Berge cycles in non-uniform hypergraphs
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Abstract

We consider two extremal problems for set systems without long Berge cycles.
First we give Dirac-type minimum degree conditions that force long Berge cycles.
Next we give an upper bound for the number of hyperedges in a hypergraph with
bounded circumference. Both results are best possible in infinitely many cases.

Mathematics Subject Classifications: 05C65, 05C35, 05C38

1 Introduction

1.1 Classical results on longest cycles in graphs

The circumference ¢(G) of a graph G is the length of its longest cycle. In particular, if a
graph has a cycle C' which covers all of its vertices, V(C') = V(G), we say it is hamiltonian.
A classical result of Dirac states that high minimum degree in a graph forces hamiltonicity.
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Theorem 1 (Dirac [4]). Let n > 3, and let G be an n-vertex graph with minimum degree
0(G). If 0(G) = n/2, then G contains a hamiltonian cycle. If G is 2-connected, then
¢(G) = min{n, 20(G)}.

Inspired by this theorem, it is common in extremal combinatorics to refer to results in
which a minimum degree condition forces some structure as a Dirac-type condition. The
second part of Theorem 1 cannot be extended to non 2-connected graphs: let F,, ; be the
family of graphs in which each block (inclusion maximal 2-connected subgraph) of the
graph is a copy of Kj_;. Every F' € F,,; has minimum degree k — 2, but its longest cycle
has length £ — 1.

Theorem 2 (Erdés, Gallai [6]). Let G be an n-vertex graph with no cycle of length k or

longer. Then e(G) < %(k;)

So the graphs in F,, ; have the maximum number of edges among the n-vertex graphs
with circumference £ — 1. They also maximize the number of cliques of any size:

Theorem 3 (Luo [12]). Let G be an n-vertex graph with no cycle of length k or longer.
Then the number of copies of K, in G is at most Z—:;(k;l)

1.2 Known results on cycles in hypergraphs

A hypergraph H is a set system. We often refer to the ground set as the set of vertices
V(H) of H and to the sets as the hyperedges F(H) of H. When there is no ambiguity, we
may also refer to the hyperedges as edges. In this paper, we prove versions of Theorems 1
and 2 for hypergraphs with no restriction on edge sizes. Namely, we seek long Berge
cycles.

A Berge cycle of length ¢ in a hypergraph is a set of ¢ distinct vertices {vq,..., v}
and ¢ distinct edges {ej,...,e,} such that {v;,v;11} C e; with indices taken modulo /.
The vertices {vy,...,v,} are called representative vertices of the Berge cycle.

A Berge path of length ¢ in a hypergraph is a set of /41 distinct vertices {vy, ..., vp11}
and ¢ distinct edges {e1,..., e} such that {v;,v;11} C e; for all 1 < i < ¢. The vertices
{v1,...,ve41} are called representative vertices of the Berge path.

For a hypergraph H, the 2-shadow of H, denoted OyH, is the graph on the same
vertex set such that xy € F(0yH) if and only if {z,y} is contained in an edge of H.

Note that if we require no conditions on multiplicities of edges, then we can arbitrarily
add edges of size 1 without creating new Berge cycles or Berge paths. From now on, we
only consider simple hypergraphs, i.e., those without multiple edges (except if it is stated
otherwise).

Bermond, Germa, Heydemann, and Sotteau [1] were among the first to prove Dirac-
type results for uniform hypergraphs without long Berge cycles: Let £ > r and H be an
r-uniform hypergraph with minimum degree §(H) > (f:f) + (r — 1), then H contains
a Berge cycle of length at least k. For large n, generalizations and results for linear
hypergraphs are proved by Jiang and Ma [9]. Coulson and Perarnau [3] proved that
if H is an r-uniform hypergraph on n vertices, r = o(y/n), and H has minimum degree
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(H) > (L(n;_li/%)? then H contains a Berge hamiltonian cycle. Ma, Hou, and Gao [13, 14]
studied r-uniform hypergraphs and improved the result of Bermond, et al. for hamiltonian
Berge cycles: if n > 2r+4 and 6(H) > (1" 1/2)) 4-[(n—1)/2], then A has a Hamiltonian
Berge cycle. Note that this also covers some small cases of n left open by Coulson and
Perarnau.

Our new results differ from these in several aspects. We consider non-uniform hyper-
graphs, prove exact formulas, prove results for every n (or every n > 14), and use only
classical tools mentioned above and in Section 3.1.

2 New results

Our first result is a Dirac-type condition that forces hamiltonian Berge cycles.

Theorem 4. Letn > 15 and let H be an n-vertex hypergraph such that 6(H) > 2n=1)/2 1
if n is odd, or §(H) = 2271+ 2 ifn is even. Then H contains a Berge hamiltonian cycle.

The following four constructions show that the bounds in Theorem 4 cannot be de-
creased for any n.

— Let n be odd. Let H be the n-vertex hypergraph on the ground set [n] with edges
{A:AC[(n+1)/2}u{B:BC{(n+1)/2,...n}}. Then §(H) = 2"Y/2 and H has no
hamiltonian Berge cycle (because it has a cut vertex).

— Let n be even. Let H be the n-vertex hypergraph on the ground set [n] with edges
{A:AC [n/2]}U{B:BC{(n/2+1,...n}} and the set [n]. Then 6(H) = 2/>7! +1
and H has no hamiltonian Berge cycle (because it has a cut edge, [n]).

— Let n be odd. Let H be the n-vertex hypergraph on the ground set [n] obtained
by taking all edges with at most one vertex in [(n + 1)/2]. Then §(H) = 2"~Y/2 and H
cannot contain a Berge cycle with two consecutive representative vertices in [(n + 1)/2].

— Let n be even. Let H be the n-vertex hypergraph on the ground set [n| ob-
tained by taking all edges with at most one vertex in [n/2 + 1] and the edge [n]. Then
§(H) = 2271 +1, and H cannot contain a Berge cycle with two instances of two consec-
utive representative vertices in [n/2 + 1] (because only one edge of H contains multiple
vertices in [n/2 + 1]).

Next, we consider hypergraphs without long Berge paths or cycles.

Theorem 5. Let k > 2 and let H be a hypergraph such that 6(H) > 2¥72 +1. Then H
contains a Berge path with k base vertices.

A vertex disjoint union of complete hypergraphs of £ —1 vertices shows that this bound
is best possible for n := |V (#)| divisible by (k — 1).

We note that Ma, et al. [14] also proved Dirac-type bounds for the existence of long
Berge paths in r-uniform hypergraphs, but their results do not imply Theorem 5.

Theorem 6. Let k > 3 and let H be a hypergraph such that §(H) > 2¥72 +2. Then H
contains a Berge cycle of length at least k.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.9 3



The following constructions show that the bound in Theorem 6 is best possible when
n is divisible by (k — 1) and also when n =1 mod (k — 1) for n > (k — 1)(282+1). In
the first case, take a vertex disjoint union of complete hypergraphs with k& — 1 vertices
and add one more set, namely [n]. In the other case, take m := (n—1)/(k—1) > 2¥2 41
disjoint (k—1)-sets Ay, ..., A, and an element x such that [n] = (UicicmAi) U{z}. Then
define H as the union of complete hypergraphs on the sets A;’s together with the edges of
the form A; U {x}. If we do not insist on connectedness, then (272 + 1)-regular examples
can be constructed for all n > k2252,

Finally, we prove a hypergraph version of Theorem 2.

Theorem 7. Letn > k > 3 and let H be an n-vertex hypergraph with no Berge cycle of
length k or longer. Then

n—1, .4
e(?—[)<2+k_2(2 2).

The bound in Theorem 7 is best possible when n = 1 mod (k — 2). Take m :=
(n—1)/(k—2) and disjoint sets Ay, ..., A, of size k —2. Let z be a new element, and set
[n] = (Ui<icmAi) U{z}. Define H to be the union of all sets A such that there exists an
i with A\ {z} C A;. Note that the 2-shadow 0y(#) is in the family F, ;. defined before
Theorem 2.

It would be interesting to find max d(#) for Theorems 5 and 6 for other values of n,
and also for the cases when H is connected or 2-connected respectively. Moreover we also
ask to improve the bound for Theorem 7 in the case where H is 2-connected.

There are many exact results concerning the maximum size of uniform hypergraphs
avoiding Berge paths and cycles, see the recent results of Ergemlidze et al. [7] or one by
the present authors [8].

3 Dirac type conditions for hamiltonian hypergraphs

In this section, we present a proof for Theorem 4. The proof method relies on reducing
the hypergraph to a dense nonhamiltonian graph. In the next three subsections we collect
some results about such graphs. Subsections 3.4 and 3.5 contain the proof for hypergraphs.

3.1 Classical tools

Let G be an n-vertex graph. The hamilton-closure of G is the unique graph C(G) of
order n that can be obtained from G by recursively joining nonadjacent vertices with
degree-sum at least n.

Theorem 8 (Bondy, Chvétal [2]). If C(G) is hamiltonian, then so is G.

A graph G is called hamiltonian-connected if for any pair of vertices z,y € V(G) there
is a hamiltonian (x,y)-path. The following corollary can be obtained from Theorem 8 or
from the classical result of Pésa [15]: If for every pair of nonadjacent vertices x,y € V(G)
we have d(z) + d(y) = |V(G)| + 1, then G is hamiltonian-connected.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.9 4



Corollary 9. Ife(G) = (5) — 2 and n > 5 then G is hamiltonian-connected. H

We will need the following result about the structure of matchings in bipartite graphs.
It is a well known fact in the theory of transversal matroids (but one can also give a short,
direct proof finding an M3 C M; U My).

Theorem 10. Let G[X,Y] be a bipartite graph. Suppose that there is a matching M
i G joining the vertices of X1 C X and Y1 C Y. Suppose also that we have another
matching My with end vertices Xo C X and Yo CY such that Yo CY,. Then there exists
a third matching Mz from X3 C X to Y3 CY such that

}/:g, = }/1 and X3 2 XQ.

Theorem 11 (Erdés [5]). Let n,d be integers with 1 < d < [%51], and set h(n,d

) =
(";d) +d?. If G is a nonhamiltonian graph on n vertices with minimum degree 6(G) > d,
then

¢(G) < max {h(n, d), hin, L" . 1J )} - e(n, d).

3.2 A lemma for nonhamiltonian graphs

The lemma below follows from a result of Voss [16] (and from the even more detailed
descriptions by Jung [10] and Jung, Nara [11]). We only state and use a weaker version
and for completeness include a short proof. Define five classes of nonhamiltonian graphs.

— Letn=2k+2,V=ViUW, ]| =|VK =kt+1, (ViNV,=g). Wesay that
G € G if its edge set is the union of two complete graphs with vertex sets V; and V5 and
it contains at most one further edge ey (joining V; and V3);

— Letn=2k+1,V =VUV,, |Vi| =|Va| = k+1, V1NV, = {x9}. We say that G € G,
if its edge set is the union of two complete graphs with vertex sets V; and V5;

— Letn=2k+2, V=ViUW, [Vi|]=k+1, Vo] =k+2, V1NV, = {x}. We say
that G € G if its edge set is the union of a complete graph with vertex set V; and a
2-connected graph G with vertex set V, such that degq(v) > k for every vertex v € V;

— Letn=2k+1,V=ViUul, |Vi|=Fk |V =k+1, (Vi NV, =0). We say that
G € G4 if V5 is an independent set, and its edge set contains all edges joining Vi and V5;

— Letn=2k+2, V=ViUVW, |Vi|] =k, || =k+2, (V1NVy, =@). We say that
G € G5 if V5 contains at most one edge ¢y and deg(v) = k for every vertex v € V' (so its
edge set contains all but at most two edges joining V; and V3).

Lemma 12. Let k > 3 be an integer, n € {2k + 1,2k +2}. Suppose that G is an n-vertex
nonhamiltonian graph with §(G) > k= [(n—1)/2], V :=V(G). Then G € GiU---UGs.

Proof. Suppose first that G is not 2-connected. Then there exist two blocks By, By of G
(i.e., B; is a maximal 2-connected subgraph or a Ks) which are endblocks, i.e., for i = 1,2
there is a vertex v; € B; such that V(B;) \ {v;} does not meet any other block. Then
{v}UN((v) C V(B;) for all v € V(B;)\ {vi}, so an endblock has at least k + 1 vertices and
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if |V(B;)| = k + 1 then it is a clique. If By and B, are disjoint then we get n = 2k + 2,
and G € G;. If B; and B, meet, then G has no other blocks, and G € G, U G3.

Suppose now that G is 2-connected. By the second part of Dirac’s theorem (The-
orem 1), the length of a longest cycle C' of G is at least 2k. If |V(C)| = n — 1, as-
sume C' = vy...v, 101 and v, ¢ V(C). Then v, has at least k neighbors in C, with
no two of them appearing consecutively (otherwise we could extend C' to a hamilto-
nian cycle). Without loss of generality, let N(v,) = {v1,vs,...,v96-1}. If for some
i < j such that v;,v; € N(v,), vit10v;41 € E(G), then we obtain the hamiltonian cycle
ViV .. ViUpUjVj—1 - . . Vi41Uj41Vj42 . . . Up—1U1.  Therefore the vertices in C' of even parity,
together with v,, form an independent set. In case of n = 2k + 1 we get G € G,. If
n = 2k + 2 then in the same way we get that {veri1} U {va,vy,. .., 05 o} together with
vy, is also independent, so the set {vs, ..., vor_o} U {vak, vor11,v,} contains only the edge
Vo241, G € Gs.

Finally, consider the case that |V (C)| =n —2, (i.e., n =2k +2) and let z,y ¢ V(C).
We claim that zy ¢ E(G). Indeed, suppose to the contrary, that zy € E(G). Without
loss of generality, A := {v1,vs,...,v-3} € N(z) or (A\ {var—3}) U {ver_2}) C N(z).
Note that for any v; € N(z), {vi—2, vi—1,Vit1, Vit } N N(y) = @ (indices are taken modulo
2k), because we can remove a segment of C' with at most 3 vertices and replace it with
a segment with at least 4 vertices containing the edge zy. This leads to a contradiction
because there is not enough room on the 2k-cycle C' to distribute the at least k—1 vertices
of N(y) —{z}.

If xy ¢ E(G) then without loss of generality let N(z) = {v1,vs,...v2,_1}. Then the
set {x} U {vg,...,v9} is an independent set. If yv; € E(G) for some i € {2,4,...,2k},
then because y has k neighbors in C' and no two of them appear consecutively, N(y) =

{vg, vy, ..., v9;}, and we obtain a hamiltonian cycle by replacing the segment v;vv3vy of
C with the path vizvsvayvy. Therefore V := {vg, vy, ..., v} U {z,y} is an independent
set of size k + 2, and so G € Gs. O]

3.3 A maximality property of the graphs in G; U...U G5

Let G € Gy U---UGs be a graph. Delete a set of edges A from E(G) where |A| < 1 for
G € G,UG3UG, and |A| < 2 for G € G; UGs. Then add a set of new edges B as defined
below:

— For G € G, |B| = 2 and it consists of any two disjoint pairs joining V; and V5;

— for G € GoUGs, |B| = 1 and it consists of any pair z125 joining V3 \{zo} and V5 \ {xo}
(here 21 € V; and x4 € V3);

— for G € Gy, |B| =1 and it consists of any pair contained in V5;

— and for G € G, |B| = 2 and it consists of any two distinct pairs contained in V5.

Lemma 13. If k > 6, then the graph (E(G)\ A) U B defined by the above process is
hamiltonian, except if G € Gs, xo has exactly two neighbors x4 and ys in Vo, A= {xoy2},
B = {xix3}, and G[Va \ {z0}] is either a Kyi1 or misses only the edge xays.

Proof. If G € Gy and we add two disjoint edges x5 and 3199 joining Vi and V5, (z1,y; €
V1) then to form a hamiltonian cycle we need an xq,y; path P;, and a xs, 3, path P, of
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length k, V(P;) = V; and E(P;) C E(G)\ A. Such paths exist because the graph G[V;]\ A
has at least (kgl) — 2 edges, so it satisfies the condition of Corollary 9.

If G € G, UG;3 and we add an edge x;x9 joining Vi \ {xo} and V5 \ {zo} then we need
paths P, P, of length |V;| — 1 joining z; to zo, V(F;) = V; and E(P;) C E(G) \ A. If
G[V;] \ A satisfies the condition of Corollary 9 then we can find P,. The only missing case
is when |V3| = k£ +2 (so G € G3). Let G5 be the graph on |V5] + 1 vertices obtained from
G[V5]\ A by adding a new vertex z/, and two edges xoz, and xox}. If G5 has a hamiltonian
cycle C' then it should contain zoz!, and z92), so the rest of the edges of C' can serve as
P, we are looking for. Consider the hamilton-closure C'(Gs) and apply Theorem 8 to Gs.
Since the degrees of V5 \{zo} in G are at least k—1 and 2(k—1) > k+3 = |V(G2)|, C(G2)
is a complete graph on V5 \ {zo}. So C(Gs2) is hamiltonian unless the only neighbors of
xo in G are 9 and x5, Hence Ng(xo) NVa = {x9, 42} and A = {zoy2}.

The last case is when G € Gs, |A| = 2, B = {e1, ez} (two distinct edges inside V5).
(The proofs of the other cases, especially when G € G, are easier). We create a graph Hy
from G as follows: Delete the edge eq (if it exists), delete the edges of A joining V; and
V5, add two new vertices z1, 2o to Vi and join z; to the endpoints of e;. We obtain the
graph H by adding all possible (k;ﬂ) pairs from V; U {z1, 22} to Hp.

If H is hamiltonian then its hamiltonian cycle must use only edges of H, (because
V5 is an independent set of size k + 2 in H). If the graph H, is hamiltonian then its
hamiltonian cycle must use the two edges of the degree 2 vertex z;, so (G'\ ({eo} UA))UB
is hamiltonian as well. So it is sufficient to show that H has a hamiltonian cycle.

Let A be the graph on V(H) consisting of the edges of A joining V; and V, together
with the (at most) two missing pairs E(K (V1, V2))\ E(G). We will again apply Theorem 8
to H, so consider the hamilton-closure C(H). The degree degy(z) of an z € Vj is
(2k+3)—deg4(z). The degree degy (y) of ay € Vs is at least |Vi|—degy(y) = k—deg4(y).
Since deg 4(x) + deg,(y) < |E(A)| +1 < 5 we get for k > 6 that

degy (z) +degy(y) > (3k +3) — (dega(x) + degy(y)) = 3k —2 > 2k + 4 = |V(H)|.

So C(H) contains the complete bipartite graph K (Vi,V,) = Ky k2. Then it is really a
simple task to find a hamiltonian cycle in C'(H) and therefore (E(G) \ A) U B is hamil-
tonian. ]

3.4 Proof of Theorem 4, reducing the hypergraph to a dense graph

Fix H to be an n vertex hypergraph satisfying the minimum degree condition. We will
find a hamiltonian Berge cycle in H.

Recall that H = 0y(H) denotes the 2-shadow of H, a graph on V = V(#). Define a
bipartite graph B := B[E(H), E(H)] with parts F(#H) and E(H) and with edges {h, zy}
where a hyperedge h € F(H) is joined to the graph edge xy € E(H) if {z,y} C h. In the
case of {x,y} € H we consider the edge zy € E(H) and {z,y} € E(H) as two distinct
objects of B, so B is indeed a bipartite graph (with |E(H)|+|E(H)| vertices and no loops).
Let M be a maximum matching of B. So M can be considered as a partial injection of
maximum size, i.e., a bijection ¢ between two subsets M C E(H) and &€ C E(H) such
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that |[M| = |€], ¢(m) C m for m € M (and ¢(my) # ¢(my) for m; # my). Consider
the subgraph G = (V, &) of H. Then G does not have a hamiltonian cycle, otherwise by
replacing the edges of a hamiltonian cycle with their corresponding matched hyperedges
in M, we obtain a hamiltonian Berge cycle in H (with representative vertices in the same
order). In this subsection we are going to prove that

0(G) = [(n=1)/2] = k. (1)

Since G has no hamiltonian cycle and &£ > 7, if (1) holds, then by Lemma 12, G €
G1 U---UGs. We will consider this case and prove the remainder of Theorem 4 in the
next subsection.

Let Hy := E(H)N0Oy(H), the set of 2-element edges of H. We may assume that among
all maximum sized matchings of B the matching M maximizes |M N Hs|.

Claim 14. Hy C M, 02(M) = E(H), and every m € E(H) \ M induces a complete
graph in G.

Proof. If m € E(H) contains an edge e € E(H)\ E(G) then one can enlarge the matching
M by adding {m,e} to it, if it is possible. Since M is maximal, it cannot be enlarged,
so m € M. This implies the second and the third statements. We also obtained that if
{z,y} € E(H) then zy € E(G), so ¢(m) = xy for some m € M. In case of |m| > 2 we
can replace the pair {m,zy} by the pair {{z,y},zy} in M and the new matching covers
more edges from #H, than M does (in the graph B). So |m| = 2, all members of Hy must
belong to M. H

To continue the proof of Theorem 4, let d := §(G), v € V such that D := Ng(v),
|D| = d. Since G is not hamiltonian, Theorem 1 gives d < k. Let H, ={e € H : v € e}
denote the edges of H incident to v, (degy(v) = |H,|), and split it into two parts,
H, = DUL where D := {e € E(H) : v € e C {v} UD} and £ := H, \ D. Split D
further into three parts according to the sizes of its edges, D = D~ U Dy U D3 where
D;:={ee€D:le| =i} (for i =2,3) and D~ := D\ (Dy UDj). Since D can have at most
2¢ members and we handle D, and Ds separately we get

d
|D|<2d—d—(

) + [Pil+ Dl 2)

Recall that the matching M in the bipartite graph B can be considered as a bijection
¢: M — & where M C E(H) and € C E(H). Define another matching M in B by an
injection ¢o : Dy UD3 — E(G) as follows. If m € M N (DyUDs) then ¢o(m) := ¢(m). In
particular, since Dy C M, if {v, 2} € Dy then ¢o({v,z}) = va. f m = {v,z,y} € D3\ M
then let ¢o(m) := xy. Since ¢o(Dy U D3) C E(G) we can apply Theorem 10 to the
matchings M and M, in B with X; := M, Y] := E(G), and X, := Dy U D3. So there
exists a subfamily £3 C H \ (D2 U Ds) and a bijection ¢3 : (Dy UD3 U L3) — E(G). The
matching M’ defined by ¢5 is also a largest matching of B. Every m € £ has an element
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x ¢ D, sovr ¢ E(G). If m is not matched in M’, then we add {m,vz} to M’ to get a
larger matching. Hence m € L3. These yield

L] < |L3] = e(G) — |Ds| — |Ds. (3)

Summing up (2) and (3), then using the lower bound for |H,| and the upper bound of
Theorem 11 for e(G) we obtain

1
2F 11 < degy,(v) <2 — (d—;— ) + e(n,d)

The inequality 2F + 1 < 29 — (dfgl) + e(n, d) does not hold for n > 15 and d < k, e.g., for
(n,k,d) = (16,7,6), the right hand side is only 64 — 21 + 85 = 128. This completes the

proof of d = k.

3.5 Proof of Theorem 4, the end

We may assume that G € G; U --- U G5 by Lemma 12, ¢ is a bijection ¢ : M — E(G)
with ¢(m) € m where M C E(H), and Claim 14 holds. Let £, denote the set of edges
m € H containing an edge vy of E(H) \ E(G). Note that £, C M. If deg,(v) = k, then
the family £, is non-empty, otherwise degy, (v) < 2*.

Call a graph F with vertex set V' a Berge graph of H if E(F) C E(H), and there exists
a subhypergraph F C H, and a bijection ¢ : F — E(F') such that ¢¥)(m) C m for each
m € F. We are looking for a Berge graph of H having a hamiltonian cycle. In particular,
the graph G is a Berge graph of H and it is almost hamiltonian. We will show that a
slight change to G yields a hamiltonian Berge graph of H.

If G € G, UGs then choose any v € Vi \ {zo} and let m € L£,. There exists an edge
vy € (E(H)\ E(G)) contained in m. Then y € V5 \ {zo}. The graph (E(G) \ {¢(m)}) U
{vy} is a Berge graph of H (we map m to the edge vy instead of ¢(m)). According to
Lemma 13 (with A := {¢(m)} and B := {vy}) it is hamiltonian except if we run into
the only exceptional case: xgy has exactly two G-neighbors x5 and y, in Vs, vy = va,,
and ¢(m) = zoyy. In this case m contains {xg, v, 2, Y2} so it can be avoided by choosing
y 1= 1o instead of y := ws.

If G € G, then we argue in a very similar way. Choose any v € V5, and let m € L,
containing an edge vy € (E(H) \ F(G)). Then y € V5 and the graph (E(G) \ {¢(m)}) U
{vy} is a Berge graph of H that is hamiltonian by Lemma 13 with A := {¢(m)} and
B := {vy}. From now on we may suppose that n = 2k + 2 so |£,| > 2 for deg,(v) = k.

If G € G then define M;, as the members of M meeting both Vi and V,. The
minimum degree condition on A implies that | M 5| > 2. Since M, can have at most
one member of size 2, we can choose an my, |m;| > 3. By symmetry we may suppose
that |m; N Vi| > 2 and let x5 € Vo N'my. Choose an element y € Vs, y & eg, y # x2. Since
|L,| > 2 we can choose an my € M, o such that m; # my and y € my. Take any pair
{y1,y} € my with y; € V1. Then one can choose an x; € m; N'V] so that x; # 5. So the
pairs {x1, 22} € my and {y;,y} C my are disjoint. Lemma 13 with A := {¢(my), ¢(m2)}
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and B := {z122, y1y} implies that the graph (E(G) \ A) UB is a hamiltonian Berge graph
of H.

If G € G5 then |L£,| > 2 for any v € V5 \ ¢y and for all members m of £, we have
Im N Va| > 2. Fix v € V4 \ g and let my be an arbitrary member of £,. Choose a
pair {v,v'} € my N Vi Fix another vertex u € V5 \ (eg U {v,v'}) and let my be an
arbitrary member of £,. Choose a pair {u,u'} C myN V. Then u ¢ {v,v'} so the pairs
{u,u'} and {v,v'} are distinct. Again, apply Lemma 13 with A := {¢(m1), ¢(m2)} and
B := {uu’,vv'}. This completes the proof of Theorem 4. O

Remark 15. We can also show that all extremal examples are slight modifications of the
four types of the sharpness examples described after Theorem 4.

4 Dirac-type conditions for long Berge cycles

In this section we prove Theorem 5 for Berge paths and Theorem 6 for Berge cycles. In
fact we prove the two statements simultaneously.

Proof of Theorems 5 and 6. Suppose that 6(H) > 2¥2+ 1, k > 3 and that H has no
Berge cycle of length k£ or longer. We will show that it contains a Berge path of length
k —1 (thus establishing Theorem 5) and then that §(H) = 2872 + 1 (which completes the
proof of Theorem 6).
Choose a longest Berge path in ‘H according the following rules. We say that a Berge
path with edges {ei,...,es} is better than a Berge path with edges {fi,..., fi} if
a) s >t or
b) s =t and ¥led < 151
Consider a best Berge path P in H. Let the base vertices of the path be vy, vq, ..., v,.
Let ey,...,e,_1 be the edges of the path (v;,v;41 € €;). First, we show that p > k — 1.
(In fact, p > k follows but that will be proved later).
Indeed, let H®) be the hypergraph consisting of the edges of H containing v,, contained
in {vy,...,v,} and also the edges of the path, i.e.,

EHP):={ec E(H):v,€eC{v,...,u,}}U{er,... e, 1}
Then for p < k — 2 (and k > 3) we have
[E(HP) <27+ (p—1) <2872 < 6(H) < degy(vy).

So there exists an edge f in E(H)\ E(H®) containing v,. Then ey,..., e, 1, f form a
Berge path longer than P, a contradiction.

Now we have p > k — 1, so we can define W := {vy,...,v_1}. Let P; be the
subhypergraph consisting of the first k—1 edges of P, E(P;) := {ey,...,ex_1} (ifp=k—1
we take Py := P). Let H; be the subhypergraph of H consisting of the edges incident to
V1.

Claim 16. Every edge f € E(H1) \ E(P1) is contained in W := {vy,...,v5_1}.
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Proof. First, we show that every edge f € E(#H;) \ E(P1) avoids {vg,...,v,}. Otherwise,
if there exists an edge f € E(H1) \ E(Pi) such that f N {vk,...,v,} # &, then suppose
that v; has the minimum index (k < i < p) such that v; is a vertex of such an f. Then
e1,...,e;_1 and f are forming a Berge cycle of length ¢, since these edges are all distinct
and vy,v; € f. Finally, suppose that there is an edge f € E(Hi) \ E(P;) such that
vef,vg¢g W. Then v ¢ {vy,...,v,} so the path f,e;,...,v, is longer than P, a
contradiction. O

Let K be the family of all 2¥=2 subsets of W that contain v;. We claim there is a
one-to-one mapping ¢ from H; \ e,_; to K. The existence of such a ¢ implies

6(H) < degy(vr) <2872 4 1. (4)

If an edge e of H; satisfies e C W, then let ¢(e) = e. Otherwise, let A C H; be the
set of the edges of H \ {ex_1} that contain both v; and some vertex outside of W. By
Claim 16, each e € A must be some edge e; in P;. Hence it remains to show that all
elements of A can be mapped to distinct elements of I that are not edges of H.

Observe that if e; € A then {v;,v;11} ¢ H. Otherwise, we get a better path by
replacing e; by {v;, vi11}. Also, for 1 <i < k—2, ¢; € Aimplies vy € e; and {v;, v;11} C e;.
Since e; ¢ W we get |e;| = 4 for i > 2. We also obtain that in case of i > 3, ¢; € A we
have {v1,v;,v;41} ¢ P, and moreover {vy,v;,v;41} ¢ H since otherwise we get a better
path by replacing e; by {vy,v;,v;41}. For 3 < i < k —2 (and ¢; € A) define ¢(e;) as
{Ul,vi,viﬂ}-

If e5 € A and {vy,v9,v3} & H then we proceed as above, p(ey) := {vy, v, v3}. Other-
wise, if e; € A (so |ez] > 4) and {vy,ve,v3} € H then {vy,v2,v3} € P too (otherwise, we
get a better path by replacing ey by {vq,v9,v3}). We get e; = {v1,v9,v3} (and e C e3).
We claim that {v;,v3} ¢ H. Otherwise we rearrange the base vertices of the path P
by exchanging v; and vy (and get the order vy, vy, vs3,...,v,) and observe that the Berge
path {ve,vy,vs3}, {v1,v3},€3,...,€e,-1 is better than P, a contradiction. So in this case
p(e2) = {v1,v3}. Finally, if e; € A then ¢(ey) := {v1,v2}, and the definition of ¢ is
complete.

We have shown that degy (v1) < [H1 \ {ex—1}] +1 < 2°72 + 1. Equality holds, so
vy € ex_1. In particular ep_; must exist, so P was a Berge path of length at least
k—1. O

Our method works for multihypergraphs as well. If the maximum multiplicity of an
edge is p, then the corresponding necessary bounds on the minimum degrees are p2¢=2+41
or ;2872 + 2, respectively. Indeed, suppose that §(F) > p28=2+ 1, k > 3 and that F has
no Berge cycle of length k or longer. Let H be the simple hypergraph obtained from F by
keeping one copy from the multiple edges. We have §(H) > 2¥2 + 1. Then Theorems 5
implies that H (and F as well) contain a Berge path with k base vertices.

As in the proof of Theorem 6, consider a best Berge path P in H with base vertices
v1, Vg, ..., 0, and edges ey, ..., e, 1. We have p > k. Then (4) gives degy (v1) = 22 4+ 1
and we get degy, (v1) = |H1 \ {ex—1}|+ 1. Since we also obtained {vy, vg_1, v} C ex_1, the
multiplicity of e,_; could not exceed 1. So 6(F) could not exceed pu2%-2 + 1.
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5 Maximum number of edges

Proof of Theorem 7. Suppose that among all n-vertex hypergraphs with ¢(H) < k and
e(H) edges our H is chosen so that Y .y, |€] is minimized.

We claim that H is a downset, that is, for any e € E(H) and €' C e, ¢ € E(H).
Indeed, if there exists a set € and an edge e such that ¢/ C e where ¢ ¢ FE(H) and
e € E(H), then the hypergraph obtained by replacing e with ¢’ also does not contain a
Berge cyle of length k or longer. This contradicts the choice of H.

Let H = Oy’H be the 2-shadow of H. Suppose that H contains a cycle C' = vyvs . .. vpv;.
Every edge v;v;11 of C is contained in a edge of H. But since H is a downset, the edge
{vi,vi11} is also contained in E(H). Therefore H also contains a (Berge) cycle of length
¢. Hence the graph H contains no cycles of length at least k.

Let e,.(H) be the number of edges of H of size . In H, every edge e of H is represented
by a clique of order |e|, and so e,(#) is at most the number of cliques of size r in H. Since
c(H) < k, each edge contains at most k — 1 vertices. By Theorem 3,

() = oW+ B+ Y end) < 1oy () —or L o). o

r= r=2
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