
and control groups show that there are significant improvements
for the trial groups.

1 INTRODUCTION / PROBLEM

Traditionally, introductory programming courses (CS1) focused on
the syntax and semantics of a particular programming language,
where students have to learn syntactic rules first and then un-
derstand meaning of these rules. In this environment, the course
objective naturally gravitates toward mastering a programming lan-
guage itself and it is difficult to emphasize computational thinking
that involves the process of abstract reasoning.

2 BACKGROUND / METHODS

Children are encouraged by parents to learn multiple languages.
They excel in learning all of them at the same time. We believe
that similar learning process can occur for novice learners in CS1.
When properly encouraged to do so, students may be able to learn
multiple languages at the same time, which in turn will provide the
solid foundation for computational thinking.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9433-8/23/03.

https://doi.org/10.1145/3545947.3576322

Kaoning Hu
Texas A&M University-Commerce
Commerce, Texas, USA
kaoning.hu@tamuc.edu

Kibum Kwon
Texas A&M University-Commerce
Commerce, Texas, USA
kibum.kwon@tamuc.edu

We enforce computational thinking in CS1 by removing depen-
dency on a particular programming language. We use multiple pro-
gramming languages in CS1, ranging from high-level to low-level,
simultaneously to broaden students’ horizons beyond the syntax
and semantics of programming languages. Although there have
been few efforts where students are taught multiple programming
languages in CS1 [1], those approaches were far from promoting
abstract reasoning by multiple languages. Our focus is on teaching
students computational thinking where high-level programs in any
language are mapped to the same low-level representations. Stu-
dents learn how different aspects of programming (e.g. data types
and control structures) can be represented with different levels of
abstraction.

In particular, students are first exposed to similar, but different
syntax of Python (higher level) and Java (high level). They then
understand these two codes are eventually processed the same way
by our computer architecture with the help of Java bytecode (low
level). Students build their confidence in programming by reading
three different codes at the same time and realizing they are all
semantically the same with different levels of abstraction. Here the
focus is not on contrasting the syntax of one language to others,
but on forming a general notion by abstracting from particulars.

3 RESULTS

We offered CS1 in both new pedagogy (trial group) and traditional
pedagogy (control group) where a single language is taught, for
Fall 2021 and Spring 2022 semesters. The proposed new pedagogy
turns out to be more effective than traditional pedagogy, which is
supported by student survey results regarding confidence, inter-
est, and career in computer science. We also collected open-ended
responses via the survey and identified students realize similarity
in different languages despite the difference in syntax by constant
practice of converting one language to others.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2021446.

REFERENCES

[1] Gongbing Hong, Jenq-Foung Yao, Chris Michael, and Lisa Phillips. 2018. A multilin-
gual and comparative approach to teaching introductory computer programming.
Journal of Computing Sciences in Colleges 33, 4 (2018), 4-12.



	Abstract
	1 Introduction / Problem
	2 Background / Methods
	3 Results
	Acknowledgments
	References

