
SUBMISSION

O views

Understanding temperature, humidity, and ozone pro les from unmanned aerial system ights at the Lake Michigan shoreline in relation to lake breeze

Benjamin Kies, Patricia Cleary, Josie Radtke, Joe Hupy

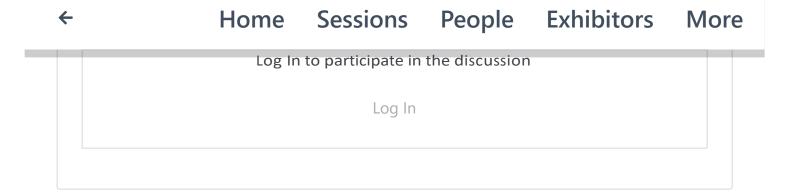
Understanding temperature, humidity, and ozone pro les from unmanned ...

PRESENTED AT

ACS Spring 2022

Mar 20-24, 2022

More American Chemical Society


Abstract

In June 2020, a series of Unmanned Aerial System (UAS) ights were conducted as part of the Wisconsin's Dynamic In uence of Shoreline Circulations on Ozone (WiscoDisco20) campaign over the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. Temperature and humidity measurements were taken using an iMet-XQ2 atmospheric sensor and ozone measurements were taken by a 2B Tech POM sensor. Both sensors were mounted on a DJI M600 Hexacopter and two ights were conducted a day, one in the morning around 8 am (CDT), and one in the afternoon around 2 pm (CDT). Each ight was broken up into three subsections to land and switch batteries, and hover altitudes were 10 meters above ground level (m AGL), 15, 30, 45, 60, 75, 90, 105, and 120 m AGL. Observations aloft were compared with observations from a regulatory ground station to verify the reliability of the UAS measurements. Using the eld data compiled from June 15-19, 2020, the existence of atmospheric inversions that were introduced by east to southeast winds illustrated a clear lake breeze e ect. Atmospheric inversions are sections of the atmosphere where the temperature, humidity, and pollutant composition can have sudden dramatic shifts. These inversions occurred at dierent heights each day, but the inversion layer's beginning ranged from 40 m to 100 m. The inversions demonstrated a large change in both humidity and temperature, often sharply changing up to 5 °C and by up to 35% relative humidity. With this change also comes a signi cant increase in ozone concentration in the inversion layer compared to its surroundings, with ozone peaking in concentration at the beginning of the inversion layer. Ozone in the inversion layer was regularly found to be in excess regulatory safety standards of throughout the week.

Discussion

Ask a Question

Get involved to nd out more about this Presentation.

Powered by Morressier Discover more research and events on morressier.com

<u>Imprint</u> <u>Terms of Service</u> <u>Privacy Policy</u> <u>Accessibility</u>