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Abstract

Coastal systems are immensely valuable to humans. They contain unique ecosystems that are biodiversity reservoirs and
provide key ecosystem services as well as a wealth of cultural heritage. Despite their importance to humans, many coastal
systems are experiencing degradation that threatens their integrity and provisioning of services. While much is known about
the plant communities and associated wildlife in coastal areas, the importance of microorganisms represents a large knowl-
edge gap. Here we review the ecology of plant-microbial symbioses in coastal systems, including mycorrhizae, nitrogen fixers,
endophytes, rhizosphere microbes, and pathogens. We focus on four common coastal communities: sand dunes, marshes,
mangroves, and forests/shrublands. We also assess recent research and the potential for using microbes in coastal restoration
efforts to mitigate anthropogenic impacts. We find that microbial symbionts are largely responsible for the health of plants
constituting the foundation of coastal communities by affecting plant establishment, growth, competitive ability, and stress
tolerance, as well as modulating biogeochemical cycling in these stressful coastal systems. Current use of microbial symbi-
onts to augment restoration of stressful and degraded coastal systems is still very much in its infancy; however, it holds great
promise for increasing restoration success on the coast. Much research is still needed to test and develop microbial inocula
for facilitating restoration of different coastal systems. This is an excellent opportunity for collaboration between restoration
practitioners and microbial ecologists to work toward a common goal of enhancing resilience of our coastal ecosystems at
a time when these systems are vulnerable to an increasing number of threats.
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Introduction

Coastal areas provide immense value to humans. They rep-
resent 22% of the land area worldwide while providing home
to 38% of the human population and 50% of the world’s larg-
est cities (Kummu et al. 2016). Coastal areas contain unique
ecosystems that are biodiversity reservoirs, and they provide
key ecosystem services including food production, storm
surge protection, filtration of pollutants, carbon storage, rec-
reation, and cultural heritage (UNEP 2006). Despite their
importance to humans, many coastal systems are experi-
encing degradation from a number of stressors that threaten
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their integrity and provisioning of ecosystem services (Mil-
lennium Ecosystem Assessment 2005).

Previous reviews on coastal ecosystems have investigated
the current status of coastal systems (Burke et al. 2001;
UNEP 2006), climate change impacts (Field et al. 2001;
Scavia et al. 2002), resilience to climate change (Bernhardt
and Leslie 2013; Duarte et al. 2015), and management
approaches (Powell et al. 2019; Spalding et al. 2014). These
reviews have well documented that anthropogenic global
change has a major impact on coastal systems. Climate
warming is causing sea level rise and inundation and degra-
dation of coastal ecosystems such as salt marshes (Jankowski
et al. 2017; Kirwan and Megonigal 2013) and sand dunes
(Feagin et al. 2005). Warming is also linked to increased
intensity and frequency of storms making landfall in coastal
areas (Knutson et al. 2010). Pollution from industry, agri-
culture, and oil spills has caused marsh and mangrove deg-
radation and erosion (Kingsford et al. 2016; Silliman et al.
2012). Previous reviews have stressed the difficulties and
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idiosyncratic nature of restoration and recovery of coastal
systems, with partial rather than full recovery prevailing
and the existence of feedbacks that maintain coastal systems
in degraded states (Duarte et al. 2015). Past work further
highlights the importance of biodiversity and connectivity in
sustaining the resilience of coastal systems (Bernhardt and
Leslie 2013; Duarte et al. 2015).

The purpose of this review with a plant-microbial focus
is twofold. First, despite much research on coastal systems,
one identified knowledge gap is the ecology and importance
of microorganisms (UNEP 2006). We aim to take a first step
by reviewing literature on the ecology of plant-microbial
symbioses in coastal ecosystems. A baseline understanding
of these microscopic components of ecosystems is impor-
tant for land managers and restoration ecologists, because
microbes too are shifting with climate change and have
important consequences for the functioning of coastal sys-
tems (Cavicchioli et al. 2019). Second, it is clear that there
is an overwhelming sense of urgency to act expeditiously
to reverse degradation from climate change in coastal areas
because of our reliance on coastal ecosystems (UNEP
2006). While many general and specific solutions have been
put forth to enhance restoration and management success
(Bernhardt and Leslie 2013; Perrow and Davy 2002), the
potential for plant-microbial interactions to improve restora-
tion success of degraded coastal ecosystems has rarely been
considered and not previously reviewed.

Fig. 1 The four coastal com-
munity types addressed in this
review: A sand dunes (photo
credit: Keith Clay), B marshes
(photo credit: Emily Farrer),

C mangroves (photo credit:
Sunshine Van Bael), and D
forests/shrublands (photo credit:
Loralee Larios)

A) Sand dunes
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We focus on four main types of coastal ecosystems: sand
dunes, marshes, mangroves, and forests/shrublands (Fig. 1).
We chose these terrestrial systems, because they are domi-
nated by plants (rather than algae) and have commonalities
in how plant-microbe symbioses manifest. For a review of
plant-microbe interactions in aquatic systems, see Srivastava
et al. (2017). While sand dunes, marshes, mangroves, and
forests/shrublands differ in notable ways (abiotic conditions,
proximity to land—water interface, biotic communities), they
are similar in that they are all stressful environments, as a
result of low nutrients, high salt, or drought conditions. It
is generally thought that stressful environments have more
positive plant-microbe interactions (Bertness and Callaway
1994; Lekberg et al. 2018) and that stressful systems, in
particular, would benefit from microbial mutualists to aide
in successful establishment and persistence of plants during
restoration (Valliere et al. 2020).

The Role of Plant-Microbe Symbioses
in Ecosystems

Symbiosis (from Greek, “living together”) is a close and
long-term biological interaction between two different spe-
cies. Symbioses can be mutualistic (+/4), commensalistic
(4+/0), or parasitic/pathogenic (+/—). Microbes are impor-
tant symbionts of plants that play key roles in ecosystems

B) Marshes
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by affecting plant performance (as mutualists and patho-
gens) and by mediating nutrient cycling.

Fungi and prokaryotes (bacteria and archaea) play direct
roles in plant establishment, growth, competitive ability,
and stress tolerance. Essentially, all plants host microbes
within and on every plant organ and tissue: leaves, stems,
rhizomes, roots, flowers, and seeds (Partida-Martinez and
Heil 2011). These microbiomes are so essential to the
plant that a plant’s characteristics are a manifestation of
highly coordinated and co-regulated plant and microbial
genes. Microbial endophytes in plant seeds can increase
germination rate (Berg and Raaijmakers 2018; Billingsley
Tobias et al. 2017), and soil and root microbes such as
arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and
actinorhizae can increase plant establishment (Koziol et al.
2018), especially in stressful habitats (Roy et al. 2007,
Shemesh et al. 2020). Microbes also dictate plant com-
petitive ability; for example, when fungicide is used to
suppress fungal symbionts, dominant grasses no longer
suppress subdominant plants to the same degree (Hartnett
and Wilson 1999; O’Connor et al. 2002). Plant growth
promoting rhizobacteria can enhance plant growth through
mechanisms including nitrogen fixation, nutrient uptake,
and production of plant growth hormones (Backer et al.
2018; van Loon 2007). Plant pathogens can have strong
negative effects on plant growth and survival, as exempli-
fied by the success of many invasive plant species who
have escaped their pathogens in their native range (i.e.,
the enemy release hypothesis, Keane and Crawley 2002),
as well as by exotic pathogen epidemics that have virtually
wiped out native plant species (i.e., the chestnut blight,
Anagnostakis 1987). Some endophytic fungi have been
found to increase stress tolerance of plants; for example,
inoculating plants with endophytes, especially endophytes
isolated from saline areas, can substantially increase the
growth of plants subjected to salt stress (Rodriguez et al.
2008; Soares et al. 2016). Because microbes benefit plants
in stressful conditions, microbes will be key in helping
plants tolerate stresses (e.g., heat, drought, salinity) due
to climate change (Porter et al. 2019).

Microbial communities associated with plants play criti-
cal roles in biogeochemical cycling in ecosystems (Beinart
2019). Because symbionts are often protected by hosts and
supported by host substrates, they can obtain large popula-
tion sizes and high activity levels (Beinart 2019). Ectomy-
corrhizae and dark septate endophytes are plant symbionts
that play important roles in decomposition, particularly
of recalcitrant organic matter, through the production of
extracellular degradative enzymes (Moreau et al. 2019).
In the rhizosphere, plant roots produce exudates (labile

carbon compounds) that stimulate symbiotic bacterial and
fungal activity, called “priming the soil”. This rhizosphere
priming typically enhances carbon (C) and importantly
nitrogen (N) mineralization, which can then be used to
meet microbial and plant N demands (Henneron et al.
2020; Moreau et al. 2019). Arbuscular mycorrhizal fungi
(AMF), obligate plant symbionts whose hyphae extend in a
complex network throughout the soil environment, play an
important role in ecosystem carbon sequestration by pro-
moting soil aggregate formation which physically protects
soil organic matter (SOM) from degradation (Rillig 2004).
Furthermore, ectomycorrhizal- and AMF-derived carbon
is a significant component of SOM and contains recalci-
trant compounds (e.g., glomalin, chitin) that resist decom-
position (Parihar et al. 2020; Rillig 2004; Soudzilovskaia
et al. 2015; Wilson et al. 2009). Plant-associated symbi-
onts are also key players in the nitrogen cycle. Nitrogen
fixation (conversion of N, gas to biologically available
ammonium) is often performed by internal root bacteria,
such as Rhizobium (in legumes) and Frankia (in acti-
norhizal plants), or bacteria in the rhizosphere of plants
(Moreau et al. 2019). Particularly in flooded, anaerobic,
and wetland sediments, bacterial symbionts in the rhizos-
phere perform the vast amount of nitrification (oxidation
of ammonium to nitrate that can be leached, taken up by
plants, or denitrified), because it is an aerobic process that
can be fueled by oxygen flux through plant roots (Penton
et al. 2013; Reddy et al. 1989). Denitrification (nitrate and
nitrite reduced to NO, N,O, and N, gases and returned to
the atmosphere) is often coupled to nitrification and can
be stimulated by rhizodeposition under more anaerobic
conditions (Penton et al. 2013; Reddy et al. 1989).

Plant symbionts also influence biogeochemical cycling
in indirect ways via their effects on plant growth, plant spe-
cies composition, and soil microbial composition (Beinart
2019; Rillig 2004). Both beneficial and disease-causing
microbes influence plant growth and tissue quality, which
in turn influence carbon and nutrient cycling via biomass,
litter, and exudate production (Rillig 2004). Numerous stud-
ies have shown that symbiont community composition, for
example, AMF composition, can alter plant community
composition (Johnson et al. 2003; van der Heijden et al.
1998), which can thereby influence primary production and
nutrient cycling via traits of the component plant species
(Rillig 2004). Ectomycorrhizae and AMF can also affect
soil fungal and bacterial composition (i.e., saprotrophs,
nitrogen transformers, phosphate solubilizing bacteria),
which in turn influence decomposition, carbon storage,
and nutrient cycling (Nuccio et al. 2013; Rillig 2004;
Soudzilovskaia et al. 2015).
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A) Mycorrhizae B) N fixers

Box 1 Definitions and descriptions: common microbial symbi-
onts of plants. A AMF structures (vesicles, hyphae, and arbuscules)
in mangrove roots (photo credit: Mareli Sanchez Julia). B N fixers in
root nodules of a legume (photo credit: Emily Farrer). C Dark septate
endophytes in Spartina alterniflora roots (photo credit: Sunshine Van
Bael). D Rhizosphere microbes (photo credit: Andrea Porras-Alfaro).
E Leaf spot pathogen (could be from a number of different fungal
taxa) in Phragmites australis (photo credit: Warwick Allen). Myec-
orrhizae: A symbiotic relationship between plants and fungi. The
relationship is typically mutualistic, but can be parasitic. The fungi
colonize the roots of the host plant providing nutrients and water to
the plant in exchange for carbohydrates (photosynthate). Two major
types are ectomycorrhizae and endomycorrhizae. Ectomycorrhizae
ensheath the root but usually do not penetrate the root cells. Endo-
mycorrhizae penetrate the root cells; the most widespread group of
endomycorrhizae is the arbuscular mycorrhizal fungi (AMF). Less
common are orchid and ericoid mycorrhizae. Nitrogen fixers (diazo-
trophs): Nitrogen-fixing bacteria and archaea capable of transform-
ing nitrogen gas (N,) from the atmosphere into ammonia (NH,).
Nitrogenase, the enzyme that catalyzes the reaction is degraded by

Plant-Microbial Symbioses on Coasts

We focus on five major types of microbial symbionts: myc-
orrhizae, nitrogen fixers (also called diazotrophs), endo-
phytes, rhizosphere microbial communities, and pathogens
(see Box 1; Fig. 2). Some categories may overlap (for exam-
ple, nitrogen fixers can be rhizosphere microbes), but these
are common categories of symbionts discussed in microbiol-
ogy and restoration.

Mycorrhizae

Mycorrhizal fungi form mutualistic associations with plant
roots in most habitats, including coastal areas such as salt
marshes (d’Entremont et al. 2018), estuaries (Carvalho
et al. 2001), mangroves (Sengupta and Chaudhuri 2002),
sand dunes (Koske et al. 2008), and heaths (Botnen et al.
2015). The symbiosis between mycorrhizae and plants is
especially key for plants in stressful environments (e.g.,
primary succession in dunes), since mycorrhizae facilitate
plants through uptake of nutrients as well as increase toler-
ance to drought and salt stress (Koske et al. 2008). Arbuscu-
lar mycorrhizal fungi are found in association with 74% of
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oxygen; thus, nitrogen fixation often occurs in anaerobic conditions.
Nitrogen fixers can be free-living, or they can live within a host
plant’s roots like the Rhizobia that colonize legumes and the Frankia
that colonize actinorhizal plants. Endophytes: Bacteria or fungi that
live within a host plant without causing symptoms of disease. Endo-
phytes can be mutualistic or have neutral impacts on hosts. Endo-
phytes can increase host nitrogen acquisition, reduce abiotic stressors
like drought or salinity, and can inhibit or facilitate plant pathogens
(Busby et al. 2016; Porras-Alfaro and Bayman 2011). Rhizosphere
microbes: The rhizosphere is the narrow zone surrounding and influ-
enced by plant roots. Rhizosphere microorganisms include fungi,
bacteria, archaea, and algae. Many of these organisms are so-called
plant growth promoting microbes which improve plant nutrient acqui-
sition, protect against pathogen attack, facilitate plant growth, and
help plants tolerate abiotic stress. However, pathogens can also popu-
late the rhizosphere. Pathogens: Microorganisms that cause disease.
Pathogens include fungi, bacteria, oomycetes (“water molds”, a group
of filamentous protists), viruses, and nematodes (roundworms). Inter-
estingly, archaea have not been found to be pathogens (Cavicchioli
et al. 2003); however, it may be that they have not yet been discovered.

plant species (Brundrett 2009), including many trees, shrubs,
and grasses that grow on coasts. However, some plant fami-
lies/taxa that are abundant on coasts are non-mycorrhizal
(e.g., the Chenopodiaceae which includes Salicornia, pick-
leweed) or have low or variable mycorrhizal colonization
(e.g., the Cyperaceae, which includes Carex, sedges) (Muth-
ukumar et al. 2004). There is some debate on whether high
levels of salinity — like those found in coastal waters and
soils — inhibit arbuscular mycorrhizae (Evelin et al. 2009).
Moreover, whether arbuscular mycorrhizae act as facilitators
or antagonists of plant growth in saline environments may
be context and host-species dependent (Evelin et al. 2009;
Johnson-Green et al. 2001). Arbuscular mycorrhizal fungi
are well known to be important to primary succession on
sand dunes as they facilitate grasses, forbs, and creepers in
this phosphorus deficient and droughty environment (Beena
et al. 2000, 2001; Koske et al. 2008). Ectomycorrhizal fungi
are associated with approximately 9% of shrub and tree spe-
cies (Brundrett 2009). Coastal forests are particularly reli-
ant on associations with ectomycorrhizal fungi in temperate
(Obase et al. 2009) and tropical regions (Séne et al. 2015),
and primary succession in sand dune systems colonized by
Salix, Pinus, and other woody species depends on a high
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Fig.2 The leaf and root microbiome, illustrating the many microbial
players and the complexity of plant microbiomes

diversity of ectomycorrhizal fungi (Ashkannejhad and Hor-
ton 2006; Roy-Bolduc et al. 2015; van der Heijden et al.
2000). There are many gaps in knowledge that exist with
respect to mycorrhizal fungi — both for all terrestrial plants
and for those along coasts. For example, via nutrient uptake
and increased coastal plant growth, mycorrhizae could con-
tribute to carbon sequestration along coasts. Mangroves have
pan-tropical distribution, and a few studies have showed that
their roots associate with arbuscular mycorrhizal fungi (e.g.
Kumar and Ghose 2008), yet no studies have estimated the
contribution of mycorrhizae to mangrove nutrient budgets
and/or performance. Further study is warranted on the role
of mycorrhizae in coastal plants, to better understand their
benefits to plants and their contributions to soil formation
and a resilient coastal ecosystem.

N-Fixers

Primary production and decomposition are N limited in
mangroves (Bashan and Holguin 2002), marshes (Lovell
et al. 2000), and sand dunes (Dalton et al. 2004; Wahab
and Wareing 1980), and coastal systems are highly depend-
ent on N inputs from plant-associated diazotrophs (Lovell
2005; Morris 1991). For example, in mangrove systems, it is
estimated that N fixers supply 40% (Van Der Valk and Atti-
will 1984) to 60% (Zuberer and Silver 1978) of the nitrogen
requirement of plants. Because N fixation is carbon limited,
N fixers are very active in the root, thizosphere, and litter
layers of the soil, and N fixation rates are tightly coupled

with plant photosynthesis and decomposition (Whiting et al.
1986). N fixation is an anaerobic reaction; thus, saturated
anoxic environments like wetlands and mangroves are prime
habitats for N fixation; however, many adaptations exist for
fixing N in variable or high oxygen environments, like the
rhizosphere or dry soils (Mitsch and Gosselink 2007; Mus
et al. 2016).

Both symbiotic and free-living diazotrophs are abundant
in coastal ecosystems. In coastal sand dunes and heathlands,
symbiotic rhizobial associations (Rhizobium or Bradyrhizo-
bium) are common in woody and herbaceous legumes
(Rodriguez-Echeverria 2010; Sridhar et al. 2005) and acti-
norhizal (Frankia) associations are widespread in a number
of important shrub species, especially in higher latitudes
(Dudley et al. 1996; Swensen 1996). Legumes such as Lath-
yrus japonicus are often the very first colonizers of dunes
and beaches (Brightmore and White 1963). Dune grasses
have also been shown to be colonized by other endophytic
N fixing taxa (Burkholderia) (Dalton et al. 2004) and also
rely on N fixers in the rhizosphere to cope with low soil
nutrients (Abdel Wahab 1975; Wahab and Wareing 1980).
In mangrove systems, high rates of N fixation are associ-
ated with roots, the pneumatophore (aerial root) surface, the
rhizosphere, tree bark, decomposing leaves, and the soil and
comprise a diversity of organisms including cyanobacteria
and many other phyla (Alfaro-Espinoza and Ullrich 2015;
Holguin et al. 2001). In coastal systems, N fixation by free-
living microbes contributes significantly to ecosystem N
cycling, especially in systems like salt marshes and coastal
forests that do not contain many symbiotic N fixing plants.
In forest communities developing on lava flows in Hawai ‘i,
N fixers on leaf litter are important in successional devel-
opment (Crews et al. 2001). Diazotrophs are very active
in the rhizoplane and rhizosphere of salt marsh plants and
come from diverse and novel bacterial and archaeal lineages
(Davis et al. 2018; Lovell and Davis 2012). Much applied
work on N fixers in coastal sand dunes/beaches (Potgieter
et al. 2014; Rodriguez-Echeverria et al. 2009) and forests
(Vitousek and Walker 1989) has addressed the impacts of
invasive N fixing species, as N fixation ability can allow spe-
cies like Casuarinas (sheoak), Acacias, and Myrica faya to
successfully colonize and invade low nutrient coastal habi-
tats. Research is needed to link how the soil legacy effects
of N fixers (e.g., elevated N, altered microbial communities)
present barriers to restoration and how to overcome these
barriers (Nsikani et al. 2018). In other coastal systems, such
as marshes and mangroves, the use or promotion of N fixing
microorganisms to enhance restoration of plant communi-
ties has long been suggested (Bashan and Holguin 2002;
Holguin et al. 2001), and current research is examining the
best practices for inoculation and soil amendments (Murphy
et al. 2018).
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Endophytes

Endophytic fungi and bacteria live inside of roots, stems,
leaves, and inflorescences of coastal grasses, sedges, forbs,
and trees. Although not well studied, coastal plants have
been found to host high diversities of endophytes (David
et al. 2016; Lumibao et al. 2018), including bacteria and
fungi that have been previously described from marine, soil,
and freshwater habitats (Ananda and Sridhar 2002). By defi-
nition, endophytes live asymptomatically within plant tis-
sues, with functions that include antagonism or facilitation
of plant disease (Busby et al. 2016) and increased stress
resilience to host plants (Ali et al. 2014; Rodriguez et al.
2008). Much research on endophyte function in planta, how-
ever, has been restricted to agricultural plants (Busby et al.
2016), with less attention to coastal plants. Work in coastal
sand dune systems suggests that the presence of an Epichloé
sp. fungal leaf endophyte greatly increases Ammophila
breviligulata (American beachgrass) survival (Emery and
Rudgers 2013), belowground biomass (Bell-Dereske et al.
2017), vegetative growth, and sand accumulation (Emery
et al. 2015), which has important implications for dune
succession and stabilization. A similar fungal endophyte
(Periglandula sp.) in Ipomoea pes-caprae (beach morn-
ing glory) was present in 100% of populations sampled on
Florida coasts, USA, suggesting strong benefit (Beaulieu
et al. 2021). Other studies on coastal plant endophytes have
mostly focused on the compounds produced by endophytes
in vitro, such as searching within mangrove endophytes for
enzymes (Castro et al. 2014; Ravindran et al. 2012) and for
medicinally active compounds (Gayathri et al. 2010). Since
introducing endophytes from one host species to another is
feasible, endophytes may be useful in biotechnology. For
example, several recent studies have demonstrated the poten-
tial of using endophytes to attenuate pollutants in coastal
wetlands (e.g., bioremediation, Rehman et al. 2018; Saleem
et al. 2019; Zheng et al. 2018). Another compelling example
is the use of endophytes that were isolated from a mangrove
species to inoculate and improve the growth of a tree species
used for restoration in Brazil (Castro et al. 2018). Thus, the
stress of living in a coastal area has led to adaptations for
both hosts and their internal symbionts, so endophyte studies
in the coastal environment hold promise for understanding
stress resilience and symbioses.

Rhizosphere Microbes

As in other terrestrial systems, the rhizosphere microbial
communities in coastal systems are significantly different
than bulk soil with elevated abundances of taxa known to
be endophytes (Sanka Loganathachetti et al. 2017), mycor-
rhizae (Estrada et al. 2013; Johansen et al. 2015), and plant
growth promoting bacteria (Park et al. 2005). In sand dunes,
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plant roots are important sources of carbon for microbial
communities in a matrix that is otherwise characterized by
resource limitation and high physical stress (Rajaniemi and
Allison 2009). In inundated coastal systems, too, roots pro-
vide an important source of carbon for fueling microbial
processes important to plants (N fixation) and decomposi-
tion (sulfate reduction, an anaerobic process that reduces
sulfates to hydrogen sulfide). Sulfate reducing bacteria are
responsible for more than half of the total decomposition of
organic matter in salt marshes (Howarth and Hobbie 1982)
and have been found to tolerate environments like the rhizos-
phere with rapidly changing redox conditions (Rooney-Varga
et al. 1997). In fact, rates of N fixation and sulfate reduction,
sometimes performed by the same organism, are consider-
ably higher in the rhizosphere than in bulk soil (Nielsen
et al. 2001). Many wetland plants also have structural adap-
tations (aerenchyma and pneumatophores) that oxidize the
soil, at least in the immediate vicinity of the root or root
tip (Andersen and Kristensen 1988; Koop-Jakobsen et al.
2017), which ameliorates the detrimental effects of hydro-
gen sulfide, stimulates microbial heterotrophic activity, and
affects CO, emission (Hester et al. 2018). Several rhizos-
phere bacteria in marshes (Gong et al. 2018; Halda-Alija
2003; Mavrodi et al. 2018), mangroves (Bashan and Hol-
guin 2002), and sand dunes (Godinho 2015; Jayaprakash-
vel et al. 2014) have plant growth promoting capabilities,
including IAA (indole acetic acid, i.e., auxin) production,
siderophores, and phosphate solubilization. Much current
and future work in this area is in the context of bioprospect-
ing saline rhizosphere habitats for microorganisms that can
facilitate agricultural plants under conditions of soil salini-
zation (Godinho 2015; Gong et al. 2018). Another impor-
tant future direction is understanding the impacts of current
restoration techniques and timescales necessary for restor-
ing microbial function (Mavrodi et al. 2018), as well as the
application of rhizosphere microbial communities for aiding
restoration (Bashan and Holguin 2002).

Pathogens

Pathogens are important in shaping the natural community
dynamics in coastal systems. In coastal sand dunes, soil
pathogens (pathogenic fungi and parasitic nematodes) can
promote plant species replacement and facilitate ecological
succession (Van der Putten and Peters 1997). Fungal patho-
gens are also natural components of coastal forests causing
winter seedbank mortality in coastal sage scrub communi-
ties (Mordecai 2012). Ergot (Claviceps purpurea) epidemics
have been observed in Spartina anglica marshes in the UK
(Raybould et al. 1998) and Spartina alterniflora marshes in
the East and Gulf Coasts of North America (Eleuterius 1970;
Eleuterius and Meyers 1974), where ergot infection during
epidemics greatly reduces seed fecundity of these dominant
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grasses. In mangrove systems, a survey found abundant plant
pathogens (Eutypella, Phaeophleospora, Phaeosphaeria,
Phaeoramularia, Mycosphaerella), root pathogens (Gaeu-
mannomyces, Cytospora, Magnaporthe, Pyricularia), and
leaf pathogens (Diaporthe, Ramulispora) in above- and
belowground mangrove tissues (Arfi et al. 2012). A num-
ber of fungal diseases in mangroves have been identified,
and some mangrove diebacks in Gambia, Australia, and
Hawai‘i have been attributed to fungal pathogens (Osorio
et al. 2016). However, much more work on the importance
of pathogens to mangrove growth and forest dynamics is
needed.

Pathogens have been notable for their (potential) involve-
ment in two high profile die-off events in coastal systems
in recent history. Sudden vegetation dieback describes
large die-offs of Spartina alterniflora that occurred in the
late 1990s and 2000s in the USA, during which time over
1000 km? in the Gulf Coast and 10% of Cape Cod’s marshes
turned brown and died over the course of a few months
(Elmer et al. 2013). The underlying cause of sudden vegeta-
tion dieback is still not known for certain, and some hypoth-
eses do not invoke pathogens; however, two hypotheses posit
that pathogens played a role: (1) Fusarium spp., which were
isolated and abundant in many dieback areas, were believed
to cause plant death particularly in combination with drought
stress that marshes experienced at that time (Elmer et al.
2013), and (2) the periwinkle snail which promotes growth
of a facultative plant pathogen (Phaeosphaeria spartinicola)
was also thought to cause high Spartina mortality during
periods of drought (Silliman et al. 2005). Sudden oak death
is an ongoing epidemic caused by Phytophthora ramorum,
a recently emerged generalist water mold pathogen which
has decimated oak and tanoak populations in California and
Oregon affecting over 2000 km? of coastal forest (Griinwald
et al. 2019; Rizzo and Garbelotto 2003). The pathogen also
causes a similar disease with high mortality in Japanese
larch trees in UK plantations. The wide host range of P.
ramorum (over 100 plant species in 40 genera) is particularly
problematic, as it can survive and sporulate on many forest
understory species (Griinwald et al. 2012, 2019). Sudden
oak death has also severely affected the horticulture indus-
try because of quarantine regulations on the wide range of
nursery plants that host the disease (Griinwald et al. 2019).

Pathogens play a key role in influencing plant invasions
in coastal habitats. On the West coast of North America,
ergot epidemics can facilitate invasive Spartina species and
cause decline of native Spartina foliosa since outbreaks
only occur in the native species and greatly reduce seed set
(Fisher et al. 2007). Pathogens are also implicated in Spar-
tina alterniflora invasion in China, as pathogen spillover
of Fusarium palustre from Spartina has caused dieback in
native Phragmites australis stands in coastal marshes (Li
et al. 2014). In coastal sand dunes in California, invasive

Ammophila arenaria promotes its own invasion by accumu-
lating local pathogens which have larger negative effects on
native plants (Eppinga et al. 2006). In South African coastal
sand dunes, invasion intensity of Ammophila arenaria is a
balance between enemy release from parasitic nematodes
and biotic resistance imparted by native soil pathogens,
which inhibit its invasion (Knevel et al. 2004). Similarly,
native pathogens may somewhat limit Bromus diandrus
invasion into the Californian coastal sage scrub (Hilbig and
Allen 2015). Overall, pathogens play a major role in the
ecology of coastal habitats, and future work to understand
and control pathogens responsible for die-off events, manage
the pathogens involved in species invasions, and understand
how changing environmental conditions influence disease
dynamics will be essential for maintaining the integrity of
coastal communities.

Microbes in Coastal Restoration

Many coastal systems are experiencing severe degradation
from global environmental change including sea level rise,
warming, oil spills and other pollutants, drought, hurri-
cane frequency, and invasive species. Because degradation
threatens the provisioning of ecosystem services critical to
humans, including food production, storm surge protection,
filtration of pollutants, and carbon storage, the restoration
of coastal systems has become a huge focus of conserva-
tion groups and governmental entities alike. Because sand
dunes, marshes, mangroves, and forests/shrublands are all
stressful systems, microbial mutualists that assist plants in
tolerating low nutrients, drought, and salinity stress will
likely be beneficial in restoration (Table 1). Below we
review research on how microbial symbionts of plants may
be specifically used to enhance coastal restoration and iden-
tify important considerations when implementing restora-
tions using microbes.

Review of the Literature

There is growing recognition from inland systems that
microbiota can be leveraged to enhance restoration success
(Eviner and Hawkes 2008; Maltz and Treseder 2015). To
do this, one typically applies inoculum, material containing
spores, fungal hyphae, or bacterial cells, to seeds or plant-
ings at the restoration site or to potted nursery plants that
will be outplanted. Inocula can be sourced from whole soil
or roots collected from a reference ecosystem, or specific
microbial taxa can be cultured and multiplied in the labo-
ratory (for fungal endophytes/bacteria) or greenhouse (for
AMF). Generic commercial inocula are becoming readily
available for use in restoration practice (Fisher 2012; Perkins
and Hatfield 2016); however, locally sourced microbes have
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proven to be a superior source of mutualistic partners (Emam
2015; Maltz and Treseder 2015; Middleton and Bever 2012;
Wubs et al. 2016). The use of microbial inocula in resto-
ration can increase survival, growth, and establishment of
target species (Richter and Stutz 2002; Thrall et al. 2005)
and can increase plant diversity in restored sites (Koziol and
Bever 2017), providing benefits for up to several years in the
field (Maltz and Treseder 2015).

Sand dunes are one coastal system in which the use of
AMF microbial inocula in restoration has received a lot of
attention. Sand dunes are low nutrient, low organic mat-
ter systems, and most dune plants rely on mycorrhizae for
nutrient acquisition as well as for drought and salt toler-
ance (Sigren et al. 2014). Studies have generally shown that
inoculation with AMF prior to outplanting can increase
survivorship (Emery and Rudgers 2011), growth (Al Agely
and Sylvia 2008; de Souza et al. 2010; Emery and Rudgers
2011; Gemma and Koske 1997; Sylvia et al. 1993), flow-
ering (Gemma and Koske 1997), and phosphorus content
(Al Agely and Sylvia 2008) of dune grasses and trees. We
quantified how AMF affected the growth of dune species
across those restoration experiments above that reported
sufficient information using Hedges’ D (Nakagawa and
Cuthill 2007) and found there was a positive effect of AMF
in 42% of the cases (5/12) and no significant effect in the
rest (7/12; Fig. 3). Indeed, many studies find that AMF
responses are site specific, i.e., an increase in performance
from AMF inoculation does not occur at all sites (Al Agely
and Sylvia 2008; Emery and Rudgers 2011; Sylvia et al.
1993), which may depend on the abundance of the mycor-
rhizal community prior to restoration. Interestingly, even
in cases in which plant growth was not increased, root
colonization and soil hyphae were elevated with the AMF
inoculum treatment, which has benefits for dune stabiliza-
tion (de Souza et al. 2010; Sylvia et al. 1993). Similarly,
even if the effects of AMF inoculation are short lived (e.g.,
an increase in plant growth for only 1-2 years), there is still
value to temporarily increasing growth if the restoration
goal is dune stabilization (Miller and Jastrow 1992). Two
studies also noted that different varieties of dune grasses
responded differently to inocula, suggesting the choice of
plant variety is key to successful use of inoculum in res-
toration (Al Agely and Sylvia 2008; Emery and Rudgers
2011). And, as found in other systems, local AMF inocula
typically were more beneficial (Al Agely and Sylvia 2008;
Sylvia et al. 1993).

Coastal shrubland systems are another area in which
restoration success may be limited by a lack of mycorrhi-
zal fungi at restoration sites (Bowler 2000). A greenhouse
study in coastal sage scrub suggested that field inocu-
lum may improve restoration outcomes, because native
species benefitted more from inoculum than invasive
plants (Bozzolo and Lipson 2013). Another greenhouse

experiment showed that both invasive and native inocu-
lum increased native shrub seedling biomass, but native
inoculum resulted in higher colonization and diversity of
AMF and non-AMF fungi (Phillips et al. 2020). However,
a field study found that applying live native soil and com-
mercial AMF inoculum prior to seeding had no effect
on plant root colonization, growth, or flower production,
and commercial inoculum actually had negative effects on
plant height (Aprahamian et al. 2016). In Baja California,
inoculation of plant growth promoting bacteria and myc-
orrhizae at planting had short-term (but not long-term)
positive effects on growth of two out of three leguminous
trees (Bashan et al. 2012). In the Mediterranean, there
was a large positive growth effect of mycorrhizal spore
inoculation to pots prior to outplanting two native shrub
species (Caravaca et al. 2005). When we summarized
the effect of mycorrhizae on shrub growth across these
field restoration experiments using Hedges’ D, we found
that the effect of mycorrhizae was positive in four cases,
neutral in eight cases, and negative in one case (Fig. 3).
Overall, results of these meta-analyses suggest that there
is potential that microbes can enhance restoration success
in coastal shrublands, but more work in these systems is
warranted.

The use of microbes in restoration of wetland systems,
such as coastal marshes and mangroves, is much less studied.
However, many of these wetland systems are low in nutri-
ents, suggesting that adding growth-promoting microbes
responsible for nutrient cycling could increase planting
success (Bashan and Holguin 2002). Many taxa of growth
promoting bacteria and fungi have been isolated from coastal
marshes (Bledsoe and Boopathy 2016; Mavrodi et al. 2018;
Smith and Farrer, unpublished data) and mangroves (Bashan
and Holguin 2002; do Carmo et al. 2011; Vazquez et al.
2000), providing a starting point for research aimed at using
microbes in restoration. For example, in one study, a high
percentage (4-60%) of fungal taxa isolated from marsh plant
roots had the capability of inhibiting pathogens, solubiliz-
ing phosphate, or producing plant growth hormones (Fig. 4;
Smith and Farrer, unpublished data). A number of isolated
rhizosphere wetland bacteria from mangroves (do Carmo
et al. 2011; Piedad Diaz et al. 2000) and marshes (Zheng
et al. 2018) also degrade oil and could be used to enhance
remediation and restoration after oil spills. Initial greenhouse
experiments in the saltmarsh grass Spartina alterniflora sug-
gest that inoculation with growth promoting bacterial con-
sortia can increase growth and nutrient uptake in plants over
the short-term (2 months) (Bledsoe and Boopathy 2016). In
mangroves, inoculation of seedlings with diazotrophic (N
fixing) cyanobacteria increased nitrogen content in leaves
(Bashan et al. 1998). Overall, these findings suggest that
more research into using microbial communities in wetland
restoration may be fruitful.

@ Springer



1814

Estuaries and Coasts (2022) 45:1805-1822

Fig.3 The effect of AMF fungi |
or local field soil inoculum on
growth (biomass, tiller produc-
tion, height) of coastal sand
dune and shrubland species
outplanted in field restora-

tion experiments. Data were
extracted from the figures of
available published papers
using Plot Digitizer 2.6.9. Data
shown below are the calculated
Hedges’ D values with 95%
confidence intervals (Nakagawa
and Cuthill 2007); a positive
number indicates that microbes
positively affected growth.
Labels indicate the study from
which the data came: Al Agely
and Sylvia (2008), Emery and
Rudgers (2011), Caravaca et al.
(2005), Bashan et al. (2012),
and Aprahamian et al. (2016).
The multiple points for each
study indicate multiple sites,
species, or genotypes tested.
We only display results from
low density treatments and first
sampling dates. The species
tested in each study were the
following: Al Agely (Uniola
paniculata), Emery (Ammophila
breviligulata), Caravaca (Cistus
albidus, Quercus coccifera),
Bashan (Prosopis articulata,
Parkinsonia microphylla, Par-
kinsonia florida), Aprahamian
(Deinandra fasciculata, Mirabi-
lis laevis, Salvia columbariae,
Salvia mellifera). A number of
studies mentioned in the text
could not be analyzed here,
because they did not report
error bars
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While the vast majority of microbially minded coastal
restoration is focused on belowground microbial associ-
ates, leaf endophytes deserve a brief mention. First, some
plant species harbor a special type of aboveground, sys-
temic fungal endophyte that is vertically transmitted via
seeds (Panaccione et al. 2014). The dune grass Ammophila
breviligulata is colonized by such Epichloé endophytes,
which can greatly increase plant growth and can enhance
dune stabilization and restoration (Bell-Dereske et al. 2017,
Emery et al. 2015; Emery and Rudgers 2013). Because they
are vertically transmitted, endophyte manipulation may
involve introducing endophytes to the seed/seedling with a

@ Springer

needle (Emery et al. 2015) or purchase of endophyte posi-
tive nursery stock (Emery et al. 2010). However, care must
be taken because not all natural populations of Ammophila
host the endophyte (Emery et al. 2010), and it may be det-
rimental to introduce endophyte-infected plants into areas
where they are not native as they may displace locally
adapted genotypes (Slaymaker et al. 2015). Second, foliar
spraying of (non-vertically transmitted) leaf endophytes is
a technique that has proven useful in agricultural settings
(Vimal and Singh 2020). In a greenhouse trial, Egan et al.
(2021) found that foliar application of an endophytic yeast
reduced disease incidence from invasive powdery mildew
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Fig.4 Percent of fungal taxa isolated from the roots of coastal marsh
plants in Louisiana that have different plant growth promotion abili-
ties: inhibiting pathogens, solubilizing phosphate, and producing
plant growth hormones (auxin). Fungi were isolated from roots of
common fresh, brackish, and saline marsh plants (Sagittaria lanci-
folia, Spartina patens, Phragmites australis, Spartina alterniflora,
Juncus roemerianus) and tested for their ability to inhibit growth of
a common pathogen (Fusarium palustre), solubilize phosphorus, and
produce auxin (IAA) (Smith and Farrer, unpublished data). Percent-
ages are out of 40, 57, and 51 taxa screened, respectively. This sug-
gests a large proportion of culturable fungi may be useful in restora-
tion

on a critically endangered mint species endemic to coastal
forests of O‘ahu. Overall, despite relatively little research
on leaf endophytes in coastal systems, these studies suggest
that they warrant more consideration and research into what
they can bring to restoration.

Considerations for Using Microbes in Coastal
Restoration

The potential for using microbes to enhance restoration in
coastal systems will depend on three things: (1) the reliance
of plants on microbes (including site conditions and degra-
dation), (2) the type of inoculum used, and (3) the type of
restoration employed (outplanting live plants or seeding).

Reliance of Plants on Microbes

Both plant characteristics and site conditions influence the
dependence of plants on microbial symbionts. While most
plants benefit from rhizosphere symbionts (Vacheron et al.
2013) and mycorrhizae, it is well known that some plant
families are non-mycorrhizal (Brassicaceae: mustards,
Caryophyllaceae: pinks, Chenopodioideae: chenopods,

Proteaceae: proteas) (Cosme et al. 2018) or less dependent
on mycorrhizae (annuals are less dependent than perenni-
als) (Collier et al. 2003) and thus would not benefit from
mycorrhizal inoculation prior to restoration. Site conditions
and the degree of land degradation have long been known to
influence restoration success (Bakker and Berendse 1999),
and we propose that they also impact the degree to which
microbes will be useful in improving restoration. For exam-
ple, in sand dunes, many plants are thought to be reliant on
AMF due to the low nutrient content and low moisture in
dune soils (Koske et al. 2008), and, as seen above, these
systems often benefit from AMF inoculation during resto-
ration (Al Agely and Sylvia 2008; de Souza et al. 2010;
Emery and Rudgers 2011; Gemma and Koske 1997; Sylvia
et al. 1993). In coastal shrublands, it has been found that
a legacy of fungal pathogens limits restoration of former
citrus fields (Hilbig and Allen 2019); thus, restoration suc-
cess may be increased by inoculating with symbionts that
promote pathogen resistance. Site degradation by invasive
species has also been found to dramatically reduce mycor-
rhizal abundance and alter the composition of mycorrhizal
communities (Grove et al. 2017); thus, previously invaded
sites in coastal areas would likely benefit from mycorrhi-
zal inoculation during restoration. Another example of an
area that may lack microbial associates of plants are coastal
marshes created using dredged sediment for restoration pur-
poses; these created marshes may benefit from microbial
inoculation during outplanting, even though inoculation is
not common practice in marshes at this time. Lastly, despite
the old microbial adage “everything is everywhere, but the
environment selects” (Becking 1934), it is well known that
microbes can be dispersal limited (Peay et al. 2010) particu-
larly in restoration settings (Chen et al. 2020; Murphy and
Foster 2014); therefore, sites such as impounded wetlands
(with little water flow) or sites far from other natural areas
(surrounded by agriculture or human habitation) may espe-
cially benefit from microbial inoculation.

Type of Inoculum

Many types of inocula are used in restoration projects includ-
ing whole soil, single taxon, consortia of taxa, and commer-
cial inoculum, with microbial taxa ranging from mycorrhi-
zae to rhizosphere bacteria to endophytes to all of the above.
Current research is in agreement that the type and source of
inoculum used in restoration are of utmost importance to
maximize success (Al Agely and Sylvia 2008; Aprahamian
et al. 2016; Bashan et al. 2014; Sylvia et al. 1993) — the wrong
inoculum can actually hinder plant growth and limit restora-
tion (Aprahamian et al. 2016). It is important to understand
the ecology of the focal species when selecting inoculum.
For example, some plant species are purely ectomycorrhizal
(pines, oaks, birches, eucalyptus) (Bruns et al. 2002). And
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while many plants associate with AMF, plants can be locally
adapted to their particular AMF community, performing
best with local AMF assemblages (Rda et al. 2016). Simi-
larly, plant growth promoting rhizobacteria are thought to be
highly generalist, but the growth promotion effects of these
microbes can depend on plant genotype and the particular
bacterial strain (Drogue et al. 2012; Vacheron et al. 2013).
This suggests that whole soil inoculum taken from underneath
focal plants in similar reference habitats or microbial taxa
isolated or propagated from focal species or genotypes may
be best to use in restoration compared to externally sourced
or commercial inoculum, a finding which has been confirmed
by manipulative experiments (Emam 2015; Maltz and Tre-
seder 2015; Middleton and Bever 2012; Wubs et al. 2016).
There are costs and benefits to using whole soil inoculum vs.
cultured microbes and this decision will depend on access
to reference sites for soil collection, laboratory/greenhouse
equipment and expertise in isolating and culturing microbial
taxa, and financial costs of laboratory/greenhouse work. It
is also important to note that the vast majority (>99%) of
microbes are non-culturable (Schloss and Handelsman 2005);
thus, whole soil will contain a broader array of mutualists but
may also contain parasites and pathogens. As an aside, AMF
are not culturable in agar but can be propagated using host
plants in soil (see Koziol et al. 2017 for more disucussion of
practical aspects of using AMF in restoration). While most
restoration research has focused on root-associated microbial
symbionts, leaf endophytes can also impart drought tolerance
and disease resistance, and cultured leaf endophytes have been
applied in agriculture to increase crop performance (Canellas
et al. 2015; Wu et al. 2013). Partnerships among restoration
practitioners and microbial ecologists will be particularly
fruitful in researching and selecting the best inoculum for a
given restoration project or system.

Type of Restoration

In coastal systems, such as sand dunes, forests/shrublands,
marshes, and mangroves, outplanting live plants or saplings
is the typical method of active restoration. This is in con-
trast to more commonly studied grassland systems in which
restorations rely heavily on seeding (although seeding is
sometimes used in coastal shrubland communities (Allen
et al. 2013)). Interestingly, outplanting makes it much easier
to ensure microbial inoculation of the plant, because this can
be done prior to restoration. It can be accomplished by using
a fraction (often 10% volume) of whole soil or AMF infected
soil in the potting media (Koziol et al. 2017), by adding
inoculum pellets (Bashan et al. 2012) or liquid culture to
the potting media (Tiepo et al. 2018), or by soaking plants
in microbial suspensions prior to outplanting (Yuan et al.
2016). Some restorations, particularly in sand dune systems,
inoculate the soil during outplanting by adding whole soil

@ Springer

from reference sites or AMF infected soil to the holes just
before planting (de Souza et al. 2010; Emery and Rudgers
2011; Gemma and Koske 1997). For leaf endophytes, plants
could be sprayed with inoculant prior to outplanting or after
planting. Foliar spraying of leaf endophytes also opens up
the interesting possibility of applying endophytes at a large
scale to enhance plant growth in mature, existing restoration
sites, as large-scale application of belowground mutualists
is typically not successful (Canellas et al. 2015). However,
it is generally thought that smaller-scale nursery application
is more effective at transmitting symbionts and more cost-
effective (Bashan et al. 2014).

Restorations using seeding have a much harder time dis-
persing microbes and ensuring subsequent microbial sur-
vival and colonization of roots (Koziol et al. 2017). Dispers-
ing microbes with seeds has, however, been well studied in
agriculture for which there is much interest in using micro-
bial symbionts to boost yield and stress tolerance of crops.
Coating the seed with inoculum prior to seeding and drilling
granular inoculants in seedbed furrows with the seed at sow-
ing time are two main methods currently used in agriculture
(Bashan et al. 2014), and these methods are just beginning
to be adapted for restoration (Koziol et al. 2017). Overall,
the type of restoration used, outplanting or seeding (which
often depends on the type of plant), is an important consid-
eration when assessing the ease of incorporating microbial
symbionts in a restoration project.

Conclusions

Mycorrhizae, nitrogen fixers, endophytes, rhizosphere
microbes, and pathogens play key roles in the functioning
of coastal ecosystems. They are responsible, in large part,
for the health (or lack thereof) of the plants that make up the
foundation of coastal communities, on which a large web of
wildlife, fisheries, and humans rely. These microscopic sym-
bionts affect plant establishment, growth, competitive ability,
and stress tolerance and regulate biogeochemical cycling in
coastal systems. Current use of microbial symbionts to aug-
ment restoration of stressful and/or degraded coastal systems
is still very much in its infancy; however, it holds great prom-
ise for increasing success of restoration on the coast. Much
research is warranted to address the utility of microbes in
different coastal systems and will be necessary for the devel-
opment of local, effective inocula for use in restoration sites
across the globe. This is an excellent opportunity for collabo-
ration between restoration practitioners and microbial ecolo-
gists to work toward a common goal of increasing resilience
of our coastal ecosystems. Such collaborations are especially
relevant at a time when these systems are increasingly vul-
nerable to a great number of threats and as their ecosystem
services become more valuable with global climate change.
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