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Abstract

Gyarfas proved that every coloring of the edges of K,, with t 4+ 1 colors contains
a monochromatic connected component of size at least n/t. Later, Gyarfis and
Sarkozy asked for which values of v = ~(t) does the following strengthening for
almost complete graphs hold: if G is an n-vertex graph with minimum degree at
least (1 — 7)n, then every (t 4+ 1)-edge coloring of G contains a monochromatic
component of size at least n/t. We show v = 1/(6t®) suffices, improving a result of
DeBiasio, Krueger, and Sarkozy.
Mathematics Subject Classifications: 05C55, 05D10

1 Introduction, a stability of edge colorings

Erdoés and Rado observed that every 2-edge-coloring of the complete graph K, has a
monochromatic spanning tree. Generalizing this result, Gyérfas [5] proved that every (¢ +
1)-edge-coloring of the edge set E(K,) contains a monochromatic connected component
of size at least n/t. This bound is the best possible when n is divisible by ¢* and an affine
plane of order ¢ exists.

Gyarfas and Sarkozy [7] proved that Gyarfas’ theorem has a remarkable stability
property, the complete graph K, can be replaced with graphs of high minimum degree.

Question 1 (Gyarfas and Sérkozy [7]). Let ¢ > 2. Which values of v = 7(t) guarantee
that every (¢ 4+ 1)-edge-coloring of any n-vertex graph with minimum degree at least
(1 — 4)n contains a monochromatic component of size at least n/t?
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Let ~(t) denote the best value we can have. The case for t = 1 is trivial, y(1) =
0. It is observed in [6] that any non-complete graph has a 2-edge-coloring without a
monochromatic spanning tree: if xy is a non-edge, consider any edge-coloring where every
edge incident to x is red and every edge incident to y is blue. Then there does not exist
a monochromatic component containing both x and y.

The case for at least three colors (i.e., ¢ > 2) is more interesting. Gyérfds and
Sarkozy [7] showed that v < 1/(1000¢°) suffices. This was improved to 1/(3072t°) by
DeBiasio, Krueger, and Sarkozy [2].

It was also conjectured in [7] that y(¢) could be as big as t/(t+1)?. This was disproved
for ¢ = 2 by Guggiari and Scott [4] and by Rahimi [8], and more recently for general ¢ by
DeBiasio and Krueger [1]. The constructions of graphs in [1, 4, 8] are based on modified
affine planes. They have minimum degree at least (1 — t(?:rll))n — 2 and a (¢t + 1)-edge
coloring in which each monochromatic component is of order less than n/t.

DeBiasio, Krueger, and Sarkézy [2] proposed a version for bipartite graphs.

Question 2 (DeBiasio, Krueger, and Sarkozy [2]). Let ¢ > 2 and n; < ny. Determine for
which values of 7 = 7(t,n1,ny) the following is true: let G be an X, Xs-bipartite graph
such that |X;| = n; for i € {1,2}, for every z € X, d(x) > (1 — v)ng, and for every
y € Xo, d(y) = (1 — v)ny. Then every t-edge-coloring of G contains a monochromatic
component of order at least n/t.

They proved that (¢, ny,n2) < (ny/ng)?/(128t°) suffices. For both Questions 1 and 2
the t = 2 case is solved completely in [4, 8] and [2], respectively. They obtained v(2) = 1/6,
v(1,n1,m2) < 1/2, and v(2,n1,n2) < 1/3 (independently of n), and these constants are
the best possible. So from now on, we only consider ¢ > 3.

It was conjectured in [2] that for general ¢, v(t,n1,n2) < 5. This would be best
possible when n; and ngy are divisible by ¢ + 1 by the following construction. Consider
t + 1 perfect matchings of K. +41 with partite sets X UY. Delete all the edges of the
(t + 1)th matching. Now let G be a graph obtained by blowing up each vertex in X into
n1/(t + 1) new vertices and each vertex in Y into ny/(t + 1) vertices. Color an edge with
color ¢ if its endpoints were obtained by blowing up two vertices which were matched

1

in the ith matching. It is easy to see the degrees of vertices are either (1 — H—l)ng or

(1 = =7)m1, and a largest monochromatic component has size (ny +n,)/(t 4 1).

Our main result is an improvement for the bound on ~(¢,ny,ny) in Question 2 which
in turn implies a better bound for ~(¢) in Question 1.

(n1/ns)

. Let

Theorem 1.1. Fix integers t > 3, ny,ne such that no > n; > 1 and let v <
G be an Xj, Xy-bipartite graph such that | X;| = n; for i € {1,2},

for every x € X1, d(x) = (1 — )ng, and for every y € X, d(y) = (1 — v)n;.
Then every t-edge-coloring of G contains a monochromatic component of order at least
n/t.
Corollary 1.2. Fix integers n,t > 3, and let v < 1/(6t3). Suppose G is an n-vertex graph

with minimum degree at least (1 — v)n. Then any coloring of E(G) with ¢ + 1 colors
contains a monochromatic connected component with at least n/t vertices.
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Our method is very similar to that in [7] or in [2]. The major difference is that we
will first collect a series of general inequalities in the next section. While these tight
inequalities are seemingly unrelated to graphs, we use them to lower bound the size of a
“typical” monochromatic component. Our results will imply that in every color class there
exists t components that are close in size to (ny + n2)/t, and the remaining components
are very small. We prove Theorem 1.1 in Section 3 and Corollary 1.2 in Section 4.

We use standard graph theory notation. The degree of a vertex v in G is denoted by
dg(v) or simply d(v) when there is no room for ambiguity. We denote the set of integers

{1,2,...,s} by [s].

2 Inequalities

In this section, we prove some inequalities for sequences of integers. While our results
hold in general, the reader should think of the sequences of integers as the sizes of each
part (determined by a bipartition) of a monochromatic component for a fixed color.

It was pointed out by the anonymous referee that the following lemma is an easy
consequence of a result called Milne’s Inequality (see [9]). We include its short proof for
completeness.

Lemma 2.1. Let aq,...,as,b1,...,bs, E, M, A, B be non-negative real numbers such that

[} Zle aibi 2 E,

o foralli e [s], a; +b; < M,

o>’ a; <A and > b <B
Then E(A+ B) < MAB.

Proof. The case FAB = 0 is easy, so we may suppose A, B, E > 0. Apply Jensen’s
inequality for the convex function x?

(Zfl biai)2 < Zf:l bia? '
25:1 bi Zj:l bi
Therefore

(Zf 1a’t D) Qb
Zz l z:: K

2
and similarly Z=t90" < SN .42 S we have

i=1 %

2
- 11 : 1 1
E E a;b; <— + —) < E a;b; < g + — >
i—1 A B (i_l ) 21:1 a; Zi:l bi

s

=1 =1

i=1
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Dividing by (3°;_, a;b;) and simplifying, we have E(A™!' + B™!) = E(A+ B)/(AB) <
M. [

Lemma 2.2. Fix ny,no,t,a1,...,as,01,...,b5 >0, ¢ > 0. Suppose t > 1, ny,ny > 0,

[ ) Zle aibz- Z (1 — 6) n1tn27
L4 Zle a; < ni, Zf:l bl g na, and

e a;+b; < (ny+ny)/t forall i € [s].
Then for all i € [s],

0 < mo e(t — 1)ning and b, < ny e(t — 1)n1n2. (1)
t t t t
Proof. We prove the statement only for aq, as the proofs for other a;’s and b;’s are sym-
metric.
First, we handle the case a; = ny. Then ay = --- = a;, = 0 so the first constraint
gives a;by = niby = (1 —¢)™2. Hence (1 — e)ng/t < by. Combining this with the last
constraint we get

ny + (ng/t) — (E‘:ng)/t < ay —f-bl < (nl/t) + (ng/t)

Rearranging we have (¢t — 1)n; < eny. Multiplying each side by (f — 1)n; and taking

square roots, we get (t — 1)ny < \/e(t — 1)niny and therefore

n et —1)nn
a1:n1<71+ ( t)12,

as desired.

Second, consider the case by = ny. Then the last constraint implies a; < (ny+ns)/t —
by = (n1 + ng)/t — ny < ny/t, so (1) holds. From now on, we may suppose that n; — a;
and no — by are both positive.

Third, suppose that » 7, a;b; > % Let M := maxocics{a; + b}, A =
niy — a1, B =mny — by. Then by Lemma 2.1, we obtain

(n1 —a1)(ng — by)

—1 (nl—al—f—ng—bl)éM(nl—al)(ng—bl).

Simplify by the positive term (n; — a1)(ny — by)

M> nl—atl—l—;bg—bl > n1+n2;(n11+Tl2)/t :nl—{l;—ng,

a contradiction.
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Therefore, in the last case we consider, we may assume

e — a e — b s nin
(ny t1)_(12 1)+albl>;aibi><1_5) 1252'

Rearranging, we get

(n1 — al)(nz — bl) + (t — 1)(&1()1) > (1 — €)w

nin t—1)nin
= ning — niby — ngay +tarby > ning — 1t2—€( t> 12

ning (t — 1)71177/2
£
t t

> Nga1 — bl(t(ll — 7’L1).

If a3 < ny/t, then we are done. So assume a; > ny/t (so ta; —ny = 0). We add the
non-positive term (a; + by — (ny + n2)/t)(tay — ny) to the right hand side to obtain

t—1
ning i 5( )n1n2 ny + No

t t

)(tay —ny)

ning

NoG1 — bl(tal — 7’L1) + (&1 + bl —

2
n
2 1
= ngaj + tal —ain; —nia; + _t — ngaj +

2 t—1
S0 > ta§—2n1a1+(ﬂ—gw)

Solving for a;, we obtain

_ 2ny + /4n? —4(n? — e(t — 1)nyny)
2t

. n1+\/5(i—1)n1n2. =

ai
Lemma 2.3. Fix € > 0, integers 1 <t < s, and reals ay,...,as,by,...,bs = 0 such that
e a =>...2as =0,
o Y jai=mny, Y. bi=mny >0,
o forall i € [s], a; + b; < (n1 +n2)/t,
o >0 aib; = (1—¢e)nna/t.

Let a :== a;41 + ...+ as. Then

ny+n
a < e L 2.
ng
In particular, if ny < no, then a < 2en;.
Proof. We construct a new sequence by, ..., b, with b > b; for i € [t], b, = 0 for t < j < s,

such that S°0_ b = 327 b = ny, and a; + b < (ny + ny)/t = M for all i € [t]. Note
that these conditions together with the fact that the a;’s are non-increasing imply that

ot
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22:1 a;b; > >"7_| a;b; since we are increasing the coefficients of larger a;’s by decreasing
the coefficient of smaller a;’s.
We build our sequence greedily starting with by, ..., bs. Define a set I C [s] as follows

I(bl,...,bs) = {Z - [t],ai—l—bi < M}U{jlj>t, bj > O}

If for all j > t+1, b; =0, then we let b),...,b, =bq,...,bs and we are done. So suppose
some j >t + 1 satisfies b; # 0, and hence j € I(by,...,bs). Then there exists ¢ € [t] with
b; +a; < M (ie., 1 € I(by,...,bs)) because Zle(ai +b) <ny+ny—b; =tM —b;. If
a; + bi + b; < M then we update b = b; + bj, b; = 0 and b}, = by, for all k € [s] \ {i, j}.
Note that j ¢ I(b),...,b)).

If a;+b;+b; > M then we update b = b;+M —(a;+b;) = M —a;, b = bj— (M —(a;+b;))
and bj, = by for k € [s] \ {7,7}. In this case, we get i ¢ I(b,...,V,). Therefore in both

cases we get [1(b),...,0.)| < |I(by1,...,bs)] — 1, so one can continue this process at most
s steps until we get I(b],...,0.,) C [t].

So suppose we have found a sequence b,...,b; as desired. Apply Lemma 2.1 on the
sequences aq, ...,a; and b}, ..., b,. We have Zle a; =n, —a=:4, 22:1 b, = ny =: B,

S _a; =30 ab; = (1 — e)nyng/t =: E, and a; + b, < M for all i € [t]. Therefore,

(1 —e)ning
t
Rearranging and solving for a, we get

ny + N9

(ny+ny—a) < (n1 — a)ngy

a(ng +eny) < end +engny

nq +n2 Al +n2
= o< enj— < eng . ]
N9 + €Ny No

3 Proof of Theorem 1.1 for almost complete bipartite graphs

Proof. Let G be an X;, Xy-bipartite graph with | X;| = nq, | Xs| = ng, and ny > ny > 1.
Consider any coloring of the edges of G with colors 1,...,t. For a color i € [t], we denote
by G the spanning subgraph of edges colored with i. Suppose that every monochromatic
component has less than (n; + ny)/t vertices. We claim that |F(G")| < nynsy/t. Indeed,
let Dy,...,Ds be the connected components of G*. For j € [s], let a; = |D; N X4,
bj = |D;NXs|. Then E := [E(G")| < 3°°_, a;b;. Apply Lemma 2.1 with A =n,, B = ny,
M = (ny +ny —1)/t. We get

FE < (n1 “+ ng — 1)/t . (n1 + ng)il . (nlng) < n1n2/t,

as desired.
Let &; be such that |E(G")| = (1 — g;)nyny/t. By Lemma 2.2, a connected component

A/ €i(t—1)n1n2

of color 7 contains at most ”7“ + n

any i € [t], x € X; and y € Xy,

vertices from X,, o € {1,2}. Therefore, for

n gi(t — 1)ning n gi(t — 1)ning
donle) < 12y YU ) e VRS D
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Since |E(G)| = (1—7)nina, we have Y r_ &; < ty. Without loss of generality, suppose
color 1 satisfies e; < 7. Let 1, ..., C, be the vertex sets of the connected components of
color 1, ordered so that | X; NCy| > ... > | X3 NC,|. Define a;,b; as before. Note that
s > t+ 1, since the C;’s cover V(G) and |C;| < (n; + ng)/t for all j. By Lemma 2.3,
a:=ap1+...+as < 2e1n;.

Case 1: XoN(Cyy1U...UC,) # 0. Fix a vertex y in this set. Then dgi(y) < 2e1n;.
We get

(I=v)m < dely) < 2emi+

Tll(t — 1) i €Z(t — 1)n1n2

m \/(t - 1)2(2;2 €i)N1M2
< 2yng+ng — — +
13 t
t—1

n
< 29ng +ng — 71 + v/ytning - —

. t .
Here we used the fact that Zfz Ve < th—zla because /7 is a concave function. There-
fore

t2+ t

N t—1 3 11
%<n137—|— Ytning — <n13(n1t/3n2)+ t(n1£n2)n1n2' : <%< )7

a contradiction when ¢t > 3.
Case 2: XoN(CryU...UC,) =0. Let z € X;N(Cyy1 U...UC,). By the case, z is
not incident to an edge of color 1. So we instead obtain

t
Tlg(t — 1) \/ €z<t — 1)n1n2
1-— < d < —F"
(1 —7)ne a(z) ; + ; /
N2 t—1
< ng — T+\/'ytn1n2~ .

This implies that

Mo t—1 (nl/nQ) (nl/ng) t—1 nq 1 t—1
7<n27+¢m- ; <n2t—3+ t B e =gt )

a contradiction since n; < ny and ¢t > 3. O

4 Proof of Corollary 1.2 for almost complete graphs

Proof. Let G be an n-vertex graph with minimum degree at least (1 — v)n, and suppose
the edges of G are colored with colors 0,1, ...t such that each monochromatic connected
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component has size less than n/t. Again, we use G' to refer to the spanning subgraph of
the edges of color .

Let Vi, ..., V, be the vertex sets of the connected components of G°. We will split the
vertex set into two almost equal parts X; and X5 such that the size of each part is in the
range [n(3 — %), n(3 + 5.)], and each set V; is contained either entirely in X; or entirely in
Xs. To see that this is possible, arbitrarily add entire sets V; to X; until | X;| < n(% + %)
but adding any additional set to X; causes the size of X; to be at least n(% + %) Then
let X, = V(G) — X;. At this point, | X;| > n(3 — 5;), otherwise all sets V; not contained
in X have size at least n/t, a contradiction.

Now let | X1| = nq, | Xa| = no, where without loss of generality, |X;| < |X2| < 2]X]
(and n = ny + ny). By construction, there are no edges of color 0 between X; and Xs.
Hence, the edges of the bipartite subgraph G[X;, X5 are colored with ¢ colors. (Here
G[X,Y] denotes the spanning bipartite subgraph of G in which we include only edges
with endpoints in both X and Y.)

For simplicity, set G’ = G[ X1, Xs]. Let x € X; and y € X5. Then
der(x) 2 ng —yn =ngy — y(n1 + ng) = (1 — 27y)ny,

and
de(y) =2 ny —yn =ny —y(ny +n2) = ny —y(ny + 2ny) = (1 — 3y)ny.
Since G’ does not have a monochromatic component of size at least n/t = (ny +n2)/t,
Theorem 1.1 implies that
(n1/n2) - 12 1
t3 B 23
We get a contradiction when v < 1/(6¢3).

3y =
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