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Low-energy positronium scattering from O2
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The total cross section of positronium (Ps) scattering from molecular oxygen has been measured in the
velocity range 0.27–1.50 a.u. (energy range 2–61 eV) and has been found to be close to the correspond-
ing equivelocity electron cross section above 0.87 a.u. (20 eV), as previously found by Brawley et al.,
[Science 330, 789 (2010)]. However, below this value the cross section for positronium is observed to exceed
that for electrons by up to a factor of 4 at the lowest energy. Measurements are compared to the predictions
of low-energy resonant peaks in the elastic-scattering cross section calculated within a free-electron-gas model
refined by applying corrections to the correlation energy for the interaction between Ps and the electron gas.
Additionally, cross sections for O−

2 formation and positronium breakup have been calculated using a classical-
trajectory Monte Carlo approach. Comparisons are made with earlier calculations and discussed in terms of both
experimental and theoretical uncertainties.
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I. INTRODUCTION

Positronium (Ps) is a hydrogenic atom consisting of an
electron (e−) and a positron (e+). It is metastable against
annihilation with lifetimes of 125 ps and 142 ns for the 11S0

and 13S1 states, respectively [1]. The purely leptonic nature of
Ps makes it an ideal subject for testing predictions of quan-
tum electrodynamics [2,3], and its light mass and neutrality
render it an interesting projectile, especially when compared
with e+, e−, ions, and other atoms [4,5]. In particular, the
overall probability of Ps scattering from a wide variety of
atoms and molecules has been observed to be similar to that
of equivelocity electrons [6], even in the vicinity of delicate
quantum-mechanical effects, such as resonances in CO2 and
N2 [7–10].

However, the similarity has been predicted usually to dis-
appear in the low-energy region, although the size of this
region depends on the target: for rare-gas atoms this similar-
ity is observed immediately above the Ps breakup threshold
(EPs = 6.8 eV or vPs � 0.5 a.u.) [11], whereas for molecules
the merging of electron and Ps total cross sections occurs at
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higher velocities and for strongly polar molecules the similar-
ity disappears completely [12].

These trends may be understood qualitatively in terms
of the basic interactions at play. At intermediate projectile
energies, both electron scattering and Ps scattering are essen-
tially controlled by electron exchange, which results in their
similarity. On the other hand at low energies, scattering is
controlled by a balance of exchange and long-range interac-
tion. The latter is different for electron scattering, where it
appears as the polarization force, and Ps scattering, where it
appears as the van der Waals force. The result of this bal-
ance depends on the target. For nonpolar and weakly polar
targets, the low-energy Ps-scattering cross section might be
below that for electrons, for example, in the case of H2 [13],
but also can exceed it, which is apparent in collisions with
N2 [9]. For highly polar targets, the electron-scattering cross
section is always larger because of the strong electron-dipole
interaction [12].

The O2 molecule is of special interest, particularly from the
point of view of resonance scattering. While for N2 and CO2,
low-energy resonances were observed [7,8] and confirmed by
calculations for both electron and Ps scattering [9,10], the
low-energy 2�g resonance in e−-O2 scattering is extremely
narrow [14,15] and was observed only in experiments with
high-energy resolution [16,17]. Since its width is smaller than
the vibrational spacing in O2, the resonance appears as a series
of peaks near the vibrational excitation thresholds [17]; there-
fore, for their theoretical description one has to go beyond
the fixed-nuclei approximation. In contrast, calculations of
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Ps-O2 scattering in the fixed-nuclei approximation [10] show
that there are two broader low-velocity peaks in the elastic-
scattering cross section due to a combination of resonances of
different symmetries.

Experimentally, studies of Ps scattering at low energies are
challenging due to the inherently weak Ps beam intensities
arising from the combination of poor efficiencies for the pro-
duction of Ps, its survival against in-flight annihilation, and its
detection [18], as well as the possible occurrence of minima
in the differential Ps-formation cross sections at small forward
angles, potentially linked to quantum vortices at larger angles
[19–21]. In the present study, measurements of the Ps-O2

total-scattering cross section QPs
T have been extended to below

the Ps breakup threshold to investigate possible deviations
from electronlike behavior [6] and explore the recent predic-
tion of resonant peaks at approximately 2 and 4 eV [10].

The latter was based on calculations employing the
free-electron-gas (FEG) model for electron exchange and cor-
relations in Ps collisions with neutral targets [22]. This model
has certain limitations, the most severe of which is the approx-
imation of the plane-wave Thomas-Fermi model for target
electrons. Other issues are discussed in the present work, and
a more accurate inclusion of correlation energy is given in
Sec. III. Additionally, the cross sections for O−

2 formation and
positronium breakup have been calculated using a classical-
trajectory Monte Carlo (CTMC) approach. Comparisons are
made with earlier calculations and discussed in terms of both
experimental and theoretical uncertainties.

II. EXPERIMENTAL APPARATUS AND METHOD

QPs
T has been measured using the Ps beamline at UCL,

described elsewhere (e.g., [23]). Only some key features are
summarized here. A β+ emitter (22Na) is used in conjunction
with a solid Ne moderator to produce slow positrons (energy
distribution FWHM � 1 eV), confined radially by a magnetic
field of ∼10−2 T and accelerated by a positive voltage applied
to the source. After deflection by an E × B filter and transmis-
sion through several collimators, the e+ beam traverses a gas
cell, where it may collide with a suitable gas (A) to produce
forward-going Ps via charge exchange (e.g., [24,25]),

e+ + A → Ps + A+. (1)

Ps is detected by impact upon a channel electron multiplier
(CEM; Dr. Sjuts KBL25RS/90) [18] in coincidence with the
registration of an annihilation γ ray by one of two scintillator
detectors (NaI or CsI).

The Ps energy EPs and its distribution �EPs are primarily
determined by that of the incident e+ beam. The former is
given by

EPs � E+ − EI + 6.8 eV

n2
, (2)

where E+ is the energy of the incoming e+ beam, EI is the first
ionization energy of the production gas (in this case, 15.76 eV
for Ar), and n is the Ps principal quantum number, dominantly
n = 1 [26,27].

The total cross section is determined by measuring the
incident and transmitted Ps beam intensities I0 and I (both net
of their respective backgrounds) emerging from a second gas

FIG. 1. Histogram of I/I0 for EPs = 2 eV and the Gaussian fit to
the data (R2 ∼ 0.9).

cell and applying the Beer-Lambert law:

QPs
T = − kBT

pleff
ln

(
I

I0

)
, (3)

where leff is the effective length of the cell (59.2 ± 0.1 mm),
p is the pressure of the scattering gas, kB is the Boltzmann
constant, and T is the ambient temperature. The pencil angle
of the Ps beam is � 1.2◦, set by the radius (3 mm) of the exit
aperture of the scattering cell and its distance from the center
of the Ps formation cell (147.6 mm). The angular discrimina-
tion against forward-scattered particles is � 2.3◦, determined
by the radius (12.5 mm) of the CEM and its position relative
to the center of the scattering cell (311.2 mm).

At each EPs, the pressure was set such that I/I0 � 50%,
although fluctuations in count rates, gas pressure, and detector
noise result in a distribution of I/I0, as illustrated in Fig. 1 for
EPs = 2 eV, the lowest energy investigated. In order to dis-
criminate against the effects of large fluctuations, which have
been found to be significant at low energies (� 5 eV), QPs

T
has been determined from measurements with 0 < I/I0 < 1
[28,29], consistent with the FWHM of a Gaussian fit to the
data, also shown in Fig. 1. The ensuing cross sections were
classified into groups first according to EPs (±0.5 eV centered
on integers) and then by the average incident e+ beam in-
tensity (±5 kHz centered on multiples of 10 kHz), recorded
before and after each Ps beam-attenuation measurement. In
this way, measurements were categorized according to their
experimental conditions, and the arithmetic mean 〈QPs

T 〉 and
standard error were computed for each group. The final QPs

T
was hence obtained as the weighted average of the 〈QPs

T 〉
values.

III. THEORETICAL METHODS

A. FEG model with exchange-correlation term:
Elastic-scattering cross section

The method of inclusion of exchange and correlations in
Ps-neutral target scattering was developed in Ref. [22] and
applied to several molecular targets [9,10,12]. The FEG poten-
tial does not include the Pauli exclusion principle completely
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since it does not prevent e− capture in an occupied orbital
of the target. In addition, the exchange and correlation ener-
gies for this model were calculated in the first nonvanishing
order of the perturbation theory: the first order in Ps-target
interaction for exchange and the second order for correlations.
An additional approximation was also made by neglect-
ing the exchange contribution to the correlation term. To
check the reliability of the latter approximation, it is improved
in the present study by inclusion of the interference term in the
correlation energy. The error due to the incomplete inclusion
of the Pauli exclusion principle will be discussed in Sec. IV.

Using atomic units, the second-order correction to Ps en-
ergy due to interaction with an electron in the Fermi gas is,
according to Eq. (13) of [22],

E (2)
1pkm1m2

=
∑

nlmp′k′m′
1m

′
2

|〈nlmp′k′|H ′|100pk〉|2
E1pk − Enp′k′ + iη

, (4)

where H ′ is the Ps-electron interaction and

Enpk = εn + p2/4 + k2/2 (5)

is the total energy of the system of a free e− with momentum
k and Ps with momentum p and binding energy εn, nlm are Ps
quantum numbers, and m1 and m2 are spin quantum numbers
of e− in the gas and Ps, respectively. The total correlation
energy is

E corr
1p =

∑
km1

E (2)
1pkm1m2

. (6)

The matrix element 〈nlmp′k′|H ′|100pk〉 can be separated
into the direct term Mdir and the exchange term Mex. The first
has been used previously (Eq. (14) in Ref. [22]) and can be
written as

Mdir = δm1m′
1
δm2m′

2

V 2

∫
eiR1·Qeir2·qψ∗

nlm(ρ1)ψ100(ρ1)

×
(

1

r12
− 1

r2p

)
dr1dr2drp, (7)

where V is the normalization volume, r1 and r2 are e− po-
sition vectors, rp is the e+ position vector, Ri = (ri + rp)/2,
i = 1, 2, ρ1 = r1 − rp, Q = p − p′, and q = k − k′. For the
exchange contribution, the following is obtained:

Mex = −δm′
1m2δm′

2m1

V 2

∫
e−ik′ ·r1−ip′ ·R2ψ∗

nlm(ρ2)ψ100(ρ1)

×
(

1

r12
− 1

r2p

)
eik·r2+ip·R1dr1dr2drp. (8)

Previous investigations [30] suggested that the exchange con-
tribution to correlation energy should be small compared to
the direct contribution. Noting this, the term |Mex|2 will be ne-
glected, concentrating instead on the interference term, whose
numerator is given by

2
∑

m1m′
1m

′
2

Re(M∗
dirMex) = 2Re(M̃∗

dirM̃ex), (9)

where M̃dir and M̃ex are matrix elements in which dependence
on spin quantum numbers has been summed off. Therefore,

the interference contribution to the correlation energy is

E (int)
1p =

∑
nlmp′k′k

2Re(M̃∗
dirM̃ex)

E1pk − Enp′k′ + iη
, (10)

with the restriction k < kF , k′ > kF .
Changing the integration variables to

ρ1 = r1 − rp, ρ2 = r2 − rp, r′
p = rp, (11)

the following is obtained:

M̃ex = −δp+k, p′+k′

V

∫
eiρ1·(p/2−k′ )−iρ2·(p′/2−k)

× ψ∗
nlm(ρ2)ψ100(ρ1)

(
1

ρ12
− 1

ρ2

)
dρ1dρ2, (12)

where the Kronecker delta in front represents the conservation
of momentum, which can be rewritten as

k − k′ = p′ − p ≡ q. (13)

Integration can be simplified by going into the momentum
space,

ψnlm(ρ) = 1

(2π )3/2

∫
eis·ρφnlm(s)ds. (14)

Then,

M̃ex = − 1

V (2π )3

∫
dρ1dρ2

(
1

ρ12
− 1

ρ2

)

×
∫

ds1ds2e
iρ1·(p1+s1 )−iρ2·(p2+s2 )

× φ∗
nlm(s2)φ100(s1), (15)

where

p1 = p/2 − k′ = p/2 − k + q, (16)

p2 = p′/2 − k = p/2 − k + q/2. (17)

Part of the integration in Eq. (15) can be performed analyti-
cally, resulting in a two-dimensional integral in s and θs, where
θs is the spherical angle in the coordinate system with the polar
axis along vector q.

To find the interference contribution, it is necessary to find
the sum over p′k′k in Eq. (10). Only two of these three vectors
are independent because of the conservation of momentum,
Eq. (13). Let us choose them to be k and q. Replacing sum-
mation by integration, it follows that

E (int)
1p = V 2

(2π )6

∫
dkdqθ (|k − q| − kF )θ (kF − k)

×
∑
n

(
−3

4
q2 + q · (k − 1

2
p) + ε1 − εn

)−1

×
∑
l

Re
(
M̃ (nl )

dir ∗ M̃ (nl )
ex

)
, (18)

where the Heaviside θ functions take into account the re-
strictions k < kF and k′ > kF and the principal value of the
integral is taken. Calculations in the range of parameters of
interest show that the corresponding domain in the q-p space
never leads to a singularity in the integrand; therefore, the
imaginary part of E (int)

1p is zero.
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Since the direction of q is fixed, integration over q̂ can
be replaced by the equivalent integration over p̂. The six-
dimensional integration in k, θk, φk, q, θp, and φp can be
reduced to a five-dimensional integration since the depen-
dence on φk and φp is reduced to the dependence on χ =
φk − φp, which comes from p1 and p2. Finally, the following
is obtained:

E (int)
1p = − 2

π4

∫ 2π

0
(2π − χ )dχ

∫ kF

0
k2dk sin θkdθk

×
∫

q2dq sin θpdθp

× θ (|k − q| − kF )F (k, θk, q, θp, χ ), (19)

where

F (k, θk, q, θp, χ )

=
∑
n

[
−3

4
q2 + q · (k − p/2 + ε1 − εn)

]−1

×
∑
l

�nl (q)�nl (k, θk, q, θp, χ ), (20)

with

�nl = 1

q2(2l + 1)!�(l + 3/2)

[
π (2l + 1)(n + l )!

2nnr!

]1/2(qa0

4

)l

×
nr∑
k=0

(−nr )k
k!(2l + 2)k

(
2

n

)k+l+3/2
�(2l + k + 3)

y2l+3+k

× 2F1

(
l + k + 3

2
,−k + 1

2
; l + 3

2
; z

)
, (21)

where

y2 =
(

1 + 1

n

)2

+ q2a2
0

4
, z = q2a2

0

4y2
, (22)

and 2F1 is the Gauss hypergeometric function, nr = n − l − 1
is the radial quantum number, a0 = 2 a.u. is the Bohr radius
for Ps, and the real function �nl (k,p, q) is defined as

�nl (k,p, q) = − V

4π il
M̃ex(k,p, q). (23)

The result of this calculation gives the total correlation en-
ergy as a function of the Fermi momentum kF . Using the
relation between kF and the electron probability density ρ(r),
kF = (3π2ρ)1/3, the correlation energy is given as a function
of distance r.

B. Classical-trajectory Monte Carlo approach: Breakup and
O−

2 formation cross sections

The CTMC method, as a classical approach, cannot be
applied for the calculation of the total-scattering cross section.
This is because elastic scattering, as an important contribution
to the total cross section, cannot be treated classically: the
cross section is infinite even for neutral colliding partners.
However, CTMC is suitable for the calculation of the contri-
butions of two significant channels, namely, Ps fragmentation
and electron transfer from Ps to the target.

In this work, we used the three-dimensional, three-body
version of the CTMC method [31,32]. It is based on a nu-
merical solution of Newton’s classical equations of motion
for a large number of collision events under randomly chosen
initial conditions. The three particles in the present case are
e− and e+ of Ps and the ground-state O2 molecule. This ap-
proach means that O2 is considered a structureless, pointlike
particle which, however, as a molecule interacts with e− and
e+ of Ps through an anisotropic potential.

The same calculation procedure was applied in a previous
study of the fragmentation of Ps in collision with He atoms
[33], except for the treatment of the potential around the target
(O2 instead of He). Therefore, in what follows, the discussion
is restricted to only the latter specific feature.

In the past decade, extended CTMC calculations for colli-
sions involving molecular species were carried out [34–36].
In these works the force between a pointlike particle of
charge q (in the present case e− or e+ of Ps) and the
molecule was determined as −q∇ri jVmod(ri j ), where ri j =
ri − r j is the relative position vector of the particle and the
center of the molecule. Vmod(r) is a multicenter model poten-
tial of the mean electric field created by the nuclei and the
electrons of the molecule.

Vmod(r) can be well approximated by the sum of screened
atomic potentials. For this purpose one may use the Green-
Sellin-Zachor potential deduced from atomic structure calcu-
lations [37]:

V GSZ(r) = {Z − (N − 1)[1 − �(r, η, ξ )]}/r, (24)

where Z is the nuclear charge, N is the number of electrons in
the ion, and

�(r, η, ξ ) = {(η/ξ )[exp(ξr) − 1] + 1}−1. (25)

η and ξ are parameters that depend on N and Z .
In principle, the potentials at the atomic centers in the

molecule differ from those of the isolated atoms. However, as
demonstrated in [35], good agreement can be obtained with
realistic molecular calculations even with the zeroth-order ap-
proximation, i.e., using atomic values for η and ξ in Eq. (24).

According to the above discussion, the two-center potential
of O2 is expressed as

Vmod(r) = V GSZ
O (rO1 ) +V GSZ

O (rO2 ). (26)

V GSZ(r) can be written as a sum of long- and short-range
potentials:

V GSZ(r) = Z − (N − 1)

r
+ (N − 1)

r
�(r, η, ξ ). (27)

For a neutral O atom, Z = 8, and N = 9. In this case,
the long-range part in Eq. (27) disappears, as expected for a
neutral atom. As a result, the molecular potential (26) also
has a short range. The following parameters were used in
the calculation of Vmod(r): η = 2.2145, ξ = 1.0478 [38], and
bond length = 2.42 a.u.

In the same way as in [33], the equations of motion for
the reversed collision system, O2 → Ps, are solved here.
This approach has the advantage that the considered processes
are analogous to those occurring in the collisions of atoms
with heavy particles: fragmentation of Ps and the electron
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FIG. 2. Experimental Ps-O2 total cross sections from this study alongside those of Brawley et al. [6]. Also shown are equivelocity positron
total cross sections of Dababneh et al. [41] and Chiari et al. [42] and equivelocity electron total cross sections of Zecca et al. [43], Dababneh
et al. [41], Karwasz et al. [44], and Kanik et al. [45].

transfer between the collision partners correspond to the well-
established reaction channels, namely, ionization of the target
(free-electron production) and electron capture by the pro-
jectile, respectively. In this way, codes that were developed
for the description of ion-atom (molecule) collisions can be
applied to the present system.

For the random choice of the position and momentum
coordinates of the electron, the general procedure proposed
by Reinhold and Falcón [39] was followed. The impact pa-
rameter of the projectile was chosen randomly in the interval
0–7.5 a.u. The O2 molecule was also randomly oriented in
each collision event. The integration of the equations of mo-
tion was started well before the collision (earlier by a time
of 350 a.u.). After the collision, a check of the conditions
for the exit channels (excitation, ionization, electron capture)
was made at a separation of about 100 a.u. For the identifi-
cation of the capture channel, an O2 electron-affinity value of
0.01646 a.u. [40] was used. To account fully for the postcolli-
sion interaction effects, the integration of the trajectories was
continued over distances of 108 a.u.

In the present CTMC investigations, the history of 5 × 105

total collision events was followed. After transformation of
the calculated trajectories from the reversed system to the di-
rect one, the cross sections for the fragmentation and electron
transfer were determined by using the standard procedure of
the CTMC:

σ (i) ≈ 2π
bmax

Ntraj

∑
j

b(i)
j . (28)

Here Ntraj is the total number of trajectories calculated in the
impact parameter range [0, bmax]. b(i)

j is the actual impact
parameter when the criterion of the regarded reaction channel
(fragmentation, electron transfer) is fulfilled.

The results of the calculations are presented and discussed
in the next section.

IV. RESULTS AND DISCUSSION

In this work, QPs
T has been determined for Ps energies in the

range 2–61 eV. The results are shown in Fig. 2 together with

previous measurements [6] and experimental positron (Q+
T )

[41,42] and electron (Q−
T ) [41,43,44] total cross sections at

the same velocities. Agreement is noted between the two de-
terminations of QPs

T in the common energy range, confirming
the electronlike scattering of Ps above approximately 0.8 a.u.
However, below this value, a considerable deviation may be
observed where the Ps cross section increases with decreasing
velocity.

Figure 3 compares QPs
T with the sum of the cross

sections for elastic scattering and Ps breakup, the dominant
inelastic channel, calculated in Ref. [10] using a FEG model
and the binary encounter (BE) approximation, respectively.
In the present work, the FEG approach has been refined by
including (i) the contribution of higher partial waves and, in
addition, (ii) the interference term correction to the correlation
energy discussed above. The experimental results are seen
to be broadly consistent with the trend of the underlying
(nonresonant) theoretical cross section, although they are sys-
tematically smaller below 30 eV.

The resonance region is considered in more detail in
Figs. 4(a) and 4(b). In the former, the measurements are

FIG. 3. Experimental Ps-O2 total cross sections alongside the
sum of the theoretical elastic-scattering (FEG) and breakup (BE)
cross sections as presented by Wilde et al. [10]. Also shown is the
latter with (i) an increased number of higher partial waves and, in
addition, (ii) the interference term, as described in the text.
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FIG. 4. Experimental Ps-O2 total cross sections of this study in the energy range 2–8 eV with (a) a 1-eV bin width and (b) no binning. Also
shown is the sum of the elastic-scattering (FEG) and breakup (BE) cross sections, labeled curve (ii) in Fig. 3, together with the corresponding
convolutions.

compared to the present theory with the interference term
[curve (ii) in Fig. 3], and its convolution with the Ps energy
distribution �EPs and the (±0.5 eV) energy bin over which
data are combined. To check the sensitivity of the results to the
energy grouping, in Fig. 4(b), the means are computed with-
out binning and compared with the same theory convoluted
with only the Ps energy distribution. Although suggestive, the
resolution and precision of the present results are insufficient
to corroborate the predicted resonances. However, once again,
both sets of experimental data are systematically lower than
theory, suggesting that the elastic-scattering cross section may
be overestimated.

The inclusion of the interference correction allows an
estimate of the error of the perturbative approach to the cor-
relation potential in the resonance region by considering the
corresponding change in amplitude of the peaks (�15%) and
their position (� 0.3 eV). However, the major approximation
in the theoretical treatment is the use of the local FEG poten-
tial for electron exchange. The FEG potential does not prevent
capture of the projectile electron into an occupied orbital of
the target. To analyze the significance of this approximation
for electron-molecule scattering, Morrison and Collins [46]
introduced FEG exchange with the orthogonality constraint
whereby the continuum orbital is forced to be orthogonal to
the occupied orbitals of the target molecule. Still, it is not clear
how to employ this method for Ps-molecule collisions since in
this case the projectile electron is bound in Ps. Mitroy et al.
[47,48] proposed the method of the orthogonalized pseudopo-
tential, which reduces the overlap between the wave functions
of the projectile and target electrons by introducing a nonlo-
cal potential with a strong repulsive core. This method was
successful when applied to Ps scattering by rare-gas atoms
[11]. However, it was not able to give a proper description of
Ps-molecule scattering [10].

In the absence of a reliable method for incorporating or-
thogonality constraints in Ps-molecule scattering, the results
of Morrison and Collins [46] for electron-molecule scattering

were analyzed. For several molecular targets treated by them
(H2, N2, CO, and a few polar molecules) the orthogonality
constraint substantially improves the FEG results, making
them close to those obtained with the exact treatment of
exchange. In the low-energy region between � 0 and 3 eV,
the cross section is reduced by 20%–40%, and the shape
resonance position in the case of N2 and CO is shifted towards
lower energy (by about 0.75 eV to E = 3.54 eV for CO). The
orthogonality constraint becomes less important at higher en-
ergies. Thus, it may be reasonably estimated that the error due
to the local FEG potential is about the same in Ps-molecule
scattering, meaning that the cross sections calculated with the
FEG potential overestimate the actual cross sections by about
20%–40% in the energy region below about 5 eV, which is
consistent with the experimental values.

A comparison of QPs
T with theoretical partial cross sec-

tions for elastic scattering, Ps breakup, and O−
2 formation

(breakup and electron transfer) is presented in Fig. 5. There
the cross sections for elastic scattering are the result of the
FEG approach of Wilde et al. [10] and its extension [labeled
(ii) in this study]. Those for Ps breakup have been com-
puted using both the BE approximation [10] and the present
CTMC method. The BE model uses quantum scattering cross
sections for electron-molecule and positron-molecule interac-
tions; therefore, quantum effects are implicitly incorporated,
although the model by itself is semiclassical. Moreover, the
BE results for rare-gas atoms [53] agree with fully quantum-
mechanical calculations [54]. The present CTMC results
exceed the BE cross sections by a factor of 2–3 above
10 eV. This is consistent with those [33] for the CTMC cross
sections for Ps breakup by He atom which exceed quantum-
mechanical calculations [55] as well as experimental results
[56] by a factor of 1.6–2.5. Thus, it may be concluded that
the present disagreement between BE and CTMC reflects
quantum effects in e−-O2 and e+-O2 scattering.

Additionally, in Fig. 5, the spin-conversion cross sec-
tions for inelastic and elastic processes are displayed. The
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FIG. 5. Experimental Ps-O2 total cross sections of this study and Brawley et al. [6] alongside theoretical partial cross sections: elastic
scattering (FEG) of Wilde et al. [10] and its extension, this study (ii); breakup (CTMC), this study; electron transfer (CTMC), this study;
breakup (BE) of Wilde et al. [10]; inelastic spin conversion of Kakimoto et al. [49]; and elastic spin conversion of Zhou et al. [50], Chang
et al. [51], and Shinohara et al. [52].

cross sections were obtained using the 2γ angular correla-
tion method [49], positron annihilation lifetime spectroscopy,
and coincidence Doppler broadening spectroscopy [50–52].
Notably, that for inelastic conversion is several orders of mag-
nitude larger than that for elastic conversion but over a factor
of 50 smaller than that for elastic scattering.

V. CONCLUSIONS AND OUTLOOK

The experimental total cross section of positronium scat-
tering from molecular oxygen was presented in the velocity
range 0.27–1.50 a.u. (energy range of 2–61 eV) and found
to confirm the similarity to the equivelocity electron cross
section above 0.87 a.u. (20 eV). However, below this value,
the Ps cross section was observed to exceed that for electrons
by up to a factor of 4 at the lowest energy. The measurements
were compared with the present FEG elastic-scattering cross
section, and the two sets of results were found to be consis-
tent within their combined uncertainties. Additionally, cross
sections for positronium breakup and O−

2 formation were
calculated using a classical-trajectory Monte Carlo approach.

At its peak, the latter is predicted to be � 35 times less
likely than elastic scattering. It is hoped that in the future
measurements with higher-energy resolution and precision
will be accompanied by further refinements in concomitant
theoretical descriptions.

The data that support the findings of this study are openly
available at UCL Discovery [57].

ACKNOWLEDGMENTS

We would like to thank J. Dumper, R. Jawad, and D.
Thomas for excellent technical assistance during this research.
The Engineering and Physical Sciences Research Council
is gratefully acknowledged for supporting this work under
Grants No. EP/P009395/1 and No. EP/R513143/1 and for
providing D.M.N. with a research studentship. This work
was also supported by the National Science Foundation un-
der Grants No. PHY-1803744 and No. PHY-2011262 and by
Hungarian Scientific Research Fund Grant No. K128621.

[1] M. Charlton and J. W. Humberston, Positron Physics,
Cambridge Monographs on Atomic, Molecular and Chemi-
cal Physics Vol. 11 (Cambridge University Press, Cambridge,
2001).

[2] D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018).
[3] S. G. Karshenboim, Phys. Rep. 422, 1 (2005).
[4] G. Laricchia and H. R. J. Walters, Riv. Nuovo Cimento 35, 305

(2012).
[5] R. S. Wilde and I. I. Fabrikant, J. Phys. B 53, 185202 (2020).
[6] S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I.

Williams, and G. Laricchia, Science 330, 789 (2010).
[7] S. J. Brawley, A. I. Williams, M. Shipman, and G. Laricchia,

Phys. Rev. Lett. 105, 263401 (2010).
[8] M. Shipman, S. J. Brawley, L. Sarkadi, and G. Laricchia, Phys.

Rev. A 95, 032704 (2017).

[9] R. S. Wilde and I. I. Fabrikant, Phys. Rev. A 97, 052708 (2018).
[10] R. S. Wilde, H. B. Ambalampitiya, and I. I. Fabrikant, Phys.

Rev. A 104, 012810 (2021).
[11] R. S. Wilde and I. I. Fabrikant, Phys. Rev. A 98, 042703 (2018).
[12] R. S. Wilde, M. K. Selvage, and I. I. Fabrikant, Phys. Rev. A

106, 032810 (2022).
[13] R. S. Wilde and I. I. Fabrikant, Phys. Rev. A 92, 032708 (2015).
[14] C. J. Noble and P. G. Burke, Phys. Rev. Lett. 68, 2011 (1992).
[15] K. Higgins, C. J. Noble, and P. G. Burke, J. Phys. B 27, 3203

(1994).
[16] J. E. Land and W. Raith, Phys. Rev. A 9, 1592 (1974).
[17] M. Allan, J. Phys. B 28, 5163 (1995).
[18] D. M. Newson, M. Shipman, S. J. Brawley, R. Kadokura, T. J.

Babij, D. Cooke, D. E. Leslie, and G. Laricchia, J. Instrum. 17,
P11026 (2022).

022809-7

https://doi.org/10.1140/epjd/e2018-80721-y
https://doi.org/10.1016/j.physrep.2005.08.008
https://doi.org/10.1393/ncr/i2012-10077-6
https://doi.org/10.1088/1361-6455/aba2ad
https://doi.org/10.1126/science.1192322
https://doi.org/10.1103/PhysRevLett.105.263401
https://doi.org/10.1103/PhysRevA.95.032704
https://doi.org/10.1103/PhysRevA.97.052708
https://doi.org/10.1103/PhysRevA.104.012810
https://doi.org/10.1103/PhysRevA.98.042703
https://doi.org/10.1103/PhysRevA.106.032810
https://doi.org/10.1103/PhysRevA.92.032708
https://doi.org/10.1103/PhysRevLett.68.2011
https://doi.org/10.1088/0953-4075/27/14/048
https://doi.org/10.1103/PhysRevA.9.1592
https://doi.org/10.1088/0953-4075/28/23/021
https://doi.org/10.1088/1748-0221/17/11/P11026


D. M. NEWSON et al. PHYSICAL REVIEW A 107, 022809 (2023)

[19] S. E. Fayer, D. M. Newson, S. J. Brawley, A. Loreti, R.
Kadokura, T. J. Babij, J. Lis, M. Shipman, and G. Laricchia,
Phys. Rev. A 100, 062709 (2019).

[20] A. W. Alrowaily, S. J. Ward, and P. Van Reeth, J. Phys. B 52,
205201 (2019).

[21] A. W. Alrowaily, S. J. Ward, and P. V. Reeth, Atoms 9, 56
(2021).

[22] I. I. Fabrikant and R. S. Wilde, Phys. Rev. A 97, 052707
(2018).

[23] A. Özen, A. J. Garner, and G. Laricchia, Nucl. Instrum.
Methods Phys. Res., Sect. B 171, 172 (2000).

[24] M. Shipman, S. J. Brawley, L. Sarkadi, and G. Laricchia, Eur.
Phys. J. D 68, 75 (2014).

[25] M. Shipman, S. Armitage, J. Beale, S. J. Brawley, S. E. Fayer,
A. J. Garner, D. E. Leslie, P. Van Reeth, and G. Laricchia, Phys.
Rev. Lett. 115, 033401 (2015).

[26] A. J. Garner, A. Özen, and G. Laricchia, Nucl. Instrum.
Methods Phys. Res., Sect. B 143, 155 (1998).

[27] G. Laricchia, S. Armitage, and D. Leslie, Nucl. Instrum.
Methods Phys. Res., Sect. B 221, 60 (2004).

[28] D. M. Newson, Ph.D. thesis, University College London, 2022.
[29] D. M. Newson, S. J. Brawley, M. Shipman, and G. Laricchia

(unpublished).
[30] D. G. Green, A. R. Swann, and G. F. Gribakin, Phys. Rev. Lett.

120, 183402 (2018).
[31] R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 861

(1966).
[32] R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).
[33] L. Sarkadi, Phys. Rev. A 68, 032706 (2003).
[34] L. Sarkadi, Phys. Rev. A 92, 062704 (2015).
[35] S. T. S. Kovács, P. Herczku, Z. Juhász, L. Sarkadi, L. Gulyás,

and B. Sulik, Phys. Rev. A 94, 012704 (2016).
[36] L. Sarkadi, J. Phys. B 49, 185203 (2016).
[37] A. E. S. Green, D. L. Sellin, and A. S. Zachor, Phys. Rev. 184,

1 (1969).
[38] R. H. Garvey, C. H. Jackman, and A. E. S. Green, Phys. Rev. A

12, 1144 (1975).

[39] C. O. Reinhold and C. A. Falcón, Phys. Rev. A 33, 3859 (1986).
[40] K. M. Erwin, I. Anusiewicz, P. Skurski, J. Simons, and W. Carl

Lineberger, J. Phys. Chem. A 107, 8521 (2003).
[41] M. S. Dababneh, Y.-F. Hsieh, W. E. Kauppila, C. K. Kwan, S. J.

Smith, T. S. Stein, and M. N. Uddin, Phys. Rev. A 38, 1207
(1988).

[42] L. Chiari, A. Zecca, S. Girardi, E. Trainotti, G. García, F.
Blanco, R. P. McEachran, and M. J. Brunger, J. Phys. B 45,
215206 (2012).

[43] A. Zecca, R. S. Brusa, R. Grisenti, S. Oss, and C. Szmytkowski,
J. Phys. B 19, 3353 (1986).

[44] G. P. Karwasz, R. S. Brusa, and A. Zecca, Interactions of
Photons and Electrons with Molecules (Springer-Verlag, 2003).

[45] I. Kanik, J. C. Nickel, and S. Trajmar, J. Phys. B 25, 2189
(1992).

[46] M. A. Morrison and L. A. Collins, Phys. Rev. A 23, 127 (1981).
[47] J. Mitroy and G. G. Ryzhikh, Comput. Phys. Commun. 123,

103 (1999).
[48] I. A. Ivanov, M. W. J. Bromley, and J. Mitroy, Comput. Phys.

Commun. 152, 9 (2003).
[49] M. Kakimoto, T. Hyodo, and T. B. Chang, J. Phys. B 23, 589

(1990).
[50] Y. Zhou, W. Mao, Q. Li, J. Wang, and C. He, Chem. Phys. 459,

81 (2015).
[51] T. Chang, G. Yang, and T. Hyodo, Mater. Sci. Forum 105–110,

1509 (1992).
[52] N. Shinohara, N. Suzuki, T. Chang, and T. Hyodo, Phys. Rev. A

64, 042702 (2001).
[53] G. F. Gribakin, A. R. Swann, R. S. Wilde, and I. I. Fabrikant, J.

Phys. B 49, 064004 (2016).
[54] C. Starrett, M. T. McAlinden, and H. R. J. Walters, Phys. Rev.

A 72, 012508 (2005).
[55] J. E. Blackwood, C. P. Campbell, M. T. McAlinden, and H. R. J.

Walters, Phys. Rev. A 60, 4454 (1999).
[56] S. Armitage, D. E. Leslie, A. J. Garner, and G. Laricchia, Phys.

Rev. Lett. 89, 173402 (2002).
[57] https://discovery.ucl.ac.uk/id/eprint/10164844/.

022809-8

https://doi.org/10.1103/PhysRevA.100.062709
https://doi.org/10.1088/1361-6455/ab31f6
https://doi.org/10.3390/atoms9030056
https://doi.org/10.1103/PhysRevA.97.052707
https://doi.org/10.1016/S0168-583X(00)00045-8
https://doi.org/10.1140/epjd/e2014-40791-5
https://doi.org/10.1103/PhysRevLett.115.033401
https://doi.org/10.1016/S0168-583X(98)00218-3
https://doi.org/10.1016/j.nimb.2004.03.032
https://doi.org/10.1103/PhysRevLett.120.183402
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1103/PhysRevA.16.531
https://doi.org/10.1103/PhysRevA.68.032706
https://doi.org/10.1103/PhysRevA.92.062704
https://doi.org/10.1103/PhysRevA.94.012704
https://doi.org/10.1088/0953-4075/49/18/185203
https://doi.org/10.1103/PhysRev.184.1
https://doi.org/10.1103/PhysRevA.12.1144
https://doi.org/10.1103/PhysRevA.33.3859
https://doi.org/10.1021/jp0357323
https://doi.org/10.1103/PhysRevA.38.1207
https://doi.org/10.1088/0953-4075/45/21/215206
https://doi.org/10.1088/0022-3700/19/20/018
https://doi.org/10.1088/0953-4075/25/9/022
https://doi.org/10.1103/PhysRevA.23.127
https://doi.org/10.1016/S0010-4655(99)00445-2
https://doi.org/10.1016/S0010-4655(02)00757-9
https://doi.org/10.1088/0953-4075/23/3/025
https://doi.org/10.1016/j.chemphys.2015.07.030
https://doi.org/10.4028/www.scientific.net/MSF.105-110.1509
https://doi.org/10.1103/PhysRevA.64.042702
https://doi.org/10.1088/0953-4075/49/6/064004
https://doi.org/10.1103/PhysRevA.72.012508
https://doi.org/10.1103/PhysRevA.60.4454
https://doi.org/10.1103/PhysRevLett.89.173402
https://discovery.ucl.ac.uk/id/eprint/10164844/

