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Abstract

We calculate elastic and positronium (Ps) break-up cross sections for collisions of Ps with the

polar molecules CO, HCl and LiF in the fixed-nuclei approximation. We incorporate electron

exchange and correlation for these processes by using the free-electron-gas model developed earlier

for Ps scattering by rare-gas atoms, N2, O2 and CO2 molecules. The present target molecules

provide a range of dipole moments from the weakly polar CO to the strongly polar LiF. We find

that Ps scattering is similar to electron scattering when the cross sections are plotted as a function

of projectile velocity for the targets with smaller dipole moments (CO, HCl). However, we do not

see such a similarity for LiF which has a large dipole moment. Below the Ps break-up threshold

we observe resonance structures similar to those obtained earlier for the other molecular targets

that we have studied.
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I. INTRODUCTION

Not long ago the similarity between electron and positronium (Ps) scattering cross sec-

tions when plotted as a function of projectile velocity was demonstrated experimentally

[1]. This similarity exists over a wide velocity range for velocities (energies) above the Ps

ionization (break-up) threshold which occurs at a velocity of 0.5 a.u. (or Ps kinetic en-

ergy 6.8 eV). Near the threshold, resonances in Ps-N2 [2] and Ps-CO2 [3] scattering have

been observed experimentally. These resonances are similar to those observed in electron

scattering by these targets (see [4–6] and references therein). Similar resonances near the

ionization threshold have been seen in our previous theoretical calculations which employ a

Free Electron Gas (FEG) model to determine the scattering potentials. [7, 8].

A proof of the similarity between electron and Ps cross sections for the same projectile

velocity was given in Ref. [9]. It is based on the impulse approximation and is valid for high

enough projectile energies, at least above the Ps break-up threshold. The physical reason

for this result is the dominance of the electron scattering amplitude, as compared to the

positron scattering amplitude, due to electron exchange with the target electrons [10]. The

impulse approximation equations also show that the dominant scattering in Ps collisions is

due to quasifree electrons having momentum q = −∆p/2, where ∆p is the Ps momentum

transfer, resulting in equal cross sections for equal velocities. This similarity extends to

the resonant scattering, if the resonance position is above the Ps break-up threshold. We

should emphasize that this result is valid only at high enough energies. At low energies the

long-range interaction between the target and the projectile dominates, and it is determined

by two different potentials: the dipole or polarization potential for electron scattering and

the van der Waals potential for Ps scattering. This difference, for example, results in the

absence of the Ramsauer-Townsend minimum in Ps scattering by heavy rare-gas atoms [11]

Recently we performed FEG calculations for the O2 and CO2 molecules which also exhib-

ited resonant features near or below the Ps ionization threshold [8]. At higher Ps velocities

good agreement between the total electron and Ps scattering cross sections as a function of

projectile velocity was found.

As was emphasized above, it shouldn’t necessarily be expected that the similarity between

electron and Ps scattering extends to low velocities. In addition to the aforementioned long-

range effects, there are also considerations based on angular momentum conservation. In
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contrast to electron-molecule scattering, in the case of Ps-molecule scattering the electron

in Ps does not possess a certain projection of angular momentum on the internuclear axis,

therefore the symmetry of the resonance is different in the two cases. In particular in the case

of Ps−N2 scattering, instead of one resonance of Πg symmetry, we obtain three resonances

of Σu, Πu and ∆g symmetries [7]. For electron scattering by a polar molecule the long-range

interaction is dominated by the dipole potential which decays inversely with the square

of the electron-molecule distance. This can lead to large cross sections for slow electrons

and, in fact the total cross section in this case is formally divergent in the fixed-nuclei

approximation [12, 13]. For Ps scattering by a polar molecule the long-range interaction is

due to the van der Waals potential which decays as the sixth power of the distance. The

van der Waals coefficient in this case is due to the interaction of the dipole moment and

the neutral Ps (Debye interaction) as well as the charge distribution of the molecule and Ps

(London interaction), but due to the rapid decay of the van der Waals potential it should be

expected that the dipole moment has much less effect on the low velocity (energy) behavior

for Ps scattering than it does for electron scattering. Therefore it is of a certain interest to

extend comparison of electron and Ps scattering to polar targets. The UCL group performed

this comparison for the water molecule [14, 15] by measuring electron and Ps cross sections.

They found similar cross sections for the projectile velocity above 1 a.u. For lower velocities

the Ps cross section is substantially lower as should be expected. The water molecule, being

nonlinear, presents a challenge for Ps scattering calculations, therefore in the present paper

we start these investigations for linear diatomic targets.

Another challenging aspect of the theoretical treatment of the Ps-atom and Ps-molecule

interaction is an accurate inclusion of electron exchange and electron and positron corre-

lation. The exact treatment of these effects based on the close-coupling method [16–18]

becomes very computationally expensive as the size of the target grows, and therefore so far

this type of calculation has been carried out only for simple atomic systems like hydrogen

and light rare-gas atoms. A few approximate methods for inclusion of exchange and cor-

relation have been developed which include the pseudopotential method [10, 19], methods

based on many-body theory [20], and methods based on confined basis sets [21–24].

Our FEG model for Ps-atom or Ps-molecule scattering has been developed in ref. [25].

The FEG potentials were used to calculate elastic scattering cross sections for Ps-N2 [7, 26]

and Ps-rare-gas-atom collisions [11] as well as for Ps-O2 and Ps-CO2 [8]. The calculations
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were successful in the description of the relevant experiments, particularly in explanation of

the resonance structure in the cross sections for Ps-N2 scattering.

The molecules studied in our previous work all have an inversion symmetry which allows

the scattering matrices to be described as gerade or ungerade. In the present paper we

extend our calculations to polar molecules. The present targets were selected for their range

of dipole moments starting with the slightly polar CO, then going to the moderately polar

HCl, and finishing with the highly polar LiF. In order to obtain total Ps scattering cross

sections we add the elastic and Ps ionization cross sections. To determine the ionization

cross sections we use the binary-encounter model [7, 23] which relies on the elastic scattering

of electrons and positrons with the target molecules.

In section II we discuss important aspects of our electron and positron scattering cal-

culations including Born closure and the FEG correlation potential for positron scattering.

In section III we present our Ps ionization cross sections using the binary-encounter model.

In section IV we describe the Ps-molecule scattering potentials used in the present calcu-

lations to obtain elastic cross sections and in section V we present our elastic and total Ps

scattering cross sections. Section VI is a brief conclusion. As has become customary since

the discovery of the similarity between electron and Ps scattering [1], we plot most cross

sections as functions of the projectile velocity. Atomic units are used throughout unless

stated otherwise.

II. ELECTRON AND POSITRON SCATTERING

In the present paper we compare integrated cross sections for electron and Ps scattering

assuming that the main contribution to the total cross section for electrons is due to elastic

scattering, and for Ps due to elastic scattering and Ps ionization (break-up). Since we use the

fixed-nuclei approximation (with the exception of the Born closure, see below), our “elastic”

cross section include implicitly rotationally inelastic transitions. For calculation of the Ps

ionization cross sections we need electron and positron elastic cross sections. To estimate

the quality of our results, we have calculated elastic electron and positron cross sections

for the selected targets. Another reason for performing electron scattering calculations is

to compare electron and Ps cross sections when exchange and correlation effects treated in

the same way (FEG model in our case) are included for both projectiles. In this section we
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describe some important aspects of these calculations.

The elastic scattering cross sections are obtained from the scattering matrices Tm
ll′ in

the fixed-nuclei approximation. Here lm are electron angular momentum and its conserved

projection on the internuclear axis. We compute the scattering potentials from the charge

density of the target molecule at the equilibrium internuclear separation. For electron scat-

tering we use the Hara Free Electron Gas Exchange (HFEGE) model [27] and the FEG

correlation potential of O’Connnell and Lane [28]. For positron scattering we use a modifed

FEG correlation potential described below in subsection II B. The charge densities for all

molecules studied here were calculated using the 6-31G* basis set in the PySCF quantum

chemistry package [29–31]. The values of the dipole moment were obtained from the asymp-

totic behavior of the potentials, and polarizabilities of CO and HCl from the NIST data [32].

By analyzing the computed values of polarizabilities calculated in Ref. [33], we have chosen

for the averaged polarizability of LiF 10.9 a.u.. A summary of the literature data and the

present data on the dipole moments D and polarizabilities α is presented in Table I.

TABLE I. Dipole moments D and polarizabilities α of the target molecules, comparison with the

NIST data [32] (experiment and theory) for CO and HCl. Theoretical values for LiF are from [33]

All quantities are listed in a.u.

target present exp theorya

CO D 0.058 0.044 0.052-0.068

HCl 0.46 0.43 0.47-0.57

LiF 2.52 2.49 2.34-2.60

CO α 13.19 13.19

HCl 17.0 17.0

LiF 10.9 10.45-11.10

a different versions of coupled-cluster calculations and MP perturbation theory.

We solve the coupled equations with the appropriate static, exchange and correlation

potentials using the integral equation method of [34] to obtain elastic e− and e+ (as well as

Ps) scattering matrices and cross sections. The FEG potentials used for Ps scattering are

described in section IV.
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A. Closure formulae and electron scattering cross sections

Several different versions of the closure formulae for electron-polar-molecule scattering

were discussed in the review [13]. Here we give a summary of the approach used in the

present paper.

The total elastic cross section in the fixed-nuclei approximation (Tm
ll′ is the fixed nuclei

T -matrix)

σ = (2− δm0)
π

k2

∑
ll′m≥0

|Tm
ll′ |2

is diverging in m as a harmonic series, therefore to get a finite result we use closure with

account of rotations

σjj′ = Bσjj′ +
∑
m

(σ(m) − Bσ(m)) (1)

where Bσjj′ is the cross section for rotational transition j → j′ in the Born approximation

Bσjj′ =
8πD2

3k2
0

j>
2j + 1

ln
k0 + k

|k0 − k|

and Bσ(m) is the partial fixed-nuclei cross section in the Born approximation including |m|

and −|m| contributions

Bσ(m) =
8πD2

k2
[2m2ψ′(m)− 2m− 1] for m 6= 0

where ψ′ is the derivative of the digamma function. We note that D is the dipole moment

and k0, k are the initial and final electron momenta, respectively. For m = 0

Bσ(0) =
4πD2

k2
.

Eq. (1) will be called the m closure. The m closure might not be sufficient for convergence

since the partial cross section

σ(m) = (2− δm0)
π

k2

∑
ll′
|Tm

ll′ |2,

is slowly convergent with l. To speed up this convergence, we employ the fixed-nuclei T

matrix in the Born approximation

BTm
ll′ = 2iD[qml δl′l−1 + qml+1δl′l+1] (2)

where

qml =
1

l

[
(l +m)(l −m)

(2l − 1)(2l + 1)

]1/2

.
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Using the symmetry of the T matrix, we obtain

σ(m) =
π

k2

∞∑
l=m

∞∑
l′≥l

(2− δm0)(2− δll′)|Tm
ll′ |2.

Similarly, using the Born T matrix, Eq. (2), we have

Bσ(m) =
8πD2

k2
(2− δm0)

∞∑
l=m

(qml+1)2.

Therefore the second (l) closure equation becomes

σ(m) = Bσ(m) + (2− δm0)
π

k2

∞∑
l=m

[ ∞∑
l′=l

(2− δll′)|Tm
ll′ |2 − 8D2(qml+1)2

]
(3)

In practice the upper limits of summation goes to lmax where lmax is determined from the

requirement that convergence of the sum (3) is achieved. For sufficiently large m the Born

approximation is valid for any l, therefore

lmax∑
l′=l

(2− δll′)|Tm
ll′ |2 − 8D2(qml+1)2 = 0 (large m).

This also can be rewritten as

σ(m) =
8πD2

k2

∞∑
l=m

(qml+1)2 (large m). (4)

Combining Eqs. (1) and (3) we obtain

σjj′ = Bσjj′ +
π

k2

∞∑
m=0

(2− δm0)
∞∑

l=m

[ ∞∑
l′=l

(2− δll′)|Tm
ll′ |2 − 8D2(qml+1)2

]
(5)

or

σjj′ = Bσjj′ +
∞∑

m=0

[σ(m) − 8πD2

k2
(2− δm0)

∞∑
l=m

(qml+1)2] (6)

In Fig. 1 we present the integrated elastic cross section for e−-HCl scattering and compare

it with the total integrated cross sections of Hamada and Sueoka [40]. These authors obtained

their integrated cross sections by extrapolating measured differential cross sections using the

Born formula for the most populated rotational state at T = 300 K, j = 3. Therefore in

our calculations we used Eq. (6) with the same value of j. Agreement is satisfactory, for

both shape and absolute values, although the theoretical minimum at low energies is much

more pronounced than in the experimental curve. At higher energies inelastic processes,

mostly electron impact ionization which are not included in calculations, start to contribute
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FIG. 1. Electron-HCl elastic cross sections. Solid line, present calculations; error bars, measured

total cross sections of Hamada and Sueoka [40]. Previous calculations of elastic cross section: Padial

et al. [41] and Vinodkumar et al. [42].
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to the total cross section. Two previous calculations [41, 42] for a few energy points are

also shown. The R-matrix results [42] are too high because of the overestimated value of

the dipole moment (0.544 a.u.). As was discussed above, in this and all following figures by

”elastic” we mean the cross sections including rotational excitation.

In Fig. 2 we present elastic cross sections for e−-CO scattering with and without closure

and compare them with recommended cross sections of Itikawa [38]. The results without

closure were obtained with mmax = 6, lmax = 10. Due to the small dipole moment in this case

higher partial waves have a relatively small effect and do not change the cross section much

except at very low velocities. Agreement with the recommended cross sections is good, with

the pronounced Π resonance appearing at only a slightly higher velocity (energy) compared

with the recommended values. Also the computed resonance is much narrower, apparently

due to the neglect of inelastic scattering channels, mostly vibrational excitation.

B. Positron correlation potential

The correlation-polarization potential for electron scattering was derived [28] from the

correlation energy for a free electron gas. Similar attempts have been made to derive a

positron correlation-polarization potential from the many-body theory result of Arponen

and Pajanne [43] who obtained the correlation energy of a positron embedded in the electron

gas. Boronski and Niemenen [44] worked out an analytical expression describing Arponen

and Pajanne’s results. Jain [45] and Gianturco et al. [46] used this expression to derive the

correlation potential for a positron interacting with a molecular system using the expression

from density-functional theory [47]

Vcorr(r) =

(
1− 1

3
rs

d

drs

)
εcorr(rs) (7)

where rs is the average-distance parameter related to the electron density n(r) as

4

3
πr3

sn(r) = 1.

Using Eq. (7) Jain [45] and Gianturco et al. [46] derived the correlation potential, but the

final expression in Ref. [46] contains several typos. Note that the review paper of Kimura et

al.[48] gives the correct expression . The incorrect result [46] was used in [49, 50]. A more

recent paper [51] used the correct expression following from Eq. (7).
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dotted curve. Squares are results of the linear response theory [56].

With regard to Jain’s result [45], we should note that the correlation energy derived in

[43, 44] contains dependence on the position vector r through the parameter rs, therefore it

cannot be identified as the expression for the total correlation energy [47] (independent of

r)

Ec[n] =
∫
n(r)εc(n(r))dr

but rather the positron correlation energy εc(n(r)). Therefore we believe that a correct use

of results [43, 44] should treat the original expression for εcorr as the correlation potential. In

fact Jain [45] used both potentials for e+-Ar scattering and found little difference between

the two sets of calculations since the two expressions are rather close to each other.

In Fig. 3 we compare positron and electron [52] correlation energies as functions of the

average-distance parameter rs. The difference between the electron and positron correlation

potentials is striking. Whereas the big difference at high densities (low rs) is justified,

at higher rs, where the perturbation theory becomes valid, polarization contributions for

electron and positron should be close to each other. In addition, another calculation of the

positron correlation potential by Gianturco et al.[53], based on the density functional theory,

gives results substantially smaller (in the absolute magnitude). On the other hand, Jain [45]
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states that the use of the electron polarization potential for e+-Ar scattering produces much

poorer results than the potential derived from [43, 44].

Returning to the original calculation of Arponen and Pajanne [43], we note that they

calculate the ground-state correlation energy for a positron in the electron gas. In the low-

density limit, that is at rs → ∞, this corresponds to an energy of Ps− which is −0.524

Ry= −0.262 a.u., and the result of Arponen and Pajanne, −0.522 Ry, virtually agrees

with the exact value. This certainly does not satisfy the condition of the positron-molecule

scattering problem where in the limit of low electron density the correlation potential should

go to 0. It is apparent that the contribution to the correlation energy leading to formation

of Ps− should be excluded from εcorr. It is not clear how to do this in a rigorous manner.

However, the analysis of Table II of Arponen and Pajanne [43] suggests a way to improve

Jain’s correlation potential. The table presents the correlation energy in the first-order

and second order Tamm-Dancoff approximation (TDA) [54, 55], and also the most accurate

results obtained with the coherent-state TDA. The last two include triple correlations, and

therefore give the correct Ps− energy in the low-density limit (high rs). The first-order TDA

in this limit gives the energy of the Ps ground state, −0.5 Ry. The difference between the

second-order TDA and the first-order TDA remains almost constant at high densities (about

0.1 Ry), and then decreases to 0.022 Ry at large rs. This suggests that for the purpose of

the description of positron-molecule interaction at low rs the TDA result should be shifted

upward by a constant value of about 0.522 Ry. At larger rs the potential should be merged

into the electron polarization potential. In fact the value of the shift should be somewhat

lower than 0.522 Ry since the coherent-state TDA result of Arponen and Pajanne exhibits

a shallow maximum at rs = 6.7 a.u. of an unknown origin. Therefore we choose the value

of the shift from the requirement that the positron correlation energy joins smoothly with

the electron correlation energy at high rs. The shifted potential with the value of the shift

0.406 Ry=0.203 a.u. is presented in Fig. 3. The linear response function calculations of

Baldo and Pucci [56] give the correlation energy which is somewhere between the original

results of Arponen and Pajanne and the modified results used in the present calculations.

An alternative treatment of correlation and polarization in positron-atom and positron-

molecule collisions involves the polarized orbital method [57]. Several calculations [58–60]

using this method have been performed in the past, but we are not aware of any comparisons

between the two methods.
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sections of Hamada and Sueoka [40].

Using the correlation potential constructed as described above, we have calculated elastic

cross sections for positron scattering by CO, HCl and LiF.

e+-HCl elastic scattering cross sections are presented in Fig. 4 where we give comparison

with Hamada and Sueoka [40]. Agreement is not as good as for electrons, mainly because

our cross section does not include the Ps formation channel which is opening at E = 5.94

eV. At higher energies other inelastic channels are contributing as well. The excitation

and ionization channels can be taken into account by adding an absorption potential [61].

Although the derivation of the absorption potential [61] is based on the binary-encounter

model, there were attempts [58, 62, 63] to modify this model for inclusion of the Ps formation

channel. The approach is empirical and its detailed discussion is beyond the scope of the

present work.

e+-CO elastic scattering cross sections are presented in Fig. 5 where we see results

similar to the e+-HCl case. We compare our results with the measurements of the total

cross section by Zecca et al. [64]. At low velocities the results with the shifted positron

correlation potential agree better with the measurements than those with the nonmodified
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FIG. 5. Positron-CO elastic cross sections. Solid line, present calculations using the electron

correlation potential; dashed line, using the positron correlation potential; dotted line, using the
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positron correlation potential. Our results at intermediate velocities (around 0.5 a.u.) are

slightly lower than the measured values, however there is some disagreement between various

measurements below the Ps formation threshold, see [64] and references therein. For example

cross sections measured by Sueoka and Hamada [65] are substantially lower than those in

[64]. In calculations of the Ps ionization cross section using the binary encounter model we

have used the modified positron correlation potential results.

Lastly, for this section, we present our elastic e−-LiF and e+-LiF cross sections compared

with the electron scattering measurements of Vušković et al. [66] in Fig. 6. Cross sections,

both with and without closure, for e+-LiF scattering are shown. It is apparent that higher

partial waves are very important in this case due to the large dipole moment of LiF. We

find good agreement between our e−-LiF cross sections and the measured values which were

obtained by extrapolation of the differential cross sections using the Born formula. Due to
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the effect of the large dipole moment the electron and positron scattering cross sections are

almost identical.

III. PS IONIZATION

Apart from elastic scattering, the largest contribution to the total cross section for positro-

nium collisions is expected to be Ps ionization (fragmentation) or break-up. In the present

paper we employ the binary encounter approximation to calculate cross sections for Ps ion-

ization [35, 36]. We have previously applied this approximation to calculate Ps ionization

cross sections in collision with rare gas atoms Ar, Kr and Xe [19] which were in good agree-

ment with previous calculations using the impulse approximation [37]. The binary encounter

approximation for Ps ionization was extended to non-spherical interactions and applied to

Ps scattering by N2, O2 and CO2 in [7, 8].

Briefly, the binary encounter approximation is based on the assumption that the electron

and positron in Ps interact independently with the target molecule and the ionization cross
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section due to either electron or positron collision may be written as

σ±ion =
1

vB
〈|v − vB|

∫
∆E>I

dσ±〉. (8)

where vB is the relative collision velocity, v is the electron (positron) velocity relative to the

Ps center-of-mass, dσ± is the differential cross section for e+−B or e−−B elastic scattering,

and the integration is restricted by the angles which result in the energy transfer to electron

(positron) ∆E greater than the Ps ionization potential I = 6.8 eV.

The ionization amplitude in the binary encounter approximation depends on the elastic

differential cross section through the body frame T -matrix elements, Tm
ll′ , in the fixed nuclei

approximation for electron and positron scattering by the target calculated as described in

the previous section. In the present calculations we have used lmax = 10 and mmax = 6.

Unlike the elastic e− and e+ scattering cross sections the Ps ionization cross sections are

well converged by m = 6 since small scattering angles don’t contribute as significantly to

ionization.

In Fig. 7 we show our Ps ionization cross sections for all three presently studied targets.

The cross section is overall largest for LiF, somewhat smaller for HCl and smallest for CO

which aligns generally with the size of the elastic e− and e+ cross sections for the same

target. In particular, due to the similarity between e−-LiF and e+-LiF cross sections the

contribution of each (electron and positron) is about the same, whereas for the other target

molecules the positron contribution is smaller.

IV. PS SCATTERING POTENTIALS

For elastic scattering of Ps by the presently considered molecules we determine the scat-

tering potentials in the same way as was done for Ps-N2 scattering [7] as well as for Ps-O2

and Ps-CO2 [8]. In ref. [25] we have derived expressions for the exchange and correlation

energies as functions of the Fermi energy. In order to introduce the dependence of these

energies on the projectile position relative to the target we determine the Fermi energy in

terms of the charge density of the ground state of the molecule. The Ps-molecule scattering

potentials obtained in this way are then expanded in Legendre polynomials. The charge

density for all molecules studied here were calculated as described in section II.

The correlation potential for Ps scattering at large distances is matched smoothly with
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the van der Waals potential with a cut-off of the form

VW (R) = − CW

(R2 +R2
c)

3
(9)

where R is the position of the center of Ps relative to the center of mass of the molecule and

Rc is a cutoff radius. The van der Waals coefficient CW is determined by two effects in the

present case. The first is the London interaction which arises due to the interaction between

induced dipole moments of the neutral Ps and the neutral molecule. The coefficient for this

term is calculated by using the London formula

C0 =
3I1I2α1α2

2(I1 + I2)
(10)

where I1 and I2 are the ionization potentials of the target molecule and Ps and α1 and α2

the spherical polarizabilities.

The second contribution is due to the Debye interaction which arises due to the interaction

between the permanent dipole moment of the polar molecule and induced dipole moment of
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Ps

C1 = 2D2αPs (11)

where D is the permanent dipole moment of the polar molecule and αPs=36 a.u. is the

polarizability of Ps. Both of these interactions vary as 1/R6. The London and Debye

contributions are summed to give the total van der Waals coefficient so that CW = C0 +C1.

For CO we use the polarizability α0=13.19 a.u. and ionization potential of I = 0.515 a.u.

giving C0 = 119.87 a.u. The dipole moment used for CO is 0.058 a.u. giving C1= 0.24 a.u.

so that CW= 120.11 a.u. In this case the small dipole moment of CO has a very small effect

on the van der Waals coefficient. The cut-off radius Rc was chosen from the requirement that

the FEG potential joins smoothly with the potential of Eq. (8). This resulted in Rc = 0.98

a.u. and the switching radius R = 4.06 a.u.

For HCl we use a polarizability of α0 = 17.0 a.u. and ionization potential of I = 0.49

a.u. giving C0 = 151.97 a.u. The dipole moment for HCl is still relatively small (0.46 a.u.)

which leads to the still relatively small C1 = 15.24 a.u. so that CW = 167.21 a.u. and, as for

CO, the van der Waals interaction is dominated by the London interaction. Again in order

for the correlation potential to match smoothly to the asymptotic form we have chosen a

cutoff radius of Rc = 1.01 a.u. and switch to the asymptotic form at R = 4.09 a.u.

For LiF we use a polarizability of α0 = 10.6 a.u. and ionization potential of I = 0.472

a.u. giving C0 = 93.55 a.u.. LiF has a much stronger dipole moment of 2.52 a.u. giving

C1 = 457.22 a.u. and CW = 550.78 a.u. so that in this case the van der Waals coefficient is

dominated by the Debye interaction. In this case we have chosen a cutoff radius of Rc = 1.05

a.u. and for the spherical component λ = 0 switched from the correlation potential to the

asymptotic form at R = 3.06 a.u.

In Fig. 8 a) we show the first two components (λ=0,1) of the Legendre expansion for

the total Ps-CO potential (exchange plus correlation) for a Ps velocity of 0.01 a.u. We

note again that in the present case for heteronuclear polar molecules there is no inversion

symmetry and the λ=1 component is non-zero unlike the situation for a homonuclear target

molecule. In Fig. 8 b) we show the (λ=0,1) components for the total Ps-LiF potential. The

λ = 1 component is more attractive in the case of LiF, but overall the potentials are quite

similar for both molecules despite the large difference in dipole moments.

In Fig. 9 we show the first two components (λ=0,1) of the Legendre expansion for the

total Ps-HCl potential for a Ps velocity of 0.01 a.u. In this case the λ = 0 component is more
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FIG. 8. First two components of the total (exchange plus correlation) Ps-molecule scattering

potential for a) Ps-CO and b) Ps-LiF at a Ps velocity of 0.01 a.u. Solid line: λ = 0, Red dashed

line: λ = 1 .

dominant due to center-of-mass being located very close to the Cl atom and the potential

is generally stronger at small values of R than that for CO and LiF.

V. ELASTIC AND TOTAL PS SCATTERING CROSS SECTIONS

In Fig. 10 we present the calculated elastic and total (elastic plus ionization) cross

sections for Ps-CO scattering along with the recommended total e−-CO cross sections of

[38]. We compare Ps cross sections with the total electron cross sections because the fact

of similarity between electron and Ps scattering was established for the total cross section.

At higher velocities the total Ps scattering cross section (elastic plus ionization) is similar

to the total electron scattering cross section. Near the Ps ionization threshold (v=0.5 a.u.)

we see resonance structures similar to those seen before for Ps-N2, O2 and CO2 scattering

[7, 8].

In Fig.11 we present the calculated elastic and total (elastic plus ionization) cross sections
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potential for Ps-HCl at a Ps velocity of 0.01 a.u. Solid line: λ = 0, Red dashed line: λ = 1 .

for Ps-HCl scattering along with the total e−-HCl cross sections of Hamada and Sueoka [40].

Again we see a strong similarity between the total Ps and e− cross sections. We note though

that the similarity at velocities below the ionization threshold (v = 0.5 a.u.) is not due to

the dipole moment which causes the e− cross section to rise dramatically. In the Ps-HCl

cross section the resonances appear at a lower Ps velocity than for CO and other non-polar

molecules due to the more attractive Ps-HCl potential. The resonances cause sharp peaks

in the cross section at very low Ps velocities.

Similarly to electron and positron scattering the projection of the Ps center of mass

angular momentum on the internuclear axis m is conserved and we can define partial cross

sections in terms of this quantum number. In Fig. 12 we present Ps-CO and Ps-HCl partial

cross sections for m = 0, 1, 2. In both cases we see that the resonance structures are mostly

due to the m = 1 (Π symmetry) and m = 2 (∆ symmetry) which is similar to our previous

results for Ps-N2,O2 and CO2 scattering [7, 8]. However, For Ps-HCl, as mentioned before

these resonances appear at a lower velocity and the magnitude of the m = 0 (Σ symmetry)
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FIG. 10. Elastic Ps-CO (dashed line)and total Ps-CO (solid line) cross-sections compared with

recommended total e−-CO cross sections (crosses) of [38] as a function of projectile velocity.

partial cross section is reduced.

In Fig.13 we present the calculated elastic and total (elastic plus ionization) cross sections

for Ps-LiF scattering, and in Fig. 14 we present our Ps-LiF partial cross sections for m =

0, 1, 2. In this case we again see resonance structures in the Π and ∆ symmetries although

they are broader than for CO and HCl. While the Σ partial cross section is small at low

velocities, overall the total Ps cross section is similar to that for Ps-CO. The difference at low

velocities is due to the substantially larger van der Waals coefficient CW in the case of Ps-LiF

which arises due to the much larger dipole moment of LiF and therefore stronger Ps-LiF

Debye interaction. In order to see this effect we have also plotted elastic Ps-LiF cross sections

in Fig. 13 for which we have neglected the Debye interaction and used CW = C0 = 93.55

which is due only to the London interaction. We see that when the Debye interaction is

neglected the cross section is reduced slightly at higher velocities, but becomes larger and

more similar to that for Ps-CO near zero velocity. Thus the large dipole moment of LiF

only has a relatively small effect on the elastic Ps-LiF cross section.
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experimental e−-HCl total cross sections of Hamada and Sueoka [40].

Lastly, and perhaps most importantly, we note that the total Ps-LiF scattering cross

section is much smaller than the the measured and calculated e−-LiF cross sections plotted

in Fig. 6. The difference is about an order of magnitude at the same projectile velocities.

While these cross sections include only elastic and rotationally inelastic channels, we expect

them to be close to the total e−-LiF scattering cross section. Since LiF has a large dipole

moment, the strong dipole interaction has a much bigger effect for e−-LiF scattering than

it does for Ps-LiF scattering, and we do not see a similarity between the total cross sections

in this case.

VI. CONCLUSION

We have calculated both elastic and Ps ionization cross sections for Ps scattering by sev-

eral polar molecules using FEG and binary-encounter models. In order to obtain ionization

cross sections we have also performed calculations using FEG gas models for electron and

positron scattering by these target molecules. For electron and positron scattering we have
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FIG. 12. Partial a) Ps-CO and b) Ps-HCl elastic scattering cross sections. Solid line: m = 0, red

ashed line: m = 1 and blue dotted line: m = 2, where m is the quantum number describing the

projection of the Ps center of mass angular momentum on the internuclear axis.

studied the effect of higher partial waves and have found it to be important to obtain cross

sections that agree with experiment for polar molecules.

As for the case of electron and positron scattering by non-polar molecules [7, 8] the

relatively simple FEG model gives fairly good agreement with experimental elastic cross

sections.

In the case of elastic Ps scattering we see resonance structures near the Ps ionization

threshold for all target molecules. At velocities above the ionization threshold we see good

agreement between Ps scattering cross sections and electron scattering cross sections for the

targets with smaller dipole moments, CO and HCl. However, we do not see such a similarity

for LiF, which suggests that the similarity between electron and Ps scattering does not

extend to highly polar targets.

At low velocities there is no direct similarity between electron and Ps scattering by the

presently studied target molecules. This is not necessarily surprising due to the very different
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FIG. 13. Elastic Ps-LiF (dashed line) and total Ps-LiF (solid line)cross-sections. The dotted line

is the elastic Ps-LiF cross section without inclusion of the Debye interaction.

long-range behavior of the scattering potentials in the two cases. In the case of Ps scattering

the dipole moment has a much weaker effect than in the case of electron scattering. As for

the non-polar molecules we have studied before, we see resonance structures in Ps scattering

for all of the molecules that we have studied. For CO and LiF these resonance structures

occur near or just below the Ps ionization threshold while for HCl they appear closer to zero

velocity.

In the future we plan on extending the present model to study Ps-H2O scattering for

which experimental data is available. Also, we hope that the present results provide a basis

to study Ps scattering by a crystal LiF surface, which has also been studied experimentally

[67].
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