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Designing quantum algorithms with a speedup over their classical analogs is a central challenge
in quantum information science. Motivated by recent experimental observations of a superlinear
quantum speedup in solving the Maximum Independent Set problem on certain unit-disk graph
instances [Ebadi et al., Science 376, 6598 (2022)], we develop a theoretical framework to analyze
the relative performance of the optimized quantum adiabatic algorithm and a broad class of classical
Markov chain Monte Carlo algorithms. We outline conditions for the optimized adiabatic algorithm
to achieve a quadratic speedup on hard problem instances featuring flat low-energy landscapes and
provide example instances with either a quantum speedup or slowdown. We then introduce an
additional local Hamiltonian with no sign problem to the optimized adiabatic algorithm to achieve
a quadratic speedup over a wide class of classical simulated annealing, parallel tempering, and
quantum Monte Carlo algorithms in solving these hard problem instances. Finally, we use this
framework to analyze the experimental observations.

1. INTRODUCTION

Combinatorial optimization problems have wide-
ranging applications in science and technology [1]. They
are foundational to modern computer science because
they encompass NP-hard problems which cannot be
solved efficiently by known algorithms. A central chal-
lenge in quantum information science is to understand
when quantum algorithms can outperform their classi-
cal counterparts in solving such NP-hard combinatorial
optimization problems [2, 3]. The most general classical
combinatorial optimization algorithms seek to minimize
a cost function over a set of bit strings. This includes
broad classes of Markov chain Monte Carlo algorithms
such as simulated annealing (SA) and parallel temper-
ing [4], which simulate cooling to low-temperature states
of a classical Hamiltonian encoding the cost function.

Quantum adiabatic algorithms (QAAs) [5] can be
viewed as quantum analogs of such general-purpose clas-
sical solvers. QAA prepares low-energy states of a classi-
cal cost Hamiltonian [6] by adiabatic evolution. The rel-
ative performance of QAA and SA is not generically well
understood beyond numerical studies [7–9], and theoret-
ical examples of quantum speedup are either restricted
to specifically constructed problem instances [10] or re-
quire unphysical Hamiltonians [11–13]. However, unlike
other quantum algorithms that are known to generically
achieve a quadratic speedup over SA [14–16], QAA can
be studied experimentally on existing quantum devices.
Although early experimental implementations of QAA
lacked the many-body coherence believed to be necessary
for quantum speedup [17–22], a recent study using a pro-
grammable Rydberg atom array [23] observed a super-
linear speedup over SA in solving certain hard instances
of the NP-hard Maximum Independent Set problem on

unit-disk graphs.

Motivated by these experimental results, in this work
we develop a theoretical framework to analyze the rela-
tive performance of optimized QAA and several classi-
cal Markov chain Monte Carlo algorithms. Specifically,
we focus on problem instances with flat energy land-
scapes comprised of many suboptimal configurations of
the same cost, over which algorithms must search to find
the optimal solution. We show that the QAA’s perfor-
mance is determined by (de)localization of the low-energy
eigenstates of the adiabatic Hamiltonian in configuration
space: when the low-energy eigenstates are delocalized,
and the quantum evolution is optimized to maintain adi-
abaticity, QAA achieves a quadratic speedup over a wide
class of SA and parallel tempering algorithms. To il-
lustrate these concepts, we provide examples of prob-
lem instances that feature either a quantum speedup or
slowdown depending on the localization of the low-energy
eigenstates.

Having developed this framework, we then use it to in-
troduce a modification of QAA that achieves a quadratic
speedup over SA and parallel tempering on certain hard
Maximum Independent Set problem instances. Impor-
tantly, our algorithm only uses local Hamiltonians with
no sign problem, meaning that all the off-diagonal ma-
trix elements are non-positive. While QAA Hamiltonians
without a sign problem are typically amenable to simu-
lation with quantum Monte Carlo (QMC) – and many
prior speedups over SA in this setting have indeed been
recovered by QMC [13, 24] – we nevertheless show that
our algorithm maintains a quadratic speedup over a wide
class of path-integral QMC algorithms. Finally, we apply
these techniques to interpret the experimental observa-
tions reported in Ref. [23]. We identify instances with
better-than-classical performance due to either delocal-
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FIG. 1. Flat energy landscapes in combinatorial optimiza-
tion. The goal of the Maximum Independent Set problem is
to find the largest independent sets of a graph (e.g., the dark
blue vertices, bottom right) among many suboptimal inde-
pendent sets (top left). The dynamics of SA on this problem
can be visualized by a configuration graph (center), where
vertices represent individual independent sets and edges link
sets connected by an SA update. SA algorithms randomly
walk (black lines) between suboptimal independent sets of
the same size (light green vertices) until finding an optimal
independent set (dark green vertices). We study QAA’s per-
formance on unit-disk graphs (bottom left), where vertices are
connected within a unit radius (yellow circle). Each vertex is
associated with a qubit with a time-dependent drive Ω(t) and
detuning δ(t).

ization or favorable localization of the low-energy eigen-
states. Instances with worse-than-classical performance
can be explained by unfavorable localization of the eigen-
states, as introduced by Ref. [25].

Before proceeding, we note that state-of-the-art clas-
sical heuristic algorithms specialized to the Maximum
Independent Set problem can outperform SA (e.g., [26]).
These algorithms accelerate the computation by exploit-
ing the problem-specific graph structure. In contrast,
SA is a general-purpose solver that only uses the energy
of a configuration in decision-making to prepare the
Gibbs distribution of the cost Hamiltonian. Similarly,
QAA only takes in the cost Hamiltonian as an input,
and prepares its ground state by adiabatic evolution.
We will restrict our analysis to the case where the
QAA evolution is slow enough to maintain adiabaticity,
and the SA evolution is long enough to equilibrate to
the Gibbs distribution. Running these algorithms at
short, diabatic timescales and exploring shortcuts to
adiabaticity is of independent interest [27–30].

A. Maximum Independent Set

Throughout this work, we focus on the Maximum In-
dependent Set problem, a paradigmatic NP-hard opti-
mization problem that involves finding the largest inde-
pendent set of a graph. An independent set is a subset of
vertices where no two vertices are connected by an edge.

The largest independent set for a graph G = (V,E) with
n vertices is a configuration |z⟩ ∈ {|0⟩ , |1⟩}n minimizing
Hcost(z) = ⟨z|Hcost |z⟩ for δ > 0, where

Hcost = −δ
∑
u∈V

nu + U
∑

(u,v)∈E

nunv (1)

is the classical cost Hamiltonian. Here, nu ≡ |1u⟩ ⟨1u|,
and |1u⟩ (|0u⟩) denotes that vertex u is present (absent)
in the independent set. U ≫ |δ| penalizes edges that vi-
olate the independent set constraint. We focus primarily
on unit-disk graphs, where edges connect vertices within
a unit radius on a two-dimensional plane. These graphs
naturally model problems with geometrically local con-
nectivity, such as wireless communication networks [31].
The Maximum Independent Set problem on unit-disk

graphs can be naturally encoded in Rydberg atom arrays
as follows [32]. Every vertex is associated with an atomic
qubit placed on a square grid at position ru (Fig. 1). The
full system is described by the many-body Hamiltonian
H = HRyd −Hq, where

Hq = Ω
∑
u∈V

|1u⟩ ⟨0u|+ h.c., (2)

HRyd = −δ
∑
u∈V

nu +
∑
u,v

Vuvnunv, (3)

and Ω(t) > 0 and δ(t) are time-dependent energies con-
trolled by a coherent laser drive. The distance-dependent
Rydberg blockade interaction energy Vuv ∼ 1/|ru − rv|6
makes simultaneous excitation of two atoms in the Ry-
dberg state |1u1v⟩ within a certain radius energetically
unfavorable, mimicking U in Eq. (1). In practice, the
blockade radius is chosen to encompass nearest and
next-nearest neighbors on the grid.

2. SIMULATED ANNEALING RUNTIME ON
HARD INSTANCES

We first characterize fundamentally hard graph in-
stances for SA to find the largest independent set. SA
stochastically samples spin configurations from the ther-
mal Gibbs distribution π of Hcost at a low tempera-
ture 1/β. We consider any Metropolis-Hastings SA al-
gorithm [33, 34] in which the probability Pz,z′ to update
|z⟩ to |z′⟩ satisfies the detailed balance condition,

Pz,z′πz = Pz′,zπz′ πz = e−βHcost(z)/Zβ , (4)

where πz is the Gibbs population of |z⟩ and Zβ is the
partition function. We allow the update rule to be arbi-
trarily non-local.
Within this general setting, we find that flat energy

landscapes, defined as many suboptimal independent sets
of the same size with few larger independent sets, form a
fundamental obstacle for SA to find the solution [23, 35].
Figure 1 visualizes the flat energy landscape of an exam-
ple unit-disk graph as a configuration graph, where ver-
tices represent independent sets and edges represent SA
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updates (here, spin-exchange and spin-flip operations).
This instance has many suboptimal independent sets of
size α−1 and few optimal largest independent sets of size
α. The SA dynamics, governed by Eq. (4), are dominated
by a random walk among the suboptimal, equal-energy
configurations, reminiscent of unstructured search for the
optimal solutions. Therefore, we expect the SA runtime
to go like the inverse rate ≃ Dα−1/Dα of randomly choos-
ing an optimal independent set, where Db is the number
of independent sets of size b.

We now formalize this intuition and describe a lower
bound on the SA runtime τSA(ε). τSA(ε) is a proxy for
the time needed for SA to find an optimal solution. In
particular, it given by the SA mixing time: the number
of proposed updates, normalized by n, needed to pre-
pare the Gibbs distribution with total variation distance
ε < 1/2 starting from any initial configuration [36]. As
the temperature 1/β → 0, the Gibbs distribution ap-
proaches the uniform mixture of optimal configurations.
Thus, if the time for SA to equilibrate amongst the opti-
mal configurations is small compared to the time to find
an optimal configuration, we expect τSA(ε) to represent
the time to find a solution. We confirm that this is the
case in Appendix E 2, because the optimal configurations
are well-connected under spin-exchange updates.

We prove the lower bound on τSA(ε) in Appendix A 1

by relating τSA(ε) to the inverse spectral gap ∆−1
SA of

the SA Markov chain transition matrix P = (Pz,z′) [37].
We then use the Cheeger inequality [38] to relate ∆SA

to the flow of population in the Gibbs distribution from
independent sets of size ≤ b−1 to size ≥ b during a single
SA update. This flow is proportional to Db/Db−1, which
gives us

τSA(ε) ≥
ln
(

1
2ε

)
2nk

max
Db−1

Db
, (5)

where k is the maximum number of spins altered dur-
ing a proposed update [39]. We numerically find in Ap-
pendix B that maxb(Db−1/Db), and therefore the SA run-
time, grows exponentially in

√
n. Moreover, we demon-

strate that a similar bound holds for a wide class of paral-
lel tempering algorithms in Appendix A 2. As our proofs
are framed in terms of a generic discrete cost function,
they also apply to combinatorial optimization problems
beyond Maximum Independent Set.

Figure 2 shows the time for an optimized SA algo-
rithm [23] to find an optimal solution with probability
3/4 against Eq. (5), which we compute via a tensor-
network algorithm [40]. We plot the data for the top 5%
hardest unit-disk graphs maximizing Eq. (5) within each
system size (n = 39 – 460, see Appendix B), omitting
a small fraction (0.9%) of instances for which the SA
runtime is too long to collect sufficient statistics. The
strong linear relationship in Fig. 2 confirms that the SA
runtime is dominated by unstructured search over flat
energy landscapes. Furthermore, it indicates that τSA(ε)
is representative of the time to find an optimal solution.
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FIG. 2. Flat energy landscapes determine SA runtime. The
actual SA runtime to find an optimal solution with probabil-
ity 3/4 is linearly related to the analytic SA runtime lower
bound in Eq. (5), confirming that SA runtime is dominated
by overcoming flat energy landscapes.

3. INSTANCE-BY-INSTANCE PERFORMANCE
OF QAA

We now establish conditions for which QAA outper-
forms SA on such hard instances. QAA prepares the
ground state of Hcost by adiabatic evolution under

HQAA = Hcost −Hq, (6)

where the energies Ω(t), δ(t) [Eqs. (1) and (2)] vary in
time as shown in Fig. 3(a). In particular, we assume that
Ω(t), δ(t) are optimized to minimize the evolution time
while maintaining adiabaticity near the minimum energy
gap ∆QAA between the ground and first-excited states of
the dominant avoided level crossing, so the runtime of
QAA goes as ∆−1

QAA (specifically, |dH/dt| ∝ ∆2
QAA at the

avoided crossing location (Ω/δ)⋆, see Refs. [11, 41] and
Sec. 6 for further discussion). We will show that ∆QAA

is controlled by the properties of two states, |G⟩ and |E⟩,
which approximate the ground and first-excited states at
this avoided crossing, as shown in Fig. 3(b). We analyze
three qualitatively distinct behaviors for |G⟩ , |E⟩, which
we term delocalized, favorably localized, and unfavorably
localized. The former two result in a speedup over SA,
while the latter causes a slowdown.

As argued in Appendix C 3, generically, the avoided
level crossing occurs near the end of the ramp, at
(Ω/δ)⋆ ≪ 1. We will show later that |G⟩ and |E⟩ can
be computed at leading order in Ω/δ as non-negative su-
perpositions of optimal and suboptimal independent sets,
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FIG. 3. Eigenstate localization determines QAA runtime. (a) The optimized QAA runtime is proportional to ∆−1
QAA when

the system Hamiltonian changes slowly at (δ/Ω)⋆, the location of the avoided level crossing. (b) ∆QAA can be computed
perturbatively when (Ω/δ)⋆ ≪ 1 from Eq. (8), which describes the coupling under the Hamiltonian between the estimated
eigenstates |G⟩ , |E⟩ involved in the avoided level crossing. (c) The star graph with nb branches of even length ℓ has a unique
optimal independent set of size α with the central vertex in the independent set (top left). It has approximately (ℓ/2 + 1)nb

suboptimal independent sets of size α− 1 with the central vertex absent (top right), corresponding to all possible locations of
a domain wall on each branch. When ℓ = 2, the two possible domain wall locations on each branch are equally energetically
favored, causing |E⟩ to delocalize over all domain wall locations. (d) When ℓ > 2, |E⟩ localizes around configurations with the
domain walls near the center of each branch. (e) QAA has a quadratic speedup in runtime over SA as a function of nb for the
delocalized case of ℓ = 2. As ℓ increases, |E⟩ localizes away from |G⟩, causing SA to outperform QAA when ℓ≫ 1.

respectively:

|G⟩ =
∑

z:Hcost(z)=−δα

√
Gz |z⟩ ,

|E⟩ =
∑

z:Hcost(z)=−δ(α−1)

√
Ez |z⟩ . (7)

In the examples we consider, |E⟩ is a superposition of in-
dependent sets of size α− 1, though our arguments can
be generalized when |E⟩ is a superposition of smaller in-
dependent sets (see Appendix C 3). We can estimate
∆QAA in powers of (Ω/δ)⋆ as the coupling between |G⟩
and |E⟩ [25, 42–45],

∆̃QAA = 2

∣∣∣∣∣
∞∑
l=0

⟨E|
(
Hq

Q

E⋆ −Hcost

)l
Hq |G⟩

∣∣∣∣∣ , (8)

where Q = 1− |E⟩ ⟨E| − |G⟩ ⟨G|. In Appendix C 1, we de-
rive a bounded proportionality factor relating ∆QAA and

∆̃QAA. We note that these results provide a perturba-
tive approach to exactly compute ∆QAA and are thus of
broader utility and interest beyond the specifics of the
problem considered here.

Per Eq. (8), ∆̃QAA is determined by the distribution of
wavefunction amplitudes in |G⟩ and |E⟩. At each order l
in (Ω/δ)⋆, factors ofHq generate l+1 spin flips to connect
pairs of configurations in |G⟩ and |E⟩. The leading-order
coupling between two configurations |z⟩ and |z′⟩ within
Hamming distance l + 1 goes like

√
GzEz′(Ω/δ)l⋆. This

coupling is enhanced for sets with larger amplitude but
is suppressed exponentially in l. This intuition leads us to
distinguish between problem instances where Gz and Ez

are localized on comparatively few sets, and those where
they are distributed more evenly among all sets. We
refer to instances where |G⟩ and |E⟩ localize on sets suf-
ficiently far apart in Hamming distance such that QAA
suffers a slowdown relative to SA (∆̃QAA ≪ Dα/Dα−1)
as unfavorably localized [25]. By contrast, on favor-
ably localized instances, |G⟩ and |E⟩ localize at small
Hamming distances, such that QAA has speedup over
SA (∆̃QAA ≫ Dα/Dα−1). Several previous notable in-
stances where QAA has an exponential speedup [10] or
slowdown [30] fall into these two categories.
QAA also outperforms SA on delocalized instances,

where the amplitudes
√
Gz and

√
Ez are close to uniform.

Suppose that |G⟩ = |Sα⟩ and |E⟩ = |Sα−1⟩, where

|Sb⟩ =
1√
Db

∑
z:Hcost(z)=−δb

|z⟩ . (9)

The lowest-order (l = 0) contribution to Eq. (8) is then

∆̃QAA = 2| ⟨Sα−1|Hq |Sα⟩ | =
2√

Dα−1Dα

∑
z:Hcost(z)=−δα

Ωα

= 2Ωα

√
Dα

Dα−1
. (10)

Due to coherent enhancement in the coupling, here, the
QAA runtime ∆̃−1

QAA is quadratically smaller than the

SA runtime [Eq. (5)] up to polynomial factors in n.
This is reminiscent of the adiabatic version of Grover’s
search [11], which has a similar quadratic speedup over
randomly guessing in {|0⟩ , |1⟩}n for optimal solutions.
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However, we emphasize that the runtimes of QAA and
SA in Eqs. (10) and (5), respectively, are asymptotically
faster than Grover’s search, because they search only
among near-optimal configurations for the largest inde-
pendent set.

A. Determining eigenstate localization

Given a problem instance, we can determine |G⟩ and
|E⟩ by performing second-order perturbation theory in
the degenerate manifolds of Hcost. For simplicity, we take
the energy penalty on independent set violations U → ∞,
so that each degenerate manifold contains independent
sets of the same size. The perturbed eigenstates (energy
shifts) are the eigenvectors (eigenvalues) of the matrix

H(2) = −Ω2

δ

(
Hse +

∑
u∈V

[
nu − (1− nu)

∏
(u,v)∈E

(1− nv)
])
,

(11)

where Hse is the spin-exchange Hamiltonian,

Hse =
∑

(u,v)∈E

σ+
u σ

−
v + σ−

u σ
+
v , (12)

σ+
u = |1u⟩ ⟨0u| , and σ−

u = |0u⟩ ⟨1u|. |G⟩ is the ground
state of H(2) in the Hcost = −δα manifold, and |E⟩ is
the ground state of the excited manifold whose energy
first intersects |G⟩ at a finite (Ω/δ)⋆. As H

(2) has no sign
problem, |G⟩ and |E⟩ have non-negative amplitudes.
We find that first term in Eq. (11), −(Ω2/δ)Hse,

primarily determines the (de)localization of |G⟩ and
|E⟩. This is because the second term is uniform within
a manifold, and the third term (which counts the
number of vertices that can be added to the independent
set) is small for near-optimal independent sets. In
particular, the expectation value of the third term is
at most −(Ω2/δ)(α − b) for an independent set of size
b, and is zero when no vertices can be added to a set
without removing existing vertices. In order to minimize
−(Ω2/δ)Hse, |G⟩ and |E⟩ will thus have larger overlap
with independent sets that have more neighboring
independent sets connected by spin exchanges in the
configuration graph. In contrast, if all configurations in
the Hcost = −δb manifold have the same degree (number
of neighbors), the ground state in that manifold is the
delocalized superposition |Sb⟩. This follows from viewing
Hse as the adjacency matrix of the configuration graph
within that manifold, and noting that the principal
eigenvector of the adjacency matrix of a graph with
regular degree is uniform [46].

B. Delocalization–localization crossover for a
family of star graphs

To concretely illustrate these concepts, we explore a
family of star graphs, where |E⟩ can be tuned from de-
localized to unfavorably localized. A star graph contains

nb branches of even length ℓ connected by a central ver-
tex. We will compare the QAA and SA runtimes at fixed
ℓ as nb grows. The unique largest independent set in-
cludes the central vertex plus alternating vertices on each
branch (Fig. 3(c), top left). All but a vanishing fraction
of the suboptimal independent sets of size α−1 have the
central vertex absent and alternating antiferromagnetic
order on the branches, each of which has a single domain
wall located in one of ℓ/2+1 possible positions (Fig. 3(c),
top right). The SA runtime is thus exponential in nb,

τSA(ε) ≥
ln
(

1
2ε

)
2nk

Dα−1

Dα
≥

ln
(

1
2ε

)
2nk

(ℓ/2 + 1)nb . (13)

To compute the QAA runtime from Eq. (8), we first
calculate |G⟩ and |E⟩. |G⟩ is the unique largest inde-
pendent set, and |E⟩ is the ground state of H(2) in the
Hcost = −δ(α− 1) manifold. By the reasoning above, on
each branch, |E⟩ is well-approximated by the ground state
of −(Ω2/δ)Hse, which acts as a one-dimensional hopping
Hamiltonian, with open boundary conditions, for each
domain wall. Therefore, |E⟩ is given by

⟨x1x2 . . . xnb
|E⟩ ≃

nb∏
i=1

1√
ℓ/4 + 1

sin
( πxi
ℓ/2 + 2

)
, (14)

where |xi⟩ , xi ∈ {1, 2, . . . , ℓ/2 + 1} is the state with
the domain wall on the ith branch located between
sites 2xi − 2 and 2xi − 1 (see Fig. 3(d), top and Ap-

pendix D1). ∆̃QAA can be computed to leading order in
Ω/δ from Eq. (8) by connecting |G⟩ to the set in |E⟩ with
all domain walls adjacent to the central vertex (xi = 1)
by flipping the central vertex,

∆̃QAA ≃ 2Ω| ⟨G|Hq |E⟩ |

≃ 2Ω

(
1√

ℓ/4 + 1
sin
( π

ℓ/2 + 2

))nb

. (15)

Terms that are higher-order in Ω/δ do not affect the scal-

ing of ∆̃QAA with nb, as shown in Appendix D2.
Figure 3(e) plots the numerically computed QAA

runtime ∆−1
QAA versus the SA runtime lower bound

for τSA(1/4) for branch lengths ℓ = 2, 4, 6, and 8.
When ℓ=2, |E⟩ delocalizes evenly among all domain
wall configurations (Eq. (14) and Fig. 3(c), bot-
tom), yielding a quadratic quantum speedup because

∆−1
QAA = 2Ω

√
2
nb

≲
√
τSA(ε). As ℓ increases, according

to Eq. (14), |E⟩ unfavorably localizes away from |G⟩, on
sets with the domain wall located near the center of
each branch (Fig. 3(d), bottom). Expanding Eq. (14)
for small angles, we find that this results in a slowdown
for QAA when ℓ≫ 1, as ∆−1

QAA ≃ τSA(ε)
3/2.

4. QUANTUM SPEEDUP FROM
DELOCALIZATION

A. Quantum speedup over simulated annealing

So far, our results show that the optimized QAA
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(c)(a)
ground subspace

(b)

(d)

FIG. 4. Quantum speedup over simulated annealing. (a) When λ → ∞, the dynamics of the modified QAA [Eq. (16)]
are restricted to the degenerate ground states of Hℓ, which are the uniform superpositions |Sb⟩ of each independent set size
b [Eq. (9)]. The matrix elements of Hq (gold) between |Sb⟩ and |Sb−1⟩ are coherently enhanced over the analogous rate at
which SA transitions from independent sets of size b − 1 to b. (b) The energy spectrum minus the ground state energy E0 of
an example 720-vertex instance, restricted to the ground subspace of Hℓ. The minimum gap ∆QAA of the modified QAA is
set by the smallest coupling (gold). (c) The modified QAA runtime ∆−1

QAA scales as the square root of the SA runtime for the
same instances as in Fig. 2 when dynamics are restricted to the ground subspace of Hℓ (circles). The speedup is also obtained
for finite λ = 5 (triangles). (d) The modified QAA obtains a quadratic speedup over SA for the star graphs with branch length
ℓ = 4, 6, 8 when λ = 2.2, 4.1, 6.5, respectively.

achieves a quadratic speedup over SA when its low-
energy eigenstates are delocalized, due to the coherent
enhancement of the couplings ⟨Sb−1|Hq |Sb⟩ in Eq. (10).
It is thus natural to ask whether instances with unfavor-
able localization can be remedied by modifying QAA to
force the eigenstates to delocalize. We achieve this result
by designing a Hamiltonian Hℓ whose degenerate ground
subspace is spanned by the uniform superpositions {|Sb⟩}
(b = 0, 1, . . . , α), and adding it to the QAA Hamiltonian
with a time-independent energy scale λ,

H = HQAA + λHℓ. (16)

In contrast to prior approximate approaches to favoring
delocalization [47, 48], this approach provably enforces
delocalization under certain conditions on the flat energy
landscape, which we will state.

To design Hℓ, we draw inspiration from the single-
particle quantum kinetic energy operator, the ground
state of which is maximally delocalized. Since the single-
particle kinetic energy is the negative of the continuum
Laplacian −∇2, we let Hℓ be the discrete Laplacian of
the configuration graph in Fig. 1, restricted to each de-
generate manifold of Hcost, where vertices represent in-
dependent sets and edges represent spin exchanges. The
discrete Laplacian is the negative of the adjacency ma-
trix (Hse), plus a diagonal term that counts the degree
for that configuration, i.e., the number of possible spin
exchanges,

Hℓ = −Hse +
∑
u∈V

∑
(u,v)∈E

nu(1− nv)
∏

(y,v)∈E
y ̸=u

(1− ny),

(17)

where G = (V,E) is the original problem graph. Cru-
cially, the diagonal term prevents the ground states of
Hℓ from localizing on independent sets with larger de-
grees on the configuration graph. This differs from the
perturbative spin-exchange term in the unmodified QAA
Hamiltonian H(2) [Eq. (11)], which energetically favors
configurations with more possible spin exchanges. We
emphasize that Hℓ can be efficiently constructed using
only local information about the problem graph. For
unit-disk graphs embedded on a square grid, the terms
in Hℓ only involve a constant number of spins, which
allows for its implementation in near-term experiments.
To develop some intuition, let us first analyze the modi-

fied QAA when the energy scale ofHℓ, λ, is large. If there
exists a path between any two configurations in a degen-
erate manifold under spin exchanges, then each block Hb

of Hℓ = H0 ⊕H1 ⊕ . . .⊕Hα has a unique ground state
equal to |Sb⟩ with eigenvalue zero [46]. Since the QAA
dynamics are restricted to this ground subspace when
λ, U → ∞, the modified QAA Hamiltonian in Eq. (16)
reduces to a one-dimensional tight-binding Hamiltonian,

Htb = −
α∑

b=1

δb |Sb⟩ ⟨Sb|+Ωb

√
Db

Db−1
(|Sb⟩ ⟨Sb−1|+ h.c.),

(18)

which has an electric field gradient of strength δ and
site-dependent couplings Ωb

√
Db/Db−1 [see Fig. 4(a)].

If the minimum energy gap ∆QAA of Htb is set by the
smallest coupling, as shown in Fig. 4(b) for an example
720-vertex unit-disk graph, then ∆−1

QAA is quadratically
smaller than the SA runtime lower bound. We confirm
the trend ∆QAA ≃ minb(Ωb

√
Db/Db−1) numerically for
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hundreds of hard instances of the Maximum Independent
Set problem on unit-disk graphs in Fig. 4(c). To ex-
plain these observations, we show in Appendix E 1 that
∆QAA ≃ Ωα

√
Dα/Dα−1 on the vast majority of studied

instances, for which the smallest coupling is between in-
dependent sets of size α − 1 and α and the remaining
couplings are a smooth function of b. We additionally
argue in Appendix E 2 that the same result holds when a
small number of configurations within a degenerate mani-
fold are disconnected under spin exchanges, which occurs
for a small fraction of instances.

To achieve the quantum speedup in practice, however,
∆−1

QAA must scale more favorably than the SA runtime
when the energy scales of the modified QAA Hamiltonian
are measured in units of λ, when λ is the largest energy
scale of H. To investigate the scale of λ/Ω required to
obtain the quadratic enhancement of ∆QAA, in Fig 4(c)

we plot ∆−1
QAA for the top 1% hardest instances with up

to n = 80 vertices, computed using the density matrix
renormalization group method (DMRG) [49, 50]. With
the modest overhead of λ/Ω = 5, we observe a clear
quadratic scaling advantage over the SA runtime lower
bound in Eq. (5). Furthermore, the modified QAA with
λ/Ω = 1 substantially outperforms the unmodified QAA
on the same instances (see Fig. 13(a) of Appendix E 2).
We complement our numerical observations with

sufficient, though not necessary, conditions on the
λ which yield a quadratic quantum speedup. In
Appendix E 2, we show analytically that a sufficient
condition for achieving the quadratic enhancement of
∆QAA is λ/Ω, λ/δ ≳ ∆−1

ℓ,b ,∆
−1
ℓ,b−1, where ∆ℓ,b,∆ℓ,b−1 are

the spectral gaps of the delocalizing Hamiltonian Hℓ

restricted to the manifolds b and b − 1 that share the
smallest tight-binding coupling minb(Ωb

√
Db/Db−1).

In Fig. 4(d), we confirm that the modified QAA with
λ = ∆−1

ℓ,α−1 = O(1) has a quadratic speedup for the fam-

ily of star graphs. We show in Fig. 13(b) of Appendix E 2
that typically ∆ℓ,b,∆ℓ,b−1 > 1/n for the unit-disk graphs

we study; accordingly, λ∆−1
QAA ∼ nminb(Ωb

√
Db−1/Db).

Therefore, when ∆−1
ℓ,b ,∆

−1
ℓ,b−1 grow at most polynomially

in n, the modified QAA’s runtime is (sub)exponentially

faster than the runtime of Grover’s search (
√
2
n
) for

the hard unit-disk graphs we study: numerically, the
SA runtime goes like c

√
n for some c ∈ (1, 2), whereas

the modified QAA runtime is
√
c
√
n

up to polynomial
factors in n (see Appendix B).

B. Quantum speedup over Quantum Monte Carlo

As the modified QAA does not suffer from a sign
problem, path-integral QMC can be used to sample
independent sets from its thermal Gibbs distribution
πz = ⟨z| e−βH |z⟩ /Zβ . In general, path-integral QMC
works by stochastically sampling trajectories from a
discretized imaginary-time path integral of the parti-
tion function Zβ = Tr(e−βH). Several prior exponen-
tial speedups for QAA over SA have been recovered by

sampling from the QMC path integral at low temper-
atures as the Hamiltonian is varied adiabatically in real
time [13, 51]. It is thus natural to ask whether this proce-
dure, also called simulated quantum annealing, can match
the modified QAA runtime.
In Appendix A3, we derive a lower bound for the QMC

runtime τQMC(ε) of both the modified and unmodified

QAA. Analogous to the SA runtime τSA(ε), τQMC(ε) is

the number of QMC updates, normalized by n/M , where
M is the number of imaginary time slices, needed to sam-
ple from π with total variation distance ε < 1/2 [52]. We
consider any QMC algorithm which alters up to k spins
in each imaginary time slice per update, where k is re-
stricted to be constant in n.
Crucial to our argument is the fact that before QMC

encounters an independent set |z⟩ with Hcost(z) ≤ −δb,
it effectively samples from a restricted Hilbert space of
only independent sets with Hcost(z) ≥ −δ(b− 1). At any
point during the adiabatic ramp, we let H(r,b) denote
the Hamiltonian in this restricted Hilbert space, with

corresponding Gibbs populations π
(r,b)
z . We let |zmax⟩

denote the configuration in this restricted Hilbert space
within k spin flips of an independent set of size b with

the maximum Gibbs population π
(r,b)
zmax . Further, we let

e
(r,b)
max = π

(r,b)
zmaxDb−1 describe relative enhancement or sup-

pression of its population compared to the uniform su-
perposition state |Sb−1⟩.

Analogous to SA, we then apply the Cheeger inequal-
ity to derive an upper bound on the QMC Markov
chain spectral gap ∆QMC, which gives a lower bound on
τQMC(ε). This allows us to relate ∆QMC to the flow from

populations in the Gibbs distribution of π
(r,b)
z to inde-

pendent sets of size ≥ b. This flow is proportional to

e
(r,b)
maxDb/Db−1, which gives us

τQMC(ε) ≥
ln
(

1
2ε

)
2nknk

max
Db−1

e
(r,b)
maxDb

. (19)

Eq. (19) shows that when the Gibbs distribution of the
restricted Hilbert space is delocalized, i.e., when the Hℓ

energy scale λ is sufficiently large, the modified QAA has

a quadratic speedup over QMC. In this case, e
(r,b)
max ≤ 1,

so the QMC runtime goes like maxb(Db−1/Db), whereas

the modified QAA runtime goes like maxb
√
Db−1/Db.

To match the modified QAA runtime, the restricted
Gibbs distribution must be exponentially favorably local-

ized, so that e
(r,b)
max =

√
Db−1/Db. In this case, however,

we expect the QAA runtime to be similarly enhanced
under Eq. (8) due to favorable localization. Thus,
QMC does not recover the quadratic speedup due to
delocalization, which crucially stems from the quantum
coherent enhancement of the coupling ⟨Sb−1|Hq |Sb⟩.

5. UNDERSTANDING THE EXPERIMENTAL
OBSERVATIONS

We now apply our framework to interpret recent exper-
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(a)

(b)

(c)

1

3 2

FIG. 5. Analysis of the experimental performance. (a) The
experimental optimized time to solution correlates with the
theoretical QAA runtime ∆−1

QAA on instances where the max-
imum experimental evolution time Tmax can resolve the min-
imum gap (Tmax ≤ ∆−1

QAA, teal-filled points). Instances for
which the evolution time is too short to maintain adiabaticity
deviate from the trend (Tmax ≥ ∆−1

QAA, white points). (b) The
experimental time to solution correlates less strongly with the
SA runtime lower bound on instances where |E⟩ is localized
(light green points). On the most delocalized instances (dark
green points), the QAA runtime is similar to the square root
of the SA runtime. (c) We plot the distribution of Hamming
distances between |G⟩ and |E⟩ for three localized graphs. The
pairwise Hamming distances are larger for the instance where
QAA performs poorly relative to SA (bottom), and smaller
for the instances where QAA outperforms SA (top, middle).

iments on Rydberg atom arrays [23] using the aforemen-
tioned hardware-efficient encoding of the Maximum In-
dependent Set problem on unit-disk graphs. Ebadi et al.
[23] observed that the experimental optimized QAA out-
performed SA on certain hard unit-disk graph instances
with a large ratio of Dα−1/Dα (n = 39 – 80). We com-
pute the experimental optimized time to solution as [3]

TTSopt = min
T

T

ln[1− p(T )]
, (20)

where p(T ) is the probability of QAA finding the opti-
mal solution at evolution time T . In Fig. 5(a), we confirm
that TTSopt goes like the theoretical runtime ∆−1

QAA com-

puted numerically for the Rydberg Hamiltonian [Eqs. (2)
and (3)].

However, in Fig. 5(b), we find that TTSopt correlates
less strongly with the SA runtime lower bound. To under-
stand ∆QAA, and therefore the experimental time to solu-
tion, we obtain perturbative estimates for the eigenstates

at the avoided level crossing, |G⟩ and |E⟩, in the mani-
fold of independent sets of size α and α− 1, respectively.
On the more delocalized instances, ∆−1

QAA is similar to

the square root of the SA runtime (Fig 5(b), dark green
points), as expected from perturbation theory [Eq. (10)].
In contrast, for more localized instances (light green

points), we find that TTSopt is less correlated with the
SA runtime. By Eq. (8), we expect ∆QAA to be small
when the Hamming distance between |G⟩ and |E⟩ is
large and (Ω/δ)⋆ is small, which we verify numerically in
Appendix C 4. For illustration, in Fig. 5(c) we examine
three localized instances with vastly different SA and
QAA runtimes. We plot the distribution of the product
of populations GzEz′ of spin configurations |z⟩ , |z′⟩ in
|G⟩ , |E⟩ over their Hamming distances. The instance
where SA outperforms QAA is highly localized (bottom,
n = 80), with large Hamming distances compared to
the two other instances where QAA outperforms SA
(top and middle, n = 65). Due to favorable localization,
these instances obtain a significant speedup over SA.
Thus, the instance-dependent characteristics of |G⟩ and
|E⟩ can be used to predict the experimental performance.

6. OUTLOOK

In this work, we have shown that the optimized QAA
has a quadratic speedup over a wide class of classical
Markov chain algorithms when the low-energy eigen-
states are delocalized across a flat energy landscape. To
promote delocalization on generic problem instances [25],
we modified QAA by adding a local Hamiltonian Hℓ with
no sign problem, with a time-independent energy scale λ.
To observe the corresponding quadratic speedup on near-
term devices, the algorithm must be efficiently encoded in
hardware [53]. The modified QAA is amenable to direct
experimental implementation via hybrid digital-analog
Trotterized evolution [54], by generating spin-exchange
interactions with excitation into S and P Rydberg states
or microwave driving [55, 56], and decomposing the diag-
onal component of Hℓ into multiqubit controlled phase
gates. Local detunings can generate the diagonal compo-
nent ofHℓ on certain instances with structured configura-
tion graphs, such as when the suboptimal configurations
correspond to the motion of a domain wall [57].

Similar to other problems involving Grover-type
quadratic speedups [11, 58], our approach requires op-
timizing the QAA evolution to maintain adiabaticity.
Optimizing QAA evolution in general is an open prob-
lem; however, recent work has shown that it is possi-
ble to optimize a wide class of QAA algorithms which
use the reflection about the uniform superposition state,
1− 1

2n

∑
z,z′ |z⟩ ⟨z′|, to drive the evolution instead of

Hq [41]. In Appendix E 1 b, we describe approaches to
optimizing the modified QAA when λ → ∞, which re-
tain a quadratic speedup. Future work could attempt to
generalize these results to finite λ. At the same time, one
could circumvent the need for optimization by identify-
ing instances with an exponential, rather than quadratic,
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speedup over SA. One approach could be to character-
ize instances where the low-energy eigenstates are favor-
ably localized at small Hamming distance [10]. However,
QAA may not generically provide a speedup over QMC
on these instances [10, 13, 51]. It remains an open ques-
tion whether instances exist with an exponential speedup
over both SA and QMC, despite optimistic results in the
black-box setting [59, 60].

It would also be interesting to extend our results
beyond flat energy landscapes to problems with the
Overlap Gap Property, whose optimal solutions are
provably hard to approximate for large classes of both
quantum and classical algorithms [61, 62]. In these
instances, independent sets of the same size form
“clusters” separated by large Hamming distances. As
the clusters are disconnected under spin-exchange
operations, they independently delocalize, such that the
effective Hamiltonian is a tree-like version of the one-
dimensional tight-binding Hamiltonian Htb when λ→ ∞
[Eq. (18)]. Future work could investigate the modified
QAA on instances with the Overlap Gap Property using
this framework. Particularly interesting is the prospect
of studying QAA performance in the diabatic regime,
which can outperform both SA and QMC in finding
approximate solutions on certain problem instances [29].
Utilizing non-adiabatic phenomena via quantum quench
algorithms may provide an alternative mechanism for
quantum speedup [28, 30, 63, 64].
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Appendix A: Runtime lower bounds for classical
Markov chain algorithms

1. Simulated annealing

In this section, we establish a runtime lower bound
on all simulated annealing (SA) algorithms using the

Metropolis-Hastings update rule. Although we focus on
the Maximum Independent Set problem in our proof, we
will show that our bound applies to generic combinato-
rial optimization problems. The goal of SA is to sample
from an equilibrium probability distribution π, which we
take to be the thermal Gibbs distribution of Hcost at
temperature 1/β,

πz =
e−βHcost(z)

Zβ
, Zβ =

∑
b

Dbe
βδb, (A1)

where πz is the probability of spin configuration
|z⟩ ∈ {|0⟩ , |1⟩}n, Zβ is the partition function, and Db is
the number of independent sets of size b. SA stochasti-
cally updates a spin configuration |z⟩ to |z′⟩ according
to the Markov chain transition probabilities Pz,z′ . We
consider Pz,z′ given by the Metropolis-Hastings update
rule [33, 34],

Pz,z′ = pz,z′ min
(
1, e−β[Hcost(z

′)−Hcost(z)]
)
, (A2)

where pz,z′ = pz′,z is the probability of proposing to up-
date from |z⟩ to |z′⟩, and the remaining factor is the
probability of accepting the proposed update. One can
check that for pz,z′ = pz′,z, the update rule satisfies the
detailed balance condition,

Pz,z′πz = Pz′,zπz′ . (A3)

Themixing time of SA is defined as the minimum num-
ber of proposed updates per spin to prepare the Gibbs
distribution with error (measured in total variation dis-
tance, see [37]) less than or equal to ε, starting from any
initial probability distribution µ. The total variation dis-
tance between two distributions is equal to half the l1
norm of π − µ [37]. We define the SA runtime at inverse
temperature β, τSA(ε, β), as the mixing time normalized
by the Gibbs population of the optimal independent sets
of size α. Explicitly, we let (see [37], Eqs. 4.2 and 4.30)

τSA(ε, β) =
1

nπα
min

{
t : max

µ

∑
z∈{0,1}n

|πz − P tµz| ≤ ε
}
,

(A4)

where µ is the initial distribution, P = (Pz,z′) is the
matrix of Markov chain transition probabilities, and

πb =
∑

z:Hcost(z)=−δb

πz (A5)

is the Gibbs population of independent sets of size b.
τSA(ε, β) represents the time to sample an optimal so-
lution from the Gibbs distribution. The normalization
factor of 1/πα is necessary because at high temperatures,
the mixing time may be small, but the Gibbs population
of the optimal solutions is correspondingly very small.
At low temperatures, the normalization factor is unnec-
essary because optimal solutions have high Gibbs popu-
lation. As a result, the mixing time is directly related to
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the time to find an optimal solution, maximized over all
optimal solutions (i.e., the hitting time) [65]. We define
the SA runtime τSA(ε) as the minimum runtime over all
temperatures,

τSA(ε) = min
β
τSA(ε, β). (A6)

Our main result, stated next, is an analytic lower bound
on τSA(ε).

Theorem 1. Consider any Metropolis-Hastings SA al-
gorithm that prepares the Gibbs distribution of the Max-
imum Independent Set cost Hamiltonian Hcost. Sup-
pose the SA update rule alters at most k of the n total
spins. Define a cutoff independent set size b⋆, such that
the number of larger independent sets is decreasing, i.e.
Db−1/Db ≥ 1 for b > b⋆. Then for any error ε < 1/2,
the SA runtime τSA(ε) can be lower-bounded as

τSA(ε) ≥
ln
(

1
2ε

)
2nk

max
b>b⋆

Db−1

Db
. (A7)

Before proceeding, we note that the restriction b > b⋆

appearing in Theorem 1 is not necessary when the inde-
pendence polynomial of the graph is unimodal, meaning
that D0 ≤ D1 ≤ · · · ≤ Db⋆ ≥ · · · ≥ Dα−1 ≥ Dα. This
condition is met for every unit-disk graph we study in
Appendix B.

Proof. The SA runtime at temperature 1/β can be
lower-bounded by the inverse of the spectral gap ∆SA =
∆SA(β) between the largest and second largest eigenvalue
of the corresponding Markov chain matrix P with tran-
sition probabilities Pz,z′ as ([37], Eq. 12.14)

τSA(ε, β) ≥
ln
(

1
2ε

)
nπα

(
1

∆SA
− 1

)
. (A8)

Because 1
∆SA

≫ 1, we will ignore the second term. This
bound applies to any Markov chain transition matrix P
which satisfies detailed balance and is lazy, meaning that
the outwards transition probability

∑
z′:z′ ̸=z Pz,z′ ≤ 1/2

for any |z⟩. Any Markov chain P can be made lazy by
taking (P + 1)/2 (i.e., adding weight-1/2 self-loops to
each |z⟩). This transformation does not substantially
affect the mixing time because it reduces the outwards
transition probability by at most a factor of 2, so we will
analyze P instead of (P+1)/2. Note that in Eq. (A8) we
divided the standard definition of mixing time by n be-
cause we allow the SA algorithm to “parallelize” updates
over different spins.

We can therefore lower-bound τSA(ε, β) by upper
bounding ∆SA and πα. To do this, we use the Cheeger
inequality [38], which can be used to establish an up-
per bound on ∆SA for any Markov chain satisfying de-
tailed balance. The idea in a Cheeger bound is to bi-
partition the state space of the Markov chain into two
sets, S and Sc, such that in the Gibbs distribution π,

very little probability flows from S to Sc during one up-
date of the Markov chain. The spectral gap is then upper
bounded by this probability flow QS,Sc normalized by the
total Gibbs population πS in S. Explicitly, the Cheeger
inequality states

∆SA ≤ 2QS,Sc

πS
, πS =

∑
z∈S

πz, (A9)

for any S with πS <
1
2 , where

QS,Sc =
∑

z∈S,z′∈Sc

πzPz,z′ (A10)

=
∑

z∈S,z′∈Sc

πz′Pz′,z

= QSc,S

is the flow from S to Sc. Note that QS,Sc = QSc,S follows
from the detailed balance condition on P in Eq. (A3).
When QS,Sc is small, ∆SA is correspondingly small by
Eq. (A9) and the SA runtime is large by Eq. (A8).
We will first consider the low temperature case

πS < 1/2, and obtain an upper bound on QS,Sc/πS . Let
k ∈ {1, 2, . . . , n} denote the maximum number of spins
altered during a proposed update, and b ∈ {b⋆, b⋆ +
1, . . . , α} represent a particular independent set size sat-
isfying b > b⋆. We define the set

S = {z : Hcost(z) ≥ −δ(b− 1)} (A11)

of independent sets of size b − 1 or smaller. We
first replace all the probabilities πz in Eq. (A10) with
eβδ(b−1)/Zβ . This gives an upper bound on QS,Sc/πS ,
because Hcost = −δ(b − 1) is the smallest value of Hcost

present in S:

QS,Sc

πS
≤ eβδ(b−1)

πSZβ

∑
Hcost(z)≥−δ(b−1)
Hcost(z

′)≤−δb

Pz,z′ . (A12)

Now, plugging in the Metropolis-Hastings update rule
from Eq. (A2), we have

QS,Sc

πS
≤ eβδ(b−1)

πSZβ

∑
z′:Hcost(z

′)≤−δb
z:Hcost(z)≥−δ(b−1)

pz,z′ min

(
1,
e−β[Hcost(z

′)]

e−βHcost(z)]

)

=
eβδ(b−1)

πSZβ

∑
Hcost(z′)≤−δb

( ∑
Hcost(z)≥−δ(b−1)

pz′,z

)
.

(A13)

where in the second line we have used that pz,z′ = pz′,z

under the detailed balance condition [Eq. (A3)]. The
inner summation over configurations |z⟩ at fixed |z′⟩ is
equal to the probability of proposing an update from |z′⟩
to any configuration |z⟩ with Hcost(z) ≥ −δ(b− 1). This
probability is at most one because the total transition
probability out of |z′⟩ into S is at most one, and is strictly
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zero ifHcost(z
′) < −δ(b+k−1) (because we have assumed

that we update at most k spins). This constraint yields

QS,Sc

πS
≤ eβδ(b−1)

πSZβ

∑
−δmin(α,b+k−1)≤Hcost(z′)≤−δb

1

=
eβδ(b−1)

πSZβ

min(α,b+k−1)∑
b′=b

Db′

≤ kDbe
βδ(b−1)

πSZβ

≤ kDb

Db−1
. (A14)

In the third step we used the fact that Db ≥ Db′

for any b′ > b⋆, and in the fourth step we have

used πS =
∑b−1

b′=0Db′e
βδb′/Zβ > Db−1e

βδ(b−1)/Zβ . From
Eq. (A9), the SA spectral gap ∆SA is thus bounded as

∆SA ≤ 2QS,Sc

πS
≤ 2kDb

Db−1
. (A15)

Combining this with the lower bound on runtime
τSA(ε, β) [Eq. (A8)], and plugging in πα ≤ 1, we have
for any β such that πS < 1/2,

τSA(ε, β) ≥
ln
(

1
2ε

)
2nk

Db−1

Db
. (A16)

On the other hand, at high temperatures πS > 1/2, we
must swap S with Sc in the Cheeger bound [Eq. (A9)],

∆SAπα ≤ 2QSc,Sπα
πSc

=
2QS,Scπα
πSc

(A17)

where we have used the fact that QS,Sc = QSc,S . By

Eq. (A14) we have QS,Sc ≤ kDbe
βδ(b−1)/Zβ , so we find

∆SAπα ≤ 2kDbe
βδ(b−1)πα

ZβπSc

≤ 2kDbe
βδ(b−1)

Zβ
, (A18)

using πα ≤ πSc (because sets of size α are contained in
Sc). Now, since Zβ > Db−1e

βδ(b−1), we are left with

∆SAπα ≤ 2kDb

Db−1
, (A19)

which gives the same bound as in the low-temperature
case via Eq. (A8). Because the same bound holds for all
temperatures and for any b > b⋆, we can use Eq. (A6)
to obtain a lower bound on τSA(ε), which gives us Theo-
rem 1.
Finally, we note that Theorem 1 can be applied to gen-

eral combinatorial optimization problems with discrete
cost Hamiltonian energies. Our proof does not change
if we replace the energies of Hcost, {−δb}b=0,1,...,α, with
energies {Eb}b=0,1,...,α for any generic cost function with
α + 1 discrete energy levels, and let Db represent the
number of spin configurations with energy Eb. As a re-
sult, Theorem 1 can be applied to generic discrete cost
functions beyond Maximum Independent Set.

2. Parallel tempering

We now derive a runtime lower bound for a wide class
of parallel tempering algorithms using the Metropolis-
Hastings update rule. Because our bound uses identical
techniques to the runtime lower bound for SA, we recom-
mend the reader read Appendix A 1 before proceeding. In
parallel tempering there are M copies, or replicas, of the
n-spin system of SA, each equilibrating to the Gibbs dis-
tribution of Hcost at temperatures 1/β1, . . . , 1/βM . The
state space is the product of states over all the replicas
{z1 . . . zM}, where zi ∈ {0, 1}n represents the spin con-
figuration of the ith replica. Similar to SA, the state of
a single replica can be updated based on proposing an
update to at most k spins. However, in parallel temper-
ing collective updates involving multiple replicas are also
possible. We will consider collective Metropolis-Hastings
update rules,

Pz1...zM ,z′
1...z

′
M

(A20)

= pz1...zM ,z′
1...z

′
M
min

(
1, e−

∑M
i=1 βi[Hcost(z

′
i)−Hcost(zi)]

)
,

where pz1...zM ,z′
1...z

′
M

is the probability of proposing an

update to the configuration z′1 . . . z
′
M given that the cur-

rent configuration is z1 . . . zM . Note that this update rule
satisfies the detailed balance condition in Eq. (A3). The
equilibrium distribution is therefore the Gibbs distribu-
tion,

πz1...zM =
e−

∑M
i=1 βiHcost(zi)∏M
i=1 Zβi,i

, Zβi,i =
α∑

b=0

Dbe
βiδb.

(A21)

We define the parallel tempering runtime τPT(ε) as

τPT(ε) = min
β1...βM

τPT(ε, β1 . . . βM ), (A22)

where τPT(ε, β1 . . . βM ) is the runtime lower bound
for replica temperatures β1 . . . βM defined similarly to
SA [Eq. (A4)]:

τPT(ε, β1 . . . βM ) (A23)

=
M

nπα
min

{
t : max

µ

∑
z∈{0,1}n

|πz − P tµz| ≤ ε
}
,

where P is the parallel tempering Markov chain, µ is the
initial probability distribution, and

πα =
M∑
i=1

∑
z1...zM :

Hcost(zi)=−δb

πz1...zM (A24)

is now the probability that the configuration of at least
one replica is an independent set of size b. Note that
τPT(ε, β1 . . . βM ) in Eq. (A23) has a factor of M in the
numerator. This is because we allow the parallel tem-
pering update rule to update the spin configuration on



12

all M replicas; thus, the time complexity to perform an
update is O(M). This also excludes the possibility of a
trivial “speedup” from making M exponentially large, at
the expense of, e.g., M = O(2n) space-time complexity.

a. Replica exchange, arbitrary single-replica updates, and
constant-sized collective updates

We first consider parallel tempering algorithms that
include the following update rules: single-replica updates
that can update an arbitrary number of spins k on a
single replica, collective-replica updates that modify k′

spins on each replica, where k′ is restricted to be constant
in n, and replica exchange updates. Replica exchange
updates are defined as proposing to exchange the states zi
and zj of two replicas i and j. Our runtime lower bound
is stated next in Theorem 2. We will generalize our result
to include non-local isoenergetic cluster updates [66] later
in Theorem 3.

Theorem 2. Consider a parallel tempering algorithm
with M replicas and any update rule as described above.
Define a cutoff independent set size b⋆, such that the
number of larger independent sets is decreasing, i.e.
Db−1/Db ≥ 1 for b > b⋆. Then for any error ε < 1/2,
the parallel tempering runtime τPT(ε) is bounded as

τPT(ε) ≥
ln
(

1
2ε

)
2nk′nk′ max

b>b⋆

Db−1

Db
. (A25)

Proof. Define the set S as the set of states with all
the replicas having independent set size less than b, for
b > b⋆,

S = {z1 . . . zM : ∀i ∈ {1, . . . ,M}, Hcost(zi) ≥ −δ(b− 1)}
= S1 × · · · × SM , (A26)

where Si is the partition defined for a single replica as
defined in Eq. (A11). As with the SA runtime lower
bound in Appendix A 1, our goal is to bound the flow of
probability QS,Sc from S to Sc in the Gibbs distribution,

QS,Sc =
∑

z1...zM∈S
z′
1...z

′
M∈Sc

πz1...zMPz1...zM ,z′
1...z

′
M
, (A27)

to obtain a Cheeger bound on the spectral gap of the
parallel tempering Markov chain ∆PT = ∆PT(β1 . . . βM ),

∆PT ≤ 2QS,Sc

πS
=

2
∑

z1...zM∈S
z′
1...z

′
M∈Sc

πz1...zMPz1...zM ,z′
1...z

′
M∏M

i=1 πSi

(A28)

where πSi
is the Gibbs population of Si on a replica

i, as in Eq. (A9), and πS is the Gibbs population of
S. Eq. (A28) gives a lower bound on the runtime via
Eq. (A8). From Eq. (A28) we can immediately see that

replica exchange updates do not contribute to QS,Sc be-
cause swapping the states of two replicas in S does not
transfer probability from S to Sc. In addition, arbitrary
updates to a single replica are subject to the same bound
as SA [Eq. (A7)]. Therefore, it only remains to bound
collective updates that update at most k′ spins on each
replica, where k′ is constant in n. The runtime lower
bound is then given by the minimum of the runtime lower
bounds on collective updates and single-replica updates.
We will find that the runtime lower bound for collective
updates is smaller than for single-replica updates; hence,
Theorem 2 reflects the collective update bound.
As before, we will obtain an upper bound on QS,Sc .

Notice that only transitions from configurations in S
within k′ spin flips of some z1 . . . zM ∈ Sc can contribute
to QS,Sc . We denote these configurations as ∂S. Config-
urations in ∂S must have least one replica j within k′ spin
flips of Sc

j , whereas all other replicas i may be in any con-
figuration in Si. We let ∂Sj denote configurations zj ∈ Sj

within k′ spin flips of Sc
j , and π∂Sj

=
∑

zj∈∂Sj
πzj . We

then can show

QS,Sc ≤
∑

z1...zM∈∂S
πz1...zM

≤
M∑
j=1

π∂Sj

M∏
i=1
i̸=j

πSi =

M∑
j=1

π∂Sj

πS
πSj

≤ (k′)2
(
n

k′

) M∑
j=1

Dbe
δβj(b−1)

Zβj ,j

πS
πSj

≤ k′nk
′

M∑
j=1

Dbe
δβj(b−1)

Zβj ,j

πS
πSj

, (A29)

where in the third line we have used the fact that
the Gibbs population of any configuration in ∂Sj

is ≤ eδβj(b−1)/Zβj ,j , and the fact that there are

≤ (k′)2
(
n
k′

)
Db such configurations. Then we may write

QS,Sc

πS
≤ k′nk

′
M∑
j=1

Dbe
δβj(b−1)

Zβj ,jπSj

≤ k′nk
′

M∑
j=1

Db

Db−1
= k′nk

′
M

Db

Db−1
, (A30)

where in the second line we have used that πSj ≥
Db−1e

βjδ(b−1)/Zβj ,j . We can combine Eqs. (A30)
and (A9) and use the fact that πα ≤ 1 to get

∆PT ≤ 2k′nk
′
M min

b>b⋆

Db

Db−1
(A31)

for the spectral gap of the parallel tempering Markov
chain ∆PT. This, combined with Eq. (A8), yields a
runtime lower bound for parallel tempering given by
Eq. (A25). We emphasize that this bound is only restric-

tive when maxb>b⋆(Db/Db−1) is much larger than nk
′
.
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Because maxb>b⋆(Db/Db−1) grows exponentially in
√
n

in the worse case for the Maximum Independent Set prob-
lem on unit-disk graphs (see Appendix B), this bound is
only useful when k′ does not grow with n.
The above result holds when πS < 1/2. Just as in the

case of SA, we can derive the same bound on the runtime
when πS > 1/2. Using the fact that QS,Sc = QSc,S [see
Eq. (A10)], we use Eq. (A29) to receive:

∆PTπα ≤ 2QS,Scπα
πSc

≤ 2QS,Sc

≤ 2k′nk
′
M min

b>b⋆

Db

Db−1
. (A32)

As a result, the same bound Eq. (A25) holds for the case
where πS > 1/2.
Finally, we note that Theorem 2 can be applied to

general combinatorial optimization problems with dis-
crete cost Hamiltonian energies. Our proof, as in the
case of SA, does not change if we replace the energies
of Hcost, {−δb}b=0,1,...,α, with energies {Eb}b=0,1,...,α for
any generic cost function with α+1 discrete energy levels,
and let Db represent the number of spin configurations
with energy Eb.

b. Isoenergetic cluster updates

Here we obtain a runtime lower bound for all paral-
lel tempering algorithms that use the same update rules
as in the previous Appendix A 2, in addition to isoen-
ergetic cluster updates, which are non-local updates de-
signed specifically for optimizing two-dimensional spin
glasses [66]. Isoenergetic cluster updates collectively up-
date a pair of replicas i, j by identifying clusters of spins
(vertices) connected by edges for which zi and zj differ.
The update rule then proposes to exchange the config-
urations of spins within a randomly chosen connected
cluster between zi and zj . One can check that this up-
date rule conserves the total energy of the two replicas:
Hcost(zi) + Hcost(zj) = Hcost(z

′
i) + Hcost(z

′
j), where z′i

and z′j are the spin configurations after an isoenergetic
cluster update. Note that isoenergetic cluster updates
are equivalent to replica exchange updates when there is
only a single connected cluster of differing spins.

The bound that we will derive in Theorem 3 is similar
to the parallel tempering runtime lower bound previ-
ously derived in Theorem 2 when minb>b⋆(Db/Db−1)
is small compared to the other ratios Db/Db−1, i.e.
when there is a single smallest coupling that limits the
runtime. In Fig. 6 we numerically find that the scaling
of our bound, stated next in Theorem 3, is similar to
the SA runtime lower bound in Theorem 1 for the top
5% hardest instances of each system size studied in Ap-
pendix B. In particular, Fig. 6 plots maxb>b⋆

[
Db/Db−1+∑α

b′1=b

∑2(b−1)−b1
b′2=0

∑b−1−b′2
k=b′1−b+1(Db′1

Db′2
)(Db′1−kDb′2+k)

]−1

versus the quantity maxb>b⋆(Db−1/Db). These quanti-
ties are equal to the parallel tempering and SA runtime

lower bounds in Theorems 1 and 3, respectively, up to
subleading polynomial factors in n.
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FIG. 6. Simulated annealing and parallel tempering
runtime lower bounds. We plot maxb>b⋆

[
Db/Db−1 +∑α

b′1=b

∑2(b−1)−b1
b′2=0

∑b−1−b′2
k=b′1−b+1

(Db′1
Db′2

)(Db′1−kDb′2+k)
]−1

versus maxb>b⋆(Db−1/Db) for the top 5% hardest instances
of each system size studied in Appendix B. These quantities
are equal to the SA and parallel tempering runtime lower
bounds in Theorems 1 and 3, respectively, up to subleading
polynomial factors in n.

Theorem 3. Consider a parallel tempering algorithm
with M replicas using isoenergetic cluster updates as de-
scribed above, in combination with the updates described
in Theorem 2. Then for any error ε < 1/2, the parallel
tempering runtime τPT(ε) is bounded as

τPT(ε) ≥
ln
(

1
2ε

)
2n

max
b>b⋆

[
k′nk

′ Db

Db−1

+
α∑

b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

Db′1−kDb′2+k

]−1

.

(A33)

Proof. As before, we bound the flow of probability QS,Sc

from S to Sc in the Gibbs distribution,

QS,Sc =
∑

z1...zM∈S
z′
1...z

′
M∈Sc

πz1...zMPz1...zM ,z′
1...z

′
M
, (A34)

We define S identically to Eq. (A26). As a result, the
runtime lower bound we will derive in Theorem 3 auto-
matically applies to the same update rules from Theo-
rem 2, and it only remains to upper bound QS,Sc for
isoenergetic cluster updates. The total QS,Sc will then
be bounded by the sum of the bounds on QS,Sc derived
here for isoenergetic cluster updates and on the bound in
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Theorem 2. The inverse of this sum of bounds will yield
the bound in Theorem 3.
An isoenergetic cluster update first proposed to update

the configurations of a pair of replicas, which are chosen
according some probability distribution. Without loss of
generality, we will call these replicas 1 and 2, and denote
the probability they are proposed as p12. Once a pair of
replicas is proposed, the quantity QS,Sc/πS is indepen-
dent of the remaining replicas. Thus, we may consider

the flow Q
(12)
S,Sc on only replicas 1 and 2. We may bound

the flow as

Q
(12)
S,Sc = p12

∑
z1z2∈S
z′
1z

′
2∈Sc

πz′
1z

′
2
Pz′

1z
′
2,z1z2

= p12
∑

z1z2∈S
z′
1z

′
2∈Sc

πz′
1z

′
2
pz′

1z
′
2,z1z2

min

(
1,
πz1z2
πz′

1z
′
2

)

≤ p12
∑

z1z2∈S
z′
1z

′
2∈Sc

πz1z2pz′
1z

′
2,z1z2

, (A35)

where Pz′
1z

′
2,z1z2

is the probability of updating to z′1z
′
2

given that the current configuration of the two replicas
we have chosen to update is z1z2. Since z

′
1z

′
2 ∈ Sc, at least

one of z′1 or z′2 must be in Sc
1 or Sc

2. We assume without
loss of generality that it is z′1, so that Hcost(z

′
1) ≤ −δb.

Then, if z′1, z
′
2 can isoenergetically update to z1, z2 ∈ S,

we must have Hcost(z
′
2) ≥ −2δ(b−1)−Hcost(z

′
1), because

the combined energy of z′1, z
′
2 must be at least −2δ(b−1).

Furthermore, the number of spins that can be exchanged
between the two replicas is lower-bounded by the restric-
tion that z1 ∈ S1 and upper-bounded by the restriction
that z2 ∈ S2. As a result, the sum can be parameterized
as

Q
(12)
S,Sc ≤ p12

∑
z1z2∈S
z′
1z

′
2∈Sc

πz1z2pz′
1z

′
2,z1z2

(A36)

≤ p12

α∑
b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

∑
Hcost(z

′
1)=−δb′1

Hcost(z
′
2)=−δb′2

Hcost(z1)=−δ(b′1−k)

Hcost(z2)=−δ(b′2+k)

πz1z2pz′
1z

′
2,z1z2

≤ p12

α∑
b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

eβ1δ(b
′
1−k)+β2δ(b

′
2+k)

Zβ1,1Zβ2,2
.

In the third line, we used the facts that
πz1z2 = eβ1δ(b

′
1−k)+β2δ(b

′
2+k)/(Zβ1,1Zβ2,2) and∑

z1z2
pz′

1z
′
2,z1z2

≤ 1, then replaced
∑

z′
1z

′
2
with Db′1

Db′2
.

To remove the factors of β1 and β2, we may also use
the fact that Zβ1,1 contains a Db′1−ke

β1δ(b
′
1−k) term and

Zβ2,2 contains a Db′2+ke
β2δ(b

′
2+k) term, to obtain

Q
(12)
S,Sc ≤ p12

α∑
b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

Db′1−kDb′2+k
. (A37)

Now summing over all replicas (not just 1, 2) that could
be proposed for replica updates and using

∑
ij pij ≤ 1,

we arrive at

QS,Sc ≤
α∑

b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

Db′1−kDb′2+k
. (A38)

For reasons analogous to those given in Appendix A1,
this is sufficient to establish the bound in Theorem 3
when πS > 1/2. When πS < 1/2, we instead revert to
Eq. (A36) and compute the bound as

Q
(12)
S,Sc

πS
≤ p12π

−1
S

×
α∑

b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

eβ1δ(b
′
1−k)+β2δ(b

′
2+k)

Z1Z2

≤ p12(
b∑

b1=0

Db1e
β1δb1)−1(

b1∑
b2=0

Db2e
β2δb2)−1

×
α∑

b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

eβ1δ(b
′
1−k)+β2δ(b

′
2+k).

(A39)

At this point, we again use the fact that for every
(b′1, b

′
2, k) term in the numerator, the denominator con-

tains a term Db′1−ke
β1δ(b

′
1−k)Db′2+ke

β2δ(b
′
2+k), allowing us

to arrive at

Q
(12)
S,Sc

πS
≤ p12

α∑
b′1=b

2(b−1)−b1∑
b′2=0

b−1−b′2∑
k=b′1−b+1

Db′1
Db′2

Db′1−kDb′2+k
,

(A40)

from which we can establish the bound in Theorem 3
after summing over all choices of 1, 2.

3. Quantum Monte Carlo

We now establish a runtime lower bound for a wide
class of QMC algorithms. Our bound uses identical
techniques to the analytic runtime lower bounds of SA
(Appendix A1) and parallel tempering (Appendix A 2),
which we recommend the reader read first for context.
We consider path-integral QMC algorithms which are
designed to sample from the populations of the Gibbs
distribution of the modified QAA Hamiltonian,

ρzz =
⟨z| e−β(HQAA+λHℓ) |z⟩

Zβ
, Zβ = Tr

(
e−β(HQAA+λHℓ)

)
.

(A41)

We can write the partition function Zβ in the z-basis by
Trotterizing H = HQAA+λHℓ and inserting copies of the
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identity matrix. Although we do not assume a particular
form of Trotterization of Zβ , we may take, for example,

Zβ =
∑
z1

⟨z1| e−β(HQAA+λHℓ) |z1⟩ (A42)

≃
∑
z1

⟨z1|
(
e−βHo.d./Me−βHd/M

)M |z1⟩

=
∑

z1...zM

⟨z1| e−βHo.d./M |z2⟩ ⟨z2| e−βHd/M |z2⟩

× ⟨z2| . . . |zM ⟩ ⟨zM | e−βHo.d./M |z1⟩ ⟨z1| e−βHd/M |z1⟩ ,

where Ho.d. contains only off-diagonal terms of H in
the computational basis, and Hd contains only diagonal
terms in the computational basis. When the number of
Trotter steps M is sufficiently large, the marginal prob-
ability of configuration |z1⟩ approximates its population
in the Gibbs distribution,

πz1 =
∑

z2...zM

πz1...zM (A43)

= ρz1z1 as M → ∞,

where

πz1...zM =
1

Zβ
⟨z1| e−βHo.d./M |z2⟩ ⟨z2| e−βHd/M |z2⟩

× ⟨z2| . . . |zM ⟩ ⟨zM | e−βHo.d./M |z1⟩ ⟨z1| e−βHd/M |z1⟩
(A44)

under the particular Trotterization in Eq. (A42). Since
the number of Trotter steps needed to obtain a good
approximation of Zβ is typically polynomial in β and
the norm of H, we consider finite but large U ≫ |δ|, β.

Path-integral QMC can be used to sample configu-
rations from the distribution πz1...zM . The Metropolis-
Hastings update rule updates configuration z1 . . . zM to
z′1 . . . z

′
M with probability

Pz1...zM ,z′
1...z

′
M

= pz1...zM ,z′
1...z

′
M
min

(
1,
πz′

1...z
′
M

πz1...zM

)
,

(A45)

where pz1...zM ,z′
1...z

′
M

is the probability of proposing an

update to z′1 . . . z
′
M given that the current configuration

is z1 . . . zM .
We define the QMC runtime analogously to parallel

tempering, as

τQMC(ε) = min
β
τQMC(ε), (A46)

where τQMC(ε, β) is the runtime lower bound for QMC

at temperature 1/β,

τQMC(ε, β) =
M

nπα
min

{
t : max

µ

∑
z∈{0,1}n

|πz − P tµz| ≤ ε
}
.

(A47)

where P is the QMC Markov chain, µ is the initial prob-
ability distribution, and

πα =
M∑
i=1

∑
z1...zM :

Hcost(zi)≤−δb

πz1...zM (A48)

is now the probability that the configuration of at least
one replica is an independent set of size b. As with the
definition of parallel tempering runtime in Eq. (A23), we
include a factor ofM in the numerator of Eq. (A47). This
decision is justified because we allow the update rule to
alter all M Trotter slices, which takes O(M) time com-
plexity. It also excludes the trivial “speedup” that one
might obtain by using exponentially many time slices to
enumerate an exponential number of low-energy config-
urations, at the expense of exponential space complex-
ity. The inclusion of this factor makes our runtime lower
bound, stated next in Theorem 4, independent of the pa-
rameter M . We will remark in our proof of Theorem 4
that if the number of Trotter slices modified in a single
update is m < M , then m can be substituted for M in
our definition of τQMC(ε, β) in Eq. (A47).

Theorem 4. Consider any path-integral QMC algorithm
which uses a Metropolis-Hastings update rule to modify at
most k spins on each of M imaginary time slices, where
k is a constant in n. For a given b, let H(r,b) denote the
modified QAA Hamiltonian H = HQAA + λHℓ restricted
to the space of configurations z with Hcost(z) > −δb, and
let π(r,b) be the QMC equilibrium distribution associated
with H(r,b) at inverse temperature β. Let |zmax⟩ denote
the configuration within k spin flips of an independent set
|z⟩ with Hcost(z) = −δb with the maximum Gibbs popu-

lation π
(r,b)
zmax , and let e

(r,b)
max = π

(r,b)
zmaxDb−1 describe relative

enhancement or suppression of its population compared to
the uniform superposition state |Sb−1⟩. Then the QMC
runtime τQMC(ε) for any error ε < 1/2 is bounded as

τQMC(ε) ≥
ln
(

1
2ε

)
2nknk

max
b>b⋆

Db−1

e
(r,b)
maxDb

. (A49)

We first comment on the implications of Theorem 4
before proceeding to its proof. Denote the Gibbs distri-

bution of H(r,b) as ρ(r,b) = e−βH(r,b)

/Tr(e−βH(r,b)

). For
the purpose of discussion, assume thatM is large enough

such that π
(r,b)
z is a good approximation for ρ

(r,b)
zz . Now,

when λ is large enough to ensure that ρ(r,b) is delocalized
in the manifold of independent sets of size b − 1, we

have e
(r,b)
max ≤ 1. Thus, Eq. (A49) recovers the parallel

tempering runtime bound in Theorem 2. Additionally,
the QMC runtime is quadratically larger than the QAA
runtime. Conversely, if ρ(r,b) is favorably localized among
sets of size ≤ b − 1 within Hamming distance k of sets
of size b, Eq. (A49) yields a weak bound. In particular,

if e
(r,b)
max ≳

√
Db−1/Db, then Theorem 4 suggests that

QMC recovers the modified QAA’s quadratic speedup.
In such a scenario, however, it is likely that QAA itself
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also favorably localizes on configurations which are
close in Hamming distance to solutions of size ≥ b. In
such a situation, adding a large λ to the QAA likely
does not enhance its performance, because it already
benefits from (exponentially) favorable localization in
the absence of λ. In other words, the only scenario
where QMC can recover the QAA’s quadratic speedup
is one in which the quadratic speedup is irrelevant due
to favorable localization, which can be exploited by both
QAA and QMC. We note also that there is no reason
a priori to expect such favorable localization to occur
(and indeed, Fig. 13(a) of Appendix E 2 suggests that it
typically does not), although we cannot strictly exclude
it from formal arguments.

Proof. As before, we will use the Cheeger inequality to
prove an upper bound on the spectral gap of the QMC
Markov chain ∆QMC. This gives us a lower bound on
the QMC runtime via Eq. (A8). We will adopt identical
notation and similar techniques to the parallel tempering
proof in Appendix A 2. As in Eq. (A26), let S be the set
of configurations with Hcost(zi) > −δb for all i. Let ∂Si

represent the configurations zi ∈ Si for which QMC can
transition into Sc

i in a single update of at most k spins.
We will first consider the regime where πS < 1/2. We

can compute

QS,Sc =
∑

z1...zM∈S
z′
1...z

′
M∈Sc

πz1...zMPz1...zM ,z′
1...z

′
M

≤
M∑
i=1

∑
zi∈∂Si

zj∈Sj ,j ̸=i

πz1...zM

≤M
∑

z1∈∂S1
zj∈Sj ,j ̸=1

πz1...zM . (A50)

In the second line we used the fact that if z1 . . . zM ∈ S
can transition into Sc, then zi ∈ ∂Si for at least one
replica i. The third line uses the standard cyclic per-
mutation property of QMC Gibbs populations. We note
that strictly speaking, one can choose to Trotterize the
path integral in QMC in such a way that the cyclic per-
mutation property is modified. For instance, if instead
of the Ho.d./Hd decomposition above, we apply Hcost,
Hℓ and Hq in separate imaginary time slices, the QMC
Gibbs weights will only be invariant under “even” cyclic
shifts zi → zi+2a mod M for a ∈ Z. This does not affect
the result because in such cases, the transition between
S and Sc must still happen in one “block” of the cycle
(e.g. one Hcost, Hℓ, Hq block in this example), and all the
configurations within a single such block must be within
a constant Hamming distance from each other. Finally,
we remark that if at most m < M Trotter slices are
modified during a QMC update, then the factor of M in
Eq. (A50) can be replaced with m. This can be seen by
writing the QS,Sc as a sum over proposed updates to m
replicas, then only summing over configurations with one

of those m replicas i in ∂Si.
Therefore, we have

QS,Sc

πS
≤M

∑
z1∈∂S1

zj∈Sj ,j ̸=1
πz1...zM∑

z1...zM∈S πz1...zM
. (A51)

Now notice that the summations in the numerator and
denominator of Eq. (A51) are only over configurations
in S. Thus, they can be related to the Gibbs state of
HQAA + λHℓ in a restricted Hilbert space that includes
no configurations in Sc. We will denote quantities in
this restricted Hilbert space with a superscript (r, b), so

that H(r,b) = H
(r,b)
QAA + λH

(r,b)
ℓ . Note now that because

H(r,b) is identical to H on this restricted space, the pop-
ulations that one would compute with QMC in this re-
stricted space are related to their values in the full Hilbert
space by an overall normalization factor:

π(r,b)
z1...zM =

Zβ

Z(r,b)
β

πz1...zM . (A52)

As a result, we may write

QS,Sc

πS
≤M

∑
z1∈∂S1

zj∈Sj ,j ̸=1
πz1...zM∑

z1...zM∈S πz1...zM

=M

∑
z1∈∂S1

zj∈Sj ,j ̸=1
π
(r,b)
z1...zM∑

z1...zM∈S π
(r,b)
z1...zM

=M

∑
z1∈∂S1

π
(r,b)
z1∑

z1∈S1
π
(r,b)
z1

≤Mknk e
(r,b)
maxDb

Db−1
. (A53)

In the final line, we have used that there are
(k)2

(
n
k

)
Db ≤ k′nkDb configurations in ∂S1, and the def-

inition e
(r,b)
max = π

(r,b)
zmaxDb−1. From Eq. (A53), we can thus

immediately obtain the bound in Eq. (A49).
The discussion so far has assumed πS < 1/2. When

πS > 1/2, we must instead compute QS,Sc/πSc for the
Cheeger bound in Eq. (A9). We multiply this quantity
by πα to obtain the quantity that appears in the QMC
runtime definition in Eq. (A47),

QS,Scπα
πSc

≤ QS,Sc ≤M
∑

z1∈∂S1
zj∈Sj ,j ̸=1

πz1...zM . (A54)

By the above arguments, we may then write

QS,Sc ≤M
Z(r,b)

β

Zβ

∑
z1∈∂S1

π(r,b)
z1 . (A55)

We now note that Z(r,b)
β ≤ Zβ , because the Gibbs weights

contained in Z(r,b)
β are a subset of the weights contained
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(a) (b)

FIG. 7. Classical Markov chain runtime versus system size. (a) A box-and-whiskers plot of the classical runtime lower bound
versus the system size n. The box endpoints are the 25th and 75th percentiles, and the whiskers are the 0th and 95th percentiles.
(b) The runtime lower bounds at the 80th, 95th and 99th percentiles scale exponentially in

√
n. The 50th percentile runtime

lower bound is also consistent with exponential scaling in
√
n.

in Zβ . Note that we use the fact that the Hamiltonian
does not have a sign problem, which ensures the positiv-
ity of the Gibbs weights. Thus, we have

QS,Scπα
πSc

≤Mknk e
(r,b)
maxDb

Db−1
, (A56)

using the same reasoning as in Eq. (A53). As our bounds
hold at any point during the adiabatic ramp and at any
temperature 1/β, we have thus shown Theorem 4.

Appendix B: Runtime scaling with system size

Here, we numerically study the runtime lower bounds
for the classical Markov Chain Monte Carlo algorithms
studied in Appendix A as a function of the number of
vertices n, and compare the bounds against leading exact
classical algorithms. The runtime lower bounds for these
algorithms are equal to the quantity maxb>b⋆(Db−1/Db)
up to polynomial factors in 1/n, where Db is the number
of independent sets of size b, and b⋆ is the cutoff indepen-
dent set size as defined in Appendix A 1. This quantity
is large when there are many independent sets of some
size b− 1 compared to independent sets of size b. We are
interested in determining how this quantity scales with
n.

We randomly generate unit-disk graph instances with
up to 720 vertices embedded on a two-dimensional square
lattice with random 80% filling (see Fig. 1(a), main text).
We study 1000 instances at each system size and compute
maxb>b⋆(Db−1/Db) using the tensor-network algorithm
for computing solution-space properties of combinatorial
optimization problems detailed in Ref. [40]. We find that
the independence polynomial of every single instance is
unimodal, i.e., D0 ≤ D1 ≤ · · · ≤ Db⋆ ≥ · · · ≥ Dα−1 ≥
Dα, which may be of independent interest [67]. This

means that for the unit-disk graphs we study, in practice
it is not strictly necessary to have a cutoff independent set
size b⋆ in the runtime lower bound maxb>b⋆(Db−1/Db):
any b with Db−1/Db ≥ 1 can be used in the maximiza-
tion. The vast majority (99.87%) of instances we study
have maxb(Db−1/Db) = Dα−1/Dα, and the remainder
have maxb(Db−1/Db) = Dα−2/Dα−1.

Figure 7(a) shows a box-and-whiskers plot of the full
distribution of runtime lower bounds as a function of n.
The variance of runtimes spans several orders of mag-
nitude and increases with n, and the largest runtime
over all the studied graphs is nearly 1012. In Fig. 7(b),
we plot various percentiles of maxb>b⋆(Db−1/Db) versus√
n. We find that the runtime is exponential in

√
n for

instances in the 80th percentile and above. The 50th
percentile runtime also appears to scale exponentially
in

√
n rather than polynomially. Therefore, the classi-

cal runtime lower bounds are (sub)exponentially faster
than black-box search, which has an expected runtime of
O(2n/Dα), which is exponential in n instead of

√
n.

We can compare the scaling of the runtime lower bound
with system size to leading exact classical algorithms,
which are guaranteed to return the largest independent
set. The best exact classical algorithms for solving the
unit-disk Maximum Independent Set problem find the so-
lution in time O(c

√
n), for some constant c ∈ (1, 2). This

scaling can be achieved using dynamic programming [68]
or tensor-network methods [40]. Numerical evidence for
the system sizes studied (see Fig. 2 in the main text)
suggests that the actual SA runtime is linearly related to
the SA runtime lower bound, suggesting that the typical
SA runtime also scales as O(c

√
n). If this result holds as

n → ∞, then the scaling of both classical Markov chain
algorithms and the modified QAA are typically polyno-
mially related to the best classical algorithms. In particu-
lar, if the SA runtime scaling is O(c

√
n), then the runtime

of our modified QAA scales roughly as O(
√
c
√
n
).
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Appendix C: Resolvent method for the minimum
gap

1. Derivation of the minimum gap formula

Here we will derive an exact method to pertubatively
compute the minimum gap ∆QAA of HQAA = Hcost −Hq

when the avoided level crossing location (Ω/δ)⋆ ≪ 1.
In the main text we used degenerate perturbation the-
ory to compute, to leading order in Ω/δ, the orthogonal
states |G⟩ , |E⟩ which approximate the ground and first
excited eigenstates at Ω/δ ≲ (Ω/δ)⋆ ≪ 1 (see Eq. (11),
main text). Here we will exactly compute ∆QAA in terms
of the matrix elements of an effective Hamiltonian Heff(z)
acting on the subspace spanned by |G⟩ , |E⟩, defined by
the projector P = |G⟩ ⟨G|+ |E⟩ ⟨E|. Our main results are
in Eq. (C6), which gives ∆QAA exactly in terms of the
matrix elements of Heff(z), and Eq. (C12), which simpli-
fies the result under a motivated approximation.
Heff(z) can be derived by rewriting the eigenvalue

equation HQAA |ψ⟩ = z |ψ⟩ as HQAA(P +Q) |ψ⟩ = z |ψ⟩,
where Q = 1− P , then multiplying by P and Q to obtain
a system of equations for the eigenvector |ψ⟩:[

QHQAAQ QHQAAP
PHQAAQ PHQAAP

] [
Q |ψ⟩
P |ψ⟩

]
= z

[
Q |ψ⟩
P |ψ⟩

]
. (C1)

These equations can then be written in terms of P |ψ⟩ as[
PHQAAP+PHQAA

Q

z −QHQAAQ
HQAAP

]
︸ ︷︷ ︸

Heff (z)

|ψ⟩=zP |ψ⟩.

(C2)

The left hand side of the equation defines Heff(z), the ef-
fective Hamiltonian in the subspace spanned by |G⟩ , |E⟩.
The second term in Heff(z) can be interpreted as a per-
turbative addition to original Hamiltonian, PHQAAP ,
due to higher-order couplings in Ω/δ that come from the
Q subspace, which is energetically separated from the P
subspace. Expanding the denominator using the matrix
Taylor expansion (A + B)−1 = A−1

∑∞
l=0(−BA−1)l, we

receive

Heff(z) = PHcostP −
∞∑
l=0

P

(
−Hq

Q

z −Hcost

)l

HqP,

(C3)

where we have used PHcostQ = 0 because |G⟩ , |E⟩ are
eigenstates of Hcost. This form of Heff(z) has an intuitive

interpretation: each order l applies a factor of Hq, but is
suppressed by a factor of O(Ω/δ).

Prior works have estimated ∆QAA from the off-
diagonal matrix element of Heff(E⋆) evaluated at (Ω/δ)⋆
as [25, 44]

∆̃QAA = 2| ⟨G|Heff(E⋆) |E⟩ |, (C4)

which we analyzed in the main text [see Eq. (8)]. This
equation has an intuitive interpretation under the as-
sumption of Landau-Zener physics on Heff(z), which
we illustrate in Fig. 8(a). At Ω/δ = 0, |G⟩ , |E⟩
are eigenstates of HQAA with eigenenergies given by
the on-diagonal entries of Heff(z) (⟨G|Hcost |G⟩ and
⟨E|Hcost |E⟩, respectively). At the avoided level crossing
Ω/δ = (Ω/δ)⋆, we expect the on-diagonal eigenenergies
of |G⟩ , |E⟩ in Heff(z) to cross at a value close to E⋆ for
some value of z ≃ E⋆, which we denote by z′. The gap of
Heff(z

′) at (Ω/δ)⋆ is then given by the off-diagonal cou-

pling 2| ⟨G|Heff(z
′) |E⟩ | ≃ ∆̃QAA. ∆̃QAA indeed captures

the correct qualitative physics, but is quantitatively in-
accurate. Here we show that ∆QAA can be computed
exactly from the matrix elements of Heff(z) in Eqs. (C6)
and (C12).

∆̃QAA does not equal ∆QAA in general because of the
z-dependence of Heff(z), which prevents it from being
interpreted as a true Hamiltonian. The only guaranteed
relationship between Heff and the spectrum of HQAA is
that each eigenvalue z of HQAA is also an eigenvalue of
Heff(z) [see Eq. (C2)], i.e.,

det[z −Heff(z)] = 0 (C5)

whenever z is an eigenvalue of HQAA. ∆QAA can there-
fore be obtained exactly from taking the difference be-
tween the first two values of z that solve Eq. (C5),
which are the two lowest energy eigenvalues at z =
E⋆, E⋆ +∆QAA. We show an example of numerically us-
ing this method to exactly reconstruct ∆QAA in Fig. 8(b)
for a star graph with b = 40 branches of length ℓ = 2.
In contrast, we find that ∆̃QAA, computed numerically,
overestimates ∆QAA for the same instance by a factor
of 4.53 (Fig 8(b), inset). This discrepancy is due to the
z-dependence of Heff , which we show in Fig. 8(c) for the
same instance.

To account for this z-dependence, we will consider z in
the neighborhood of E⋆, and compute the leading order,
linear dependence of Heff on z. We adopt the following
ansatz by expanding Heff(z) around a reference point z =
z0:

Heff(z) =

[
⟨E|Heff(z0) |E⟩+mee(z − z0) ⟨E|Heff(z0) |G⟩+mge(z − z0)
⟨E|Heff(z0) |G⟩+mge(z − z0) ⟨G|Heff(z0) |G⟩+mgg(z − z0)

]
, (C6)

where mge = meg because Heff is real. ∆QAA can then be obtained from solving Eq. (C5) using the ansatz for
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FIG. 8. Computing the minimum gap using the resolvent formalism. (a) When the avoided level crossing location (Ω/δ)⋆ ≪ 1,
the avoided level crossing can be understood in terms of Landau-Zener physics between |G⟩ , |E⟩ underHeff(z

′). At Ω/δ = (Ω/δ)⋆,
|E⟩ and |G⟩ have the same on-diagonal energy under Heff(z), and the minimum gap of Heff(z

′) is given by their off-diagonal
coupling 2| ⟨G|Heff(z

′) |E⟩ |. (b) ∆QAA equals the difference of the first two zeroes of det[z − Heff(z)], which occur at z = E⋆

and E⋆ +∆QAA (light blue, inset). The estimated gap ∆̃QAA = 2| ⟨G|Heff(E⋆) |E⟩ | overestimates the minimum gap ∆QAA by
a factor of 4.53 for this instance (light green, inset). (c) When z − E⋆ is small, matrix elements of Heff (solid lines) are well-
approximated by a linear function of z (dashed lines). For the star graph with b = 40, ℓ = 2, the ⟨G|Heff(z) |E⟩ matrix element
changes as a function of z − E⋆ with a slope of mge = −5.2 × 10−6. The matrix elements ⟨G|Heff(z) |G⟩ and ⟨E|Heff(z) |E⟩
change at much higher rates of mgg = −1.9 and mee = −6.1, respectively.

Heff in Eq. (C6), which gives

∆QAA =2

[
⟨E|Heff(z0) |G⟩2 feefgg +

1

4

[
(fee + fgg)∆Ē + (fgg − fee) (Ē − z0)

]2
+ ⟨E|Heff(z0) |G⟩mge

[
(fee + fgg) (Ē − z0) + (fgg − fee)∆Ē

]
+m2

ge[(Ē − z0)
2 −∆Ē2]

]1/2
/
[
fggfee −m2

ge

]
,

(C7)

where we have defined the mean and difference of the
on-diagonal energies,

Ē(z0) =
1

2
(⟨E|Heff(z0) |E⟩+ ⟨G|Heff(z0) |G⟩)

∆Ē(z0) =
1

2
(⟨E|Heff(z0) |E⟩ − ⟨G|Heff(z0) |G⟩), (C8)

and let

fee = 1−mee

fgg = 1−mgg. (C9)

Eq. (C7) therefore gives ∆QAA in terms of the matrix
elements of Heff and their first-order derivatives in z.
In the absence of z-dependence (mee = mgg = mge = 0),
one can check that this expression reduces the result one
would obtain from directly diagonalizingHeff(z0). There-
fore, as expected, when Heff is independent of z, it can
be treated as a true Hamiltonian acting on |G⟩ , |E⟩ and
diagonalized to find ∆QAA.
Although Eq. (C7) is exact, we can vastly simplify it

using intuition from Landau-Zener theory. Suppose, to

good approximation, there exists a z′ such that the diag-
onal entries of Heff(z

′) intersect at z′ for Ω/δ = (Ω/δ)⋆:
⟨E|Heff(z

′) |E⟩ = ⟨G|Heff(z
′) |G⟩ = z′. Because Heff is in-

dependent of the point of expansion z0 in the regime
where the linear approximation is valid, we may choose
z0 = z′. Using our assumption that the diagonal entries
of Heff(z

′) intersect at (Ω/δ)⋆, we then have ∆Ē(z0) = 0
and Ē(z0) = z0. Under this choice of z0, ∆QAA simplifies
to

∆QAA =
2
√
⟨E|Heff(z′) |G⟩2 feefgg
fggfee −m2

ge

. (C10)

We may further simplify this expression using the fact
that we expect |mge| ≪ |fgg|, |fee|. To see this, we com-
pute dHeff/dz for z ∈ R as

dHeff

dz
= −Ω2PHq

(
Q

z −QHQAAQ

)2

HqP (C11)

= −Ω2

[
Q

z −QHQAAQ
HqP

]†[
Q

z −QHQAAQ
HqP

]
,



20

which is similar to the second term of Heff(z) in Eq. (C2).
By expanding Eq. (C11) in powers of Ω/δ, as in Eq. (C3),
one can see that the on-diagonal entries can in general
be large because they connect either |G⟩ or |E⟩ to itself
via even multiples of Hq. On the other hand, the off-
diagonal entries should be smaller by O(∆QAA) because
they connect |G⟩ to |E⟩ via odd multiples of Hq, similar to
the off-diagonal entries of Heff(z). Therefore, we expect
that |mge|/|fee|, |mge|/|fgg| = O(∆QAA). We verify nu-
merically that |mge| = O(∆QAA) and fgg, fee = O(1) in
Fig. 8(c) for an example star graph. Therefore, to good
approximation we have

∆QAA =
2| ⟨E|Heff(E⋆) |G⟩ |√

fggfee
=

2∆̃QAA√
fggfee

. (C12)

Note that by the form of Eq. (C11), dHeff/dz can be
written as −Ω2 times a positive semidefinite operator,
so all the derivatives of Heff are negative. Therefore,
fee, fgg ≥ 1, so ∆̃QAA is an overestimate of the gap,
consistent with our numerical results on the star graph
in Fig. 8(b). We verify numerically in Appendix D1,
Fig. 10(d) that Eq. (C12) recovers the ∆QAA for the star
graph to high accuracy.

2. Validity of the resolvent method

For ∆̃QAA to be a good qualitative predictor of ∆QAA

via Eq. (C12), the factors fgg, fee cannot be large com-
pared to the minimum gap as to change its leading-order
scaling behavior with n. The z-dependence of Heff(z)
comes from the factor of (z −QHQAAQ)−1 in Eq. (C2),
which creates a pole at every eigenvalue of QHQAAQ. Al-
though this creates significant z-dependence in Heff(E⋆)
if QHQAAQ has an eigenvalue close to the ground state
energy E⋆ ≡ E0, the z-dependence will be modest if the
ground state energy of QHQAAQ is significantly larger
than E0. We expect this to occur when Q is a sufficiently
good projector out of the ground and first-excited states
of HQAA, and the second-excited state energy of HQAA is
much larger than ∆QAA. To formalize this intuition, in
the following Theorem 5 we relate the energy difference
between E0 and the ground state energy of QHQAAQ, de-
noted δE, to the overlap of |G⟩ and |E⟩ with the ground
and first excited eigenstates of HQAA.

Theorem 5. Denote the eigenstates of HQAA at (Ω/δ)⋆
as |ψ0⟩ , |ψ1⟩ . . . , |ψ2n⟩ with corresponding eigenvalues
E0 ≤ E1 ≤ · · · ≤ E2n , and assume that ∆QAA = E1 −
E0 ≪ E2 − E1. Denote the ground state energy
of QHQAAQ by E0 + δE. Then, if | ⟨ψ0|G⟩ ⟨ψ1|E⟩ −
⟨ψ0|E⟩ ⟨ψ1|G⟩ |2 ≫ ∆QAA, δE is bounded as

δE ≥ 1

4
(E2 − E1)| ⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ0|E⟩ ⟨ψ1|G⟩ |2.

(C13)

Hence, if | ⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ0|E⟩ ⟨ψ1|G⟩ | and E2 −E1

are at worst polynomially small in n, we will have δE

at worst polynomially small in n. This will make the
correction factors fee, fgg at most polynomially large
in n, and thus subleading when ∆QAA is exponentially
small in n. The quantity ⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ0|E⟩ ⟨ψ1|G⟩
can be interpreted as the area of the parallelogram
defined by |G⟩ , |E⟩ in the |ψ0⟩ , |ψ1⟩ subspace. If
we define P = |ψ0⟩ ⟨ψ0| + |ψ1⟩ ⟨ψ1|, the condition
that (⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ0|E⟩ ⟨ψ1|G⟩) is large is thus
both a statement about the size of the overlaps
⟨G| P |G⟩ , ⟨E| P |E⟩ and also a statement about the linear
independence of P |G⟩ ,P |E⟩. Intuitively, |G⟩ , |E⟩ must
have good overlap with the span of |ψ0⟩ and |ψ1⟩, and
must furthermore capture sufficiently different directions
within this space. We expect |G⟩ , |E⟩ to satisfy this
condition when (Ω/δ)⋆ ≪ 1 because |G⟩ approximates
|ψ0⟩ and |E⟩ approximates |ψ1⟩ in perturbation theory,
and |G⟩ , |E⟩ are orthogonal.

Proof. We first find the ground state energy of QHQAAQ
by computing minϕ ⟨ϕ|HQAA |ϕ⟩ subject to ⟨ϕ|ϕ⟩ = 1
and P |ϕ⟩ = 0. This can be formulated as the minimiza-
tion of ⟨ϕ|HQAA |ϕ⟩ − ζ0 ⟨ϕ|G⟩ − ζ1 ⟨ϕ|E⟩ − µ(⟨ϕ|ϕ⟩ − 1)
where ζ0,1, µ are Lagrange multipliers. Writing |ϕ⟩ in
the eigenbasis |ψi⟩ of HQAA and setting the derivatives
with respect to ⟨ϕ|ψi⟩ of this expression to zero yields
the condition

⟨ψi|ϕ⟩ =
1

2

1

Ei − µ
(ζ0 ⟨ψi|G⟩+ ζ1 ⟨ψi|E⟩). (C14)

Plugging Eq. (C14) into the constraints
⟨G|ϕ⟩ = ⟨E|ϕ⟩ = 0 yields two equations involving ζ0,1, µ,
and ⟨ψi|G⟩ , ⟨ψi|E⟩. Solving one equation for ζ0 and
substituting into the other yields, after simplification,

0 =
∑
i,j

| ⟨ψi|G⟩ ⟨ψj |E⟩ − ⟨ψi|E⟩ ⟨ψj |G⟩ |2

(Ei − µ)(Ej − µ)

=
∑
ij

| ⟨ψiψj |Φ⟩ |2

(Ei − µ)(Ej − µ)
, (C15)

where we have defined the wavefunction |Φ⟩ = |G⟩⊗|E⟩−
|E⟩ ⊗ |G⟩, which exists in a doubled Hilbert space. Now
plugging Eq. (C14) into ⟨ϕ|HQAA |ϕ⟩ / ⟨ϕ|ϕ⟩ and simpli-
fying using Eq. (C15) yields the conclusion that the mini-
mum energy of QHQAAQ is µ. So we must use Eq. (C15),
which gives a constraint on µ, to constrain δE = µ−E0.
Before doing so we briefly note that although we must

have µ ≥ E0 by definition, we must exclude the possi-
bility that E0 ≤ µ ≤ E1 by contradiction: were this to
happen, we could rewrite Eq. (C15) as

2
| ⟨ψ0ψ1|Φ⟩ |2

(µ− E0)(E1 − µ)
+ 2

1

µ− E0

∑
i̸=0,1

| ⟨ψ0ψi|Φ⟩ |2

Ei − µ

= 2
1

E1 − µ

∑
i̸=0,1

| ⟨ψ1ψi|Φ⟩ |2

Ei − µ
+
∑

i,j ̸=0,1

| ⟨ψiψj |Φ⟩ |2

(Ei − µ)(Ej − µ)
.

(C16)
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Here all terms are positive, but the first term on the
left hand side is O(| ⟨ψ0ψ1|Φ⟩ |2∆−2

QAA) (because µ −
E0, E1 ≤ E1 − E0 = ∆QAA), whereas the first term

on the right hand side is only O(∆−1
QAA). The equa-

tion is thus impossible to satisfy under the assumption
| ⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ1|G⟩ ⟨ψ0|E⟩ |2 ≫ ∆QAA.

Therefore, to constrain δE, we can assume that E1 ≤
µ ≤ E2, and use Eq. (C15) to write

| ⟨ψ0ψ1|Φ⟩ |2 + | ⟨ψ1ψ0|Φ⟩ |2

(µ− E0)(µ− E1)
≤ 1

µ− E0

∑
i̸=0,1

| ⟨ψ0ψi|Φ⟩ |2 + | ⟨ψiψ0|Φ⟩ |2

Ei − µ
+

1

µ− E1

∑
i̸=0,1

| ⟨ψ1ψi|Φ⟩ |2 + | ⟨ψiψ1|Φ⟩ |2

Ei − µ

≤ 1

(µ− E0)(E2 − µ)
(2| ⟨ψ0|G⟩ |2 + 2| ⟨ψ0|E⟩ |2 − | ⟨ψ0ψ1|Φ⟩ |2 − | ⟨ψ1ψ0|Φ⟩ |2)

+
1

(µ− E1)(E2 − µ)
(2| ⟨ψ1|G⟩ |2 + 2| ⟨ψ1|E⟩ |2 − | ⟨ψ0ψ1|Φ⟩ |2 − | ⟨ψ1ψ0|Φ⟩ |2) (C17)

Between the first and second lines we used E2−µ ≤ Ei−µ
for i ≥ 2, and∑
i̸=0,1

| ⟨ψ0ψi|Φ⟩ |2 = | ⟨ψ0|G⟩ |2 + | ⟨ψ0|E⟩ |2 − | ⟨ψ0ψ1|Φ⟩ |2.

(C18)

Now multiplying out all the denominators and using
E0 = E⋆, E1 = E⋆ +∆QAA, we obtain

µ− E⋆ ≥ (E2 − E⋆)
| ⟨ψ0ψ1|Φ⟩ |2 + | ⟨ψ1ψ0|Φ⟩ |2

2| ⟨ψ0|G⟩ |2 + 2| ⟨ψ0|E⟩ |2 + 2| ⟨ψ1|G⟩ |2 + 2| ⟨ψ1|E⟩ |2 − (| ⟨ψ0ψ1|Φ⟩ |2 + | ⟨ψ1ψ0|Φ⟩ |2)

+ ∆QAA
2| ⟨ψ0|G⟩ |2 + 2| ⟨ψ0|E⟩ |2 − (| ⟨ψ0ψ1|Φ⟩ |2 + | ⟨ψ1ψ0|Φ⟩ |2)

2| ⟨ψ0|G⟩ |2 + 2| ⟨ψ0|E⟩ |2 + 2| ⟨ψ1|G⟩ |2 + 2| ⟨ψ1|E⟩ |2 − (| ⟨ψ0ψ1|Φ⟩ |2 + | ⟨ψ1ψ0|Φ⟩ |2)
. (C19)

The final term can be dropped because it is small, by the
assumption | ⟨ψ0|G⟩ ⟨ψ1|E⟩ − ⟨ψ1|G⟩ ⟨ψ0|E⟩ |2 ≫ ∆QAA.
The bound in Theorem 5 then follows from maximizing
the denominator in the first term.

3. Conditions for a perturbative avoided level
crossing

By the arguments in Appendix C 2, the formula in
Eq. (C7) for the minimum gap of HQAA = Hcost −Hq

converges when the location of the avoided level cross-
ing (Ω/δ)⋆ ≪ 1. Here we establish a condition for when
this occurs, given in Eq. (C26), and motivate why we
expect this condition to hold for problem instances with
flat energy landscapes. We refer the reader to Ref. [69]
for a detailed framework to predict (Ω/δ)⋆ for general
combinatorial optimization problems.

Recall that the perturbed eigenstates (energy shifts)
are the eigenvectors (eigenvalues) of the perturbed
Hamiltonian

H(2) = −Ω2

δ

(
Hse +

∑
u∈V

nu −Hfv

)
, (C20)

where

Hfv =
∑
u∈V

(1− nu)
∏

(u,v)∈E

(1− nv), (C21)

counts the number of free vertices for each independent
set |z⟩ (vertices which can be added to |z⟩ without vio-
lating the independent set constraint). |G⟩ is the ground
state of H(2) in the Hcost = −δα manifold because this is
the instantaneous ground state of the system as Ω/δ → 0
(see Fig. 3(b), main text). Its perturbed energy under
H(2) is

⟨G|Hcost +H(2) |G⟩ = −δα− Ω2

δ
(α+ ⟨G|Hse |G⟩),

(C22)

where we have used that ⟨G|Hfv |G⟩ = 0 because no ver-
tices can be added to |G⟩. The last term counts the ex-
pected number of spin exchanges possible between neigh-
boring vertices in |G⟩.
|E⟩ can be found by determining the Hcost manifold

whose ground state energy intersects |G⟩ first at finite
Ω/δ (see Fig. 3(b) and Ref. [44] for a discussion). Suppose
|E⟩ is the ground state of Eq. (C20) in the Hcost = −δb
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manifold, for some unknown b. Then the perturbed
eigenenergy of |E⟩ is

⟨E|Hcost +H(2) |E⟩

= −δb− Ω2

δ
(b+ ⟨E|Hse |E⟩ − ⟨E|Hfv |E⟩). (C23)

Note we have assumed that the ground state of each man-
ifold of H(2) is nondegenerate, so that |G⟩ and |E⟩ can be
uniquely identified. On instances where the degeneracy
is not broken, or the energy splitting between the ground
and first excited state of a manifold is too small to accu-
rately identify |G⟩ or |E⟩, one can compute |G⟩ and |E⟩
by going to higher order in perturbation theory.

(Ω/δ)⋆ can then be estimated by computing the value
of Ω/δ where Eqs. (C22) and (C23) intersect, which is

(Ω/δ)⋆ =

√
α− b

⟨E|Hse|E⟩ − ⟨G|Hse|G⟩ − ⟨E|Hfv |E⟩ − α+ b

(C24)

to second order in Ω/δ. If (Ω/δ)⋆ ≪ 1, then the nu-
merator of Eq. (C24) must be much smaller than the
denominator:

⟨E|Hse |E⟩ − ⟨G|Hse |G⟩ ≫ 2(α− b) + ⟨E|Hfv |E⟩ .
(C25)

We can use the bound α − b ≥ ⟨E|Hfv |E⟩ to get the
following condition for when (Ω/δ)⋆ ≪ 1:

⟨E|Hse |E⟩ − ⟨G|Hse |G⟩ ≫ 3(α− b). (C26)

Therefore, (Ω/δ)⋆ ≪ 1 when |E⟩ has a large number
of expected possible spin exchanges compared to |G⟩,
and |E⟩ is comprised of near-optimal independent sets.
This is exactly the case on problem instances with flat
energy landscapes at near-optimal independent set size
b ≃ α. Because there are many independent sets of size
b with freedom to spin-exchange (see e.g. the config-
uration graph in Fig. 1, main text), we might expect
⟨E|Hse |E⟩ to be large. For example, if each vertex in
independent sets of size b has k possible spin exchanges,
then ⟨E|Hse |E⟩ = kb is extensively large with n. We
similarly expect ⟨G|Hse |G⟩ = k′α, if vertices in indepen-
dent sets of size α have k′ possible spin exchanges (in
the case where there is a unique largest independent set,
k′ = 0). Since there are far fewer independent sets of
size α, and larger independent sets may have less free-
dom to spin-exchange under the independent set con-
straint, we might expect that k > k′ and therefore that
⟨E|Hse |E⟩ ≫ ⟨G|Hse |G⟩ for large systems. Therefore,
on problem instances with flat energy landscapes, we ex-
pect the avoided level crossing location to occur near the
end of the ramp, (Ω/δ)⋆ ≪ 1.
We verify that this interpretation is correct for the fam-

ily of star graphs in Appendix D. We consider the case
of fixed branch length ℓ, and look at the avoided level

crossing location as the number of branches (and there-
fore n) grows. The largest independent set is unique, so
⟨G|Hse |G⟩ = 0. |E⟩ is in the Hcost = −δ(α−1) manifold,
so the right hand side of Eq. (C26) is equal to 3. Typi-
cal independent sets in |E⟩ can participate in O(n) spin
exchanges. Therefore, by Eq. (C24) the avoided level
crossing location (Ω/δ)⋆ goes like O(1/

√
nb) = O(1/

√
n)

as n→ ∞.

4. Experimental Rydberg Hamiltonian resolvent
gaps

Here we analyze the performance of the Rydberg atom
array experiment [23] using the resolvent gap formalism
described in Appendix C 1. Because the Rydberg Hamil-
tonian HRyd (Eq. (3), main text) has long-range interac-
tions not present in the Maximum Independent Set cost
function Hcost, we must modify our perturbative formal-
ism developed to predict the minimum gap ∆QAA. Here
we describe our method to perturbatively compute ∆QAA

for the Rydberg Hamiltonian. We then verify that the
resolvent gap formalism qualitatively captures the exper-
imental performance.
In the main text, we estimated the parameters of

the avoided level crossing |G⟩ , |E⟩ , (Ω/δ)⋆, and E⋆ (see
Fig. 3(b), main text) by solving for the perturbative
Hamiltonian H(2) approximating the system Hamilto-
nian HQAA at small Ω/δ (Eq. (11), main text). To find

H(2) we performed second-order perturbation theory in
the degenerate manifolds of Hcost, each of which con-
tained independent sets of a fixed size. These manifolds
become non-degenerate when exchanging Hcost for the
Rydberg Hamiltonian,

HRyd = −δ
∑
u∈V

nu +
∑
u,v

Vuvnunv, (C27)

due to the long-range interactions Vuv ∼ 1/|ru − rv|6. At
sufficiently large distances |ru−rv|, Vu,v is small and has
negligible effect. However, to safely perform perturbation
theory in (Ω/δ)⋆, we must carefully handle the Rydberg
interaction energy at short distances.
In the experimental implementation, the avoided level

crossing occurs at a detuning of δ⋆ ≃ 7–13MHz. The
energy scale for Hq is |Ω| = 2MHz (note that our defi-
nition of Ω differs from the standard definition of Rabi
frequency by a factor of 2). Although the resulting value
of (Ω/δ)⋆ ≪ 1, the necessary condition to perform per-
turbation theory is that the energy difference under HRyd

between independent sets connected via Hq is large com-
pared to Ω. Therefore, in addition to δ, we must con-
sider the interaction energy Vuv, which is 107MHz for
nearest-neighbors on the square lattice and 13.6MHz for
next-nearest neighbors (see Fig. 1, main text, and Sup-
plementary Information of Ref. [23]). Suppose we take
an independent set and add a vertex via Hq, creating
an independent set violation between nearest-neighbors.
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(a) (b)

FIG. 9. Perturbation theory on the Rydberg Hamiltonian. (a) The true location of the avoided level crossing (Ω/δ)⋆ is close
to the predicted value from perturbation theory, particularly for small (Ω/δ)⋆. Here we use Hamiltonian energy scales identical
to those used in the experimental implementation. (b) The true minimum gap ∆QAA can be estimated by only considering
low-order terms in the resolvent formalism.

This interaction can be treated perturbatively because
the energy difference between an independent set with
and without a single nearest-neighbor violation under
HRyd is ≥ 94MHz ≫ |Ω|. However, suppose we instead
add a vertex that creates a single independent set vi-
olation with a next-nearest-neighbor. The new energy
under HRyd increases by at least 13.6MHz due to Vuv,
and decreases by 13MHz due to δ, meaning that this
transition can be near-resonant under Hq. Therefore,
we must treat single independent set violations between
next-nearest neighbors non-perturbatively. We find that
for most instances, removing a vertex from an indepen-
dent set via a spin flip can be treated perturbatively, and
discuss rare exceptions later.

We will use the standard Schrieffer-Wolff transforma-
tion to compute H(2) for the Rydberg Hamiltonian. By
the above arguments, |Ω| is perturbatively small com-
pared to the energy difference between near-degenerate
manifolds of states that include:

1. Valid independent sets of the same size, and

2. Independent sets with any number of next-nearest
neighbor independent set violations (where each
vertex has at most a single next-nearest neighbor
in the Rydberg state).

Of course, these configurations are not truly degener-
ate under HRyd due to long range interactions, but their
splitting is comparable to |Ω|, and typically small com-
pared to the energy splitting between adjacent manifolds,
which is approximately 13.6MHz (up to interactions that
are longer-range than next-nearest neighbors). Within a
near-degenerate manifold, H(2) is given by

H(2) = HRyd −Hq −
1

2
[S,Hq], (C28)

where the Hq term implicitly acts only within a near-
degenerate manifold (i.e., it only (de)excites single next-
nearest-neighbor independent set violations). The third

term − 1
2 [S,Hq] describes perturbative interactions be-

tween neighboring manifolds due to Hq, where S satisfies

−Hq + [S,HRyd] = 0. (C29)

Solving Eq. (C29) for S gives

⟨z|S |z′′⟩ = − ⟨z|Hq |z′′⟩
HRyd(z)−HRyd(z′′)

. (C30)

Here z and z′′ are in adjacent manifolds connected by
Hq. Therefore we see explicitly that the perturbative
condition is HRyd(z)−HRyd(z

′′) ≫ |Ω|.
Inserting S into Eq. (C29), we find that H(2) is given

by

H
(2)
z,z′ = ⟨z|HRyd |z′⟩ − ⟨z|Hq |z′⟩

+
∑

z′′:⟨z|Hq|z′′⟩⟨z′′|Hq|z′⟩̸=0

Ω2

2

( 1

HRyd(z)−HRyd(z′′)

+
1

HRyd(z′)−HRyd(z′′)

)
, (C31)

for z, z′ in the same near-degenerate manifold (here we
have removed couplings involving two vertex additions or
removals because they connect different manifolds, and
are therefore off-resonant). Eq. (C31) is identical to the
perturbative Hamiltonian for HQAA [Eq. (11)], but with
the denominator of the second-order terms replaced with
the energy difference under HRyd instead of Hcost. We
note that for a small number of instances, there exists
one or more independent sets |z⟩ such that removing a
single vertex creates an independent set |z′′⟩ for which
HRyd(z)−HRyd(z

′′) ≤ |Ω|, because the Rydberg inter-
action energy from the removed vertex is comparable to
−δ. We observe that this occurs only when the removed
vertex cannot spin-exchange, so only the corresponding
contribution to the second-order diagonal energy shift in
H(2) is non-perturbative. In these rare cases we modify
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this matrix entry to be the hybridized energy of |z⟩ and
|z′′⟩.

Given our expression for H(2), we can now compute
the parameters involved in the avoided level crossing. For
each graph instance, we enumerate the independent sets
of size α and α−1 using a tensor network algorithm [40],
which is easily achieved on a laptop for the system sizes
we study (n = 39 – 80). From the independent sets we
construct H(2) and find its lowest energy eigenstate and
eigenenergy for a given value of Ω/δ, which corresponds
to the leading order approximation for |G⟩ or |E⟩ under
S. From this, we can predict (Ω/δ)⋆ by finding the value
of Ω/δ where the perturbed energies of |G⟩ , |E⟩ intersect.
The energy where |G⟩ , |E⟩ intersect provides an estimate
of E⋆. Figure 9(a) shows that the estimated (Ω/δ)⋆ from
perturbation theory agrees with the true (Ω/δ)⋆ com-
puted via DMRG, particularly as (Ω/δ)⋆ becomes small.
Using our perturbatively estimated |G⟩ , |E⟩, and

(Ω/δ)⋆, we can now estimate the minimum gap ∆QAA.
Ideally we would evaluate Eq. (8) in the main text, re-
placing Hcost with HRyd, but this is intractable at the
largest system sizes we study (n = 65, 80). Inspired by
the form of Eq. (8), we instead compute ∆est.

QAA, an esti-
mate for ∆QAA given by

∆est.
QAA = 2

∑
z,z′

(Ω/δ)
d(z,z′)
⋆ ⟨z |G⟩ ⟨z′ |E⟩ , (C32)

where d(z, z′) is the pairwise Hamming distance between
z and z′. ∆est.

QAA corresponds to only considering the

lowest-order coupling between |z⟩ ∈ |G⟩ and |z′⟩ ∈ |E⟩
under Hq in Eq. (8), which approximately occurs at or-

der (Ω/δ)
d(z,z′)
⋆ . In Fig. 9(b), we show that ∆est.

QAA and
∆QAA are similar. This verifies that even low-order es-
timations can qualitatively predict ∆QAA. We note that
∆est.

QAA can be computed with relatively low space com-

plexity on the order of O(Dα + Dα−1), where recall Db

is the number of independent sets of size b.

Appendix D: The star graph

Here we analyze the QAA runtime to find the largest
independent set of a family of star graphs. A star graph
has nb branches of even length ℓ connected by a central
vertex. We are interested in the runtime as a function of
nb at fixed ℓ.

1. Level-crossing parameters

We start by deriving the parameters involved in the
avoided level crossing when (Ω/δ)⋆ → 0. In this limit,
we can perturbatively predict (Ω/δ)⋆, the ground state
energy at the avoided crossing E⋆, and the states in-
volved in the avoided crossing |G⟩ , |E⟩. We can determine
these parameters from the eigenstates and eigenenergies

of the second-order perturbed Hamiltonian (Eq. (11),
main text),

H(2)=− Ω2

δ

(
Hse +

∑
u∈V

[
nu − (1− nu)

∏
(u,v)∈E

(1− nv)

])
.

|G⟩ is the ground state of H(2) in the manifold of in-
dependent sets with Hcost = −δα. This corresponds to
the unique largest independent set of the star graph with
α = ℓnb

2 + 1 vertices, including the central vertex and
alternating vertices on each branch (see Fig. 3(c), main
text). The eigenenergy of |G⟩ in H(2) corresponds to the
second-order energy shift of |G⟩. It has nonzero contribu-
tions only from the second term of H(2), which evaluates

to −Ω2

δ

∑
u∈V nu = −Ω2

δ α. The other terms are zero be-
cause no spin-exchange operations are possible and no
vertices can be added to the largest independent set.
Therefore at second-order the energy of |G⟩ is given by

⟨G|Hcost +H(2)|G⟩ = −δα− Ω2

δ
α. (D1)

Next we determine |E⟩ and its corresponding energy
shift by finding the ground state of H(2) in the Hcost =
−δ(α−1) manifold. In this manifold there are (ℓ/2+1)nb

independent sets of size α−1 with the central vertex ab-
sent, and each branch in one of the ℓ/2 + 1 largest in-
dependent sets of a one-dimensional length-ℓ chain with
open boundary conditions (see Fig. 10(a), top). This de-
generacy corresponds to the motion of a single domain
wall (two adjacent vertices absent from the independent
set) in the antiferromagnetic ordering on each branch.
There are also a small number of independent sets of
size α− 1 with the central vertex present (see Fig. 10(a),
bottom). In these sets, all but one of the branches has
perfect anti-ferromagnetic ordering (ℓ/2 vertices in the
set per branch), and the remaining branch has ℓ/2 − 1
vertices. One can count that the number of such inde-
pendent sets is 3nb(ℓ/2 − 1), meaning they form a van-
ishingly small fraction of independent sets of size α − 1
as nb → ∞.
As nb grows we find that |E⟩ primarily has support on

the independent sets with the central vertex absent. We

first observe that the first term in H(2), −Ω2

δ Hse, deter-

mines the ground state of H(2) to good approximation.
To see this, first note that the second term in H(2) acts
uniformly on all independent sets of size α−1, so it does
not affect the eigenvectors. The third term gives a small
diagonal shift onto an independent set for every vertex
that can be added to that set. This term is zero for all but
ℓnb/2+1 independent sets that connect to the largest in-
dependent set via a single spin flip, where it gives a shift

of Ω2

δ . When nb is large, this energy shift is negligible
compared to the ground state energy of the remaining

term −Ω2

δ Hse, which maximizes the expected number of
spin exchanges. In particular, the ground state energy of
this term is dominated by independent sets with the cen-
tral vertex absent, which have anywhere between nb and
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2nb possible spin exchanges, depending on if the domain
wall is on the boundary (one possible spin exchange) or
in the bulk (two spin exchanges) of that branch. In com-
parison, independent sets with the central vertex present
have only one or two total possible spin exchanges.

Therefore |E⟩ is well-approximated as the ground state

of −Ω2

δ Hse restricted to the independent sets with the
central vertex absent. On each branch this acts as a one-
dimensional hopping Hamiltonian with open boundary
conditions for the single domain wall. |E⟩ is therefore the
product of the ground state over all nb branches

⟨x1x2 . . . xnb
|E⟩ =

nb∏
i=1

1√
ℓ/4 + 1

sin
( πxi
ℓ/2 + 2

)
, (D2)

where |xi⟩ , xi ∈ {1, 2, . . . , ℓ/2 + 1} is the state with the
domain wall on the ith branch between sites 2xi − 2
and 2xi − 1. We confirm numerically that the overlap
of Eq. (D2) with the true ground state of H(2) quickly
approaches one as nb grows for ℓ ∈ {2, 4, 6, 8}.

The corresponding perturbed energy at second-order
is then

⟨E|Hcost +H(2)|E⟩

≃ −δ(α− 1)− Ω2

δ
(α− 1)− Ω2

δ
⟨E|Hse|E⟩ . (D3)

By our earlier reasoning, ⟨E|Hse|E⟩ = cℓnb where
cℓ ∈ [1, 2] is a computable number depending on ℓ. For
ℓ = 2, each configuration in |E⟩ can spin-exchange nb
times (once on each branch), so cℓ = 1. As ℓ increases,
the |E⟩ localizes on configurations that can spin-exchange
2nb times (with the domain walls in the bulk of each
branch), so cℓ → 2.
Having computed |G⟩ , |E⟩ and their energies as a func-

tion of Ω/δ, we can now estimate (Ω/δ)⋆ and E⋆ to second
order in Ω/δ. (Ω/δ)⋆ is the value of Ω/δ where the two
perturbed energies, Eqs. (D1) and (D3), intersect, given
by

(Ω/δ)⋆ =

√
1

cℓnb − 1
. (D4)

This quantity goes to zero as nb → ∞, verifying that
our perturbation theory converges as n → ∞ at fixed ℓ.
Fig. 10(b) shows the predicted and numerically computed
(via exact diagonalization) value of (Ω/δ)⋆ for ℓ = 2 and

4, which have cℓ = 1 and
√
2, respectively. We reach

system sizes of 100 and 97 for ℓ = 2 and 4, respectively,
by symmetrizing the Hamiltonian over the branches of
the star graph.

The corresponding ground state energy is computed by
evaluating Eq. (D1) at (Ω/δ)⋆. This gives, in units of δ,

−E⋆

n
=
α

n

(
1 +

1

cℓnb − 1

)
. (D5)

Figure 10(c) shows the predicted and actual values of
−E⋆/n for the same instances at ℓ = 2, 4. As expected,
the predicted values converge to the true values as nb
increases.

2. Quantum runtime

We now compute the minimum gap ∆QAA(ℓ, nb) and
analyze its scaling as a function of nb at fixed ℓ. We will
show that ∆QAA(ℓ, nb) scales as

∆QAA(ℓ, nb) = O

(
Ω

[
1√

ℓ/4 + 1
sin

(
π

ℓ/2 + 2

)]nb
)
,

(D6)

up to polynomial factors in nb, which are subleading com-
pared to Eq. (D6), which is exponentially small in nb.
This matches the scaling predicted from leading-order
perturbation theory in (Ω/δ)⋆ in Eq. (15) from the main
text.
Following the resolvent formalism discussed in Ap-

pendix C 1, we will evaluate the estimated minimum gap
∆̃QAA. Recall from Eqs. (C3) and (C4) that ∆̃QAA is
given by the off-diagonal matrix element of an effective
Hamiltonian Heff(z) acting on the subspace spanned by
|G⟩ and |E⟩,

∆̃QAA = 2| ⟨G|Heff(z) |E⟩ | (D7)

= 2

∣∣∣∣⟨G|Hcost −Hq +Hq
Q

z −QHQAAQ
Hq |E⟩

∣∣∣∣ ,
where HQAA = Hcost − Hq is evaluated at (Ω/δ)⋆,
and z ≃ E⋆ is a parameter with dimensions of en-
ergy. By the resolvent formalism equation for the mini-
mum gap in Eq. (C12), ∆̃QAA(ℓ, nb) gives ∆QAA(ℓ, nb)
up to a computable proportionality factor that de-
pends on dHeff(z)/dz and which is close to one. We
numerically verify the correctness of Eq. (C12) in
Fig. 10(d) by computing ∆QAA(ℓ, nb) for ℓ = 2, 4 via
both exact diagonalization and by numerically evalu-
ating Eq. (C12). To compute Eq. (C12), we first

compute Heff(z), which gives us ∆̃QAA by Eq. (D7).
We compute the proportionality factor by evaluating
dHeff(z)/dz using the finite difference method. When

this correction factor is applied to ∆̃QAA(ℓ, nb), the
result matches ∆QAA(ℓ, nb) computed via exact di-
agonalization to high accuracy, as expected. We
observe numerically that ∆̃QAA ≃ 4.53∆QAA for ℓ = 2,

and ∆̃QAA ≃ 7.85∆QAA for ℓ = 4, approximately inde-
pendently of nb. Therefore, as argued in Appendix C 1,
∆̃QAA captures the relevant scaling of ∆QAA in nb.
To simplify the computation of Eq. (D6), we use a

slightly different choice of |E⟩ from the previous Ap-
pendix D1. This is allowed as long as |G⟩ , |E⟩ are rea-
sonable approximations to the eigenstates involved in the

avoided level crossing (see Appendix C 2). We let H
(i)
QAA

equalHQAA restricted to the ith branch of the star graph.

We let |Ei⟩ be the ground state of H
(i)
QAA, and choose

|E⟩ = ⊗nb
i=1 |Ei⟩ . Note that |E⟩ is equal to the ground

state of HQAA from second-order degenerate perturba-
tion theory [Eq. (D2)], to leading order in (Ω/δ)⋆.



26

(a)
Central vertex absent

Central vertex present

spin exchanges

spin exchanges

= Domain wall

(b) (c) (d)

FIG. 10. Perturbative avoided level crossing in the star graph. (a) There are two types of suboptimal independent sets of size
α − 1 in the star graph (dark blue vertices are present in the independent set, light blue vertices are absent). Sets with the
central vertex absent have a single domain wall on each of nb branches that can hop to neighboring sites via spin exchanges,
yielding O(nb) possible spin exchanges per independent set. When the central vertex is present, only one branch has a domain
wall, so there are O(1) possible spin exchanges. These latter independent sets have negligible amplitude in |E⟩, which favors
independent sets with more possible spin exchanges. The predicted (solid lines) and numerically computed (data points) values
of (Ω/δ)⋆ (b) and −E⋆/n (c) match as n increases at fixed branch length ℓ. As n → ∞, (Ω/δ)⋆ → 0. (d) The minimum
gap computed via exact diagonalization matches the gap computed by numerically evaluating the resolvent method formula
Eq. (C12) in Appendix C 1. At fixed ℓ, the minimum gap decreases exponentially as a function of nb (and therefore n).

We now evaluate Eq. (D7). The first term yields
⟨G|Hcost |E⟩ = 0. The second term is of the same
order as Eq. (D6) because our |E⟩ is equal to the
prediction from second-order degenerate perturbation
theory to leading order in nb (see Eq. (15), main
text). Therefore it remains to compute the third term,

⟨G|Hq
Q

z−QHQAAQHq |E⟩. We begin by simplifying the

outermost factors of Hq. First, we define the state

|Ẽi⟩ = (1− |Ei⟩ ⟨Ei|)(1− |G⟩ ⟨G|)H(i)
q |Ei⟩ , (D8)

where H
(i)
q is Hq restricted to a single branch i. Then,

QHq |E⟩ =
nb∑
i=1

|Ẽi⟩ ⊗j ̸=i |Ej⟩ , (D9)

where we have used the fact that Hq |E⟩ is a sum of nb
terms, in each of which nb − 1 branches are in |Ei⟩.
Meanwhile, when Hq acts on |G⟩ on the left hand side

of the third term of Eq. (D7), one term in Hq removes the
central vertex from |G⟩, yielding the state ⊗nb

i=1 |xi = 1⟩,
where |xi = 1⟩ denotes that the domain wall on the ith
branch is on the first site (see Appendix D1). Hq |G⟩ also
contains terms in which vertices are removed from the
branches of |G⟩, while the central vertex is left excited.
These terms cannot have better scaling with nb than the
term with the central vertex removed from |G⟩, which we
confirm numerically. They are higher order because to
connect to |G⟩ via these terms, one must first go through
⊗nb

i=1 |xi = 1⟩ to add the central vertex. Therefore, we

have

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩

= nb (⊗nb
i=1 ⟨xi = 1|)Q

[
1

z −QHQAAQ

]
|Ẽ1⟩ ⊗nb

i=2 |Ei⟩ .

(D10)

Here we have specified without loss of generality that the
factor of |Ẽi⟩ occurs on i = 1, which yields the factor of
nb.

We will now make the approximation that Q factorizes
between branches,

QHQAAQ ≈
nb∑
i=1

QH
(i)
QAAQ, (D11)

whereH
(i)
QAA isHQAA restricted to a single branch i. This

is an approximation because it neglects terms in HQAA

which act on the central vertex of the graph. This leaves
us with (up to polynomial factors in nb)

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩ ∼

(⊗nb
i=1 ⟨xi = 1|)Q 1

z −
∑nb

i=1QH
(i)
QAAQ

|Ẽ1⟩ ⊗nb
i=2 |Ei⟩ .

(D12)

Note now that [QH
(i)
QAAQ,QH

(j)
QAAQ] = 0, so that we
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may use the identity

1

z −
∑nb

i=1QH
(i)
QAAQ

(D13)

=
1

(2πi)nb−1

∫
dz1 . . . dznb

[
δ

(
z −

nb∑
i=1

zi

)

×
nb∏
i=1

1

zi −QH
(i)
QAAQ

]
,

where the zi integrals are taken on a contour encircling
the real axis. Therefore, we have

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩

∼ 1

(2πi)nb−1

∫
dz1 . . . dznb

[
δ

(
z −

nb∑
i=1

zi

)

× (⊗nb
i=1 ⟨xi = 1|)Q

nb∏
i=1

1

zi −QH
(i)
QAAQ

|Ẽ1⟩ ⊗nb
i=2 |Ei⟩

]
.

(D14)

Note now that Q acts trivially on |Ẽ1⟩ ⊗nb
i=2 |Ei⟩, because

|Ẽ1⟩ has no overlap with |E1⟩. Furthermore, H
(nb)
QAA only

changes the state on branch nb, so that we can write

1

znb
−QH

(nb)
QAAQ

|Ẽ1⟩ ⊗nb
i=2 |Ei⟩

= |Ẽ1⟩ (⊗nb−1
i=2 |Ei⟩)

1

znb
−H

(nb)
QAA

|Enb
⟩ . (D15)

We can repeat this process nb − 2 more times to obtain

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩

∼ 1

(2πi)nb−1

∫
dz1 . . . dznb

[
δ

(
z −

nb∑
i=1

zi

)
(⊗nb

i=1 ⟨xi = 1|)

×Q
1

z1 −QH
(1)
QAAQ

(
|Ẽ1⟩ ⊗nb

i=2

1

zi −H
(i)
QAA

|Ei⟩
)]
.

(D16)

We then make the replacement
1

zi−H
(i)
QAA

|Ei⟩ → 2πiδ(zi − ϵ) |Ei⟩, where ϵ is the en-

ergy of |Ei⟩ under HQAA. This is valid by our choice of
integration contour and because |Ei⟩ is an eigenstate of

H
(i)
QAA. Performing the zi integrals yields

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩ ∼ (⊗nb

i=1 ⟨xi = 1|) (D17)

×Q
1

z − (nb − 1)ϵ−QH
(1)
QAAQ

(
|Ẽ1⟩ ⊗nb

i=2 |Ei⟩
)
.

At this point, formally, the factors of Q = 1−|G⟩ ⟨G|−∏nb

i=1 |Ei⟩ ⟨Ei| act on all factors in the wavefunction. How-
ever, since all but one of the nb factors in the tensor prod-

uct on the right are |Ei⟩, and since H
(1)
QAA only changes

the state on the branch i which is not in |Ei⟩, we may
safely replace Q with Q1 = 1− |E1⟩ ⟨E1|, and obtain

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩ ∼ (⊗nb

i=1 ⟨xi = 1|)

×Q
1

z − (nb − 1)ϵ−Q1H
(1)
QAAQ1

(
|Ẽ1⟩ ⊗nb

i=2 |Ei⟩
)
.

(D18)

At this point, the final factor of Q may be dropped, be-
cause 1

z−(nb−1)ϵ−Q1H
(1)
QAAQ1

|Ẽ1⟩ has no overlap with |E1⟩.
The expression becomes

⟨G|Hq
Q

z −QHQAAQ
Hq |E⟩ ∼ (⟨x1 = 1|E1⟩)nb−1

× ⟨x1 = 1| 1

z − (nb − 1)ϵ−Q1H
(1)
QAAQ1

|Ẽ1⟩ .

(D19)

The factor of ⟨x1 = 1| 1

z−(nb−1)ϵ−Q1H
(1)
QAAQ1

|Ẽ1⟩ should

scale at most polynomially with nb and is thus sublead-
ing, by the arguments presented in Appendix C 1. The
term ⟨x1 = 1|E1⟩)nb−1 scales as Eq. (D6). Therefore, we

conclude that ∆̃QAA (and therefore ∆QAA) has the same
asymptotic scaling with nb as Eq. (D6).

Appendix E: Runtime of the modified QAA

In this section, we will analyze the optimized runtime
∆−1

QAA of the modified QAA [Eq. (16), main text]. We

will show that ∆−1
QAA scales as the square root of the

classical Markov chain runtime lower bounds from Ap-
pendix A under motivated assumptions about the energy
landscape. We numerically verify this when the Hℓ en-
ergy scale λ→ ∞ for system sizes of up to 460 vertices in
Fig. 4(c) of the main text. Here, we provide an analytic
arguments supporting these numerical observations. We
first analyze the case where λ→ ∞ next in Appendix E 1.
Perturbative corrections to our arguments for the case
when λ is finite are discussed in Appendix E 2.

1. Infinite λ case

In the λ → ∞ limit, the adiabatic dynamics are pro-
jected onto the ground subspace of Hℓ. The ground sub-
space of Hℓ is spanned by the uniform superpositions of
each independent set size {|Sb⟩}b=0,...,α [Eq. (9), main
text] when there exists a path between any two indepen-
dent sets of the same size via spin exchanges. Here we
assume this condition is met, and discuss exceptions in
Appendix E 2. Each uniform superposition |Sb⟩ experi-
ences an energy shift of −δb from Hcost and couples to
neighboring independent set sizes underHq with coupling

strength tb = ⟨Sb|Hq |Sb−1⟩ = Ωb
√
Db/Db−1. Therefore,
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FIG. 11. Minimum gap of the modified QAA at infinite λ. (a) The original one-dimensional tight-binding Hamiltonian Htb has
a weak coupling tα−1 between the last and second-to-last sites (top). Htb can be partially diagonalized to generate an effective
Bixon-Jortner model that weakly couples all Hbulk eigenstates to the last site of the tight-binding model (bottom). (b) The
lowest energy eigenvalues of Htb as a function of δ/Ω for a representative instance with n = 720 vertices (bottom) are paired
with schematic eigenenergies of Hbulk and the last site |Sα⟩ at three different detunings (top). For δ < δ⋆, the spectral gap of
Htb is equal to the spectral gap of Hbulk. At the resonance condition δ = δ⋆ between the last site and the Hbulk ground state
|ψ0⟩, the weak coupling tα−1 sets the gap. For δ > δ⋆, Wannier-Stark localization sets in and the gap is proportional to δ.

(c) We show a representative example of the couplings t(x) and position dependent mass m(x) = α2

t(x)
from a 720-vertex hard

unit-disk graph instance. (d) For the same instance, we show the effective potential V (x), neglecting the second-derivative term
∂2
xt(x), and the Hbulk ground state wavefunction ψ0(x) for δ = 0 and δ = δ⋆. At δ = 0, the ground state is delocalized in the

middle of the bulk (top). At δ = δ⋆, the wavefunction is localized near the weak coupling (bottom).

the effective dynamics are given by the one-dimensional
tight-binding Hamiltonian Htb [Eq. (18), main text],

Htb = −
α∑

b=1

[δb |Sb⟩ ⟨Sb|+ tb(|Sb⟩ ⟨Sb−1|+ h.c.)] . (E1)

Our goal is to show that the minimum gap ∆QAA of
Htb goes like the smallest coupling minb tb. For simplicity,
we will focus on instances where the smallest coupling is
between the largest independent sets of size α and subop-
timal independent sets of size α− 1, i.e. minb tb = tα−1.
This was overwhelmingly the most common case, repre-
senting 99.87% of the hundreds of instances studied in
Appendix B. If ∆QAA ∝ tα−1, then the modified op-

timized QAA runtime ∆−1
QAA ∝ t−1

α−1 is quadratically

smaller than the classical Markov chain runtime ∝ t−2
α−1,

up to polynomial factors in n. These polynomial fac-
tors are insignificant because numerically, t−2

α−1 is expo-

nentially large in
√
n for the Maximum Independent Set

problem on unit-disk graphs (see Appendix B).

We first leverage the assumption that tα−1 is the small-
est parameter in Htb. We bipartition the system into two
parts: the last site, corresponding to |Sα⟩, and the re-
maining sites which form the “bulk” of the chain. These
two parts are connected by the weakest coupling tα−1:

Htb = Hbulk − δα |Sα⟩ ⟨Sα| − tα−1(|Sα⟩ ⟨Sα−1|+ h.c.),
(E2)

where

Hbulk = −
α−1∑
b=0

[δb |Sb⟩ ⟨Sb|+ tb(|Sb⟩ ⟨Sb−1|+ h.c.)] .

(E3)

We then diagonalize Hbulk and re-express Htb in terms
of its eigenenergies El and eigenvectors |ψl⟩ (where
l = 0, . . . , α− 1 is ordered from lowest to highest energy):

Htb = −δα |Sα⟩ ⟨Sα| (E4)

+
α−1∑
l=0

[El |ψl⟩ ⟨ψl| − tα−1 ⟨ψl|Sα−1⟩ (|ψl⟩ ⟨Sα|+ h.c.)] .

Eq. (E4) is a Bixon-Jortner model [70], a standard model
in quantum optics where uncoupled levels interact with
each other only by coupling to a common mode. Here,
the uncoupled eigenstates |ψl⟩ of Hbulk are each coupled
to the last site of the tight-binding chain (the common
mode) with strength tα−1 ⟨ψl|Sα−1⟩, as in Fig. 11(a).
The coupling to the common mode is generated by pro-
jecting the last site onto the energy eigenstates of Hbulk:
⟨ψl|Hq |Sα⟩ = tα−1 ⟨ψl|Sα−1⟩.
We now consider what happens to the spectral gap of

Htb as we vary the detuning δ at fixed Ω = 1, which we
visualize in Fig. 11(b). We let δ⋆ denote the detuning cor-
responding to when the ground state of Hbulk, |ψ0⟩, and
the last site |Sα⟩ are resonant in energy (i.e., E0 = −δ⋆α).
From the canonical solution of the Bixon-Jortner prob-
lem [70], it follows that once E0, E1, · · ·Eα−1 > −δ⋆α,
the spectral gap increases due to level repulsion as δ is
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increased. In the language of the original tight-binding
Hamiltonian, when δ > δ⋆, the electric field δ dominates
so that the instance-specific details of the couplings tb be-
come irrelevant, and Wannier-Stark localization occurs in
the bulk (see Fig. 11(b), top right). Therefore, the spec-
tral gap is set by δ and the smallest coupling tα−1 does
not play a role in determining the gap for δ > δ⋆. When
δ < δ⋆, the spectral gap of Htb is set by the spectral gap
of Hbulk, which we denote as ∆bulk (see Fig. 11(b), top
left).

The gap is sensitive to the smallest coupling tα−1 at δ⋆.
Then, the ground state energy of Hbulk, |ψ0⟩, is resonant
with the energy of the last site |Sα⟩, i.e., E0(δ⋆) = −δ⋆α.
Here we show that the minimum gap ∆QAA is given by
the gap at the resonance,

∆QAA = tα−1 ⟨ψ0|Sα−1⟩+O(t2α−1), (E5)

when the following condition holds:

1. The spectral gap ∆bulk of Hbulk is at least polyno-
mially small in n for all values of δ.

This first condition guarantees two things: first, that
two-level Landau-Zener physics occurs at δ = δ⋆, as the
bulk ground state |ψ0⟩ and the last site |Sα⟩ are ener-
getically well-separated from higher excited eigenstates
of Htb. This ensures that at δ = δ⋆, the gap is given
by the Bixon-Jortner coupling tα−1 ⟨ψ0|Sα−1⟩ . Second,
it guarantees that the avoided level crossing at δ = δ⋆ is
the minimum gap, as the gap for δ < δ⋆, ∆bulk, is larger
than Eq. (E5).

∆QAA is thus quadratically smaller than the classical
Markov Chain runtime lower bounds up to polynomial
factors in n when a second condition holds:

2. ⟨ψ0|Sα−1⟩ is, at least, polynomially small in 1/n.

This condition guarantees that the magnitude of the
Bixon-Jortner matrix coupling ∆QAA = tα−1 ⟨ψ0|Sα−1⟩
at δ⋆ is set by tα−1 and not by localization of |ψ0⟩ at sites
other than |Sα−1⟩. Therefore, it is sufficient to show that
|ψ0⟩ at δ⋆ has at least polynomial in n overlap near the
(α − 1)st site in the chain. If both of these conditions
hold, ∆−1

QAA is quadratically enhanced over the inverse
of the classical Markov chain runtime up to polynomial
factors in n.
We show next that both of these conditions are met un-

der motivated assumptions about the couplings tb. We
numerically analyze hundreds of hard Maximum Inde-
pendent Set instances on large graphs (from 460 to 720
vertices). Our numerical investigations of the couplings
tb reveal that while the specifics of the couplings vary
from instance to instance, in the bulk they can, empiri-
cally, be well-described by a smooth function of the site
index b along the tight-binding chain. Note that this con-
dition often breaks down at the interface between the α
and α−1 because tα−1 is exponentially small in

√
n, but

we have crucially split that term from the bulk. In pass-
ing we note that the normalized couplings, t(x) ≡ tb/α

appears to converge to a near-universal curve across hun-
dreds of instances as a function of x = b/α for small to
intermediate 0 < x < 0.5, and as 1√

α
for small x (one can

easily check this for the x = 1/α case). The normalized
couplings peak at a constant value ≃ 0.69 before display-
ing instance-to-instance variation as they become small
for x→ 1, as displayed in Fig. 12(a).
Motivated by these numerical observations, we now

state constraints on the couplings that imply both con-
ditions are satisfied.

Theorem 6. Assume that the couplings tb for b =
0, . . . , α − 1 are a smooth, weakly concave function t(x)
of x = b

α , that t(1) → 0 as 1
nγ for some γ > 0, and∫ 1

0
t(x)−1/2dx is at most polynomially large in the sys-

tem size n. Furthermore, assume δ⋆ is sufficiently large
such that V (x) = −δx− 2t(x) + 1

α2 ∂
2
xt(x) is locally min-

imized for 1− 1
α < x < 1. Then both conditions (1) and

(2) hold.

Proof. We appeal to the continuum limit of Hbulk, taken
as the system size n → ∞. This is equivalent to tak-
ing the largest independent set size α → ∞, since for
the unit-disk graphs embedded on a two-dimensional lat-
tice with constant filling fraction, α is proportional to
n. We can take Hbulk to the continuum limit because
we assumed that the couplings tb are a smooth func-
tion of the site x. The new continuum, time-independent
Schrodinger equation for the eigenstates ψ(x) in the bulk
is, for arbitrary δ,(

− 1

α2
∂xt(x)∂x + V (x)

)
ψ(x) = εψ(x), (E6)

where V (x) = −δx − 2t(x) + 1
α2 ∂

2
xt(x) and ε is the en-

ergy density (energy normalized by α). Note that the
site-dependent couplings have two major contributions.
First, they induce a position-dependent mass going as

m(x) = α2

t(x) , which imposes a metric on the chain. Sec-

ond, the couplings induce a potential energy given by
−2t(x). The term that goes as the second derivative in
the couplings is kept as it may grow with n when t(x)
goes to zero at the boundaries x = 0, 1. Away from
the boundaries of the bulk, this second derivative term
is negligible as α → ∞. In Fig. 11(c), we visualize t(x)
and m(x) for an example unit-disk graph instance with
n = 720 vertices. We plot the corresponding potential
V (x), neglecting the second derivative term, in Fig. 11(d)
for δ = 0 and δ = δ⋆.
We can arrive at a more conventional position-

independent problem by performing two similarity trans-
forms. The first is a point canonical transformation,

u(x) =

∫ x

0

1√
t(y)

dy, (E7)

which transforms the position dependent mass term into
a position independent kinetic term: ∂xt(x)∂x → ∂2u. We
then employ the standard integrating factor to remove
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(a) (b)

FIG. 12. Parameters of the one-dimensional tight-binding Hamiltonian. (a) We show the mean couplings t(x) generated from
229 unique 720-vertex unit-disk graph instances with largest independent set size α = 217. Error bars give the maximum and
minimum coupling over all instances. t(x) is well-described by a smooth function with universal behavior for x ≲ 0.3. There
are significant instance-by-instance variations in the couplings as x → 1. We find that the mean couplings t(x) are well-fit to

the functional form y = 1.80(1)
√
x(1 − x)1.04(1) (black line). (b) The mean value of u(1) =

∫ 1

0
t(y)−1/2dy grows polynomially

with the system size n. As a result, the gap of Hbulk vanishes at most polynomially in 1/n. Error bars give the maximum and
minimum value of u(1) over 1000 instances for each system size.

terms that are first order in the spatial derivative, leading
to a typical Schrodinger problem:

(
− 1

α2 ∂
2
u+U(u)

)
ψ(u) =

εψ(u), for a doubly-transformed effective potential U(x).
The similarity transformations do not alter the smooth-
ness nor the convexity of the original potential. More-
over, the contributions from 1

α2 ∂
2
xt(x) do not change the

convexity of the potential. As such, the effective poten-
tial U meets the weak convexity criterion stipulated in
Andrews and Clutterbucks’ proof of the fundamental gap
conjecture for one-dimensional systems [71]. Therefore,
we can apply the fundamental gap conjecture to bound
∆bulk for all δ as

∆bulk ≥ 3π2

(αu(1))2
. (E8)

Thus, as long as the couplings can be well-described by
a smooth t(x) and u(1) grows at most polynomially in n,
∆bulk is polynomially small in 1/n. This proves our first
condition.

To validate our second condition – that the ground
state of the bulk is localized around the penultimate site
on the chain – we provide a semi-classical argument. Note
that the semi-classical approximation is well-justified in
the limit of large system sizes α → ∞ as the effective

mass m(x) = α2

t(x) , diverges at the edges (equivalently,

t(x) → 0). The resonance condition implies that the
ground state energy density of the bulk, ε, at the cross-
ing is −δ⋆. The classical minimum of the potential ap-
proaches the edge of the chain in the regime of δ = δ⋆.
As shown in Fig. 11(d), for δ = δ⋆, in order to minimize
energy, the particle seeks to lower its potential due to the
electric field gradient versus the potential due to tunnel-
ing. As the semi-classical expectation becomes exact in
the limit of an infinite mass, the particle localizes near
the edge where the classical minimum of the potential
lies. Thus, within an asymptotically exact semi-classical
argument, the ground-state of the bulk should localize

near the site corresponding to |Sα−1⟩. This validates the
second condition of our argument. As a result, we have
shown that in the λ → ∞ limit, ∆−1

QAA is quadratically
smaller than the classical Markov chain runtime lower
bounds.

a. Numerical justification

By examining 1000 unit-disk Maximum Independent
Set problem instances for each system size between 460
and 720 vertices, in Fig. 12(a) we find a simple qualita-

tive model for t(x) is given by t(x) = Ax
1
2 (1− x)c. The

factor of 1
2 encodes the exact scaling as x→ 0 and the fit

parameter c accounts for instance-to-instance variations
as x → 1. We find that the fitted values of c fall be-
tween c ∈ {1.03, 1.09} across different instances, leading
to appropriate conditions for t(x) such that u(1) is only
polynomially large in n. We confirm numerically that
u(1) grows approximately linearly with n in Fig. 12(b).
Thus, our numerical results confirm that ∆bulk is at worst
polynomially small in 1/n, under the assumption of the
validity of our continuum analysis. Therefore, it is well-
justified to focus on the resonant level crossing between
the last site and the ground state of the bulk only to
determine ∆QAA.
This numerical evidence also supports our assumption

about V (x) being locally minimized for 1 − 1
α < x < 1.

One might worry that the diverging mass near the edges
of the tight-binding model causes the bulk ground state
wavefunction to be classically forbidden from penetrating
the region of the penultimate site on the chain. Indeed,
by solving Eq. (E6) for the ground state with energy den-
sity −δ and using the WKB approximation, one notices
that there are two classically forbidden regimes: from
smaller x due to the an increase in the potential, and at
x → 1 due to terms originating from the diverging mass
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(e.g. terms proportional to [∂2xt(x)]/t(x)). However, the
latter classically forbidden regime, following the qualita-
tive model for t(x) = Ax1/2(1−x)c, occurs for x > 1− c

2α ,
where c is numerically fitted to be within 1.03 and 1.09.
This suggests that the classically forbidden regime occurs
within the penultimate site, which occupies 1− 1

α < x < 1
on the continuum, which can be seen by simply inverting
the mapping from the continuum back to discrete sites
on a chain. Thus our numerics also strongly suggest that
the wavefunction is localized around |Sα−1⟩, such that
⟨ψ0|Sα−1⟩ is sufficiently large and ∆QAA = tα−1, up to
polynomial factors in n.

b. Optimizing the modified QAA

For QAA to achieve a runtime which scales as ∆−1
QAA

in practice, the algorithm schedule (Ω(t), δ(t)) must be
optimized so that its parameters change slowly near the
location of the avoided level crossing (see Fig. 3(a), main
text). In particular, by choosing |dH/dt| ∝ ∆2

QAA within

a O(∆QAA) interval around the location of the minimum

gap, the total QAA runtime is O(∆−1
QAA) [11]. It is there-

fore useful to be able to estimate the location of the
avoided crossing, so that the algorithm schedule can be
optimized. Techniques to optimize QAA are a subject of
active research, and recent work indicates that it is pos-
sible to optimize QAA on a wide class of disordered cost
Hamiltonians when using the reflection about the uni-
form superposition state, 1− 1

2n

∑
z,z′ |z⟩ ⟨z′|, to drive the

evolution, instead of Hq [41]. Here we describe a simple
way to optimize the modified QAA when λ→ ∞, which
achieves a total runtime, including optimization, that is
asymptotically smaller than the SA runtime O(∆−2

QAA).

The full quadratic speedup, with runtime O(∆−1
QAA), is

recovered if quantum phase estimation is used as a sub-
routine in optimizing the QAA. A partial speedup, with

runtime O(∆
−10/7
QAA ), is obtained if only projective mea-

surements in the σz and σx bases are used. We leave the
optimization of the modified QAA at arbtitrary λ as a
subject of future research, possibly by generalizing the
results of Ref. [41].

Our arguments follow from Appendix E 1, whose re-
sults we summarize here. When λ→ ∞, the QAA system
Hamiltonian simplifies to an effective one-dimensional
tight-binding Hamiltonian Htb [Eq. (18)]. The sites of
Htb correspond to the uniform superpositions of each
independent set size, {|Sb⟩} (b = 0, 1, . . . , α). Suppose
the final coupling between |Sα−1⟩ and |Sα⟩, equal to

Ωα
√
Dα/Dα−1, is small compared to all other couplings.

Then, this coupling can be treated perturbatively, and
the system is described by a Bixon-Jortner model [70].
Let us take Ω = 1 and consider the system ground state
as a function of δ, as visualized in Fig 11(b). At δ < δ⋆,
where δ⋆ denotes the location of the avoided crossing,
the system ground state is the ground state |ψ0⟩ of a re-
stricted Hamiltonian Hbulk, which includes all sites up

to |Sα−1⟩. The avoided level crossing occurs when the
energy E0(δ) of |ψ0⟩ is resonant with the energy −δα of
last site of the chain, |Sα⟩. Thus, the avoided crossing
occurs when E0(δ⋆) = −δ⋆α to high O(∆2

QAA) accuracy

by the arguments of Appendix E 1. For δ > δ⋆, |ψ0⟩ is
the first excited state of Htb.
Therefore, if one can estimate ground state energy E0

of Hbulk, and compare its value to the resonance con-
dition E0(δ⋆) = −δ⋆α, one can estimate δ⋆. Because
QAA can prepare |ψ0⟩ efficiently, finding E0 is compu-
tationally simple. Note that this is distinct from gener-
ically finding the ground state of the system Hamilto-
nian Htb. In particular, suppose we run QAA for time
T with a linear schedule for δ(t), stopping the evolu-
tion at the desired value of δ. The precise choice of T is
algorithm-dependent and discussed below, but we always
choose 1/T to be much less than 1/∆2

bulk, where ∆bulk is
the minimum gap of Hbulk, but larger than ∆QAA. Be-

cause T−1/2 is small compared to the energy difference
between the first and second excited state, this schedule
should remain adiabatic with respect to all but the small-
est gap ∆QAA. This schedule is still highly diabatic with
respect to ∆QAA, however, for which an instantaneous
ramp speed ∝ ∆2

QAA is needed to maintain adiabaticity.
When the QAA evolution is stopped at δ < δ⋆, the state
thus prepared by QAA will therefore have high overlap
with the ground state of Htb (and thus Hbulk), while for
δ > δ⋆ it will have high overlap with the first excited state
of Htb (thus the ground state of Hbulk). In particular, for
all values of δ, because of the chosen ramp time, the pre-
pared wavefunction will have unit amplitude in |ψ0⟩, up
to small corrections from all other instantaneous eigen-
states of Htb, which contribute small errors to the energy
of the state.

Therefore |ψ0⟩ can be prepared using QAA, and one
can measure its energy with error ε in time ε−γ . The
value of γ depends on the method used to compute the
energy: γ = 1 using quantum phase estimation [72], and
γ = 5/2 using projective measurements in the σz and
σx bases. The value of 5/2 is the combined result of
shot noise and the time required for a single QAA run.
In particular, with a N runs of time T each, we expect
shot noise at the level of O(N−1/2) and nonadiabatic
corrections to E0 at the level of O(T−2) [73]. To make
both of these O(ε) one can choose T = ε−1/2, N = ε−2,
for a total time of ε−5/2. Because quantum phase es-
timation does not require repeated runs, we can simply
choose T = ∆−1

QAA so that nonadiabatic corrections of

order T−2 = O(∆2
QAA) are negligible, and still retain

γ = 1.
Our procedure in Algorithm 1 thus uses binary search

to efficiently find δ⋆ by minimizing the absolute value
of the prepared energy of |ψ0⟩ minus −δα. In particu-
lar, we use this procedure to estimate δ⋆ to some finite,
high accuracy depending on γ. We find that it is opti-

mal to estimate δ⋆ to O(∆
2/(1+γ)
QAA ) accuracy. We then

run the modified QAA using an optimized schedule with
runtime O(∆−1

QAA), as in Ref. [11], for candidate guesses
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Algorithm 1: Optimizing the modified QAA

Data: A subroutine that estimates E0(δ) with error ε
in time ε−γ , for δ < δ⋆. An initial guess r for
the ratio Dα−1/Dα, and a scale factor k > 1
with which we will increase r by during each
iteration of the optimization.

while An independent set of size α has not been found
using the modified QAA. do
r ← kr
Use subroutine to constrain δ⋆ to an O(r−1/(1+γ))

interval in time O(rγ/(1+γ)). Draw r1/2−1/(1+γ)

regularly spaced guesses for δ⋆ from this interval.
for each guess for δ⋆ in the O(r−1/(1+γ)) interval,

in O(r−1/2) increments do

Run the modified QAA in time O(r1/2) using a
schedule that slows down at the current guess
of δ⋆, such that |dH/dt| ∝ 1/r in an O(r−1/2)
range of the guess for δ⋆.

end

end

of δ⋆ within this range of possible values. By using a grid
search for δ⋆, the optimal solution can be found with a
speedup for any γ > 0. The total runtime of Algorithm 1

is O(∆
−2γ/(1+γ)
QAA ), which results in a speedup over SA

for any γ > 0, because the SA runtime is O(∆−2
QAA).

This runtime is the result of a compromise between mea-
surement time, which improves the precision with which
δ⋆ is known, and the time spent grid searching for δ⋆
using QAA with an optimized schedule. In particular,

if a time ∆
−2γ/(1+γ)
QAA is spent measuring δ⋆ to accuracy

O(∆
2/(1+γ)
QAA ), one wins a factor of O(∆

2/(1+γ)
QAA ) in runtime

relative to the O(∆−2
QAA) time that is required when grid

searching for δ⋆ with no knowledge of δ⋆. As a result, a

total time of O(∆
−2γ/(1+γ)
QAA ) is also spent grid searching

for δ⋆.
Note that in practice, one does not know ∆QAA a pri-

ori, and must therefore search for this as well. This is
done efficiently in Algorithm 1 through a grid search on
an exponentially spaced grid. Finally, we note that the
two methods discussed above (phase estimation and pro-
jective measurements) are only suggestions for the sub-
routine required by Algorithm 1. Any method (quantum
or classical) which can estimate E0(δ) to error ε in time
ε−γ would suffice.

2. Finite λ case

a. Numerical observations

Here we extend the arguments for a quadratic speedup
in Appendix E 1 to the case where λ is finite. We first
numerically compare the runtime of the modified QAA at
finite λ and the unmodified QAA (λ = 0) for the top 1%
hardest instances of each system size, up to n = 80. To

compute ∆QAA for each instance and setting of λ, we use
the ITensor implementation [50] of DMRG to find matrix
product state representations of the ground and first ex-
cited state with bond dimension of up to 1500. We con-
sider the system converged to its true ground state |ψ0⟩
once the truncation error falls below a threshold value of
10−8. In practice, this criterion is typically satisfied after
O(102) sweeps. Once |ψ0⟩ is obtained, we compute the
first excited state by repeating this procedure but with
the HamiltonianH ′ = H+V |ψ0⟩⟨ψ0|, where V = 10 is an
energy penalty that ensures that the ground state of H ′

has negligible overlap with |ψ0⟩. We then minimize the
corresponding energy gap between the ground and first
excited state over Ω/δ to obtain ∆QAA, using a large en-
ergy penalty U = 100 on independent set violations [see
Eq. (1)].
We display the numerical results in Fig. 13(a). We ob-

serve that for λ = 5, ∆−1
QAA is proportional to the square

root of the SA runtime lower bound (the light blue data
points are parallel to the line y =

√
x). Furthermore,

setting λ = 1 is sufficient to obtain a speedup on the
vast majority of instances (medium blue data points). In
both cases, the modified QAA vastly outperforms the un-
modified QAA (λ = 0, dark blue points). The fact that
the unmodified QAA does not frequently outperform SA
suggests that typical instances of the unmodified QAA
do not have favorable localization or delocalization in
the ground and first excited eigenstates at the avoided
level crossing, which would ensure a speedup over SA.
Thus, the modification to QAA appears crucial to ob-
tain a speedup over SA on these instances.
To support these numerical observations, in the fol-

lowing section we further obtain analytic conditions that
are sufficient, albeit not necessary, to guarantee the
quadratic speedup, up to subleading polynomial factors
in n. As in Appendix E 1, we focus on instances where
the smallest coupling is between the largest indepen-
dent sets of size α and suboptimal independent sets of
size α − 1, which was overwhelmingly the most com-
mon case for the instances studied in Appendix B. We
then show that when ∆QAA ≃ Ωα

√
Dα/Dα−1 in the

λ → ∞ case, the same conditions hold for for finite
λ/Ω, λ/δ ≳ ∆−1

ℓ,α,∆
−1
ℓ,α−1, where ∆ℓ,b is the spectral gap

of the Laplacian Hamiltonian Hℓ when restricted to inde-
pendent sets of size b. To obtain the speedup in practice,
it is necessary that the scaling advantage is maintained
when the Hamiltonian energy scales are normalized in
units of λ. By dividing the energy scales of the Hamil-
tonian by λ, one can see that this is equivalent to the
condition that λ∆−1

QAA is quadratically smaller than the
classical Markov chain runtime lower bounds, up to sub-
leading polynomial factors in n, where ∆QAA is the min-
imum gap in units of Ω. Thus, the speedup is obtained
when ∆−1

ℓ,α,∆
−1
ℓ,α−1 grow at most polynomially in n. In

practice, we find that ∆−1
ℓ,α−1 ≥ ∆−1

ℓ,α, so ∆ℓ,α−1 deter-
mines the strength of λ sufficient for ensuring delocaliza-
tion.
Figure 13(b) shows the scaling of ∆ℓ,α−1 as a function
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(a) (b)

FIG. 13. Modified QAA runtime at finite λ. (a) The modified QAA runtime for λ = 5 scales as the square root of the SA
runtime for the top 1% hardest instances of each system size up to n = 80 (light blue points). The speedup is also observed for
the vast majority of instances for λ = 1 (medium blue points). In both cases, the modified QAA significantly outperforms the
unmodified QAA (λ = 0, dark blue points). (b) For the top 5% hardest instances of each system size up to n = 135, ∆ℓ,α−1

is generally larger than 1/n. The box endpoints mark the 25th and 75th percentiles, and the box midpoint marks the 50th
percentile. We omit data for eight instances for which computing ∆ℓ,α−1 was too computationally expensive.

of n for the top 5% hardest instances up to n = 135.
We observe that ∆ℓ,α−1 ≳ 1/n for the vast majority of
instances, consistent with polynomial scaling in n. A mi-
nority of instances (24%) have ∆ℓ,α−1 = 0 due to a very
small fraction (median 0.2%) of configurations discon-
nected by spin exchanges, leading to degenerate ground
states of Hℓ in the manifold of independent sets of size
α − 1. For these instances, we plot the spectral gap of
Hℓ in the same manifold, restricted to the largest set of
configurations connected under spin exchanges. One can
see using perturbation theory that the smaller set(s) of
disconnected configurations do not change the dynamics
significantly, and the larger set determines the minimum
gap. At small Ω/δ, the QAA Hamiltonian will energet-
ically favor the connected subspace with the smaller ex-
pectation value of −(Ω2/δ)Hse under perturbation the-
ory. This corresponds to the larger connected subspace,
because the number of disconnected configurations in
practice is very small (and thus, so is its expectation in
Hse, which is upper-bounded by the maximum degree of
a vertex in the configuration graph). We emphasize that
the numerical results in Fig. 13(a) show that in practice,
much smaller values of λ may be necessary to obtain the
speedup, depending on the graph instance. All instances
obtain a speedup for either λ = 1 or λ = 5, which is
smaller than ∆−1

ℓ,α−1. This shows that while our condition
is sufficient to obtain the speedup, it is not necessary in
general.

Finally, it is interesting to note the connection between
the gap ∆ℓ,b−1 and the time needed for SA to sample
from the equilibrium Gibbs distribution, restricted to a
manifold of independent sets of the same size. This cor-
responds to SA sampling uniformly among independent
sets of the same size. Consider an SA algorithm that
only uses spin-exchange updates to explore independent

sets of the same size (of course, this SA algorithm is
only ergodic among independent sets of the same size,
assuming all configurations can be connected via spin
exchanges). One can check that Hℓ is identical to the
transition matrix used by SA, up to an overall rescaling
and multiple of the identity. Thus, ∆ℓ,b sets the mixing
time for SA to sample from the uniform distribution in
that manifold. This idea can be generalized: consider an
SA algorithm now using both spin-exchange and spin-
flip updates. Again, the matrices within a manifold are
identical up to rescaling when restricted to maximal in-
dependent sets (independent sets to which no vertices
can be added without removing an existing vertex). The
fraction of maximal independent sets is approximated by
the quantity 1− nDb

Db−1
, which is close to one on instances

with a large SA runtime lower bound. Thus, Hℓ and the
SA transition matrix are near-identical, up to rescaling.
As a result, ∆−1

ℓ,b sets the equilibration time to uniformly
sample independent sets within that manifold. SA will
thus need O(∆−1

ℓ,α−1) updates to converge to uniformly
sample independent sets for the α− 1 manifold. Because
this quantity is polynomial in n, SA rapidly mixes within
the α − 1 manifold. The same is true of the manifold of
independent sets of size α, because ∆−1

ℓ,α−1 ≥ ∆−1
ℓ,α. Thus,

we expect the SA runtime τSA(ε) is set by the time to find
an optimal solution, which is exponential in

√
n, rather

than the time to equilibrate within a manifold of inde-
pendent sets of the same size. This is consistent with the
numerical results in Fig. 2, which put together, suggests
that τSA(ε) is a good proxy for the SA time to find an
optimal solution.
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b. Sufficient analytic conditions for the speedup

We now show that ∆QAA ≃ Ωα
√
Dα/Dα−1 for fi-

nite λ/δ, λ/Ω ≳ ∆−1
ℓ,α,∆

−1
ℓ,α−1. To this end, we will

use the resolvent formalism developed in Appendix C 1,
and let |G⟩ = |Sα⟩ , |E⟩ = |Sα−1⟩. When λ/δ, λ/Ω ≳
∆−1

ℓ,α,∆
−1
ℓ,α−1, we expect these states to have significant

overlap with the ground and first-excited state of HQAA

at (Ω/δ)⋆. As a result,

∆̃QAA = 2| ⟨E|Heff(E⋆) |G⟩ | (E9)

= 2

∣∣∣∣−⟨E|Hq |G⟩+ ⟨E|HqQ
Q

E⋆ −QHQ
QHq |G⟩

∣∣∣∣

is a good estimator of ∆QAA (see Appendix C 2), where
H = Hcost − Hq + λHℓ is the modified QAA Hamilto-
nian. The first term of this expression is the coupling
−Ωα

√
Dα/Dα−1 from the λ → ∞ limit, which is re-

sponsible for the quadratic speedup. To argue that the
speedup is maintained at finite λ, it remains to argue
that the second term does not cancel with the first to
reduce the gap. We do this by analyzing the dependence
of this second term on λ.

We first simplify the second term. Let |G̃⟩ = 1
αΩHq |G⟩,

where the αΩ factor is used to make ⟨G̃|G̃⟩ ≃ 1. Note that

|G̃⟩ has support only on independent sets of size α − 1.
We now write the second term from Eq. (E9) as

⟨E|HqQ
Q

E⋆ −QHQ
QHq |G⟩ = αΩ ⟨E|HqQ

Q

E⋆ −QHQ
Q |G̃⟩

= αΩ ⟨E|HqQ
Q

E⋆ −QHQ
QHqQ

Q

E⋆ −Q(Hcost +Hℓ)Q
Q |G̃⟩

= αΩ ⟨E|HqQ
Q

E⋆ −QHQ
QHqQ

Q

E⋆ + δ(α− 1)−QHℓQ
Q |G̃⟩ (E10)

where in the second line we used the Woodbury matrix
identity, and dropped a term which is unable to connect
|G̃⟩ to |E⟩. Now, because we have taken λ∆ℓ,α−1 ≫ Ω, δ,
we may make the approximation

Q

E⋆ + δ(α− 1) +QHℓQ
Q |G̃⟩ ≈ H+

ℓ |G̃⟩ , (E11)

where H+
ℓ denotes the Moore-Penrose pseudoinverse of

Hℓ, restricted to the space of sets of size α− 1. Here we
rely on the fact that E⋆ + δ(α − 1) = O(δ), as argued
in Appendix C 3 because the avoided level crossing hap-
pens at (Ω/δ)⋆ ≪ 1. If the perturbative avoided level
crossing condition is not met, then the same conclusion
holds if we take λ/δ, λ/Ω ≳ n∆−1

ℓ,α, n∆
−1
ℓ,α−1, which in-

troduces a subleading factor of n to the runtime. We
note that this approximation neglects a term that is
O(Ω/[λ∆ℓ,α−1], δ/[λ∆ℓ,α−1]), which we will argue below
is subleading. The second term of Eq. (E9) thus reduces
to

⟨E|HqQ
Q

E⋆ −QHQ
QHq |G⟩

= αΩ ⟨E|HqQ
Q

E⋆ −QHQ
QHqH

+
ℓ |G̃⟩ . (E12)

The central point of our argument is that the factor of
H+

ℓ , which scales as O(1/λ), ensures that the leading λ-
dependence of this expression is O(1/λ). This will make
it impossible for the second term of Eq. (E9) to always

cancel exponentially with the first term. To see this, sup-
pose for the sake of contradiction that for a specific value
of λ, the second term was equal to αΩ

√
Dα/Dα−1(1+ε),

for some exponentially small ε (leading to a suppressed

gap in Eq. (E9) of order αΩ
√
Dα/Dα−1ε). Then, if

Eq. (E12) is O(1/λ), doubling λ will yield a gap from

Eq. (E9) equal to αΩ
√
Dα/Dα−1(1/2− ε/2), which still

achieves the quadratic speedup, losing only a factor of
two.
It therefore remains to argue that Eq. (E12) decreases

with λ as 1/λ or faster. Since H+
ℓ scales as 1/λ, the only

way this could not be the case is if the λ-dependence of
the denominator E⋆ − QHQ changes the scaling to be
slower than 1/λ. This would occur if there were a lead-
ing order O(1/λ) term in E⋆ − QHQ. However, since
we have chosen |G⟩ , |E⟩ to satisfy the overlap condition
of Theorem 5 in Appendix C, we know that the small-
est eigenvalue of QHQ−E⋆ is at least (E2 −E⋆), up to
polynomial factors in 1/n, where E2 is the energy of the
second excited state of H at the gap closing. In the limit
we are considering, by standard perturbation theory in
Ω, δ/λ, the leading (in particular, zeroth-order) contri-
bution to E2 −E⋆ will be independent of λ. As a result,
the leading contribution to Eq. (E12) will be O(1/λ).
It is now also clear why the

O(Ω/[λ∆ℓ,α−1], δ/[λ∆ℓ,α−1]) term we dropped is
unimportant. By nearly identical arguments to the
above, this term will have a leading O(1/λ2) scaling,
which will not modify the overall argument that the
second term in Eq. (E9) cannot cancel with the first
term for generic values of λ (due to the λ-dependence of
the second term).
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