L))

Check for
Updates

Scaling beyond packet switch limits with multiple
dataplanes

Yibo Guo
UC San Diego

Abstract

Scale-out datacenter network fabrics enable network oper-
ators to translate improved link and switch speeds directly
into end-host throughput. Unfortunately, limits in the un-
derlying CMOS packet switch chip manufacturing roadmap
mean that NICs, links, and switches are not getting faster
fast enough to meet demand. As a result, operators have
introduced alternative, parallel fabric designs in the core of
the network that deliver N-times the bandwidth by simply
forwarding traffic over any of N parallel network fabrics.

In this work, we consider extending this parallel network
idea all the way to the end host. Our initial impressions
found that direct application of existing path selection and
forwarding techniques resulted in poor performance. Instead,
we show that appropriate path selection and forwarding
protocols can not only improve the performance of exist-
ing, homogeneous parallel fabrics, but enable the develop-
ment of heterogeneous parallel network fabrics that can
deliver even higher bandwidth, lower latency, and improved
resiliency than traditional designs constructed from the same
constituent components.

CCS Concepts: « Networks — Network architectures;
Data center networks; Network simulations.

ACM Reference Format:

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter.
2022. Scaling beyond packet switch limits with multiple dataplanes.
In The 18th International Conference on emerging Networking EXper-
iments and Technologies (CONEXT °22), December 6-9, 2022, Roma,
Italy. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3555050.3569141

1 Introduction

Bandwidth-hungry applications demand ever more from
datacenter network fabrics. Starting from “data-intensive”
applications like MapReduce [14] and Spark [46], moving to

This work is licensed under a Creative Commons Attribution International 4.0 License.

CoNEXT ’22, December 6-9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9508-3/22/12.
https://doi.org/10.1145/3555050.3569141

William M. Mellette

inFocus Networks

214

Alex C. Snoeren

George Porter
UC San Diego

graph-traversal systems [13], and on to emerging large-scale
machine learning training [31], capacity requirements only
continue to increase. While standards bodies and device ven-
dors continue to deploy faster NICs, links, and switches, the
pace of these deployments has slowed. As a result, there are
periods of time where datacenter bandwidth needs exceed
the capabilities of commodity network gear. To temporar-
ily bridge this gap, datacenter operators like Facebook [9]
and LinkedIn [47] have chosen to deploy explicitly parallel
backplanes by connecting top-of-rack (ToR) switches with
multiple disjoint replicas of their fabrics (in both cases four
100-Gb/s fabrics, with LinkedIn’s version shown in Figure 1),
delivering higher capacity without increasing the link rates
of constituent components.

Fabric 1

— AN

Fabric 3

Server

Figure 1. LinkedIn’s 4-way parallel network [47]. Each
fabric implements a 100-Gb/s fat tree [5] and is separate
from one another except at the ToR switches.

We assume that there will continue to be an “ebb and flow”
pattern between the expected bandwidth required by the op-
erators and the delivered bandwidth provided by commodity
networking equipment. To meet bandwidth demands dur-
ing the “ebb” phase of this cycle, we propose a new class of
flattened network topologies where each host—as opposed
to ToR—is connected to N different disjoint network planes,
each of which has its own set of switches and links connect-
ing it to the other hosts in the network. We call these net-
works Parallel Dataplane Networks (P-Nets). Once a packet
leaves the host in a P-Net and enters a given network plane,
that packet cannot move to another network plane until it
reaches its destination. This separation enables operators
to linearly scale bandwidth by deploying multiple disjoint
copies of their network—without having to insert switches
or links between planes—lowering cost and energy demands.

However, the result is an explosion in the number of paths
between end hosts, since not only does each network plane
have multiple paths between a source and destination, but

https://doi.org/10.1145/3555050.3569141
https://doi.org/10.1145/3555050.3569141
https://doi.org/10.1145/3555050.3569141
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555050.3569141&domain=pdf&date_stamp=2022-11-30

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

0

|CPU

E cmp1||cmp2 cmp3||cmp4

AEEEEERE

| Ch|p1 Ch|p2 | CPU |

cop,,e,ﬁﬁ---ﬂﬁ»---ﬁﬁ»..»..._,:

Figure 2. A (a) single-channel traditional and (b) single-channel chassis-based fat tree.

now there are multiple planes to choose from as well. Tra-
ditional fat tree networks already have multiple, equal-cost
paths between hosts, and achieving full bisection bandwidth
requires making effective use of them all [5]. Both operators
and academics have developed a wide variety of techniques
to approach the theoretical optimum in practice, with vary-
ing degrees of success. As we show in simulation, these
techniques frequently struggle to achieve full performance
when faced with the even larger set of choices in parallel net-
work fabrics. Indeed, under certain conditions approaches
like ECMP [1] barely leverage the added physical capacity.
We show that extracting the full, physical capacity of mas-
sively parallel P-Nets in practice requires explicitly striping
traffic across the multiple planes in a strategic fashion. In
particular, by using MPTCP [43] to multiplex flows across a
bounded set of shortest paths, we are able to deliver perfor-
mance similar to a traditional, single-plane scale-out network
with upgraded link speeds. Not only can this additional so-
phistication unlock the extra capacity of additional, parallel
network planes, but we observe that it also makes it possible
to consider a further evolution in fabric topologies: paral-
lel networks where the various forwarding planes are not
simply identical copies of each other—as is inherent in a
fat-tree-based approach—but instead, provide explicitly di-
verse physical connectivity. We refer to these networks as
heterogeneous parallel networks. We further discover that
such heterogeneity results in path-length variations across
network planes, and by routing traffic over network planes
with shorter paths to a given destination, we can reduce la-
tency and bandwidth consumption, thereby also improving
flow throughput. Even though such heterogeneous networks
may be more complex to build, we find that recent optical
interconnect technologies [3, 18] can dramatically simplify
these operations and also lower power usage. Indeed, the gap
between bandwidth demands and the delivered bandwidth
of switch hardware can serve as an opportunity to explore
alternative network architectures and protocols focused on
improving application performance and efficiency.

215

In this paper, we carry out a study of parallel homoge-
neous fat trees as well as heterogeneous expander-based
architectures. We explore issues including routing, forward-
ing, and transport protocol performance across different de-
grees of parallelism. The primary contributions of this work
are: (1) a study of P-Net, a class of networks that achieves
high bandwidth by using multiple network planes consist-
ing of lower-speed, but also lower-cost-and-power commod-
ity switches and cables, (2) examples of sub-optimal perfor-
mance when adopting naive approaches to path selection
and forwarding, and (3) a quantitative analysis of micro- and
macro-application performance using both synthetic traffic
and real datacenter flow traces, showing the benefits that
heterogeneity can bring to parallel networks.

2 Motivation and background

The design of datacenter networks has been shaped by a
combination of network bandwidth requirements from end
hosts and the availability of high-speed merchant silicon
packet switch chips. A driving factor in their design is en-
suring that improvements in packet switching speed can be
translated into increased end-host bandwidth. In this section,
we describe this evolution and focus on recent scaling limits
as motivation for deploying P-Nets.

2.1 The limitations of scale-out networks

Originally credited to Charles Clos [12], the observation
that large switch fabrics can be composed of relatively small
and inexpensive switches became relevant in datacenter net-
work architecture with the advent of merchant silicon switch
chips [5]. The structure of a folded-Clos network can be
characterized by the number of tiers of switch chips that it
requires, and how the chips are packaged into boxes. These
design choices then dictate the number of hops a packet
must traverse. Each additional tier incurs cost, power, la-
tency, and cabling complexity, making it desirable to use the
largest-radix commodity switches available.

Scaling beyond packet switch limits with multiple dataplanes

Architecture Tiers | Hops | Chips | Boxes | Links
Serial (scale-out) 4 7 3,584 3584 | 24.6k
Serial chassis 2 7 3,584 192 8.2k
Parallel 8x 2 3 1,536 192 8.2k

Table 1. Component counts for the two serial fat tree archi-
tectures shown in Figure 2 and parallel fat tree architecture
shown in Figure 4. All networks have the same bisection
bandwidth, with links in the 8 parallel networks optimized
for deployment (section 6.1).

Figure 2(a) shows a small-scale illustration of a traditional
folded-Clos or fat tree topology built from 4-port switches,
with 32 end hosts and four tiers. As a more realistic—but
difficult to illustrate—example, the components required to
build an 8,192-end-host network out of 16-port switches are
listed in the first row of Table 1. While small compared to
today’s largest networks, we use an 8,192-end-host exem-
plar network here because it allows for an “apples to apples”
comparison between designs. As shown in the first row of
Table 1, traditional fat tree designs have several shortcom-
ings, including the deployment and maintenance overhead
of many (often long, fiber-optic) links and the replication
of packaging and ancillary hardware including CPUs, fans,
power supplies, etc.

2.2 The adoption of chassis switches

The disadvantages of traditional fat-tree designs led sev-
eral industrial players to design and build chassis-based fat
trees [41] in which multiple switch chips are integrated into
a common box, known as a chassis, and connected using
energy- and cost-efficient copper backplane traces. By in-
creasing the radix and thus the density of switching capac-
ity, this architecture requires fewer optical transceivers and
long fiber runs which reduces total hardware, power, and
deployment costs. Figure 2(b) illustrates a 32-host fat tree
built with a chassis architecture, including how switch chips
are connected inside aggregation and spine chassis. This
chassis-based architecture has been a critical factor in en-
abling large-scale datacenter deployments, where the costs
of a traditional fat tree would be infeasible [10, 36].

The second row of Table 1 shows the components required
to build an 8,192-node network out of 128-port chassis. Spine
chassis use 24 16-port chips in a 3-stage internal Clos. Ag-
gregation chassis do not need to be non-blocking, and are
built with 16 16-port chips in a 2-stage topology. Despite the
blocking aggregation chassis, the network as a whole retains
the non-blocking property of Clos topologies, a fact lever-
aged in production networks [36]. Only two tiers of switch
chassis are required, reducing the cabling by 1/3. While the
number of switch chips remains constant, the number of
discrete switch boxes is reduced by an order of magnitude.

216

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

T —

(~ Datacenter b Datacenter
% e
i S S

Datacenter

Network Network Network]

(__ Dataplane 1 {__ Dataplane 2
~_ — i i

.

~
28 B N

Host

Figure 3. A “serial” network (left) uses high-bandwidth
links throughout the topology, but requires high-cost and
high-power chassis switches. A P-Net (right) uses lower-
bandwidth links, allowing each switch to be implemented
with a single lower-cost and lower-power switch chip.

S " B

2.3 Scaling beyond current chip limits

While the chassis architecture affords cost and power savings
over a traditional scale-out fat tree, it has its own limitations.
First, each chassis comes with a high power density, which
presents scaling challenges as link speeds increase. (E.g.,
Facebook had to re-design their switches to fit in a hard
1750 W per-rack power limit [39].) Further, because the chas-
sis architecture is simply a re-packaging of the traditional fat
tree, it is ultimately subject to the same underlying scaling
limitations in terms of switch chips and hops.

To circumvent these limitations, industrial datacenter net-
work operators have recently begun to introduce parallelism
to the core of their network designs, exposing the underlying
per-port bandwidth to ToR switches rather than using chas-
sis switches to implement a higher-bandwidth single link
abstraction [9, 47]. In existing designs, hosts are connected
to ToRs, which are then connected to multiple, independent
network planes. StarDust [50] proposes a slightly different
design that also opted for lower per-port bandwidth and
higher radix, but instead form a single network in the core
and rely on cell-based forwarding and simpler switch hard-
ware design to scale the network. In this paper, we take this
approach a step further, and consider what happens when
end hosts are connected to each of the planes directly—i.e.,
ToRs are a member of only one plane.

3 Parallel Dataplane Networks

The basic concept of Parallel Dataplane Networks (or P-Nets)
is relatively straightforward: rather than building a single
“serial” high-link-speed network, the network is architected
as multiple, disjoint lower-link-speed forwarding planes, or
dataplanes for short, as illustrated logically in Figure 3. P-
Nets extend parallelism all the way to end hosts, where each
host has connections to N dataplanes via N ToR switches,
albeit at 1/ N the bandwidth per connection. The important
distinction between a serial network and a parallel network
is this: each dataplane runs like a traditional serial network,
but packets cannot cross dataplanes, as they are logically sep-
arate. This leaves the end host to decide which dataplane(s)

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Figure 4. A two-way parallel fat tree/homogeneous P-Net

to send its traffic through, and once a packet leaves an end
host and enters a particular dataplane, it stays within the
dataplane until reaching the destination host.

Even though each dataplane only provides a fraction of
the total uplink bandwidth, end hosts can still make use of
the full bandwidth by employing multipath solutions like
MPTCP [43]. In this section, we present the design of P-Nets,
show the difference between traditional serial networks and
our parallel networks, and explain how to adapt end hosts
and applications to make full use of these parallel dataplanes.

3.1 Homogeneous P-Nets/ Parallel fat trees

Perhaps the simplest class of P-Nets are those that retain the
same connectivity and physical structure among the data-
planes. We refer to these as homogeneous P-Nets, and the
most straightforward example is a parallel fat tree. Figure 4
shows a 32-host parallel fat tree with two dataplanes; each
host connects to both the red and blue dataplanes as shown.
This fabric is constructed using the same switch chips as the
networks in Figure 2, but in a different configuration. Note
that in scale-out and chassis designs, although each switch
chip has eight inputs, or internal ports, they only act as four
ports, because every two internal ports are grouped into one
high-speed port. This comes at the cost of lower radix, and
chassis switches compensate for this by using two tiers and
four chips per switch to maintain the radix of eight. The
two-way parallel fat tree shown in Figure 4, on the other
hand, breaks these grouped ports out to support the same
number of hosts, and compensates for per-host bandwidth
by connecting both planes to each host.

The design of a parallel fat tree results in a fabric with
the same switching capacity as multistage chassis networks,
but with fewer switch chips and lower power density. The
parallel topology also reduces the number of hops as it main-
tains the switch chips’ native radix by not grouping ports
together and does not require multiple tiers of chips as in
chassis switches. The final row of Table 1 compares the com-
ponent usage of an 8% parallel fat tree to traditional serial
and chassis designs, all with an equivalent number of end

217

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

hosts and bisection bandwidth. Comparing the parallel fat
tree to the chassis-based design, we see that P-Net enables
significant hardware and power savings, while also reducing
the number of hops. Note that a naive implementation of a
parallel fat tree can increase the number of physical cables,
but by leveraging the homogeneity of the network, we can
group multiple low-bandwidth links using cable bundles to
significantly reduce complexity (details in section 6).

3.2 Heterogeneous P-Nets

While parallel fat trees present an intuitive picture of parallel
networks, P-Nets are not restricted to simply replicating
identical copies of each dataplane. A prominent candidate
for heterogeneous P-Nets is expander-graph-based networks.
Due to their random [38] or pseudorandom [42] construction,
we can create different instantiations for each dataplane,
opening up new options for forwarding traffic.

Data_plane 1 Dataplaje 2

ToRs m m

Figure 5. A two-way parallel heterogeneous expander

Figure 5 shows a P-Net built with two expander-based
dataplanes, where each dataplane instantiates a different ex-
pander network among the ToR switches. Serial expander
graphs are known to have short path lengths [38], but apply-
ing P-Net to expanders yields additional benefits because the
probability of having a short path between a particular pair
of racks grows with each additional data plane realization.
Hence, a heterogeneous P-Net has the potential for signifi-
cant latency improvement over a homogeneous P-Net. We
evaluate these benefits in section 5 and address the practical
issues of such heterogeneous topologies in section 6.

3.3 Implications on switches

Today’s network switches can be configured to provide either
fewer ports at higher speed (e.g. 32 ports at 400 Gb/s per port)
or more ports at lower speed (e.g. 128 ports at 100 Gb/s per
port) [8, 32]. Serial network designs like the scale-out and
chassis-based fat trees shown in Figure 2 configure switches
for lower radix, requiring more tiers of switches leading
to high cost, power, and hop count. P-Nets, on the other
hand, configure the constituent switches with a higher radix,
allowing a significant reduction in the number of switching
tiers and commensurate savings in cost, power, and hop
count. P-Nets’ multiple planes require only a linear multiple
of switch chips, whereas traditional and chassis-based fat
trees need even more due to additional tiers and denser
switches. This allows P-Nets to scale similarly to [50], as
both approaches opt for higher radix of the underlying chip.

Scaling beyond packet switch limits with multiple dataplanes

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

200% - 800% :

= [Serial low-bw = 1 Serial low-bw

3 700% 3. 700%

2 5SS Parallel 2 5SS Parallel

g 600% 1) Serial high-bw g 600% 1) Serial high-bw

2 so0% 2 so0%

= £

5 400% 5 400%

[[

N 300% N 300%

© ©

£ 200% £ 200%

5 5 Il

= 100% ’—| = 100% ’—| | |
0% 0%]

o T ¥
3 7005 Serial low-bw 4
= - Parallel homogeneous 2x P
= 800% 1 _u- parallel homogeneous 4x 7

j:? 500% { —s— Parallel homogeneous 8x ¥

k=

©

Q

1 2 4 8 1
of parallel dataplanes

(a) All-to-all throughput, ECMP

2
of parallel dataplanes

(b) Permutation throughput, ECMP

P PSP | yeP P ysP
4 8 W 2wy v}?,wa‘} \‘gw ay ‘fg,waﬂ.f;wa‘i ¥

(c) Single-path vs multi-path

Figure 6. fat tree ideal throughput with ECMP (a and b), and performance scaling using multipath (c). Circled points indicate
the multipath level needed to saturate P-Net. Throughput normalized against serial low-bandwidth.

3.4 Implications on end hosts

Multiple uplinks to ToRs While P-Nets can, in principle,
have an arbitrary number of parallel dataplanes, in practice
end hosts must have a sufficient number of uplinks to connect
to all dataplanes. This can be achieved with multi-channel
Ethernet links (details in section 6.1), multi-port NICs [4,
26] or multiple NICs per server. For practicality, we limit
the number of dataplanes to < 8, similar to how today’s
high-speed (e.g. 400G) ports aggregate up to 8 lower-speed
ports. An even higher level of parallelism exacerbates the
deployment complexity and often necessitates a generational
improvement in the underlying silicon speed.

Utilizing multiple links in OSes At the OS level, we
expose multiple dataplanes to end hosts at the IP layer follow-
ing reasons: 1) this is the default way of accessing multiple
ports on Linux; 2) by using different IPs per dataplane, we
can use existing end-host routing solutions like DARD and
Fastpass [33, 44] on each dataplane; 3) applications can de-
cide which dataplane(s) to send their traffic through by using
the appropriate IP address(es); 4) we can reuse existing multi-
path transport like MPTCP [43] to seamlessly adapt deployed
applications. End hosts can also quickly detect individual
dataplane failures via link status and avoid using the broken
dataplane(s), allowing graceful performance degradation.

End-host routing solutions provide OS direct access to
routing information and can facilitate better flow placement
decisions in P-Net. This approach also avoids the limited
memory constraint on commodity switches in order to sup-
port routing over multiple dataplanes.

Application interaction By default, round-robin is used
for load balancing, but as we show in section 5, applications
with special needs like low latency and high throughput can
choose to use low-hop-count dataplane and to send traffic
across multiple dataplanes to achieve their respective goals.

In practice, end hosts are aware of the topologies of all
dataplanes in P-Net, and thus can provide pseudo/proxy
interfaces like “low-latency” single-shortest-path and “high-
throughput” multipath interfaces. Applications/ flows can
use special tags like traffic classes to choose how to take
advantage of the multiple dataplanes in P-Net.

218

4 Forwarding traffic over multiple
dataplanes

The performance of a network depends not just on its topol-
ogy, but also on the way that traffic is forwarded over that
topology. There have been numerous studies of path selec-
tion algorithms for different topologies, and in this section,
we discuss how to adapt these approaches to P-Net.

To start with, we first considered adapting ECMP [1]. In
this case, each end host selects, for each flow, one of the N
parallel dataplanes using a hashing algorithm. We simulated
all-to-all and permutation traffic using ECMP on parallel fat
trees (we defer the details to section 5.1.1), and Figure 6a
and 6b show the achieved throughput plotted against that
of a serial fat tree. We found that even though dense traffic
patterns like all-to-all can fully saturate up to 8x parallel
fat tree networks, sparser traffic patterns like permutation
achieve minimal performance improvement when adding
more dataplanes. Thus we concluded that naive ECMP-based
routing is not adequate to fully exploit the combined capacity
of these parallel dataplanes.

As single-path ECMP-based routing cannot fully utilize
parallel dataplanes in P-Net, we next considered multipath
routing and transport. Specifically, we looked at MPTCP [43]
combined with K shortest paths (KSP) [2, 45] routing. The
Jellyfish [38] work found that this provides a large improve-
ment over ECMP + TCP in utilizing an increased number of
paths. Figure 6¢ shows the throughput for the same permuta-
tion traffic in Figure 6b for parallel and serial fat trees, but this
time using MPTCP and KSP, for various values of K. With
MPTCP and KSP, sparse permutation traffic can now fully
utilize the combined bandwidth of the parallel dataplanes.
In fact, more parallel dataplanes demand higher multipath
levels to saturate the network: 8-way multipath can fully
utilize serial networks, but 2-dataplane P-Nets need 16-way
multipath and 4-dataplane P-Nets need 32-way multipath.

Furthermore, we note that KSP is commonly employed
in expander networks [38, 42], which are prime candidates
of heterogeneous P-Nets, and Singla et al. have shown its
good performance on serial expander networks [38]. Thus,
we propose MPTCP + KSP as a promising approach for both

CoNEXT ’22, December 6-9, 2022, Roma, Italy

homogeneous and heterogeneous P-Nets. We analyze its
performance in heterogeneous P-Nets in section 5, and pro-
pose a method for extracting the best performance for both
short and long flows given MPTCP’s limited ramp-up and
convergence time.

5 Performance evaluation

Now that we have discussed how to build P-Nets, let’s quan-
titatively evaluate how P-Nets perform relative to traditional
single-dataplane networks. To evaluate the performance of
P-Nets, we used a combination of synthetic workloads and
real data center traffic distributions. The synthetic workloads
consist of bulk and short flows, which represent the typical
elephants and mice datacenter traffic, as well as application-
like traffic patterns with multiple requests/responses. Real
traffic traces include webserver/cache/Hadoop [35], datamin-
ing [22] and web search [6].

Depending on the traffic types, we use either linear pro-
gramming (LP) solver [29] to measure the throughput, which
allows us to scale much larger than packet simulators at high
speed (100/400G), or packet simulator htsim [23] to capture
latencies and flow completion times. Except otherwise noted,
we repeat each experiment at least five times (each time with
a newly instantiated topology) and plotted the standard devi-
ations as error bars. We found little variation in most cases.

In our evaluations, we considered the following types of
networks:

e Serial low-bandwidth network, which is a single
network composed of (relatively) low capacity links.
In our evaluation, we use 100Gb/s links (i.e. 1 X 100G).

e Parallel homogeneous network, or homogeneous
P-Nets, which consists of N parallel dataplanes each
with the same topology (e.g. fat tree). The links in each
data plane run at 100Gb/s.

o Parallel heterogeneous network, or heterogeneous
P-Nets, in which each of the N dataplanes implements
a different topology (e.g. expander graph).

e Serial high-bandwidth network, which represents
an ideal (but cost- and power-prohibitive network)
with links running at N x 100Gb/s.

Our goal here is to compare traditional serial networks
with their parallel (homogeneous/heterogeneous) versions;
specifically, we want to see whether P-Net can achieve simi-
lar or close performance of an ideal serial high-bandwidth
network, and what other benefits/drawbacks does adding
parallelism to the network bring. We do not attempt to di-
rectly compare fat trees with expanders.

Note that although we choose 100G networks as our base-
line, most of the throughput evaluation results can apply to
networks of arbitrary speed (25G, 40G, or more than 100G)
and their parallel or high-bandwidth equivalent, since the
benefits of parallelism come from using multiple networks
planes, i.e. the degree of parallelism, not the actual speed.

219

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

1200% -

- [Serial low-bw 27

=

T 1000% { EZ4 Parallel heterogeneous

Z [Serial high-bw

c 800%

15

0

T 600%

[

|

T 400%

£

S 200%

== Al Al |
0% : f !

1 2 4 8
of parallel dataplanes

Figure 7. Ideal throughput on Jellyfish with rack-level all-
to-all traffic.

5.1 Microbenchmark

5.1.1 Bulk traffic throughput. One of the key questions
we’d like to answer is whether parallel networks can achieve
similar throughput as a serial high-bandwidth network. In
this section, we compare the total throughput of flows under
all-to-all and permutation traffic matrices.

We first measure the ideal throughput under no path con-
straint, which represents the total capacity of the network
core. For this purpose, we run rack-level all-to-all traffic on
a 128-rack fat tree and an equivalent Jellyfish (built with
the same networking equipment, as described in [38]) using
the LP solver. We plot the throughput on Jellyfish networks
in Figure 7. Throughputs are normalized against serial low-
bandwidth networks.

Because parallel heterogeneous networks using Jellyfish-
like topologies have randomness' across the dataplanes,
there may exist a shorter path for a given source/destination
pair on another dataplane. Thus, each flow may consume less
network capacity and thus, such heterogeneous parallel net-
works end up having even higher in-network capacity than
their single-dataplane equivalent. Figure 7 shows that paral-
lel Jellyfish networks can have up to 60% higher throughput
than their serial high-bandwidth equivalent. Homogeneous
P-Nets on both Jellyfish and fat tree topologies have the same
throughput as serial high-bandwidth and are thus omitted.

Next, we take into account routing by simulating the ideal
throughput with computed routes. This means we constraint
the flows in LP solver to use the routes computed by ECMP
or KSP. We ran all-to-all and permutation traffic on 1024-host
fat trees and equivalent Jellyfish networks, and calculated the
achieved throughput. The results are shown in Figure 6a and
6b for fat trees and Figure 8a and 8b for Jellyfish networks,
respectively. We note that in both cases, dense traffic patterns
like all-to-all can fully saturate all the parallel dataplanes, but
for sparse traffic patterns like permutation traffic, standard
ECMP for fat tree and default 8-way KSP for Jellyfish (which
has been shown to have good performance in serial expander
networks) cannot fully utilize the increased bandwidth from

! This is the major difference and advantage of parallel heterogeneous ex-
pander networks over simply-larger-radix serial expander networks.

Scaling beyond packet switch limits with multiple dataplanes

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

800% - 800% - 800% g
5 005 Serial low-bw = oo [Serial low-bw 5 oo serial lowbw P
s E=9 Parallel homogeneous e E=Y Parallel homogeneous = e Parallel homogeneous 2x .4~
§ 600% | p77] Parallel heterogeneous § 600% | 77 Parallel heterogeneous D 0% | _u- parallel homogeneous 4x
2 s00% | [Serial high-bw £ s00% [Serial high-bw N £ 500% | —+~ Parallel homogeneous Bx
5 400% o 400% v 5 00%
Q
ﬁ 300% E 300% N 300%
(] [[+
£ 200% £ 200% g 200%
5 5 E s
2 100% m 2 100% m S 100%
0%
0% ¥
P P ?) P P
1 2 4 8 1 2 4 8 1wy Sy oway ey ey Sway ¥
of parallel dataplanes # of parallel dataplanes A 3

(a) All-to-all throughput, 8-way KSP

(b) Permutation throughput, 8-way KSP

(c) Multipath performance scaling

Figure 8. Jellyfish ideal throughput with 8-way KSP (a and b), and performance scaling using multipath (c). Circled points
indicate the multipath level needed to saturate P-Net. Throughput normalized against serial low-bandwidth.

multi-dataplane parallel networks. In parallel fat trees, ECMP
improves the throughput minimally even with 8 as many
dataplanes; and in parallel Jellyfish, the default 8-way KSP
can only achieve about 60% of the total bandwidth.
Consequently, we quantitively evaluated the impact of
multipath in P-Nets by varying the degree of multipath and
measuring the throughput. We adjusted the routing parame-
ter, ranging from single-path ECMP to K-way shortest paths
for K = 2,4,8... up to 32. The results are shown in Figure 6¢
for parallel fat tree networks and Figure 8c for parallel Jel-
lyfish networks. As we can see, increasing the degree of
multipath dramatically improves the achieved throughput,
especially in the case of parallel networks. Furthermore, as
highlighted in circles, more dataplanes demand a proportion-
ally higher degree of multipath to fully utilize the combined
bandwidth, i.e. P-Nets with N dataplanes need N times as
many subflows. This is consistent with the intuition of using
KSP in expander networks, which says more subflows are
needed to saturate the increased number of uplinks/paths
in expanders. In P-Net, the same reasoning applies: more
dataplanes means more paths available; thus more subflows
are needed to use the combined bandwidth of all dataplanes.

5.1.2 Short flow completion time. To capture the behav-
ior of short flows, we set up a random permutation traffic
pattern in a 686-host Jellyfish network using our packet
simulator “htsim” [23], and measured the flow completion
time as we vary the flow sizes from 100kB to 1GB. For this
evaluation, we use P-Nets with four dataplanes.

Figure 9 compares the flow completion times (FCTs) of the
four different types of networks. We also varied the degree
of multipath and found that single-path routing generally
gives the lowest FCTs in both serial networks whereas 4-
way KSP gives the lowest FCTs in both parallel networks.
Thus we plotted these results using these best settings for
the respective networks.

We note that for smaller flow sizes up to 10MB, parallel
networks have surprising advantages over serial networks
and even outperforms serial high-bandwidth network. Upon
deeper investigation, we found that these flows are small

220

n 102 —— Serial low-bw
E Parallel homogeneous
g 4- Parallel heterogeneous ol
s
= 10!4 == Serial high-bw e
c i
2
]
@ 1004
[=}
£
]
v 10!
% -«
et 1) ! | | |
100kB 1MB 10MB 100MB 1GB
Flow size

Figure 9. Small flow FCT with varying flow sizes.

enough that they can finish before hitting full queues and
causing retransmits, i.e. before reaching TCP steady state. In
such cases, flows in parallel networks have the advantage of
using more paths in TCP slow start. However, one should
consider the various factors at play at such small scales,
which include slow start behavior, the retransmit timeout
(we tuned to 10ms as suggested in DCTCP [6]), network load
or switch queue utilization, etc. Also, as shown in [15, 16, 49],
MPTCP can often hurt short flows, which happens here in
serial networks. Thus, one should take care in using MPTCP
for these really small flows (including sub-100kB flows), and
their exact behavior in datacenters could demand further
tuning and studies.

As flows grow larger to 100MB, they start to reach steady
state and TCP/MPTCP was able to probe the bandwidth
available across the dataplanes. Here, P-Nets have a smaller
advantage over baseline serial low-bandwidth networks be-
cause MPTCP is slow to probe the optimal subflow band-
width allocation at smaller time scales (only 100MB on a
4 X 100G network). Larger flows like 1GB on the other hand
can realize more speedup over serial low-bandwidth because
MPTCP can probe bandwidth better.

To summarize, we note that in steady state: relatively
small flows achieve less improvement in parallel networks,
whereas larger flows start to behave like bulk flows and can

CoNEXT ’22, December 6-9, 2022, Roma, Italy

benefit from using more paths in P-Nets. Thus we empirically
choose 100MB as a threshold for small versus large flows.
Flows smaller than or equal to 100MB benefit less from mul-
tipath using MPTCP and thus should use single-path routing;
flows larger than or equal to 1GB can significantly improve
their performance by using multipath and thus should do so.

5.2 Simulated workloads

5.2.1 Small RPCs. As discussed in the previous section,
MPTCP could hurt the performance of small flows. This is
especially true for small RPCs that can be a few packets or
even less than an MTU-sized packet. For these small packets,
we choose to run single-path ECMP. Because of the random
nature of expander graphs and potentially shorter paths in
another dataplane for any given source and destination, there
could be another way to improve RPC latency in such net-
works, i.e. by using shorter paths available in heterogeneous
P-Nets.

To verify our hypothesis, we set up a packet simulation
using a 686-host Jellyfish network and a ping-pong type
RPC application. Again we use P-Nets with four dataplanes.
Each host will send an RPC request of MTU size (1500B)
to a random destination server, wait for the response and
measure the end-to-end request completion time over 1000
rounds.

Figure 10 shows the request completion time distribution
in CDF and Table 2 summarizes the statistics.

101 — serial low-bw J-"F
Parallel homogeneous g il
08 Parallel heterogeneous i il
—-— Serial high-bw I
0.6 [|
L - i
8 S
0.4 i
I
0.2 s
! 1
I
,i_.__.s
0.0
0.000 0.005 0.010 0.015 0.020 0.025

Reguest completion time (ms)

Figure 10. 1500B RPC request completion time, single-path
routing. Paralle]l homogeneous mostly overlaps with serial
low-bw.

The stepping curves come from the different hop count dis-
tributions in these networks. As we can see, serial networks
and parallel homogeneous networks have identical hop count
distribution as they use the same topology, whereas parallel
heterogeneous networks use a mix of four different instanti-
ations of Jellyfish. And as we suspected, for any given source
and destination, there may exist a shorter path on the three
additional dataplanes, compared with the other three types

221

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

Network setup Median | Average | 99%-tile
Serial low-bw 100% 100% 100%
Parallel homogeneous 100% 99.2% 100%
Parallel heterogeneous | 80.1% 86.6% 90.4%
Serial high-bw 98.1% 97.9% 97.4%

Table 2. 1500B RPC request completion time statistics, using
serial low-bw as baseline

of networks. Thus parallel heterogeneous networks have
the unique advantage in terms of lower hop count, which
translates to lower latency and RPC completion time.

The minor difference between serial low-bandwidth and
parallel homogeneous comes from the fact that parallel ho-
mogeneous networks have more paths, thus reducing the
chance of flow collision given the same number of flows.

The serial high-bandwidth network has slightly less serial-
ization delay per hop, as its links run at 400G instead of 100G
in the other three networks. However, at 100G, MTU-sized
packets only take 1500B/100Gb/s = 120ns; at 400G, it’s only
1/4 of that. Thus serial high-bandwidth networks can only
reduce the latency by 90ns per hop. Such improvement in
serialization delay is relatively small compared with the prop-
agation delays in modern datacenters. Assuming 200m per
switch hop in the core, each hop will introduce a whole mi-
crosecond, which is 11X the serialization delay improvement
in serial high-bandwidth networks. Thus overall, parallel
heterogeneous networks can achieve much lower latency for
small RPCs by using these shorter paths. As links become
faster, the advantage of high-bandwidth networks dimin-
ishes, but propagation delay is fixed by the law of physics;
thus the reduction in path length will further improve the
end-to-end latency for small RPCs in high-speed networks.

In addition to single RPC evaluations, we also experi-
mented with multiple concurrent RPCs. Since P-Net has
more paths, we suspect that it is possible to handle more
small RPC requests with less queuing behind other requests
than in serial networks.

In this experiment, we use the same network setup, but
with 100kB-sized requests, and we vary the number of con-
current RPCs per host from 1 to 10. Figure 11 shows the
median, 90th and 99th percentile of RPC request completion
time. As we increase the number of concurrent RPCs, the re-
quest completion times also increase. Serial low-bandwidth
suffers the most, as there are both limited bandwidth to drain
these packets in the queue and a limited number of paths
to avoid path collision that leads to queue buildup. Serial
high-bandwidth networks reduce this problem only slightly
by draining the queue faster. Parallel networks, on the other
hand, have the advantage of 4x the number of paths, allow-
ing concurrent RPC requests to spread across these separate
links and queues. This results in both 1) less queue buildup
and only a mild increase in request completion time, and
2) less chance to run into full queues, packet drops, and
retransmits, as shown in Figure 11c.

Scaling beyond packet switch limits with multiple dataplanes

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

- 10.10
E 0200 { —® Serial low-bw 0200 { ~% Serial low-bw P 10051 ~% Serial low-bw P05 o 5 LN
v BT Parallel homogeneous o175 ° Parallel homogeneous ¥l] } = Parallel homogeneous ';'_1: e
i o -4 Parallel heterogenecus = Par.a\lel.heterogeneous e e 10001 _ 4 Pparallel heterogenaous !
; 0150 { - Serial high-bw 0.150 | -#- serial high-bw s // 9.95{ -¥- Serial high-bw }
S 0125 .)_‘,‘——' 0.125 9904 i i L
@ B o
o 0.100 et 0.100 - . _
S 02 i i
S 0075{ o og—- @I ey | 00T P o
RTAE = S s 0.050 i e P
@ FEr s T
2 0025 0025 b
& 0.000 0.000 0.0 : -
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
of concurrent RPCs per host # of concurrent RPCs per host # of concurrent RPCs per host
(a) Median (b) 90%-tile (c) 99%-tile
Figure 11. Concurrent RPC request completion time. Note the broken axis in (c).
Read input Shuffle Wite output
10 4 H—- ’{,—-— 10 j J‘ 10 4 r ‘lr,-
I i i ! i
R - ! 0.8 ¢ 0.8 | i
I ‘ i1 I t
- ') ! 1
| 1 flit I '
0.6 . ! 0.6 4 - 06 - I
w |] ' | I e | i
g i ! g oy 8 | !
04 - g 0.4 ! 0.4 ; !
| ! | I]
. .I L, fJ ﬂ f
02 b 02 I 0.2 i !
I
.J .'r "' j.r]
0.0 4 oo /- 0.0 ;I
o 50 100 150 200 250 0 200 400 600 800 1000 1200 o 50 100 150 200 250
Completion time {ms) Completion time {ms) Completion time {ms)
—-= Serial high-bw - Parallel hetercgeneous Parallel hemogeneous —— Serial low-bw

Figure 12. Simulated Hadoop-like workload per-worker completion time in each stage, single-path routing.

5.2.2 Shuffle workloads. Inspired by Hadoop-type large-
scale data analytics jobs, we simulated similar workloads
involving loading data from remote racks, shuffling data
among workers , and writing output data to replicas.

We simulated the Hadoop traffic of a sorting application
in a 250-host cluster, in which we distribute 100G data to 32
mappers and 32 reducers. Each mapper loads data in blocks
of 128MB, spreads the entries into 32 buckets, and sends
each bucket to one reducer to merge and sort all entries in
that bucket. We assume the entries are randomly distributed,;
thus, the shuffle stage consists of 32 X 32 flows of the same
size, one per (mapper, reducer) combination. After a reducer
completes sorting, it will write to a replica in a random rack.
We configured our mappers and reducers to read/write 4
concurrent blocks at a time to avoid sending too many flows
at once. For the read input and write output stages, each flow
corresponds to one block, which is 128MB. For the shuffle
stage, each flow gets 1/(32 X 32) of the total 100GB of data,
which is roughly 100MB. Since these are relatively short
flows in our 100/400G network setup as we showed earlier,
we choose to run single-path routing for these flows.

Figure 12 shows the distribution of observed network re-
quest completion times per worker, which is the total time
it takes each mapper/reducer to load, shuffle, or write all
the data it handles. We measure this at each mapper for the

222

read input and shuffle stages and at each reducer for the
write output stage. In stage 1 read input, as there are fewer
hosts sending traffic, flows in parallel networks have less
chance of colliding with other flows; thus they observe re-
duced overall worker completion time. Furthermore, flows
in parallel heterogeneous networks can utilize shorter paths
in sparse traffic settings and achieve lower flow completion
times. In stage 2 shuffle, the serial low-bandwidth network
suffers more from condensed traffic and has a long tail. The
dense traffic allows flows to take close-to-full advantage of
parallel networks and achieve closer to ideal serial high-
bandwidth network performance. However, parallel hetero-
geneous networks do not exhibit additional advantages over
their parallel homogeneous counterparts. This is because
dense traffic like all-to-all in the shuffle makes more flows
collide as they try to take advantage of the shorter paths.
Furthermore, these flows are approximately the same size as
the single-vs-multipath cutoff threshold. Increasing the flow
sizes in high-speed (100/400G) networks by multiplexing
multiple block transfers per flow would increase the perfor-
mance of this type of application. In stage 3 write output,
each reducer writes to a random remote host designated to
store that block; thus the traffic pattern looks like the inverse
of stage 1 read input. Thus, we observe similar performance
as in stage 1.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

10

0e (

0.6

CDF

—— Websearch-2010
Webserver-2015
Cache-2015

== Hadoop-2015
Datamining-2011

0.4

02

0.0

10 10° 10 107 10°

Flow size (bytes)

(a) Published DC flow size CDF

10¢

B

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

10

0e

0.6

0.4

0.2

0.0

SR

.

Serial low-bw
Parallel homogeneous
Parallel heterogensous
—-— Serial high-bw

1077

107! 10°

Flow completion time (ms)

(b) Datamining trace [22] FCT

—— Serial low-bw
Parallel homogeneous
Parallel heterogensous

—-— Serial high-bw

10! 107

10°
Flow completion time (ms)

(c) Websearch trace [6] FCT

Figure 13. Flow size distribution of published DC flow traces [6, 22, 35], and key evaluation results.

5.3 Published datacenter flow traces

We also used datacenter flow traces [6, 22, 35] to confirm our
findings in section 5.1 and section 5.2. We plotted the flow
size distributions of webserver/cache/Hadoop [35], datamin-
ing [22] and web search [6] applications in Figure 13a.

For this experiment, we used a similar setup as in sec-
tion 5.1.2, with individual flow sizes drawn from the distri-
butions in these traces, as shown in Figure 13a. We set up
four concurrent flows per host to saturate the network and
each flow runs in a closed loop using single-path routing.

For space reasons, we only show the result on Jellyfish
networks at 100/400G for Datamining from VL2 [22] and
Websearch from DCTCP [6]. But these two traces are rep-
resentative across all traces, as they cover both small flows
and large flows shown in Figure 13a. The fat tree results look
similar to Jellyfish ones (except there are no parallel hetero-
geneous fat trees) and the smaller traces behave similarly to
the datamining traffic. Interested readers can find the full
result in Appendix A.

The results shown in Figure 13b and Figure 13c confirm
our previous studies using synthetic traffic. In particular,
Figure 13b shows that similar to the RPC-like application
in section 5.2.1, short flows like the Datamining traffic can
achieve lower latency on P-Nets, especially parallel heteroge-
neous networks, by exploiting the lower average hop count
and better tolerance of multiple concurrent flows. Figure 13c,
on the other hand, shows that similar to the simulated shuffle
traffic in section 5.2.2, P-Net can achieve significant through-
put improvement over serial low-bandwidth networks and
closer to ideal high-throughput serial networks. A similar
conclusion can be drawn for flows drawn from the other
traces, as discussed in detail in Appendix A.

5.4 Fault tolerance

Another important benefit of P-Net is its better resiliency
against network failures. Because P-Net consists of multiple
dataplanes and thus more paths, it is less likely to lose all the
shortest paths than serial networks with a single dataplane.
This allows for more graceful performance degradation than
traditional serial networks.

223

4

—4— Serial
Parallel homogeneous
4+— Parallel heterogeneous

w

Hop count

zf
|
i

0% 5% 10% 15% 20%

Percentaae of failed links

25%

Figure 14. Average hop count across all src/dst pairs. Higher
hop count indicates increased latency.

In Figure 14, we compare the impact on average hop count
of all-pairs shortest paths in a set of Jellyfish networks with
686 hosts: serial, parallel homogeneous, and parallel hetero-
geneous. Note that serial low-bandwidth and serial high-
bandwidth networks only differ in link speed, and are iden-
tical in hop count distribution; thus, we do not differentiate
them. The two parallel Jellyfish networks both have 4x dat-
aplanes. Link failures are random across the network.

We observe that serial networks lose short paths very fast,
which leads to 22% more hops with 40% link failures, whereas
parallel homogeneous networks only suffer by 3%. Parallel
heterogeneous networks also lose the really short paths fast;
thus, their advantage diminishes quickly as more link fails,
but they still outperform the other two types. We note that
expander networks like Jellyfish are already highly resilient
to failures [38], but P-Nets further improve upon it.

In reality, this can be extremely helpful when operators
deploy expander networks in some dataplanes of P-Net to
support low-latency traffic like web search. The path length
advantage of these expander networks, combined with the
high failure resiliency of P-Net, can provide the lowest la-
tency even in case of multiple network failures. Furthermore,
P-Nets’ rack-level network redundancy removes a major
single point of failure in today’s datacenter networks [28].

6 Practical Considerations

P-Net proposes a new networking solution by deploying
multiple dataplanes, but operators may find it difficult to

Scaling beyond packet switch limits with multiple dataplanes

deploy multiple copies of switches, cables, NICs, etc. Here, we
discuss some of the optimizations to alleviate these problems.

Aggregation/
Core layer Dataplane 1 Dataplane 2
Fibers . Optical crossbar
Vil ?" o /
BN T T
.
Patch Panel ‘ ‘ Patch Panel
Optical podLrI L\{] l—l u l—l _1 Front B E - N
.(.)! timized V= T sl Default/
i Long fibers |
| (ToR to PP/OCS) ;
Multi-channel Bundled '
Toer [fiber Multiple
Transceivers / 2 single-channel
[ToRs
Multi- L - - -
channel ToR ToR ToR
ToR [l:l] [|_|] []
Electrical port] L'QH_-I H UU l_l LT~
Single-port S o _-
multi-lane
NIC Multi-port NIC or
multiple NICs m

Figure 15. Deployment optimization of P-Net

6.1 Network deployment

First of all, P-Net configures switches for higher radix and
lower per-port speed, and uses multiple sets of switches and
cables to achieve equivalent total bandwidth of a traditional
network. This comes at a cost of more distinct elements, e.g.
switch boxes and fiber cables. Fortunately, modern network-
ing and deployment solutions can greatly reduce redundant
efforts. The top and middle part of Figure 15 shows the de-
ployment optimization for P-Nets.

For the aggregation/core layer, we use optical patch panels
and optical circuit switches (OCSes) to simplify wiring. We
borrow the idea of patch panels from [36] and [48], which has
been shown to 1) significantly reduce wiring complexity by
operating only on the patch panels, 2) leave room for more ag-
gregation layers, and 3) allow easier reconfiguration and ex-
pansion. More importantly in P-Net, this enables us to “hide”
the heterogeneity in heterogeneous P-Nets, as we show next
in section 6.2. OCSes like Calient/Palomar and rotor switches
can provide additional improvements over patch panels by
replacing the back-side wirings with either software [3, 34]
or pre-etched gratings [18]. Furthermore, by adopting opti-
cal switching, we can eliminate transceivers in the network
core. This has been shown to be a key scaling mechanism
into Terabit ethernet, as high-speed packet switches and
transceivers consume extremely high power [21, 27, 37].

For switches, by default, P-Nets use separate ToR switches
and fiber cables to improve redundancy, as shown in the

224

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

right dotted box. Each color represents one dataplane, with
its own fibers connecting separate ToR switches and the
aggregation/core layer on top. This provides the highest
redundancy, at the cost of increased wiring efforts.

P-Nets can also take advantage of modern multi-channel
Ethernet technologies [8] and coalesce links from multiple
dataplanes into a single physical cable, as shown in the left
dotted box. We can deploy 4x100G P-Nets using the four
100G channels in 400G Ethernet cables [8, 32]. We split long-
running fibers at the end and connect individual channels to
different patch panels or OCSes. On the switch side, modern
multi-channel switches already split these channels at the
chip level, as in scale-out and chassis networks. P-Nets can
adopt the same design, but with a flattened layer of chips in-
side each switch box to reduce chip count and power density,
while still providing connectivity to multiple dataplanes.

Last but not least, by using multiple dataplanes, P-Net
allows operators to upgrade one dataplane at a time, without
bringing down the entire network. Furthermore, software-
controlled OCSes together with the incremental expansion
support of expander-based networks means operators can
more easily scale up their network.

6.2

The concept of heterogeneous P-Nets may worry operators
and network designers, as deploying and managing N dif-
ferent networks seem very challenging, but here we present
ways to reduce that heterogeneity to the minimal level.

As we discussed above, patch panels and OCSes allow
operators to localize the heterogeneity across dataplanes to
a central location. This means that the long-running fibers
and per-rack layout can be kept exactly the same, keeping
deployment complexity across the datacenter floor low. Fur-
thermore, by using software-controlled OCSes or pre-etched
gratings that encode the connectivity, operators can com-
pletely hide the hardware heterogeneity in P-Nets.

“Hiding” heterogeneity

6.3 End host/NIC support

For end hosts, we can further reduce the rack-level wiring
complexity by using single-port-multi-channel NICs like the
HPE 4 x 25Gb 1-port 620QSFP28 adapter [17] and FPGA-
based NICs like Corundum [19]. The former provides four
separate 25G channels to a server using a single 100G port at
an extremely affordable price, and the latter provides similar
multi-channel functionality with more flexibility. Operators
can balance between ToR redundancy and cost by varying
the number of physical uplinks.

6.4 End-host burst capacity

We note that the design of P-Net limits the per-port band-
width to 1/Nx of the state of the art, which may hurt the per-
formance of high-throughput applications like GPUs, TPUs
and other accelerators. However, first, we observe that very
few datacenter applications can saturate a single 100+G link

CoNEXT ’22, December 6-9, 2022, Roma, Italy

by itself [11, 35]. Second, multiple flows per host can be effec-
tively spread across the parallel dataplanes in P-Nets. Lastly,
these high-throughput applications often use specialized
interconnect solutions anyway, due to their unique commu-
nication patterns and requirements, as shown in Google’s 2D
and 3D Torus networks used in their TPU clusters [25, 27].

6.5 Incast traffic

For incast scenarios, P-Net can spread the traffic across sep-
arate dataplanes to alleviate congestion in the network, but
careful coordination is still needed to avoid overrunning
end host NIC buffers. We defer this to future studies that
might involve incast-aware transports like DCTCP [6] or
NDP [23].

7 Future work and opportunities

Monitoring and diagnostics: P-Net’s adoption of multiple
dataplanes brings management and diagnostic challenges,
since each dataplane is logically separate and often belongs
to a different control domain. Existing systems will need to
merge flow statistics from multiple dataplanes to accurately
describe the network state and troubleshoot issues.

P-Net with different topology types: Although we dis-
cussed parallel heterogeneous networks, all dataplanes have
the same type of topology. Another type of parallel hetero-
geneous network can consist of entirely different topologies
across the dataplanes. For example, operators can deploy
a combination of expander-based topologies and fat trees
to handle both low-latency traffic and Hadoop-like data-
intensive workloads. The major difficulty then becomes man-
aging a mixture of network topologies within a datacenter.

Performance isolation: Because P-Net has multiple iso-
lated dataplanes, operators can assign different traffic classes
to different dataplanes to achieve performance isolation. For
example, user-facing frontend traffic can be assigned to one
dataplane, and background data analysis traffic can be as-
signed to another. Traffic from different tenants can also be
assigned to different dataplanes to avoid interference. This
strict performance isolation opens up new opportunities
for control-plane solutions like pFabric [7], EyeQ [24] and
pHost [20], which attempts to support a mixture of elephants
and mice traffic on a single fabric.

8 Related work

Parallel dataplane networks have begun to be adopted by
the industry as we move towards higher link speeds. Face-
book [9] and LinkedIn [47] have built parallel fat trees to
achieve equivalent 400G speed in the network core using
4 X 100G dataplanes. Compared with P-Nets, their topolo-
gies are homogeneous, and end hosts are limited to using
one of the dataplanes via ECMP. This leads to lower opera-
tional costs than chassis networks, but they do not have the
additional benefits of heterogeneous P-Nets.

225

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

In the research community, our previous workshop pa-
per [30] also explored parallel networks design, but was
limited to parallel fat trees. This paper extends on it by 1)
further exploring parallel heterogeneous networks, in which
flows can pick the dataplane(s) with the shortest hops to
achieve lower latency and higher total throughput, 2) study-
ing and answering practical issues of heterogeneous P-Net
deployment, and 3) empirically evaluating the performance
of several datacenter network traffic patterns in P-Nets.

P-Net is not the first to use multiple uplinks in datacenter
environment. GRIN [4] and Subways [28] are two proposals
that utilize multiple NICs/ports per end host to improve net-
work performance. GRIN [4] connects servers in the same or
adjacent racks together using the additional ports, allowing
each end host to opportunistically send/receive traffic via its
paired neighbor. It can boost end-host burst capacity at the
cost of additional cross-rack wirings. Subways [28] takes a
slightly different approach by connecting end hosts directly
to the neighboring rack’s ToR switch. It uses adaptive load
balancing to lower congestion, and similar to P-Net, provides
better fault tolerance via redundant ToR switches.

Stardust [50] is another datacenter network design that
separates a single link into multiple lower-speed links. It pro-
posed a new Clos-based network design that uses cell-based
forwarding, simplified routing, and redesigned hardware to
improve the performance and power savings of datacenter
networks, but is still a serial network with one dataplane.
P-Net focuses on an orthogonal problem of datacenter net-
work design, which is whether and how can we use multiple
dataplanes to support growing application demand.

9 Conclusions

Evolving datacenter networks to meet the bandwidth de-
mands of next-generation systems is a challenge, in part
due to limited scaling of packet switch chip speed. Careful
packaging of switch chips within chassis helps reach part of
the scaling goal, but becomes cost- and energy-prohibitive at
future link speeds. In this paper, we explored the space of par-
allel dataplane networks (P-Net) to add a new degree of scal-
ing to network designs, which helps bridge the gap between
fast-growing application demand and current-generation
hardware capacity. We showed that naive routing in P-Nets
leads to sub-optimal performance, and that with careful path
selection and multipath transport, we can scale beyond exist-
ing switch chip bandwidth limit and achieve low latency. By
eschewing the idea of a single network, P-Net can achieve
fewer hops, higher fault tolerance and lower power consump-
tion with minimal added deployment complexity.

Acknowledgement

We would like to thank our shepherd Isaac Keslassy and
anonymous CoNEXT reviewers for their valuable feedback.
This work was supported by NSF via grant CNS-1911104.

Scaling beyond packet switch limits with multiple dataplanes CoNEXT ’22, December 6-9, 2022, Roma, ltaly

References

[1] 2014. 802.1QBP - equal cost multiple paths. https://www.ieee802.org/
1/pages/802.1bp.html

[2] 2021. Google code archive - long-term storage for Google code project
hosting. https://code.google.com/archive/p/k-shortest-paths/ (17]

[3] 2021. S Series Optical Circuit Switch | CALIENT Technologies. https:
//www.calient.net/products/s-series-photonic-switch/

[4] Alexandru Agache, Razvan Deaconescu, and Costin Raiciu. 2015. In-

[16] P.Dong, W. Yang, K. Xue, W. Tang, K. Gao, and J. Huang. 2019. Tuning
the Aggressive Slow-Start Behavior of MPTCP for Short Flows. IEEE
Access 7 (2019), 6010-6024. https://doi.org/10.1109/ACCESS.2018.
2889339

Hewlett Packard Enterprise. 2021. HPE Ethernet 4x25Gb 1-port
620QSFP28 Adapter - Overview. https://support.hpe.com/hpesc/
public/docDisplay?docld=emr_na-c05220334

[18] Y. Shaya Fainman, Joseph Ford, William M. Mellette, Shayan Mookher-

—

—

—

—_ =

—

[

creasing Datacenter Network Utilisation with GRIN. In Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI'15). USENIX Association, USA,
29-42.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.
A Scalable, Commodity Data Center Network Architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication (Seattle, WA, USA) (SIGCOMM °08). Association for
Computing Machinery, New York, NY, USA, 63-74. https://doi.org/
10.1145/1402958.1402967

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the
ACM SIGCOMM 2010 Conference (New Delhi, India) (SIGCOMM ’10).
Association for Computing Machinery, New York, NY, USA, 63-74.
https://doi.org/10.1145/1851182.1851192

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. PFabric:
Minimal near-Optimal Datacenter Transport. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China)
(SIGCOMM ’13). Association for Computing Machinery, New York,
NY, USA, 435-446. https://doi.org/10.1145/2486001.2486031
Ethernet Alliance. 2020. The 2020 Ethernet Roadmap. https:
//ethernetalliance.org/technology/2020-roadmap/

Alexey Andreyev, Xu Wang, and Alex Eckert. 2019. Reinventing our
data center network with F16, Minipack. https://engineering.fb.com/
data-center-engineering/f16-minipack/

Yuval Bachar. 2018. Introducing "6-pack": the first open hardware
modular switch. https://engineering.fb.com/2015/02/11/production-
engineering/introducing-6-pack-the-first-open-hardware-modular-
switch/

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang,
and Rachit Agarwal. 2021. Understanding Host Network Stack Over-
heads. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference
(Virtual Event, USA) (SIGCOMM ’21). Association for Computing Ma-
chinery, New York, NY, USA, 65-77. https://doi.org/10.1145/3452296.
3472888

Charles Clos. 1953. A study of non-blocking switching networks. The
Bell System Technical Journal 32, 2 (1953), 406-424. https://doi.org/
10.1002/j.1538-7305.1953.tb01433.x

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. 2015. One Trillion Edges: Graph Processing
at Facebook-Scale. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804-1815.
https://doi.org/10.14778/2824032.2824077

[14] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data

Processing on Large Clusters. In Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation -

Volume 6 (San Francisco, CA) (OSDI'04). USENIX Association, Berke-
ley, CA, USA, 137-149. http://static.usenix.org/event/osdi04/tech/
full_papers/dean/dean.pdf

Pingping Dong, Wenjun Yang, Wensheng Tang, Jiawei Huang,
Haodong Wang, Yi Pan, and Jianxin Wang. 2018. Reducing trans-
port latency for short flows with multipath TCP. Journal of Network
and Computer Applications 108 (2018), 20 — 36. https://doi.org/10.
1016/j.jnca.2018.02.005

jea George Porter, Alex C. Snoeren, George Papen, Saman Saeedi,
John Cunningham, Ashok Krishnamoorthy, Michael Gehl, Christo-
pher T. DeRose, Paul S. Davids, Douglas C. Trotter, Andrew L. Star-
buck, Christina M. Dallo, Dana Hood, Andrew Pomerene, and Anthony
Lentine. 2019. LEED: A Lightwave Energy-Efficient Datacenter. In
2019 Optical Fiber Communications Conference and Exhibition (OFC).
1-3.

Alex Forencich, Alex C. Snoeren, George Porter, and George Papen.
2020. Corundum: An Open-Source 100-Gbps Nic. In 2020 IEEE 28th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 38-46.

Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal,
Sylvia Ratnasamy, and Scott Shenker. 2015. PHost: Distributed near-
Optimal Datacenter Transport over Commodity Network Fabric. In
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (Heidelberg, Germany) (CONEXT ’15).
Association for Computing Machinery, New York, NY, USA, Article 1,
12 pages. https://doi.org/10.1145/2716281.2836086

Manya Ghobadi, Ashkan Seyedi, Chongjin Xie, Hong Liu, and Rob
Stone. 2021. ACM SIGCOMM 2021 Workshop on Optical Systems: In-
dustrial Panel. (Aug 2021). https://conferences.sigcomm.org/sigcomm/
2021/workshop-optsys.html

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. 2009. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication (Barcelona, Spain) (SIGCOMM °09). Association
for Computing Machinery, New York, NY, USA, 51-62. https://doi.
org/10.1145/1592568.1592576

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
Architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (Los Angeles, CA,
USA) (SIGCOMM ’17). Association for Computing Machinery, New
York, NY, USA, 29-42. https://doi.org/10.1145/3098822.3098825
Vimalkumar Jeyakumar, Mohammad Alizadeh, David Maziéres,
Balaji Prabhakar, Albert Greenberg, and Changhoon Kim. 2013.
EyeQ: Practical Network Performance Isolation at the Edge. In
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX Association, Lombard, IL, 297-
311. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/jeyakumar

Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant
Patil, James Laudon, Cliff Young, and David Patterson. 2020. A Domain-
Specific Supercomputer for Training Deep Neural Networks. Commun.
ACM 63, 7 (June 2020), 67-78. https://doi.org/10.1145/3360307

D. Li and J. Wu. 2014. On the design and analysis of Data Center
Network architectures for interconnecting dual-port servers. In IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications.
1851-1859.

Hong Liu. 2021. ACM SIGCOMM 2021 Workshop on Optical Systems
invited talk: The Evolving Role of Optics for Datacenter Network and
Machine Learning. https://conferences.sigcomm.org/sigcomm/2021/
workshop-optsys.html

https://www.ieee802.org/1/pages/802.1bp.html
https://www.ieee802.org/1/pages/802.1bp.html
https://code.google.com/archive/p/k-shortest-paths/
https://www.calient.net/products/s-series-photonic-switch/
https://www.calient.net/products/s-series-photonic-switch/
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/
https://engineering.fb.com/data-center-engineering/f16-minipack/
https://engineering.fb.com/data-center-engineering/f16-minipack/
https://engineering.fb.com/2015/02/11/production-engineering/introducing-6-pack-the-first-open-hardware-modular-switch/
https://engineering.fb.com/2015/02/11/production-engineering/introducing-6-pack-the-first-open-hardware-modular-switch/
https://engineering.fb.com/2015/02/11/production-engineering/introducing-6-pack-the-first-open-hardware-modular-switch/
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.14778/2824032.2824077
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf
https://doi.org/10.1016/j.jnca.2018.02.005
https://doi.org/10.1016/j.jnca.2018.02.005
https://doi.org/10.1109/ACCESS.2018.2889339
https://doi.org/10.1109/ACCESS.2018.2889339
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c05220334
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c05220334
https://doi.org/10.1145/2716281.2836086
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/3098822.3098825
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://doi.org/10.1145/3360307
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html

CoNEXT ’22, December 6-9, 2022, Roma, Italy

[28] Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishnamurthy, and

(30

[31

(32

(33

(34

(35

(36

[37

(38

=

]

= =

[l

[

—

—

—

Thomas Anderson. 2015. Subways: A Case for Redundant, Inexpensive
Data Center Edge Links. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies (Heidelberg,
Germany) (CoNEXT ’15). Association for Computing Machinery, New
York, NY, USA, Article 27, 13 pages. https://doi.org/10.1145/2716281.
2836112

Gurobi Optimization LLC. 2021. Gurobi Optimizer.
gurobi.com/products/gurobi-optimizer/

William M. Mellette, Alex C. Snoeren, and George Porter. 2016.
P-FatTree: A Multi-channel Datacenter Network Topology. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks
(HotNets-XV). Atlanta, GA.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 1-15. https:
//doi.org/10.1145/3341301.3359646

Arista Networks. 2019. Arista 7368X4 Series. https://www.arista.com/
en/products/7368x4-series

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A Centralized "Zero-Queue" Dat-
acenter Network. In Proceedings of the 2014 ACM Conference on
SIGCOMM (Chicago, Illinois, USA) (SIGCOMM ’14). Association for
Computing Machinery, New York, NY, USA, 307-318. https://doi.org/
10.1145/2619239.2626309

Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukar-
ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Con-
ner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong
Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata,
Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and
Amin Vahdat. 2022. Jupiter Evolving: Transforming Google’s Data-
center Network via Optical Circuit Switches and Software-Defined
Networking. In Proceedings of the ACM SIGCOMM 2022 Conference
(Amsterdam, Netherlands) (SIGCOMM °22). Association for Comput-
ing Machinery, New York, NY, USA, 66-85. https://doi.org/10.1145/
3544216.3544265

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network. In
Proceedings of the ACM SIGCOMM Conference. London, England.
Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Holzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication (Lon-
don, United Kingdom) (SIGCOMM ’15). Association for Computing
Machinery, New York, NY, USA, 183-197. https://doi.org/10.1145/
2785956.2787508

Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei Yin, John
Arnold, and Jamie Gaudette. 2021. Cost-Effective Capacity Provi-
sioning in Wide Area Networks with Shoofly. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA)
(SIGCOMM ’21). Association for Computing Machinery, New York,
NY, USA, 534-546. https://doi.org/10.1145/3452296.3472895

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey.
2012. Jellyfish: Networking Data Centers Randomly. In Presented
as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). USENIX, San Jose, CA, 225-
238. https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/singla

https://www.

227

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

Rob Stone. 2021. ACM SIGCOMM 2021 Workshop on Optical Sys-
tems invited talk: Co-packaged Optics in the Data Center. https:
//conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
Ole Tange. 2018. GNU Parallel 2018. Ole Tange. https://doi.org/10.
5281/zenodo.1146014

Amin Vahdat, Mohammad Al-Fares, Nathan Farrington, Radhika Ni-
ranjan Mysore, George Porter, and Sivasankar Radhakrishnan. 2010.
Scale-Out Networking in the Data Center. IEEE MICRO 30, 4 (Aug.
2010), 29-41.

Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira.
2016. Xpander: Towards Optimal-Performance Datacenters. In
Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies (Irvine, California, USA)
(CoNEXT ’16). Association for Computing Machinery, New York, NY,
USA, 205-219. https://doi.org/10.1145/2999572.2999580

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2011. Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA)
(NSDI'11). USENIX Association, USA, 99-112.

Xin Wu and Xiaowei Yang. 2012. DARD: Distributed Adaptive Routing
for Datacenter Networks. In 2012 IEEE 32nd International Conference
on Distributed Computing Systems. 32—-41. https://doi.org/10.1109/
ICDCS.2012.69

Jin'Y Yen. 1971. Finding the k shortest loopless paths in a network.
management Science 17, 11 (1971), 712-716.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing.
In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). USENIX Association, San Jose, CA, 15—
28. https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/zaharia

Shawn Zandi. 2016. Project Altair. https://engineering.linkedin.
com/blog/2016/03/project-altair--the-evolution-of-linkedins-data-
center-network

Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayaporn-
pong, and Ramesh Govindan. 2019. Understanding Lifecycle Man-
agement Complexity of Datacenter Topologies. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 235-254. https://www.
usenix.org/conference/nsdi19/presentation/zhang

Hua Zhong, PingPing Dong, WenSheng Tang, Bo Yang, and JingYun
Xie. 2020. A Short Flows Fast Transmission Algorithm Based on
MPTCP Congestion Control. In Artificial Intelligence and Security,
Xingming Sun, Jinwei Wang, and Elisa Bertino (Eds.). Springer Inter-
national Publishing, Cham, 786-797.

Noa Zilberman, Gabi Bracha, and Golan Schzukin. 2019. Stardust:
Divide and Conquer in the Data Center Network. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 141-160. https://www.
usenix.org/conference/nsdi19/presentation/zilberman

https://doi.org/10.1145/2716281.2836112
https://doi.org/10.1145/2716281.2836112
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://www.arista.com/en/products/7368x4-series
https://www.arista.com/en/products/7368x4-series
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/2619239.2626309
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/3452296.3472895
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
https://conferences.sigcomm.org/sigcomm/2021/workshop-optsys.html
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.1145/2999572.2999580
https://doi.org/10.1109/ICDCS.2012.69
https://doi.org/10.1109/ICDCS.2012.69
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://engineering.linkedin.com/blog/2016/03/project-altair--the-evolution-of-linkedins-data-center-network
https://engineering.linkedin.com/blog/2016/03/project-altair--the-evolution-of-linkedins-data-center-network
https://engineering.linkedin.com/blog/2016/03/project-altair--the-evolution-of-linkedins-data-center-network
https://www.usenix.org/conference/nsdi19/presentation/zhang
https://www.usenix.org/conference/nsdi19/presentation/zhang
https://www.usenix.org/conference/nsdi19/presentation/zilberman
https://www.usenix.org/conference/nsdi19/presentation/zilberman

Scaling beyond packet switch limits with multiple dataplanes

A Full evaluation result for DC flow traces

Figures 16 - 20 show the CDF distribution of flow completion
times (FCTs) of all five traces discussed in section 5.3, the flow
size distribution of which is plotted in Figure 13a. We com-
pared the result at both 10/40G (top rows) and 100/400G (bot-
tom rows), as well as both fat tree topologies (left columns)
and Jellyfish topologies (right columns).

As we can see from these results, at 10/40G, P-Net can
achieve lower latency on most flows, as it can provide better
load balancing and accommodate multiple flows per host
than serial networks, thus achieving close to ideal high-
throughput network’s performance. In addition, the path
length advantage in parallel heterogeneous networks can
sometimes provide further improvements over the parallel
homogeneous ones. At 100/400G, the path length advantage
of heterogeneous 4 x 100G P-Net shows its full strength,
allowing certain short flows to achieve even lower latency
than an ideal 400G serial network.

B Artifact Appendix
B.1 Abstract

The artifact for this paper consists of a C++ packet simulator
on top of htsim from the NDP paper [23], a set of scripts
to invoke the simulator and/or LP solver Gurobi [29], and
finally the plotting scripts in the form of Jupyter notebooks
to reproduce the figures in the evaluation section.

—— Serial low-bw Parallel homogeneous

CoNEXT ’22, December 6-9, 2022, Roma, ltaly

The results directly support the analysis of P-Net in the
evaluation section (section 5), and we expect nearly identical
results when reproducing the data points in most graphs.
We labeled the plotting scripts so that each one corresponds
to one sub-section of the evaluation section.

In terms of minimal requirements, there’s no real hardware
requirements, except that a high clock rate and multi-core
CPU can help reproduce the result faster, simply because
discrete time packet simulators like htsim are inherently
unparallelizable (for the most part), and similarly LP solver
at larger network sizes can be exponentially slower, which
can take up to days for the largest experiments.

For software requirements:

e Platform/OS: Ubuntu 18.04 (or other Linux distro) +
a few standard GNU/Linux tools (e.g. parallel, nu-
mactl, ...)

e C++ simulator: cmake 3.10+, gcc-9/g++-9, OpenMP
(Libomp-dev), Boost library (1ibboost-all-dev), ht-
sim from NDP [23] (included)

e LP solver: Gurobi [29], free academic license available

e Plotting script: Jupyter notebook, numpy and mat-
plotlib.

B.2 Artifact check-list (meta-information)

e Program: gurobi, C++ packet simulator on top of htsim,
Jupyter notebook and matplotlib for plotting

e Compilation: gcc-9/g++-9 with OpenMP and Boost library.

¢ Run-time environment: Ubuntu 18/20

Parallel heterogeneous == Serial high-bw

10 1.0
08 0.8
06 0.6
04 0.4
0.2 0.2
0.0 0.0
LBL 102 10'-1 16" 161 102 10°? 10'-1 16" 161 102
10 1.0
0.8 0.8
0.6 0.6
04 0.4
02 0.2
00 0.0
1072 10-1 100 10! 102 1077 10-1 100 10! 10?

Flow completion time (ms)

Figure 16. Flow completion time distribution based on Websearch traces from [6]. Top row plots are for 10/40G and bottom
row plots are for 100/400G. Left column plots are for fat trees and right column plots are for Jellyfish.

228

CoNEXT ’22, December 6-9, 2022, Roma, Italy Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

—— Serial low-bw Parallel homogeneous === Parallel heterogeneous —:= Serial high-bw

10 — == 10
0.8 1 0.8
0.6 0.6 1
0.4 4 0.4 -
0.2 1

0.01
10

CDF
[
)

1.0 1

0.8

0.6 4

0.4

10-? 10t 10° 1077 10t 10

Flow completion time (ms)

Figure 17. Flow completion time distribution based on webserver traces from [35]. Top row plots are for 10/40G and bottom
row plots are for 100/400G. Left column plots are for fat trees and right column plots are for Jellyfish.

—— Serial low-bw Parallel homogeneous === Parallel heterogeneous —:= Serial high-bw
1.0 1 1.0
0.8 1 0.8
0.6 1 0.6
0.4 4 0.4 1
0.2 4 0.2 {

CDF

102 10-! 10° 10! 1077 10-1 10° 10t

Flow completion time (ms)

Figure 18. Flow completion time distribution based on cache traces from [35]. Top row plots are for 10/40G and bottom row
plots are for 100/400G. Left column plots are for fat trees and right column plots are for Jellyfish.

229

Scaling beyond packet switch limits with multiple dataplanes CoNEXT ’22, December 6-9, 2022, Roma, ltaly

—— Serial low-bw Parallel homogeneous === Parallel heterogeneous —:= Serial high-bw

1.0 1 1.0 1

0.8 1 0.8 1
0.6 0.6 1

0.4+ 0.4

CDF
[
=
[
[==]

0.6
0.4+

021
oo +—

107? 107t 10° 1077 107t 10¢

Flow completion time (ms)

Figure 19. Flow completion time distribution based on Hadoop traces from [35]. Top row plots are for 10/40G and bottom
row plots are for 100/400G. Left column plots are for fat trees and right column plots are for Jellyfish.

—— Serial low-bw Parallel homogeneous === Parallel heterogeneous —:= Serial high-bw

10 e 10
0.8 0.8 -
0.6 0.6 -

0.4 4 0.4 1

CDF

102 10-! 10° 10! 1077 10-1 10° 10t

Flow completion time (ms)

Figure 20. Flow completion time distribution based on Datamining traces from [22]. Top row plots are for 10/40G and bottom
row plots are for 100/400G. Left column plots are for fat trees and right column plots are for Jellyfish.

230

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Hardware: High clock rate and large core count CPU and

decent RAM for faster/parallel runs. Only Gurobi has a real

constraint on RAM size, which might be up to tens of GBs
for the largest size (1024 hosts).

Execution: Normal C++ program and Liunx command line

tools. Can potentially run multiple instances in parallel to

speed up the overall process.

Metrics: flow throughput (from LP solver), flow completion

time and hop count (from packet simulator).

Output: CSV/text/binary files from LP solver / simulator,

then parsed by plotting script to generate figures.

Experiments: Corresponds to subsections of the evaluation

section: e.g. ideal throughput from LP solver, and flow com-

pletion times and hop count distribution of various traffic
types from packet simulator.

e How much disk space required (approximately)?: up
to tens of GB disk space for intermediate files from htsim in
one or two large scale experiments; otherwise up to a few
GBs per experiment. The more packets we send, the more
data is in the htsim intermediate files. After each run, we
can use the parser to calculate the metric we care about and
discard these files.

e How much time is needed to prepare workflow (ap-
proximately)?: 1-2 hours.

e How much time is needed to complete experiments
(approximately)?: the longest experiment can take up to
hours to complete (e.g. gurobi all-to-all traffic on 1024 hosts,
or flow completion times of 1GB flows), but most others take
minutes to half an hour. Overall process can be sped up by
running multiple experiments in parallel, or with reduced
topology sizes and/or flow sizes.

Publicly available?: yes, on both Zenodo and Github.

Code licenses (if publicly available)?: MIT

Data licenses (if publicly available)?: n/a

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

7196266

B.3

B.3.1 How to access. You can access the source code
through either:

Description

o Github: https://github.com/nilyibo/conext22-parallel-
networks, or
e Zenodo: https://doi.org/10.5281/zenodo.7196266

B.3.2 Hardware dependencies. No hard constraint, but
higher CPU core frequency and higher core count can speed
up the experiments considerably. Larger amount of RAM can
also enable Gurobi to run at a larger size, e.g. the 1024-host
setup in this paper.

B.3.3 Software dependencies.

o Platform/OS: we ran our experiments on Ubuntu 18.04,
but any Linux platform should work. We also used a
few standard GNU/Linux tools for orchestration and
data pre-processing, including but not limited to: par-
allel, numactl, ...

231

Yibo Guo, William M. Mellette, Alex C. Snoeren, and George Porter

e C++ simulator: we compiled the simulator with cmake
3.10+, gcc-9/g++-9, OpenMP (libomp-dev), Boost
library (libboost-all-dev) and htsim repo cloned
from NDP [23] (included).

e LP solver (Gurobi [29]): we downloaded from their
official website and requested academic license.

e Plotting script: we used Jupyter notebook, numpy and
matplotlib.

B.3.4 Data sets. We used both synthetic traffic generated
using our script (section 5.1 - 5.2) and flow size distributions
from published data center traces (section 5.3). For the latter,
we captured the CDF curves from figures in these papers
and saved them as CSV files, which is also included in the
archive.

B.4 Installation

We provide setup scripts to install the dependencies required
to build the simulators, as well as the build script. Details
are in the README in the archive.

B.5 Experiment workflow

Depending on the type of experiment (e.g. throughput from
LP solver in section 5.1.1, flow completion times from packet
simulator in section 5.1.2 through section 5.3, and hop count
from the same simulator in flow-path-only mode in sec-
tion 5.4), we invoke different programs (LP solver or packet
simulator) with different parameters.

This will produce some binary/text/CSV files, which is
then pre-processed by htsim parser (in binary case) or stan-
dard GNU/Linux tools to a concise format, and subsequently
used by plotting script to generate the figures in the evalua-
tion section.

We provide the details of each experiment’s workflow in
the README.

B.6 Evaluation and expected results

To help reproduce the evaluation, we prepared one run script
and one plotting script per subsection or type of evalua-
tion. The run script will invoke either the LP solver, or the
packet simulator to produce the output and run necessary
pre-processing to produce simple text/CSV files. The plotting
script can then read from these text/CSV files and produce
the figures in this paper.

We expect the figures to have similar trends/values as
shown in the paper, except Figure 9, where we observed
some variation due to non-steady state in smaller sized flows
(< 100MB).

https://doi.org/10.5281/zenodo.7196266
https://doi.org/10.5281/zenodo.7196266
https://github.com/nilyibo/conext22-parallel-networks
https://github.com/nilyibo/conext22-parallel-networks
https://doi.org/10.5281/zenodo.7196266

	Abstract
	1 Introduction
	2 Motivation and background
	2.1 The limitations of scale-out networks
	2.2 The adoption of chassis switches
	2.3 Scaling beyond current chip limits

	3 Parallel Dataplane Networks
	3.1 Homogeneous P-Nets/ Parallel fat trees
	3.2 Heterogeneous P-Nets
	3.3 Implications on switches
	3.4 Implications on end hosts

	4 Forwarding traffic over multiple dataplanes
	5 Performance evaluation
	5.1 Microbenchmark
	5.2 Simulated workloads
	5.3 Published datacenter flow traces
	5.4 Fault tolerance

	6 Practical Considerations
	6.1 Network deployment
	6.2 ``Hiding'' heterogeneity
	6.3 End host/NIC support
	6.4 End-host burst capacity
	6.5 Incast traffic

	7 Future work and opportunities
	8 Related work
	9 Conclusions
	References
	A Full evaluation result for DC flow traces
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Experiment workflow
	B.6 Evaluation and expected results

