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Abstract. In 1932 von Neumann proposed classifying the statistical behavior of differentiable sys-
tems. In modern language this is interpreted as classifying diffeomorphisms of compact manifolds
up to measure isomorphism. This paper proves that this is impossible in a rigorous sense.
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1. Introduction

The isomorphism problem in ergodic theory was formulated by von Neumann in 1932
in his pioneering paper [23]." The problem has been solved for some classes of trans-
formations that have special properties. Halmos and von Neumann [15] used the unitary
operators defined by Koopman to completely characterize ergodic measure preserving
transformations with pure point spectrum. They showed that these are exactly the transfor-
mations that can be realized as translations on compact groups. Another notable success in
solving this problem was the classification of Bernoulli shifts using the notion of entropy
introduced by Kolmogorov.

Starting in the late 1990s a different type of result began to appear: anti-classification
results that demonstrate in a rigorous way that classification is not possible. This type of
theorem requires a precise definition of what a classification is. Informally, a classifica-
tion is a method of determining isomorphism between transformations by computing (in
a liberal sense) other invariants for which equivalence is easy to determine.

The key words here are method and computing. For negative theorems, the more lib-
eral a notion one takes for these words, the stronger the theorem. One natural way of
what a computation is uses the Borel/non-Borel distinction. Saying a set X or function
f is Borel is a loose way of saying that membership in X or the computation of f can
be done using a countable (possibly transfinite) protocol whose basic input is member-
ship in open sets. Saying that X or f is not Borel is saying that determining membership
in X or computing f cannot be done with any countable amount of resources. (See [6]
for an elementary discussion and a comparison with the more strict notion of recursive
computation, which requires inherently finite resources.)

In the context of classification problems, saying that an equivalence relation £ on
a space X is not Borel is saying that there is no countable amount of initial information
and no countable, potentially transfinite, protocol based on this information for determin-
ing, for arbitrary x, y € X whether x Ey. Any such method must inherently use uncount-
able resources.’

An example of a positive theorem in the context of ergodic theory is due to Halmos
([14]) who showed that the collection of ergodic measure preserving transformations
is a dense &5 set in the space of all measure preserving transformations of ([0, 1], A)
endowed with the weak topology. Moreover, he showed that the set of weakly mixing
transformations is also a dense 5.

'Two measure preserving transformations (abbreviated to ‘MPTs’ in the paper) T and S are
isomorphic if there is an invertible measurable mapping between the corresponding measure spaces
which commutes with the actions of 7" and S.

ZMany well known classification theorems have as immediate corollaries that the resulting
equivalence relation is Borel. An example of this is the Spectral Theorem, which has a consequence
that the relation of Unitary Conjugacy for normal operators is a Borel equivalence relation.

3Relatively straightforward arguments show that the set of strongly mixing transformation is
a first category Hg set. See [5].
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The first anti-classification result in the area is due to Beleznay and Foreman [3] who
showed that the class of measure distal transformations used in early ergodic theoretic
proofs of Szemeredi’s theorem is not a Borel set. Later Hjorth [16] introduced the notion
of turbulence and showed that there is no Borel way of attaching algebraic invariants
to ergodic transformations that completely determine isomorphism. Foreman and Weiss
[10] improved this result by showing that the conjugacy action of the measure preserving
transformations is turbulent — hence no generic class can have a complete set of algebraic
invariants.

In considering the isomorphism relation as a collection J of pairs (S, 7)) of measure
preserving transformations, Hjorth ([17]) showed that d is not a Borel set. However the
pairs of transformations he used to demonstrate this were inherently non-ergodic, leaving
open the essential problem:

Question. Is isomorphism of ergodic measure preserving transformations Borel?

This question was answered in the negative by Foreman, Rudolph and Weiss in [8].
This answer can be interpreted as saying that determining isomorphism between ergodic
transformations is inaccessible to countable methods that use countable amounts of infor-
mation.

In the same foundational paper from 1932 von Neumann expressed the likelihood that
any abstract MPT is isomorphic to a continuous MPT and perhaps even to a differentiable
one. This brief remark eventually gave rise to one of the yet outstanding problems in
smooth dynamics, namely:

Question. Does every ergodic MPT with finite entropy have a smooth model?*

By a smooth model it is meant an isomorphic copy of the MPT which is given by
smooth diffeomorphism of a compact manifold preserving a measure equivalent to the
volume element. Soon after entropy was introduced, A. G. Kushnirenko showed that such
a diffeomorphism must have finite entropy, and up to now this is the only restriction that
is known. The current paper is the culmination of a series whose purpose is to show that
the variety of ergodic transformations that have smooth models is rich enough so that the
abstract isomorphism relation, when restricted to these smooth systems, is as complicated
as the general isomorphism problem for ergodic measure preserving systems. We show
that even when restricting to diffeomorphisms of the 2-torus that preserve Lebesgue mea-
sure this is the case. The formal statement of our solution to the isomorphism problem
is:

Theorem 1. If M is either the torus T2, the disk D or the annulus then the measure-
isomorphism relation among pairs (S, T) of measure preserving C*°-diffeomorphisms
of M is not a Borel set with respect to the C*°-topology.

“4In [23] on page 590, “Vermutlich kann sogar zu jeder allgemeinen Stromung eine isomor-
phe stetige Stromung gefunden werden [footnote 13], vielleicht sogar eine stetig-differentiierbare,
oder gar eine mechanische. Footnote 13: Der Verfasser hofft, hierfiir demnéchst einen Beweis
anzugeben.”
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Thus the isomorphism problem is impossible even for diffeomorphisms of compact
surfaces.

How does one prove a result such as Theorem 1?7 The main tool is the idea of a reduc-
tion (see [6] and Section 4.6). A function f : X — Y reduces A to B if and only if for
all x € X:

x € Aifand only if f(x) € B.

If X and Y are completely metrizable spaces and f is a Borel function, then f is a method
of reducing the question of membership in A to membership in B. Thus if A is not Borel
then B cannot be either.

In the current context, the C°°-topology on the smooth transformations refines the
weak topology. Thus, by Halmos’ result quoted earlier, on the torus (disk, etc.), the
ergodic transformations are still a §5-set. (However the famous KAM theory shows that
the ergodic transformations are no longer dense.) In particular, the C *°-topology induces
a metrizable complete and perfect topology on the measure preserving diffeomorphisms
of T2. If M is a manifold with supporting a measure u, we denote the space of C®,
j-measure preserving diffeomorphisms of M with the notation Diff* (M, ). Elements
of Diff* (M, ) are also members of the group MPT of p-measure preserving transfor-
mations. For T € Diff> (M, w) the centralizer of T in MPT is denoted C(T).

If X is perfect and completely metrizable, a set A € X is analytic if and only if A is
the continuous image of a Borel set. A is complete analytic if and only if every analytic
set can be reduced to A. It is a classical fact that complete analytic sets are not Borel.

The proof of Theorem 1 uses a well-known example of a complete analytic set. The
underlying space X is the space Trees and A is the collection of ill-founded trees; those
that have infinite branches. A precise statement of the main result of the paper:

Theorem 2. There is a continuous function F* : Trees — Diff> (T2, 1), taking values
among the ergodic transformations, such that for T € Trees, if T = F*(T):

(1) T has an infinite branch if and only if T = T, and
(2) T has two distinct infinite branches if and only if
C(T)#A{T" :n € Z}.
Corollary 3. The following statements hold:
o {T € Diff>* (T2, 1) : T is ergodic and T = T~} is complete analytic.
o {T € Diff>* (T2, 1) : T is ergodic and C(T) # {T" : n € Z} is complete analytic.
Since the map
(T)= (T, T
is a continuous mapping of Diff*°*(T?2, 1) to Diff> (T2, 1) x Diff>(T?2, 1) and reduces
{T:T =T ' t0{(S,T):S = T}, it follows that:
Corollary 4. The set
{(S.T): S and T are ergodic diffeomorphisms of T* and are isomorphic)

is complete analytic and hence not Borel.
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We note that the problem of finding even one measure preserving transformation not
isomorphic to its inverse is difficult. This was not done until Anzai in [2]. In Math Review
MRO0047742, Halmos said, “By constructing an example of the type described in the title
the author solves (negatively) a problem proposed by the reviewer and von Neumann
[Ann. of Math. (2) 43, 332?350 (1942): MR0006617]”.

More fine-grained information is now known and will be published elsewhere. For
example, Foreman, in unpublished work, showed that the problem of “isomorphism of
countable graphs” is Borel reducible to the isomorphism problem for ergodic measure
preserving transformations.

The techniques of this paper also have foundational interest. A close analysis of
our construction shows that the problem of whether T is isomorphic to its inverse is
“H(l)-hard.” (See [7]). This enables one to prove that truth or falsity of various open prob-
lems like the Riemann hypothesis is equivalent to the question of is Try isomorphic or
not to its inverse for a specific measure preserving diffeomorphism Try of the torus given
by our construction. Another consequence is the existence of a different diffeomorphism
Tzrc such that the question of whether Tzpc is isomorphic to its inverse is independent
of ZFC, the usual axioms for mathematics.

Here are two problems that remain open:

Problem 1. In contrast to [10], where the authors were able to show that the equiva-
lence relation of isomorphism on abstract ergodic measure preserving transformations is
turbulent, this remains open for ergodic diffeomorphisms of a compact manifold.

Problem 2. The problem of classifying diffeomorphisms of compact surfaces up to topo-
logical conjugacy remains largely open. Work of the first author with A. Gorodetski
shows that the isomorphism relation itself is not Borel, but for a very specific type of
diffeomorphisms of manifolds of dimension 5 and above. It is not know, for example for
topologically minimal transformations.

We owe a substantial debt to everyone who has helped us with this project. Jean-Paul
Thouvenot brought the Anosov—Katok technique to our attention and suggested using it
to solve the von Neumann problem. Philipp Kunde aided us by reading the paper and pro-
viding comments and corrections. Others include Eli Glasner, Anton Gorodetski, Alekos
Kechris, and Anatole Katok.

We particularly want to acknowledge the contribution of the late Dan Rudolph, who
helped pioneer these ideas and was a co-author in [8], contributing techniques fundamen-
tal to this paper.

2. An outline of the argument

This section gives an outline of the argument for Theorem 2. It uses the main results
from our earlier papers: A symbolic representation of Anosov—Katok systems ([11]) and
From odometers to circular systems: A global structure theorem ([12]) which we briefly
summarize. In [11], the Anosov—Katok technique of Approximation by Conjugacy is used
to give a new symbolic representation for a class of measure preserving diffeomorphisms
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that are extensions of the rotations by certain Liouvillean «. These are called strongly
uniform Circular Systems.’

In [12] two classes of symbolic systems are defined. The first, called Odometer Based
systems, contains representatives of every finite entropy measure preserving transforma-
tion with an odometer factor. The second class is the collection of Circular Systems.
These classes are made into categories by taking as morphisms synchronous and anti-
synchronous factor maps. The main result is that there is a functorial isomorphism between
F between these categories that takes strongly uniform systems to strongly uniform
systems.

Since the main construction in [8] uses Odometer Based systems this map enables
us to adapt that construction to the smooth setting. However in order to prove our main
result we still have to take into account potential isomorphisms of Circular Systems that
are neither synchronous nor anti-synchronous. It is to deal with this difficulty that we
analyze what we call the displacement function.

To each « arising as a rotation factor of a circular system 7" one can associate a dis-
placement function (Section 7.1) and use it to associate the set of central values, a sub-
group of the unit circle. Its significance is the following:

(1) (Theorem 84) If B is central, then there is an ¢p € {T" : n € Z} such that the rotation
factor of ¢ is rotation by B.

(2) (Theorem 90) If T is built from sufficiently random words,® and ¢ € C(T), then the
canonical rotation factor of ¢ is rotation by a central value.

(3) It follows that if there is a ¢ € C(T) and ¢ ¢ {T" : n € Z}, then there is a syn-
chronous ¥ € C(T) such that ¢ {T" : n € Z}.

(4) (Theorem 92) The analogous results relating isomorphisms ¢ between T and T~!
with central values is proved, allowing us to conclude that if T is isomorphic to 7!,
then there is an anti-synchronous isomorphism between T and 7!,

(5) The previous two items are the content of Theorem 93, which says that for 7" satisfy-
ing the Timing Assumptions, to decide whether T = T~! or C(T) # {T" :n € Z}
it suffices to consider anti-synchronous and synchronous isomorphisms.

In [8] a continuous function F from the space of Trees to the strongly uniform odometer

based transformations is constructed that:

e reduces the set of ill-founded trees to the transformations 7' that are isomorphic
to their inverses (and if T = T~!, then this is witnessed by an anti-synchronous
isomorphism) and

e reduces the set of trees with two infinite branches to the transformations 7" whose
centralizer is different from the powers of 7' (and if the centralizer contains an exotic
element, it contains a synchronous exotic element).

5In a forthcoming paper we show how to drop the “strongly uniform” assumption.
That is, T satisfies the Timing Assumptions.
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Moreover, in the second case, there is a synchronous element of the centralizer with
a specific piece of evidence that it is not the identity (it moves a @ }-equivalence class).
Composing one concludes that ¥ o F:
o reduces the set of ill-founded trees to collection of circular systems that are isomorphic
to their inverses and
e reduces the set of trees with two infinite branches to the circular systems whose
centralizer is different from the closure of the powers of 7.

Continuously realizing the circular systems by R (as in [11]) completes the proof that:

e The collection of ergodic measure preserving diffeomorphisms T of the torus that are
isomorphic to their inverses is complete analytic. Consequently, the set of pairs (S, T')
of ergodic conjugate measure preserving diffeomorphisms is a complete analytic set.

e The collection of ergodic measure preserving diffeomorphisms 7" whose centralizer
is different from the closure of the powers of T is complete analytic.

Figure 1 illustrates F* = Ro ¥ o G.

— 5 | Odometer

F Based

Fig. 1. The reduction F*.

The next two sections review basic facts in ergodic theory and descriptive set theory,
define odometer based and circular systems and review their properties and the facts
shown in [11] and [12].

The analysis of the displacement function and the associated central values, which are
a subgroup of the circle canonically associated to the Liouvillean «, is carried out in Sec-
tions 5—7. Finally, the proof of the main theorems are given in Section 8 modulo certain
properties which impose some additional conditions on the parameters of the construc-
tion in [8]. These are verified in Section 9 and in Section 10 we spell out the dependencies
between the various parameters and show that they can be realized.

3. Numerical requirements

The proof of Theorem 2 uses a construction with many interconnecting pieces, most of
which are built by taking limits. This results in a large number of related sequences of
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variables, each having their own requirements and the estimates for the different pieces
must be compatible.

The least interesting part of this paper is verifying the consistency of the numerical
requirements. Sorting these requirements out is completely independent of the rest of the
paper. For this reason, we list the numerical requirements in Section 11.1, and then give
an argument for their consistency. We also note the specific requirement by number in the
text as they are posited and used.

Contributing to the complexity of the situation is that many of the relationships
between the variables come from internal arguments of the general form “taking § small
enough you can guarantee that x < €”, with various variables in place of €, § and x. The
exact relationship between € and § is not clear from the argument, but there is a require-
ment of the form “§ is small as a function of €.” A typical example of this is Sublemma 99
which says that, as a function of Q7, if ¢, is take sufficiently small then an involved
inequality involving 7*, u}, v} and Q7 holds.

Complicating this task further is the fact that the construction in this paper depends
on the construction in [8], which has its own numerical requirements. For a reader track-
ing the correspondence, in the appendix, we include a table for translating between the
notation in this paper and the notation in [8].

The variables. Here is a list of variable sequences that have to be chosen during the
construction:
kn ln,qn,Sn. €M), P Gn, Qn, €n, en, fhn, Q?

Some of these variables have clear relationships that are externally determined. The main
construction is of a function that has a tree as in input. That tree directly determines
a sequence of parameters, such as G and (M(s) : s < n) that are not chosen during
the construction. (In Section 11, we call these exogenous variables.) These parameters
determine some of the numerical requirements.

Example 5. The words in the collection ‘W, are built by a sequence of M substitu-
tions into equivalence classes of the relations (Q;’H, where M = supg M(s) for S the
collection of heights on nodes in the given tree at stage n. These substitution instances are
closed under a sequence of Z, actions of the groups (G : i < M). The number M and
the dimensions of the Z, actions are also determined by the tree. Thus s, is determined
by the exogenous variables G}', M (s), and the internally chosen variable e(n + 1). In this
particular example, It is possible to give a completely explicit formula for e(n 4 1) in
terms 5,41 and vice versa.’

However that would be uninformative. What we need to see is that if e(n 4 1) is large,
then 5,41 is and vice versa and that each determines the other. This is the only relevant
information for determining the consistency of the numerical requirements. We have thus
eliminated one variable.

It would perhaps be more conventional to define all of the variables in advance, write
down the list of inequalities and then show they are consistent. However the examples

"We have s, 41 = M e(”+l))G for numbers M and G determined exogenously.
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above illustrate the difficulties with this. The inequalities are intimately intertwined with
the details of the construction and are completely enigmatic without that context. For this
reason we note the numerical requirements one by one as they accumulate and collect
them in Section 11.1. We then proceed to show that they are consistent by the method
we describe next. A reader with a preference for the conventional presentation is advised
to skip directly to Section 11, read the reconciliation and then return to read the rest of
the paper.

What could possibly go wrong? The only potential issue is that there may be a situation
where the requirements are circular: for example, § might have to be small as a function
of €, € small as a function of u and p small as a function of §. In symbols

€—>8—>u—>e€.

So if you choose € first, then § then p, you might find that your choice of € was inadequate.
Indeed, because there is a cycle in the dependency diagram there is no variable you can
choose first and be certain of consistency.

Method for showing consistency. In Section 11 we analyze the dependencies and draw
a dependency diagram giving the order of choice. Since that diagram is cycle free, all of
the variables can be chosen to satisfy the accumulated requirements.

4. Preliminaries

The reader is referred to standard texts such as [22], [24] or [21]. Facts that are not
standard and are simply cited here are proved in [12], [11] and [8].

4.1. Measure spaces

We will call separable non-atomic probability spaces standard measure spaces and denote
them (X, B, i), where B is the Boolean algebra of measurable subsets of X and w is
a countably additive, non-atomic measure defined on $. Maharam and von Neumann
proved that every standard measure space is isomorphic to ([0, 1], 8, A), where A is
Lebesgue measure and 8 is the algebra of Lebesgue measurable sets.

If (X, 8, ) and (Y, €, v) are measure spaces, an isomorphism between X and Y
is a bijection ¢ : X — Y such that ¢ is measure preserving and both ¢ and ¢! are
measurable. We will ignore sets of measure zero when discussing isomorphisms; i.e. we
allow the domain and range of ¢ to be subsets of X and Y of measure one.

A measure preserving system is an object (X, B, u, T'), where T : X — X is a mea-
sure isomorphism. A factor map between two measure preserving systems (X, B, u, T)
and (Y, €, v, S) is a measurable, measure preserving function ¢ : X — Y such that

So¢p=¢oT.

A factor map is an isomorphism between systems iff ¢ is a measure isomorphism.



M. Foreman, B. Weiss 2614

LetT : (X,8,u,T) - (X, B, i, T) be measure preserving, let (¥, €) be a measur-
able space, S : Y — Y a measurable map and ¢ : X — Y a measurable map such that
¢T = S¢. Then we can define a measure v = ¢*u by setting v(A) = (¢ ~'(A)). This
measure makes ¢ a factor map from (X, B, u, T) to (Y, €, v, S).

4.2. Presentations of measure preserving systems

Measure preserving systems occur naturally in many guises with diverse topologies. As
far as is known, the Borel/non-Borel distinction for dynamical properties is the same in
each of these presentations and many of the presentations have the same generic classes.
(See the forthcoming paper [9] which gives a precise condition for this.)

Here is a review the properties of the types of presentations relevant to this paper,
which are: abstract invertible preserving systems, smooth transformations preserving vol-
ume elements and symbolic systems.

4.2.1. Abstract measure preserving systems. Since every standard measure space is iso-
morphic to the unit interval with Lebesgue measure, every invertible measure preserving
transformation of a standard measure space is isomorphic to an invertible Lebesgue mea-
sure preserving transformation on the unit interval.

In accordance with the conventions of [5] we denote the group of measure preserving
transformations of [0, 1) by MPT.® Two measure preserving transformations are identified
if they are equal on sets of full measure.

Two measure preserving transformations are isomorphic if and only if they are conju-
gate in the group MPT and we will use isomorphic and conjugate as synonyms. However
some caution is order. If (M, ) is a manifold, 7 : M — M is a smooth measure pre-
serving transformation and ¢ is an arbitrary measure preserving transformation from M
to M, then ¢>T¢_1 is unlikely to be smooth. Thus, the equivalence relation of isomor-
phism of diffeomorphisms is not given by an action of the group of measure preserving
transformations in an obvious way.

Given a measure space (X, i) and a measure preserving transformation 7 : X — X,
define the centralizer of T to be the collection of measure preserving S : X — X such
that ST = T'S. This group is denoted C (7). Note that this is the centralizer in the group
of measure preserving transformations. In the case that X is a manifold and 7 is a diffeo-
morphism, C(T') differs from the centralizer of T inside the group of diffeomorphisms.

To each invertible measure preserving transformation 7 € MPT, associate a unitary
operator Ur : L?([0, 1]) — L?([0, 1]) by defining U(f) = f o T. In this way MPT can
be identified with a closed subgroup of the unitary operators on L2 ([0, 1]) with respect to
the weak operator topology’ on the space of unitary transformations. This makes MPT
into a Polish group. We will call this the weak topology on MPT. Halmos ([ 14]) showed
that the ergodic transformations, which we denote &, is a dense §5 set in MPT. In
particular, the weak topology makes & into a Polish subspace of MPT.

8Recently several authors have adopted the notation Aut(z) for the same space.
9Which coincides with the strong operator topology in this case.
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There is another topology on the collection of measure preserving transformations
of X to Y for measure spaces X and Y. If S, 7 : X — Y are measure preserving trans-
formations, the uniform distance between S and T is defined to be

dy(S,T) = pu{x : Sx # Tx}.

This topology refines the weak topology and is a complete, but not a separable topology.

4.2.2. Diffeomorphisms. Let M be a C™-smooth compact finite-dimensional manifold
and let u be a standard measure on M determined by a smooth volume element. For
each k < m there is a Polish topology on the k-times differentiable homeomorphisms
of M, the C¥-topology. If M is C*, then the C*-topology is the coarsest topology
refining the C¥-topology for each k € N. It is also a Polish topology and a sequence of
C*°-diffeomorphisms converges in the C*°-topology if and only if it converges in the
C*k-topology for each k € N.

The collection of w-preserving diffeomorphisms forms a closed nowhere dense set in
the C¥-topology on the C¥-diffeomorphisms, and as such, inherits a Polish topology.'’
We will denote this space by Diff* (M, W)

Viewing M as an abstract measure space one can also consider the space of abstract
J-preserving transformations on M with the weak topology. In [4] it is shown that the col-
lection of a.e.-equivalence classes of smooth transformations form a Hg-set in MPT(M),
and hence the collection has the Property of Baire.

4.2.3. Symbolic systems. Let ¥ be a countable or finite alphabet endowed with the dis-
crete topology. Then X7 can be given the product topology, which makes it into a sepa-
rable, totally disconnected space that is compact if X is finite.

Notation. If u = {09,...,0,—1) € =% is a finite sequence of elements of X, then we
denote the cylinder set based at k in £2 by writing (1)x. If k = 0, we abbreviate this and
write (u). Explicitly: (u)x = {f € =% : f | [k,k + n) = u}. The collection of cylinder
sets form a base for the product topology on %Z.

Let u, v be finite sequences of elements of £ having length ¢. Given intervals I and J
in Z of length g, we can view u and v as functions having domain / and J, respectively.
We will say that u and v are located at / and J. We will say that u is shifted by k relative
to v iff 7 is the shift of the interval J by k. We say that u is the k-shift of v iff u and v are
the same words and [/ is the shift of the interval j by k.

The shift map

sh: 2% - nZ
defined by setting
sh(f)(n) = f(n +1)
190ne can also consider the space of measure preserving homeomorphisms with the || - ||oo

topology, which behaves in some ways similarly.
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is a homeomorphism. If u is a shift-invariant Borel measure, then the resulting measure
preserving system (2%, 8, u, sh) is called a symbolic system. The closed support of i is
a shift-invariant closed subset of £Z called a symbolic shift or sub-shift.

Symbolic shifts are often described intrinsically by giving a collection of words that
constitute a clopen basis for the support of an invariant measure. Fix a language ¥, and
a sequence of collections of words (W, : n € N) with the properties that:

(1) for each n all of the words in ‘W, have the same length ¢y,
(2) each w € W, occurs at least once as a subword of every w’ € W, 41,
(3) there is a summable sequence (€, : n € N) of positive numbers such that for each n,
every word w € W, can be uniquely parsed into segments
UWoU W] ... WU 4] 4.1)

such that each w; € W,,, u; € =9 and for this parsing

> il

dn+1

< €p+1- (42)

The segments u; in condition 4.1 are called the spacer or boundary portions of w.

Definition 6. A sequence (W, : n € N) satisfying properties (1)—(3) will be called a con-
struction sequence.

If ‘W is a collection of words in an alphabet 3, we will say that ‘W is uniquely readable
if and only if whenever u, v, w € W and uv = pws then either:
e p=F0andu = wor
e s=0andv = w.

Equation (4.1) of clause (3) implies that each ‘W, is uniquely readable. We will need
unique readability to parse elements of K, the symbolic shift associated with the con-
struction sequence.

Definition 7. Let K be the collection of x € X% such that every finite contiguous sub-
word of x occurs inside some w belonging to some ‘W,. Then K is a closed shift-invariant
subset of ©Z that is compact if X is finite.

The symbolic shifts built from construction sequences coincide with transformations
built by cut-and-stack constructions.

Notation. For a word w € =N we will write |w/| for the length of w.
Here is a natural set of measure one for the relevant measures:

Definition 8. Suppose that (W, : n € N) is a construction sequence for a symbolic sys-
tem K with each ‘W, uniquely readable. Let S be the collection x € K such that there are
sequences of natural numbers (a,, : m € N), (b, : m € N) going to infinity such that for
all m there is an n, x | [—am, bm) € Wy.

Note that S is a dense shift-invariant G5 set.
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Lemma 9 ([11]). Fix a construction sequence (W, : n € N) for a symbolic system K in
a finite language. Then:

(1) K is the smallest shift-invariant closed subset of ©% such that for all n, and w € ‘W,
K has non-empty intersection with the basic open interval (w) C »Z,

(2) Suppose that there is a unique invariant measure v on S C K, then v is ergodic.

(3) (See [12].) If v is an invariant measure on K concentrating on S, then for v-almost
every s thereis an N foralln > N, there are a, <0 < by, suchthats | [an, by) € Wy.

Example 10. Let (W, : n € N) be a construction sequence. Then (W, : n € N) is uni-
form if there is a summable sequence of positive numbers (€, : n € N) and (d,, : n € N),
where d,, : W, — (0, 1) such that for each n all words w € W,, and w’ € W,, 11 if f(w, w’)
is the number of i such that w = w;

€n+1

/
JWw) ] < oL 4.3)
dn+1/4qn dn
It is shown in [11] that uniform construction sequences are uniquely ergodic. A special
case of uniformity is strong uniformity: when each w € W,, occurs exactly the same num-
ber of times in each w’ € W, 4. This property holds for the circular systems considered
in [11] and that are used for the proof of the main theorem of this paper (Theorem 2).

4.2.4. Locations. Let (W, : n € N) be a uniquely readable construction sequence and
let v be a shift invariant measure on S. For s € S and each n either s(0) lies in a well-
defined subword of s belonging to ‘W, or in a spacer of a subword of s belonging to
some W, . By Lemma 9 for v-almost all x and for all large enough 7 there is a unique
k with0 <k < g, suchthats | [—k,q, —k) € W,.

Definition 11. Lets € S and suppose that forsome 0 < k < g, | [—k,qn — k) € W,.
Define r, (s) to be the unique k with this property. We will call the interval [—k, g, — k)
the principal n-block of s, and s | [k, g, — k) its principal n-subword. The sequence
of r, will be called the location sequence of s.

Thus r,(s) = k is saying that s(0) is the k-th symbol in the principal n-subword of
s containing 0. We can view the principal n-subword of s as being located on an inter-
val I inside the principal n 4 1-subword. Counting from the beginning of the principal
n + 1-subword, the r,+1(s) position is located at the r, (s) position in /.

Remark 12. It follows immediately from the definitions that if r, (s) is well-defined and
n < m, the ry,(s)-th position of the word occurring in the principal m-block of s is in the
1, (s)-th position inside the principal n-block of s.

Lemma 13. [12] Suppose that s, s’ € S and (ry(s) :n > N) = {r,(s') : n > N) and for
alln > N, s and s" have the same principal n-subwords. Then s = s'.

Thus an element of s is determined by knowing any tail of the sequence
(rn(s) :n = N)

together with a tail of the principal subwords of s.
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Remark 14. Here are some consequences of Lemma 13:

(1) Given a sequence (u, : M < n) with u,, € W, if we specify which occurrence of
Uy in uy4q is the principal occurrence, then (u, : M < n) determines an s € K
completely up to a shift k with |k| < qps.

(2) A sequence (r, : N < n) and sequence of words w, € W, comes from an infinite
word s € S if both r, and g, — r, go to infinity and that the r,4; position in w4
is in the r, position in a subword of w,y; identical to w,. (Caveat: just because
(rn : N <n) is the location sequence of some s € S and (w, : N < n) is the sequence
of principal subwords of some s’ € S, it does not follow that there is an x € S with
location sequence (r, : N < n) and sequence of subwords (w, : N < n).)

(3) If x, y € S have the same principal n-subwords and r,,(y) = r,(x) + 1 for all large
enough n, then y = sh(x).

4.2.5. A note on inverses of symbolic shifts. We define operators we label rev(-), and
apply them in several contexts.

Definition 15. If x is in K, define the reverse of x by setting rev(x)(k) = x(—k). For
A C K, define
rev(A) = {rev(x) : x € A}.

If w is a word, let rev(w) to be the reverse of w sitting on the same interval. Explicitly, if
w : [ay, by,) — X is the word, then rev(w) : [an, b,) — X and

rev(w)(i) = w((an + bp) — (@ + 1)).
If ‘W is a collection of words, rev('W) is the collection of reverses of the words in ‘W.

If (K, sh) is an arbitrary symbolic shift, then its inverse is (K, sh™!). It will be conve-
nient to have all of the shifts go in the same direction, thus:

Proposition 16. The map ¢ sending x to rev(x) is a canonical isomorphism between
(K, sh™1) and (rev(K), sh).

Note that the notation IL.™! stands for the system (IL, sh™!) and rev(IL) for the system
(rev(L), sh).

4.3. Generic points

Let T be a measure preserving transformation from (X, r, u) to (X, t, u), where 7 is
a compact separable topology, and u is a standard measure. Then a point x € X is generic
for T if and only if for all f € C(X),

1 N—-1
lim (ﬁ) X = [X S (). (4.4)

N—o00

The Ergodic Theorem tells us that for a given f and ergodic T equation (4.4) holds for
a set of u-measure one. Intersecting over a countable dense set of f € C(X) gives a set
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of y-measure one of generic points. For symbolic systems K € X% the generic points are
those x such that the p-measure of all basic open intervals (1) is equal to the density of
k such that u occurs in x at k.

4.4. Stationary codes and d-distance

In this subection we briefly review a standard idea, that of a stationary code. A reader
unfamiliar with this material who is interested in the proofs of the facts cited here should
see [22].

Definition 17. Suppose that ¥ is a countable language. A code of length 2N + 1 is
a function A : SNV 5 5 (where [N, N] is the interval of integers starting at —N
and ending at N).

Given a code A, the stationary code determined by A is the function A : £% — %2,
where, given §

A(s)(k) = A(s | [k = N,k + NJ).

Let (EZ, B, v, sh) be a symbolic system. Given two codes Ay and A (not necessarily

of the same length), define

D ={s € 2% : Ao(s)(0) # A1(s)(0)} and d(Ag, A1) = v(D).

Then d is a semi-metric on the collection of codes. The following is a consequence of the
Borel-Cantelli lemma.

Lemma 18. Suppose that (A; : i € N) is a sequence of codes such that
D d(Ai i) < oo,

1
Then there is a shift-invariant Borel map S : 22 — 37 such that for v-almost all s,
lim;j .00 Aj () = S(s).

A shift-invariant Borel map S : % — %%, determines a factor (X%, B, 1, sh) of
(2%, 8,v,sh) by setting u = S*v. Hence a convergent sequence of stationary codes
determines a factor of (ZZ, B,v,sh).

Let Ag and A be codes. Define d (Ao(s), A1(s)) to be

Lk € NN Ro) () # Ra) ()]
N—o0 . 2N +1 ’
More generally define the d metric on X1%?] by setting
l{k € [a.D) : x(k) # y (k)|
b—a '

diap)(x.y) =
Forx,y € EZ, we set

d(x,y) = lim diyn(x I =N,NLy I [=N,N]),

provided this limit exists.
To compute distances between codes we will use the following application of the
Ergodic Theorem.
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Lemma 19. Suppose that v is ergodic. Let Ay and Ay be codes. Then for almost all
S € EZ, o B
d(Ao. A1) = d(Ao(s). A1(s)).

The next proposition is used to study alleged isomorphisms between measure preserv-
ing transformations. We again refer the reader to [22] for a proof.

Proposition 20. Suppose that K and 1L are symbolic systems and ¢ : K — L is a factor
map. Let € > 0. Then there is a code A such that for almost all s € K,

d(A(s), ¢(s)) < €. (4.5)

To show that equation (4.5) cannot hold (and hence show that I is not a factor
of K), we will want to view A(s) as limits of A-images of large blocks of the form
s | [a,b] with @ < 0 < b. There is an ambiguity in doing this: if the code A has length
2N + 1, it does not make sense to apply itto s | [k — N,k + N] for k € [a,a + 2N|
or k € [b —2N,b]. However if b — a is quite large with respect to N, then filling in
the values for A(s | [k — N,k + NJ]) arbitrarily as k ranges over these initial and final
intervals makes a negligible difference to the d-distances of the result. In particular, if
d(A(s), ¢(s)) < e, then for all large enough a, b € N, we have

di—a,p)(A(s | [=a,b]), ¢(s) | [-a,b]) <e,

no matter how we fill in the ambiguous portion.

The general phenomenon of ambiguity or disagreement at the beginning and end of
large intervals is referred to by the phrase end effects. Because the end effects are usually
negligible on large intervals we will often neglect them when computing d distances.

The next proposition is standard:

Proposition 21. Suppose that (X%, B, v,sh) is an ergodic symbolic system and that
(T, : n € N) is a sequence of functions from L% — X% that commute with the shift.
Then the following are equivalent:

(1) The sequence (Ty,) converges to S in the weak topology.

(2) v({s : Tu(s)(0) # S(5)(0)}) — 0.

(3) Forv-almost all s,d (T, (s), S(s)) — O.

(4) For some v-generic s, for all y > 0 we can find an N for all n > N, for all large
enough a, b, the distance d (T, (s) | [—a,b), S(s) | [—a,b)) < y.
We finish with a remark that we will use in several places:

Remark 22. If w; and w, are words in a language ¥ defined on an interval / and J C [

with % > §, then c?z(wl, wy) > &ZJ(wl, wy).

4.5. Rotations of the circle

Many of the arguments in this paper are based on an understanding of rational approxi-
mations to rotations of the circle. It is usually convenient to adopt additive notation and
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work on the unit interval [0, 1), but this introduces ambiguities. Fix an ¢ € R. We use the
symbol Ry in two ways. The first way is that

Re: S — 8!
by rotating the circle by o * 2 radians. The second, equivalent, way is that
Rq 1 [0,1) > [0, 1)

and is given by the formula
X x+amodl.

We note in both cases that we are really concerned with [«] (mod 1).

4.6. Descriptive set theory basics

Let X and Y be Polish spaces and A € X, B € Y.!" A function f : X — Y reduces A
to B if and only if for all x € X,

x € Aif and only if f(x) € B.

For this definition to have content there must be some definability restriction on f. The
relevant restrictions for this paper are either that f is a Borel function (i.e. the inverse
image of an open set is Borel) or that f is a continuous function (i.e. the inverse image
of an open set is open). The latter is clearly a stronger condition. If B is Borel and f is
a Borel reduction, then A is clearly Borel. Taking the contrapositive, if A is not Borel,
then B is not. If A is Borel (resp. continuously) reducible to B, we will write A <p B
(resp. A <, B). Both <p and =<, are clearly pre-partial-orderings.'”

If § is a collection of pairs (4, X) and (B,Y) € S, then B is §-complete for Borel
reductions (resp. continuous reductions) if and only if every (4, X) € § is Borel reducible
(resp. continuously reducible) to (B, Y). Being complete is interpreted as being at least
as complicated as each setin §.

For this to be useful there must be examples of sets that are not Borel. If X is a Polish
space and B C X, then B is analytic (X i) if and only if it the continuous image of a Borel
subset of a Polish space. This is equivalent to there being a Polish space Y and a Borel set
C C X x Y such that B is the projection to the X-axis of C.

Correcting a famous mistake of Lebesgue, Suslin proved that there are analytic sets
that are not Borel. It follows immediately that complete analytic sets are not Borel. This
paper uses a canonical example of such a set.

Let (0, : n € N be an enumeration of N <N, the finite sequences of natural numbers.
Using this enumeration subsets S C N <N can be identified with functions

Xs N> {01}

'The ideas in this subsection are just summaries, they are exposited in [5] and [19].
12The reader should be aware that this is a different notion than the notion of a reduction of
equivalence relations.
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A tree is a set T € N<N guch that if T € T and ¢ is an initial segment of t, then
o € T.Theset{ Y7 : T is atree} is a closed subset of {0, 13N hence a Polish space with
the induced topology. We call the resulting space Trees. (In the sequel we will not always
distinguish between 7~ and X 7.)

Because the topology on the space of trees is the “finite information” topology, inher-
ited from the product topology on {0, 1}, the following characterizes continuous maps
defined on Trees.

Proposition 23. Let Y be a topological space and f : Trees — Y. Then f is continuous
if and only if for all open O C Y and all T with f(T) € O there is an M € N for all
T’ € Trees:
fTN{op:n <M}=T"N{o,:n <M} then f(T') € O.

An infinite branch through 7 is a function f : N — N such that for all n € N,
f 140,1,2,....,n—1} € T. Atree T is ill-founded if and only if it has an infinite branch.

The following theorem is classical; proofs can be found in [19] and [20].
Fact 24. Let Jrees be the space of trees. Then:
(1) The collection of ill-founded trees is a complete analytic subset of Jrees.
(2) The collection of trees that have at least two distinct infinite branches is a complete

analytic subset of Jrees.

The main results of this paper (Theorem 2 and Corollary 3) are proved by reducing
the sets mentioned in Fact 24 to conjugate pairs of diffeomorphisms and concluding that
the sets of conjugate pairs is complete analytic — so not Borel.

5. Odometer and circular systems

Two types of symbolic shifts play central roles for the proofs of the main theorem, the
odometer based and the circular systems. Most of the material in this section appears
in [12] in more detail and is reviewed here without proof.

5.1. Odometer based systems

We now define the class of odometer based systems. In a sequel to this paper ([13]), we
prove that these are exactly the finite entropy transformations that have non-trivial odome-
ter factors. We recall the definition of an odometer transformation. Let (k, : n € N) be
a sequence of natural numbers greater than or equal to 2. Let

0=[]z/kez

n=0

be the (k,)-adic integers. Then O naturally has a compact abelian group structure and
hence carries a Haar measure p. The set O becomes a measure preserving system O by
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defining T : O — O to be addition by 1 in the (k,)-adic integers. Concretely, this is the
map that “adds one to Z/koZ and carries right”. Then T is an invertible transformation
that preserves the Haar measure p on @. Let K, = ko x kq * kp * -+ % k1.

The following results are standard:

Lemma 25. Let O be an odometer system. Then:
(1) O is ergodic.
(2) The map x + —Xx is an isomorphism between (O, 8,1, T) and (O, B, |, T-h.

(3) Odometer maps are transformations with discrete spectrum and the eigenvalues of
the associated linear operator are the K, -th roots of unity (n > 0).

Any natural number a < K; can be uniquely written as
a =ap+ a1k0 + az(k()kl) + -+ aj(koklkz .. .kj_l)
for some sequence of natural numbers ag,ay, ...,a; with0 < a; < k;.

Lemma 26. Suppose that (r, : n € N) is a sequence of natural numbers with 0 < r, <
koky ... knandr, = rpy1 mod (koky ...ky). Then there is a unique element x € O such
that r, = x(0) + x(1)ko + - -- + x(n)(koky ... ky—1) for each n.

We now define the collection of symbolic systems that have odometer maps as their
timing mechanism. This timing mechanism can be used to parse typical elements of the
symbolic system.

Definition 27. Let (W, : n € N) be a uniquely readable construction sequence with the
properties that Wy = X and for all n, W, C (W,)kn for some k,. The associated
symbolic system will be called an odometer based system.

Thus odometer based systems are those built from construction sequences
(W, :n e N)

such that the words in ‘W, 1 are concatenations of words in ‘W, of a fixed length k.
The words in ‘W, all have length K,, and the words u; in equation (4.1) are all the empty
words.

Equivalently, an odometer based transformation is one that can be built by a cut-and-
stack construction using no spacers. An easy consequence of the definition is that for
odometer based systems, for all s € S and foralln € N, r,,(s) exists.!?

The next lemma justifies the terminology.

Lemma 28. Let K be an odometer based system with each Wy, 11 C (W,)*7. Then there
is a canonical factor map

T:8 — 0,

where O is the odometer system determined by {k,, : n € N).

13§ is defined in Definition 8.
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Proof. For each s € S, for all n, r,(s) is defined and both r, and k, — r, go to infinity.
By Lemma 26, the sequence (r,(s) : n € N) defines a unique element 7 (s) in @. It is
easily checked that 7 intertwines sh and 7. ]

Heuristically, the odometer transformation () parses the sequences s in S € K by
indicating where the words constituting s begin and end. Shifting s by one unit shifts this
parsing by one. We can understand elements of S as being an element of the odometer
with words in ‘W, filled in inductively.

The following remark is useful when studying the canonical factor of the inverse of
an odometer based system.

Remark 29. If 7 : L — O is the canonical factor map, then the function 7 : L — O is
also factor map from (LL, sh™!) to @~! (i.e. O with the operation “—1”). If (W, : n € N)
is the construction sequence for IL, then (rev(W,,) : n € N) is a construction sequence for
rev(IL). If ¢ : L™' — rev(LL) is the canonical isomorphism given by Proposition 16, then
Lemma 25 tells us that the projection of ¢ to a map ¢” : O — O is given by x — —x.

The following is proved in [12]:

Proposition 30. Let K be an odometer based system and suppose that v is a shift invari-
ant measure. Then v concentrates on S.

5.2. Circular systems

We now define circular systems. In [11] it is shown that the strongly uniform circular
systems give symbolic characterizations of certain smooth diffeomorphisms defined by
the Anosov—Katok method of conjugacies.

These systems are called circular because they are related to the behavior of rotations
by a convergent sequence of rationals &, = p, /¢y . The rational rotation by p/q permutes
the 1/q intervals of the circle cyclically in a manner that the interval [i/q, (i 4+ 1)/q)
occurs in position'*

Ji =aet p~'i (modq).
The operation € which we are about to describe models the relationship between rotations
by p/q and p’/q’ when p’/q’ is very close to p/q.

Let k, [, p, g be positive natural numbers with p < ¢ relatively prime. For 0 <i < ¢,

setting

Ji =q (p)7'i (5.1)
with j; < g, it is easy to verify that
q—Ji = Jg-i- (5.2)

For notational convenience later we set j; = g.

14We assume that p and ¢ are relatively prime and the exponent —1 indicates the multiplicative
inverse modulo q.
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Let ¥ be a non-empty set such that neither b nor e belongs to X and let wo, . .., Wk—1
be words in ¥ U {b, e}. Define
qg—1k—1
C(wo, wi wa.... we—r) = [ [TOI 7 witelh). (53)
i=0j=0

We note that the product symbol IT is repeated concatenation as is the exponent. If w
is a word, then w? is the empty string, w! = w, w? = ww and so forth. The formula in
equation (5.3) is a concatenation of ¢ words, each of which is itself, a concatenation of k
words. The words inside the parenthesis in equation (5.3) start with g — j; letters b, fol-
lowed by concatenating / — 1 many words w, followed by concatenating j; many letters e.
Written with parenthesis

qg—1 [k-—1
€(wo, wi,wa, ..., we1) = [ | (H«bq-"n(w}l)(e-’f))). (5.4)

i=0 \j=0

Informally, the i-th term, ]_[j-:(l) (b9 Ji wjl-_leji) can be written as a block of ¢ — J; letters
b followed by wq concatenated with itself / — 1 times, followed by a block of j; many
letters e, followed by a block of ¢ — j; letters b followed by w; concatenated with itself
[ — 1 times followed by a block of j; letters e and so forth, ending with a block of wy_1
repeated / — 1 times followed by e repeated j; many times

(bbb ... )(wowg ...)(ee...e)(bb...b)(wiwy ... wi)(ee...e)...
(b D) (W W W1 ... wi—1)(ee...e).

Remark 31. We make the following observations.
o Suppose that each w; has length g. Then the length of € (wg, w1, ..., wi_1) is kig>.

e For each occurrence of an e in € (wy, ..., wg_1) there is an occurrence of b to the left
of it.

e Suppose that n < m and b occurs at n and e occurs at m and neither occurrence is in
a w;. Then there must be some w; occurring between n and m.

e Words constructed with € are uniquely readable.
The € operation is used to build a collection of symbolic shifts. Circular systems will
be defined using a sequence of natural number parameters k, and /, that is fundamental
to the version of the Anosov—Katok construction presented in [18].

Fix an arbitrary sequence of positive natural numbers (k, : n € N). Let ([, : n € N)
be an increasing sequence of natural numbers such that

Numerical Requirement 1. One has /y > 20 and

1
Zg<

k>n

1

ln—l
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From the k, and [, we define sequences of numbers: (py, ¢», o, : n € N). Begin by
letting po = 0 and gp = 1 and inductively set

dnt1 = knlngn® (5.5)

(thus g7 = kolp) and take
Pn+1 = Pnnknly + 1. (5.6)

Then clearly p, 1 is relatively prime to ¢,+1."
By setting «, = pn/qn, it is easy to check that there is an irrational @ such that the
sequence o, converges rapidly to «.

Definition 32. A sequence of integers (kj,/, : n € N) such that k, > 2, > 1/, < o0
will be called a circular coefficient sequence.

Let X be a non-empty finite or countable alphabet. Build collections of words ‘W, in
3 U {b, e} by induction as follows:

e Fix a circular coefficient sequence (k,, [, : n € N).
e Set Wo = X U {b,e}.

e Having built W, choose a set P, € (W,)* and form W, by taking all words of
the form € (wo, w1, ..., Wk,—1) With (wo, ..., Wk, —1) € Ppy1.'°

We call the elements of P,y prewords. The € operator automatically creates uniquely
readable words, however we will need a stronger unique readability assumption for our
definition of circular systems.

Strong Unique Readability Assumption. Let n € N, and view ‘W, as a collection A,
of letters. Then each element of P, 4+ can be viewed as a word with letters in A,. In the
alphabet A,, each w € P, is uniquely readable.

Definition 33. A construction sequence (W, : n € N) will be called circular if it is built
in this manner using the €-operators, a circular coefficient sequence and each Py
satisfies the strong unique readability assumption.

Definition 34. A symbolic shift K built from a circular construction sequence will be
called a circular system.

Notation. We will often write K¢ and (W¢ : n € N) to emphasize that we are building
circular systems and circular construction sequences. Circular words will often be denoted
w€ for emphasis.

Definition 35. Suppose that w = € (wq, w1, ..., Wg—1). Then w consists of blocks of w;
repeated / — 1 times, together with some letters b and e that are not in the words w;. The

15 b, and gy, being relatively prime for n > 1, allows us to define the integer j; in equation (5.1).

For go = 1, Z/qoZ has one element, [0], so we set po~! = pg = 0.
16Passing from Wy, to Wy, 41, use € with parameters k = k,,l = I, p = pn and ¢ = g, and
take j; = (pn)~'i modulo ¢;. By Remark 31, the length of each of the words in Wy 1 is gnt1.
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interior of w is the portion of w in the words w;. The remainder of w consists of blocks
of the form h97/i and e/i . We call this portion the boundary of w.

In a block of the form w!~! the first and last occurrences of w; will be called the
boundary occurrences of the block w}‘l. The other occurrences will be the interior
occurrences.

While the boundary consists of sections of w made up of letters b and e, not all letters
b and e occurring in w are in the boundary, as they may be part of a power wf_l.
The boundary of w constitutes a small portion of the word:

Lemma 36. Suppose that w = €(wg, W1, ..., Wig—1) and each w; has length q. Then the
proportion of the word w that belongs to its boundary is 1/ 1. Moreover, the proportion of
the word that is within q letters of boundary of w is 3/ 1.

Proof. The length of w is klg?. The boundary portions are g * k * ¢ long. The number
of letters within ¢ letters of the boundary is ¢ * k * 3 * ¢. ]

Remark 37. Let vy, ..., vtr—; and wy, ..., wig—1 be sequences of words of length g. The
boundary portions of € (vy, ..., vg—1) and €(wy, ..., Wk—1) occur in the same positions
and by Lemma 36 have proportion 1// of the length. Since all of the words v; and w;
have the same length and the same multiplicity in the circular words, we see that

d(€ o, ..., ve—1). €(Wwo. ..., Wk_1))

1\ -
> (1 — T)d(vovlvz e V—1, WoWT ... Wk—1),

where vV Vs . .. Vk—; and wow; ... wk—_; are the concatenations of the various words.!’
For proofs of the next lemma see [11, Lemma 20] and [12].

Lemma 38. Let K€ be a circular system and let v be a shift-invariant measure on K°€.

Then the following are equivalent:

(1) v has no atoms.

(2) v concentrates on the collection of s € K€ such that {i : s(i) ¢ {b, e}} is unbounded
inboth Z~ and Z.%.

(3) v concentrates on S.
If K€ is a uniform circular system (Example 10), then there is a unique invariant measure

concentrating on S.

Moreover, there are only two ergodic invariant measures with atoms: the one concen-
trating on the constant sequence b and the one concentrating on é.

Remark 39. If K€ is circular and s € K¢ has a principal n-subword and m > n, then s
has a principal m-subword.

17Equality holds, a fact we will not use.
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5.3. An explicit description of rev(K€)

The symbolic system K€ is built by an operation € applied to collections of words. The
system rev(K¢) is built by a similar operation applied to the reverse collections of words.
In analogy to equation (5.3), we define €" as follows.

Definition 40. Suppose that wg, wy, ..., wx—; are words in a language X. Given coeffi-
cients p,q,k, ! with p and g relatively prime, let j; =, (p~!)i with0 < j; < g. Define
q—1k—1
€ (wo, wi,wa,... w—1) = [ [ [T+ eyt THBHHY. (5.7)
i=0,j=0
From equation (5.3), aw € W, | is of the form € (wp, . .., wg,—1):

qg—1k—1
w=[]]]e? 7w e, (5.8)
i=0,/=0
where ¢ = g,k = k.l =1, and j; =4, (pn)!
formula, we see that

i with 0 < j; < ¢,. By examining this

q k

rev(w) = 1_[ l_[ ela—i rev(wk_j)l_lbq_jq—i.

i=1j=1

Applying the identity in formula (5.2) and recalling that we take j; = ¢, s0oq — j; =0,
we see that this can be rewritten as

q k
rev(w) = l_[ H(eq_jf reV(wk_j)l_lbji). (5.9
i=1j=1
Thus
rev(w) = € (rev(wy), rev(wy), . .., rev(wi_1)). (5.10)

In particular, if (W : n € N) is a construction sequence of a circular system K¢, then
rev('W; ) is the collection

{€" (rev(wp), rev(wy), ..., rev(wk,—1)) : WoW1 ... Wk,—1 € Pn}

and (rev(W¢) : n € N) is a construction sequence for rev(K¢).

5.4. Understanding the words

The words used to form circular transformations have quite specific combinatorial prop-
erties. Fix a sequence (Wy : n € N) defining a circular system. Each u € Wy , | has three
subscales.
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o Subscale 0, the scale of the individual powers of w € Wy of the form w!=1. We call
each such occurrence of a w!™! a 0-subsection.

e Subscale 1, the scale of each term in the product ]_[ (bq Ji wl leJi) that has the
form (b9~ /i wl LeJi). We call these terms 1- subsecnons

. Subscale 2, the scale of each term of 1_[1—0 (]_[ (b‘i7 Ji wl leJi)) that has the form
]_[ (bq Ji wl leJi). We call these terms 2- subsecnons

Summary. We have

Whole word:  [[/Zg [T5Zo (b9 /i w!=tesi),
s . k—1 —p —1 .

2-subsection: [ [;_, (b9 wjl eli),

I-subsection: (b9~ /iwi~tei),

-1

0-subsection: w i

For m < n, we will discuss “m-subwords” of a word w. These will be subwords that
lie in ‘W, the m-th stage of the construction sequence. We will use “m-block” to mean
the location of the m-subword.

Lemmad4l. Letw = €(wy, ..., Wk,—1) for somen andletq = qn, k =k, | = I,. View

w:{0,1,2...,kig>? =1} - X U {b,e}.

(1) If mo and my are such that w(mg) and w(my) are at the beginning of n-subwords in
the same 2-subsection, then mg =4 my.

) If mo and my are such that w(my) is the beginning of an n-subword occurring
in a 2-subsection ]_[ O(bq Ji wl 1e/l) and w(my) is the beginning of an n-subword
occurring in the neth subsectzon ]_[ O(bq Jit wl LeJi+1), thenmy —mo =4 — 1.

Proof. To see the first point, the indices of the beginnings of n-subwords in the same
2-subsection differ by multiples of ¢ coming from powers of a w; and intervals of w of
the form b9~/ gJi ,

To see the second point, let ¥ and v be consecutive 2-subsections. In view of the first
point it suffices to consider the last n-subword of u and the first n-subword of v. These sit
on either side of an interval of the form e/i h9=/i+1. Since

. . _ —1: —1,: _ -1 _ .
Jitq—Jiti=q (p) i—p (i +1)=¢—p =41,

we see that
mo—my =g+ ji +q— ji+1 =¢ —Jj1. "
Assume that u € W¢, , and v € Wy, Urev(W, ) and v is shifted with respect
to u. On the overlap of u and v, the 2-subsections of u split each 2-subsection of v into
either one or two pieces. Since the 2-subsections all have the same length, the number
of pieces in the splitting and the size of each piece is constant across the overlap except

perhaps at the two ends of the overlap. If u splits a 2-subsection of v into two pieces, then
we call the leftmost piece of the pair the even piece and the rightmost the odd piece.
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If v is shifted only slightly, it can happen that either the even piece or the odd piece
does not contain even one entire 1-subsection. In this case we will say that the split is
trivial on the left or trivial on the right.

Lemma 42. Assume thatu € Wy, and v e Wy, Urev(Wy ) and v is shifted with
respect to u. Suppose that the 2-subsections of u divide the 2-subsections of v into two
non-trivial pieces. Then:

(1) The boundary portion of u occurring between each consecutive pair of 2-subsections
of u completely overlaps at most one n-subword of v.

(2) There are two numbers s and t such that the positions of the 0-subsections of v in
even pieces are shifted relative to the 0-subsections of u by s and the positions of the
0-subsections of v in odd pieces are shifted relative to the 0-subsections of u by t.
Moreover, s =4 t — ji1.

Proof. This follows easily from Lemma 41. ]

In the case where the split is trivial Lemma 42 holds with just one coefficient, s or ¢.
A special case of Lemma 42 that we will use is:

Lemma 43. Assume thatu € Wy, and v e W, Urev(Wy ) and v is shifted with
respect to u. Suppose that the 2-subsections of u divide the 2-subsections of v into two
pieces and that for some occurrence of a n-subword in an even (resp. odd) piece is lined
up with an occurrence of some n-subword in u. Then every occurrence of a n-subword in
an even (resp. odd) piece of v is either

(a) lined up with some n-subword of u or
(b) lined up with a section of a 2-subsection that has the form e’i b4=Ji

Moreover, no n-subword in an odd (resp. even) piece of v is lined up with a n-subword
inu.

5.5. Full measure sets for circular systems
Fix a sequence (&, : n € N) such that the following hold:

Numerical Requirement 2. (¢, : n € N) is a decreasing sequence of numbers in [0, 1)
suchthat 6>,y &n < &n.

From Lemma 36, the boundary of a word w, € ‘W, has proportion 1/1[,. Hence
Numerical Requirement 1 implies that for all choices (w, : n € N) with w, € W,, the
sum of the proportion of the boundary sections of the words w, is finite.

Definition 44. Let:

(1) Ej, be the collection of s € S such that either s does not have a principal n-block or
5(0) is in the boundary of the principal n-block of s,

(2) E? = {s:5(0) is in the first or last &,/, copies of w in a power of the form wh =1,

where w € W},
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3) E,% = {s : 5(0) is in the first or last €, k, 1-subsections of the 2-subsection in which
5(0) is located},

4 E,% = {s : 5(0) is in the first or last g,¢, 2-subsections of its principal n + 1-block}.
Lemma 45. Assume Numerical Requirements 1 and 2. Let v be a shift-invariant measure
on S C K€, where K€ is a circular system. Then:
(1) One has

Z v(E,) < oo.

n
(2) Fori =0,1,2,
Zv(Efl) < 00.

n

Proof. By the Ergodic Theorem we have v(E,) < 1/1,,and fori = 0,1,2,v(E!) < &,.
The result then follows by the summability of 1/, and 1/¢,,. |

In particular, we see:

Corollary 46. For v-almost all s there is an N = N(s) such that for alln > N,
(1) 5(0) is in the interior of its principal n-block,

() fori =0,1,2, 5 ¢ EL.

In particular, for almost all s and all large enough n,

(3) l.fS r [_rn(s)»_rn(s) + qn) =w, then

s P =rn(s) = qn.—1n(s)) =5 |} [=1n(S) + Gn. —1n + 2qn) = w,

(4) 5(0) is not in a string of the form wé"_l or w,lc’;__ll.

Proof. Apply the Borel-Cantelli lemma using the previous lemma. ]

The elements s of S such that some shift sh* (s) fails one of conclusions (1)—(4)
of Corollary 46 form a measure zero set. Consequently, we work on those elements of
S whose whole orbit satisfies the conclusions of Corollary 46. Note however that for
¢ = shf(s), the N(¢) in Corollary 46, depends on k.

Definition 47. We will call n mature for s (or say that s is mature at stage n) iff n is so
large that s ¢ Eyy U Ug<j<, E,, forallm > n.

If s is mature at stage n, then s is mature at stage n + 1. Moreover, if sh¥ (s) has the
same principal n-block as s does, then sh* (s) is mature if and only if s(k) is not in the
boundary portion of the principal n-block.

Numerical Requirement 3. The following hold:
enky — 00,
eplp — 00,

Endn — OQ.
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Definition 48. We will use the symbol d,, in multiple equivalent ways. If s € S or s € Wy,
define 9, = 9,(s) € Z to be the collection of i € Z such that sh’ (s)(0) is in the boundary
portion of an n-subword of s. In the spatial context define s € d,, € K¢ by putting s € 9,
if 5(0) is the boundary of an n-subword of s.

Fors € S,
n(s) W1+ qn) o5 ML+ qn) € Wib.
The relationship between d,(s) C Z and d,, € K€ is that for s € K¢,

i € 0,(s) C Z iff sh’(s) € 3, € K.

The next lemma says that if s is mature at stage n, then we can detect locally those i
for which the i -shifts of s are mature.

Lemma 49. Suppose that s € S, n is mature for s and n < m.

(1) Assume the first three numerical requirements. Suppose thati € [~ry (), gm —rm(s)).
Then n is mature for sh' (s) iff

@ i ¢ Up<k<m k() and
(b) sh' (S) ¢ Un§k<m(E]? U E]i U E]%)
(2) For all but at most (3_, x<m 1/ 1) + Q_p<i<m 6€k) proportion of the indices
[ €[=rm(s),qm — rm(s)), the point sh' (s) is mature for n.
Hence by Numerical Requirement 2, the proportion of i € [—rn (S), gm — 'm(s)) for which
the i-shift of s is not mature for n is less than 1/ l,,_1 + e,—1.

Proof. The first item is immediate from the definition of mature. For the second item, first
note that

U U | (ERUELUED) =0m(s)U | (0(s) UEQ UEL UED).

n<k<m n<k<m n<k<m

Let I = [—rm(s), gm — rm(s)). Since d,, has proportion 1/ [, of I, it suffices to show that
for a fixed k € [n,m), the proportion of i € I such that sh’(s) € 9 U EQ U E} U EZ is
less than 1/ + 6¢g.

There are at most ¢, /qx k-words appearing in s | 1. There are at most 1/[; many i
in the boundary of each of these k-words. So total number of 7 in dg(s) N I is less than
or equal to (‘flﬂ)(qk / Ix), hence has proportion less than or equal to 1/ /i of 1.

Similarly for j =0, 1,2 the number of i with sh’(s) € E ,ﬁ and / is in the block cor-
responding to a k-subword of s | I is at most (¢m/qx)2€xqk, and hence those i have

proportion bounded by
((qm/CIk)28k61k) _,
- — 8k
dm

in 1. It follows that the collection of i € I such that sh’(s) € E U E} U E? is bounded
by 3 * 2¢eg.

Numerical Requirements | and 2 imply that the sum in item (2) of the lemma is
bounded by 1/1,—1 + &,—1. L]



Measure preserving diffeomorphisms of the torus are unclassifiable 2633

A very similar statement is the following:

Lemma 50. Suppose that s € S and s has a principal n-block. Then n is mature provided
that s ¢ Unsm ES U EL U EZ. Inparticular, if n is mature for s and s is not in a bound-
ary portion of its principal n — 1-block or in E,(l’_1 U E;_l U Ef_l, then n — 1 is mature

fors.

5.6. The circle factor

Let (k,,l, : n € N) be a circular coefficient sequence and let (p,,q, : n € N) be the
associated sequence defined by formulas 5.5 and 5.6. Let o, = p, /¢, and @ = lim .

For a natural number ¢ > 1, let J, be the partition of the interval [0, 1) with atoms
(li/q.(i +1)/q):0<i <gq),andreferto [i/q. (i + 1)/q) as I1."® Since p, and g, are
relatively prime, the rotation R, enumerates the partition 4, starting with 7;”. Thus
44, has two natural orderings — the usual geometric ordering and the dynamical ordering
given by the order that R, enumerates dg,. Since j; = p~1i (mod ¢), Il-q is the j;-th
interval in the dynamical ordering.

Definition 51. For x € [0, 1) we will write D, (x) = j if x belongs to the j-th interval
in the dynamical ordering of d,,. Equivalently, D,(x) = j ifx € [ ;Z’n.

Informal description. Following [11], for each stage n, we have a periodic approximation
7, to K€ consisting of towers 7 of height ¢, whose levels correspond to subintervals
of [0, 1). This approximation refines the periodic permutation of d,4, determined by R, .
If s is mature, then s lies is the rflh (s) level of 4, in the dynamical ordering. Passing
from 7, to 7,4 the mature points remain in the same levels of the n-towers as they are
spread into the n 4 1-towers in 7,41. The towers of 7, can be viewed as cut-and-stack
constructions—filling in boundary points between cut n-towers. The fillers are taken from
portions of the n-towers.

With this view each mature point remains in the same interval of d,, when viewed
in t,41. Moreover, if s € J € J4, , and J C T € Jg,, then Ry, | J € R, 1.

Thus the n + 1-tower for Ry, , has multiple contiguous sequences of levels of length
gn that are sublevels of the n-tower and the action of R, and R, 4 agree on these
levels.

Definition 52. Let ¥y = {*}. We define a circular construction sequence such that each
Wy has a unique element as follows:

(1) W§ ={*)and
(2) if Wy = {wn}, then Wy, | = {€(wn, Wn, ..., W)}
Let KX be the resulting circular system.

It is easy to check that K has unique non-atomic measure since the unique n-word,
Wy, occurs exactly k, (/, — 1)g, many times in wy, 4. This measure is ergodic.

18If i > g, then I refers to Il.q/, where i’ < g and i’ =i mod q.
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Let K¢ be an arbitrary circular system with coefficients (k,, [, : n € N). Then K¢ has
a canonical factor isomorphic to K. This canonical factor plays a role for circular systems
analogous to the role odometer transformations play for odometer based systems.

To see KX is a factor of K¢, define the following function:

x(@) ifx(@) e {b,e},

) (5.11)
* otherwise.

(X)) = {
Notation. Write w? for the unique element of ‘W¢ in the construction sequence for K.

Then wyy lies in the principal n-block of the projection to K of any s € K¢ for which n
is mature.

Theorem 53 ([11, Theorem 43]). Let v be the unique non-atomic shift-invariant measure
on K. Then
(K, B,v,sh) = (S1, D, 1, Ra).

where R is the rotation of the unit circle by o x 21 radians and 8B, D are the o-algebras
of measurable sets.

The isomorphism ¢q : K — S asserted to exist in Theorem 53 is constructed as
a limit of functions p,, where p, is defined by setting

i
pn(s) = — (5.12)

qn
iff 77" is the r,(s)-th interval in the dynamical ordering.'” Equivalently, since the r,-th

. . : : : qn
interval in the geometric ordering is / Dot (s)?

i = ppry(s) mod g,. (5.13)
The following follows from [1 1, Proposition 44].

Proposition 54. Suppose that n is mature for s. Then

rn(s) = Dn(¢o(s)).

The proof of Theorem 2 requires understanding the correspondence between the geo-
metric construction and its symbolic representation. The words in ‘W, correspond to
cut-and-stack constructions, passing from stage n to n + 1 via the € operator corresponds
to basing the cut and stack construction on R, , which agrees with the R, for most
consecutive intervals of length g,. A first step in understanding this correspondence is the
next remark and lemma.

Remark 55. It will be helpful to understand ¢! explicitly. To each point x in the range
of ¢o, s = ¢y 1(x) belongs to S. By Lemma 13, to determine s it suffices to know

9Thus r,, and pn both have the same subset of S as their domain and contain the same informa-
tion. They map to different places r, : S — N, whereas p, : S — [0, 1) and is the left endpoint of
the r,-th interval in the dynamical ordering.
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(rn(s) :n > N) for some N as well as the sequence (w, : n > N) of principal subwords
of 5. Since we are working with X, the only choice for w, is wS. For mature n, Proposi-
tion 54 tells us that r,,(s) = D, (x). Thus s is the unique element of S with the property
that (r,(s) : n € N) agrees with (D, (x) : n € N) for all large n.

We isolate the following fact for later use:

Lemma 56. Suppose that ¢po(s) = x and n < m are mature for s. Then if I and J are
the Dy (x)-th and Dy, (x)-th intervals in the dynamical orderings of 49" and 497, then
JCI.

The natural way of representing the complex unit circle as an abelian group is multi-
plicatively: the rotation by 277« radians is multiplication by e2%/¢_ It is often convenient
to identify the unit circle with [0, 1). In doing so, multiplication by "% corresponds to
“mod one” addition and the complex conjugate Z corresponds to —z.

The following result is standard:

Proposition 57. Let « € [0, 1) be irrational. Suppose that T : S' — S is an invertible
measure preserving transformation that commutes with Ry. Then for some B, T = Rg
almost everywhere. Identifying S* with [0, 1) there is a B such that for almost all x € S?,

T(x) =x+ B mod 1. (5.14)

Itfollows that if T is an isomorphism between Ry and R, then T(x) = —x + # mod 1.

Definition 58. Using the identification of S' with [0, 1) we view ¢¢ : K — [0, 1). Given
arotation Rg, we get amap Sg : K — K such that

Sp(s) = ¢y ' Rppo(s).

We will occasionally abuse notation and write s + B for Sg(s).

5.7. Points of view

Circular systems can be viewed from multiple perspectives: geometrically, as limits of
periodic processes’’ and as symbolic shifts.

The n-th periodic process consists of a collection of s, periodic towers with each tower
having one level designated as a base. To pass from 7, to 7,41 the bulk of the t,-towers
are repeated ¢, (k) (I, — 1) many times in blocks of length /,, — 1 in each t,4-tower. In
between these blocks there are filler levels.

The words w € 'W¢ are in one-to-one correspondence with the towers in t,. The
“€” operation encodes the transition from 7, to t,41. The towers in 7,4 correspond to
words € (wo, . .., Wk,—1). Each 1,-tower T; has a corresponding word w; € 'W,,. Repeat-
ing stacking of 7; corresponds to the powers of w; in €(wo, ..., wk,—1). The levels of
a tower in 1,4 are either contained in levels of 7,,-tower or are filler blocks labelled “5”

208ee [11, Section 5] for the formal definition.
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or “e.” The repetitions of each w; in 0-subsections correspond to stacking parts of the
levels of the corresponding tower in 7, periodically /,, — 1 times.

The circle factor K, captures exactly the structure of the levels of the towers and
how they interact as one moves from 7, to 7,41. This is the idea behind for the con-
struction of the isomorphism between (K, v, sh) and (S!, A, Ry) and made explicit in
Proposition 54.

Given an s € K€ that is mature for n < m we can view its restriction to its principal
m-subword as a particular tower in t,,. Since s is mature for m, the principal subword is
repeated many times on either side of 5(0). In particular, we see:

Remark 59. Suppose that n is mature fors € S C K, n <mand 0 < d < ¢,,. Then
ra(sh?(5)) =g, d + ra(s). (5.15)

The circle factor K, of K¢ punctuates the elements of S C K¢. Since there is only one
word in each element of the construction sequence for K, we can view the levels of its
tower as being of the form [i /¢y, (i + 1)/¢qy) in the dynamical ordering. Then the cyclic
permutation of these levels given by R, /4, - This permutation preserves the dynamical
ordering and, for s that are mature at stage n, reflect the behavior of r,, (s).

5.8. The natural map

A specific isomorphism ] : (K, sh) — (rev(XK), sh) will serve as a benchmark for under-
standing of potential maps ¢ : K¢ — rev(K¢). Viewing R, as a rotation of the unit circle
by « * 27 radians one can view the transformation [] as a symbolic analogue of complex
conjugation z + Z on the unit circle, which is an isomorphism between Ry and R_g.
Indeed, by Theorem 53, K =~ R, and so rev(K) =~ R_,. Copying {] over to a map on
the unit circle will give an isomorphism ¢ between Ry and R_q. If we view z and « as
elements of the unit interval and the rotation as addition modulo 1, Proposition 57 says
that such an isomorphism must be of the form

Pp(z)=—z+p

for some fB. It follows immediately from this characterization that f is an involution.”!
The map { is defined as the limit of a sequence of codes (A, : n € N) that converge
to an isomorphism from X to rev(K) (see [12] for more details). The A, will be shifting
and reversing words. The amount of shift is determined by the Anosov—Katok coefficients
Pn,qn defined in equations (5.6) and (5.5).
Let A9 = 0 and inductively

Ang1 = An — (pn) ™" (5.16)

It is easy to check that
| Ans1] < 2n. (5.17)

21The particular 8 given by f is determined by the specific variation of the definition one uses —
indeed any central value can occur as a . (See Section 8 for the definition and use of central
values.)
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Define a stationary code A, with domain S that approximates elements of rev(.X) by
defining

A(s) = { shAn T2 (=@ =1 (rey(5))(0)  if r,(s) is defined, (5.18)

b otherwise.

The following result appears in [12]:

Theorem 60. The sequence of stationary codes (A : n € N) converges to a shift invari-
ant function ] : X — ({x} U {b, e})Z that induces an isomorphism ] from X to rev(X).

Remark 78 of [12] implies that the convergence is prompt: for a typical s and all large
enough n, [j(s) agrees with A, (s) on the principal n-block of s.

Caveat. Since (K¢)™! = (K¢, sh™!) is trivially isomorphic to (rev(K¢), sh), we often do
not distinguish them. However, as in Definition 63 of the synchronous and anti-synchron-
ous joinings, the notational distinction becomes important.

When viewing (K€)~! and K¢ with the backwards shift and considering the action on
the circle factor instead of using {], one must use

rev(-)of (5.19)

instead of simply f.

5.9. Categories and the functor ¥

Fix a circular coefficient sequence (k,, [, : n € N). Let X be a language and (W, : n € N)
a construction sequence for an odometer based system with coefficients (k, :n € N).
Then for each n the operation €, is well-defined. We define a construction sequence
(W< :n e N) and bijections ¢, : W, — WY by induction as follows:

(1) Let W§ = X and cq be the identity map.
(2) Suppose that W,,, WS and c, have already been defined.

'WS-H = {'en(cn(wo),cn(wl)v e »Cn(wk,,—l)) tw; € Wy, wowy .. cWg,—1 € Wn+1}~

(Words in ‘W, 4 are concatenations of k, words in ‘W,, and so can be written in the
required form: as wowy ... wg,—1 with w; € 'W,.) Define the map ¢, 11 by setting

Chr1(Wowry ... W, —1) = Culcn(wo), cn(wr), ..., cn (Wi, —1)).

Note in case 2 the prewords are

Poi1 = {(cn(wo), cn(wi), ..., cn(Wk,—1)) : WoW1 ... Wk,—1 € Wni1}.

Remark 61. Some useful facts are:

e It follows from Lemma 36 and Numerical Requirement 1 that if (W, : n € N) is an
odometer based construction sequence, then (Wy : n € N) is a construction sequence;
i.e. the spacer proportions are summable.
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e If each w € W, occurs exactly the same number of times in every element of W, 41,
then (W5 : n € N) is strongly uniform.
e Odometer words in ‘W, have length K. The length of the circular words in 'Wy, is gy.

Definition 62. Define a map F from the set of odometer based subshifts to circular sub-
shifts as follows. Suppose that K is an odometer based shift built from a construction
sequence (W, : n € N). Define

F(K) =K¢,

where K¢ has construction sequence (W5 : n € N).

The map ¥ is one to one by the unique readability of words in ‘W. Suppose that K¢
is a circular system with coefficients (k,,l, : n € N). We can recursively build functions
¢, ! from words in £ U {b,e} to words in X. The result is a odometer based system
(W, 1 n € N) with coefficients (k, : n € N).If K is the resulting odometer based system
then ¥ (K) = K€. Thus ¥ is a bijection.

If K is an odometer based system, denote the odometer base by K™ and let 7 : K — K™
be the canonical factor map. If K€ is a circular system, let (IK¢)” be the rotation factor &
and let 7w : K¢ — K be the canonical factor map. For both odometer based and circular
systems the underlying canonical factors serve as timing mechanisms. This motivates the
following.

Definition 63. Synchronous and anti-synchronous joinings are defined as follows:>>

(1) Let K and . be odometer based systems with the same coefficient sequence, and
o a joining between K and L*!. Then p is synchronous if p joins K and L and
the projection of p to a joining on K” x L™ is the graph joining determined by the
identity map (the diagonal joining of the odometer factors); p is anti-synchronous if
p is a joining of K with L™! and its projection to K™ x (IL™!)” is the graph joining
determined by the map x — —x.

(2) Let K¢ and IL¢ be circular systems with the same coefficient sequence and p a joining
between K¢ and (IL€)*!. Then p is synchronous if p joins K¢ and IL¢ and the projec-
tion to a joining of (K¢)”™ with (IL¢)" is the graph joining determined by the identity
map of K with £, the underlying rotations; p is anti-synchronous if it is a join-
ing of K¢ with (L¢)~! and projects to the graph joining determined by rev(-) o
on X x &1

The categories. Let O B be the category whose objects are ergodic odometer based sys-
tems with coefficients (k, : n € N). The morphisms between objects K and . will be
synchronous graph joinings of K and IL or anti-synchronous graph joinings of K and ..
We call this the category of odometer based systems.

22We use £ for the notation for the rotation factor of a circular system IL¢. In this context, when
taking inverses of symbolic systems we keep the same orientation for the symbolic system and
-1
use sh™ .
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Let € B be the category whose objects consists of all ergodic circular systems with
coefficients (k,, I, : n € N). The morphisms between objects K¢ and IL.¢ will be synchro-
nous graph joinings of K¢ and IL¢ or anti-synchronous graph joinings of K¢ and (IL¢)™!.
We call this the category of circular systems.

The main theorem of [12] is the following:

Theorem 64. For a fixed circular coefficient sequence {(k,,l, : n € N) the categories
OB and €B are isomorphic by a function ¥ that takes synchronous joinings to syn-
chronous joinings, anti-synchronous joinings to anti-synchronous joinings, isomorphisms
to isomorphisms and weakly mixing extensions to weakly mixing extensions.”

It is also easy to verify that the map (W, : n € N) — (WS : n € N) takes uniform
construction sequences to uniform construction sequences and strongly uniform construc-
tion sequences to strongly uniform construction sequences.

Remark 65. Were we to be completely precise we would take objects in O B to be pre-
sentations of odometer based systems by construction sequences (W, : n € N) without
spacers and the objects in € B to be presentations by circular construction sequences. This
subtlety does not cause problems in the sequel so we ignore it.

5.10. Propagating equivalence relations and actions

In [8], the number M (s) is the first stage in the tree for which o, has length s. It is the
first stage that the equivalence relation Q7" is defined.

The main result of [8] is the existence of a continuous function from the space of trees
to odometer based transformations that reduces ill-founded trees to ergodic transforma-
tions isomorphic to their inverses. Components of the construction include equivalence
relations (@} : M(s) <n,s € N) and groups (G? : M(s) <n,s € N). Some of their
properties are:

(1) M is a monotone, strictly increasing function from N to N.
(2) @) is the trivial equivalence relation with one equivalence class on Wy = X.
(3) @7 is an equivalence relation on 'Wj,.

(4) For integers n > M(s) + 1, viewing elements of W, as concatenations of words
in Way(s), @7 is the product equivalence relation of (Qﬁms). Hence we can view
W, /@7 as sequences of elements of Wyy(s)/ (Qéu(s) and similarly for rev('W, /@%).
These sequences have length K, and are made of K,/ Kps(s;) many constant blocks

of length Kpy(s)-

(5) The groups (G7 : M(s) < n,s € N) are direct sums of copies of Z, that have a des-
ignated canonical collection of free generators.”* Each G"*! = G” & H, where H
is either Z /27 or H is trivial.

23Glasner showed that it takes compact extensions to compact extensions.
24These groups are described in detail in Section 10.2.



M. Foreman, B. Weiss 2640

(6) Each group G acts freely on W,/@% Urev(W,/@7%) in a manner that even parity
group elements preserve the sets W, /@% and rev('W,,/@7) and the odd parity group
elements send elements of W, /@7 to rev('W, /@%).

(7) The action of G € G**! on W, 41 U rev(Wy41) is propagated from ‘W, U rev('W,)
by the skew-diagonal action: if g € G7 is a canonical generator and if the word
w € Wy Urev(W,41) is of the form wow; ... wk,—1, then

W = gWk,,_; -.- W14 Wo-

We define corresponding equivalence relations and group actions on (WS : n € N).
They will be used in Section 8.2.1 to state the timing assumptions and in Section 10.2
which gives the construction specifications from [8].%

An inductive understanding of (@7)® and the G -actions is quite useful.

Inductive definition of (Q%)¢. Define

e (@})° to have exactly one class in each Wy,

o for wo, w1 € Wass) put (ars) (o). cares) (i) € (@) ift (wo, wy) € @'
Suppose we are given (Qf)¢ on Wy . Define an equivalence relation @ on Wy, | by
setting € (wp. . .., Wk,—1) equivalent to €(wy, ..., w,’{n_l) if and only if for all i, w; is
(@%)¢-equivalent to w.

Rather than a full definition of the action of G”*! on

er+1/(@?+l)c U feV(W;f+1/(@?+l))c’

we describe the how the action of G propagates: via the circular skew diagonal action:
Identify rev(W; |/ (@7+1)¢) with the collection of sequences of the form

€ (rev([wol(@z)e), rev([wil@pye)s - - - rev([wi, —1l@z)e))

as Wowy . .. Wg,—1 ranges over the elements of P,.
To define the skew-diagonal action of G} on classes of circular words, it suffices to
specify it on the canonical generators, This is done by setting”®

g€ ([wo], [w1] ... [wik—1]) =aer € ([gwol. [gwr], ... [gWk—-1])

whenever g is a canonical generator of GI. We observe that the skew-diagonal action
has the property that the canonical generators take elements of Wy, / Q"1 1o ele-
ments of rev(Wy  ,/ (@7 +1)¢). Tt follows that the even parity elements of G leave the sets
NGt ctomnt S (B v v o € e
n+1 N n+1 s .

As in [8] the equivalence relations (@7 : n € N) define factors K of K and similarly
((@%)€ : n € N) define factors K of K¢ The equivariant definitions given here imply that
F takes each K to K¢ and respects the actions of the G .

251f @ is an equivalence relation on ‘W€ define rev(Q) by (rev(wp), rev(wy)) € rev(Q) if and
only if (wo,w;) € @. In abuse of notation we will not distinguish between (@Q% )¢ as a relation
on WE, (@F)€ Urev((Q%)€) as arelation on WS U rev(WS) or We /(Q%)€ U rev(WS /(@QF)°).
26We use [w;] to denote [w;]/(Q7)°.
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6. Understanding rotations

Let X be a rotation factor of a circular system with coefficient sequence (k,,/, : n € N).
This section analyzes how automorphisms of K affect the parsing of elements of K.

Let (K¢, 1) and (IL¢, v¢) be two circular systems that share a given circular coeffi-
cient sequence and let @ = lima,,. Any isomorphism between K¢ and (L¢)*! induces
a unitary isomorphism Uy from L2((L€)*!) to L2(K¢), and this isomorphism sends
eigenfunctions for na to eigenfunctions for no. Thus every isomorphism has to send
the canonical factor K, of K¢ to the canonical factor X! of (IL¢)*!. Explicitly: sup-
pose that ¢ : K¢ — (IL€)*! is an isomorphism. Then Uy : L?((L¢)*') — L2(K¢), and
Uy takes the space generated by eigenfunctions of Uy, in L2((IL°)*!) with eigenvalues
{a™ : n € Z) to the space generated by corresponding eigenfunctions in L2 (K¢). Conse-
quently, there is a measure preserving transformation ¢* making the following diagram
commute:

K¢ 5 , (]Lc’)il

x x (6.1)

T

Ko —— X3!

By Theorem 53, K, is conjugate to the rotation R, of the unit circle by a map ¢y.
Hence (using additive notation) ¢™ must be conjugate to a transformation defined on
the unit interval of the form x — z + B for some B € [0, 1), where z is either x or —x,
depending on whether ¢ maps to Ky or K L. Since rev(-) ol : Ko — K ! is an iso-
morphism, if ¢ maps to (IL€) ™1, rev(-) o [j(x) can serve as an alternative to the benchmark
to the map x — —x. Explicitly: the 8 associated to ¢ is the number making

@™ (s) = rev(-) o i(Sp(s)):

equivalently, rev(-) o 7! 0 ¢7 (s) = Sg(s).”
Summarizing,

(A) If ¢ : K¢ — L€ is an isomorphism, then viewed as a map from [0, 1) to [0, 1), there
is a unique B € [0, 1) such that for almost every x,

P (s) = Sp(s).
(B) If¢ : K¢ — (IL¢)~!, then there is a unique B such that for almost every s,
P (x) = rev(+) o f(Sp(s)).
Definition 66. In cases (A) and (B), we call the map $g the rotation associated with ¢.

We record the following facts.

2TThe reader is referred to the caveat at the end of Section 5.8, for the reason rev(-) o I is used.
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Lemma 67. Let K€ be a circular system. Then

(1) The set of B associated with automorphisms of K¢ form a group.

(2) If g : K — (K)™! and y : K¢ — K¢ are isomorphisms, where $™ =rev(-)oljo Sg
and Y™ = S, then (¢ o Yy)™ =rev(-)ofo S5, where§ = + .

Proof. 1t is easy to check that

o If ¢,y are isomorphisms from K¢ to K¢ with ¢ = Sg and ¥™ = §,,, then (¢ o V)
is also an isomorphism from K€ to K¢ and (¢ o ¥)™ = S5, where § = 8 + y.

e If ¢ is an isomorphism from K¢ to K¢, and ¢™ = S, then (¢~ 1)" = S_3.

The second assertion is similar. [

Given a rotation Rg, set

SB) = () S5(S).

nez

This can be described independently of Sg as
{s €S :foralln € Z, ¢o(s) € (¢o[S] + nb)}.

It is clear that v(S(8)) = 1.
Define a sequence of functions (d” : n € N). Each

d":S(B) —>{0,1,2,...,q, — 1}.
For s € S(B) and t = Sg(s) we have t € S(B) and ¢o(t) = Rgpo(s). All large enough
n are mature for 7, and ¢ is determined by a tail segment of (r,,(¢) : n € N).

Definition 68. If n is mature for both s and t = Sg(s), let

dn(s) Eq;: rn(t)_rn(s)’ (62)

and d”(s) = 0 otherwise. (We could have made a more general definition d” (s, t) for
arbitrary ¢ and take = Sg(s) when we want to use d” (s).)

Explicitly: from the definition of r,, ¢o(s) + B belongs to the (r,(s) + d"(s))-th
interval in the dynamical ordering of J,, .”

Fix an n and suppose that 8 is not a multiple of 1/g,. Then the interval [, 8 + 1/¢,)
intersects two geometrically consecutive intervals of the form [i /g,, (i + 1)/qn).

Lemma 69. Suppose that the integer n is mature for s and Sg(s). Then d"(s) belongs
to {D,(B), Dn(B + 1/qy,)}. Thus there are only two possible values for d" (s) and these
values differ by j.

28More accurately: if j < g, and j =g, 'n(s) + d"(s), then ¢o(s) + B belongs to the j-th
interval in the dynamical ordering of dg,, . Recall the relationship between symbolic shifts and the
towers of intervals in the dynamical ordering given in Section 5.7.
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Left lane Right lane
A

. y
BNt ji = Da(B)

(_Y—

0 v a

Fig. 2. Left lane and Right lane of the g, -tower.

Proof. Suppose that 8 € [i/qn, (i +1)/qn) andy = (i + 1)/g, — B. Then D, (B) = ji.
We claim that, relative to those s for which 7 is mature for both s and Sg(s), d” is constant
on 85" (U <g, Li/an: G + D/ =) and ¢ (U, 4, [ + D/ — 7. G + D/an),
where it takes values D, (8) and D, (8 + 1/q,), respectively (see Figure 2).

We show that d” is constant on the first set. Suppose that n is mature for s, Sg(s)
and ¢o(s) = x belongs to the interval [0, y). Then x + 8 € [i/qn, (i + 1)/g,). Hence
ra(8g(s)) = ji = Dn(B). Since r,(s) = 0, we know that d"(s) = j;. Now suppose that
s* e ¢)(71(Uj<qn [j/qn. (j +1)/qn —v)) and that n is mature for s* and Sg(s*). Let
k = ry(s*). Then
kpn

qn

for some x € [0,y).So po(s* + B) € [ + 1+ kpn)/q) —y.( + 1+ kpn)/q). Hence
rn(8p(s™) = (pa) T (i + kpn) = ji + k.

$o(t) = x +

Thus
d"(s*) = ra(Sp(s™) —ra(s™) = ji + k —k = ji.

If s* € ¢61(Uj<qn [(j+1)/qn—y,.(j + 1)/qn)), the proof is parallel.
Finally, 8 and 8 4 1/¢, fall into consecutive intervals of 497 in the geometric order-
ing, and hence D, (8 + 1/q,) = D»(B) + j1. ]

Define df' and d}, by setting

1
dif = D,(B) and dy = Dn(ﬂ + —)
qn
Let
L, = {s : s is mature at stage n and r,,(s) + dJ =, ra(Sp(s5))}

and
R, = {s : s is mature at stage n and r,,(s) + dg =4, 7 (Sg(5))}.

We refer to L, and R, as the left lane and right lane, respectively.
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Notation. Let ,B,f ,Bf be the measures of the left and right lanes at stage .

Lemma 70. Consider (K, v, sh) and let i,, be the measure of the collection M,, of s that
are not mature at stage n. Then:

(M) [gnB1—qnP = ,3# > [qnBl — qnB — tn,

(2) gnB — lgnB| = R> qnB — LgnB| — tn,

3) By + By +m=1

In particular, 3" BE < oo if and only if 3" ([qnB] — B) < 0o and Y BR < oo if and only
if > 2(qnB — LgnBl) < .

Proof. Let M), be the collection of S that are mature at stage n. In the proof of Lemma 69,
we showed that L, is

¢51( \J Ui/gn. G+ D/an - y)) nM,
J<qn
and R, is

¢>al( UG +D/gn—v. G+ 1)/qn>) N M,
J<dn
where y = (i +1)/q, — B and B € [i/gn, (i + 1)/qyn). Since there are g, many levels
and ¢,y = [gnB] — ¢n B the inequalities in item (1) follow. Item (2) is similar. Item (3)
follows since

S = ¢al( U U/4n G+ D/gn =70 J G+ D/gn—v. (G + 1>/qn>) UM,.
J<dn J<d4n
The final assertion follows from Lemma 45. [
Restating the discussion:

Lemma 71. For almost all s € S € K€ that are mature at stage n, Sg(s)(0) = s(i),
wherei =4, dJ' if s € Ly andi =,, dy if s € Ry.

Proof. Assume that n is mature for s. Then on its principal n-block, the projection of s to
Ko agrees with w?.”’ The values s(0) and Sg(5)(0) are the r,, (s)-th and the r, (S5 (s)))-th
values of the word w¢. From equation (6.2),

rn(88(s))) = ra(s) +d"(s).

Hence
$p(5)(0) = s(d"(s)),

and the lemma follows. [

29Recall w? is the notation for the unique member of the n-th element WS of the construction
sequence for K.
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The items in the following lemma are essentially Remark 12 and Lemma 56 in a dif-
ferent context.

Lemma 72. For almost all s and for n < m that are mature for s and Sg(s) the following

hold:

(1) Ifi =g, ra(s) +d"(s) and j =g, rm(s) + d™(s), then the j-th place in the princi-
pal m-block of $g(s) is in the i-th place of the principal n-block of Sg(s).

(2) Let I bethe ry(s) + d"(s)-th interval of 49" and J the ry,, (s) + d™ (s)-th interval of
d9m in the dynamical orderings. Then J C 1.

Proof. This follows from Remark 55 and Lemma 56. To see this, note that
rn($p(5)) =g, rn(s) +d"(s);
i.e. $g(s)(0) is in the i-th place of the principal n-block of s, where
i =g, a(s) +d"(s). m

Thus typical points in R, and L, are those in which the n-block of Sg(s) containing
0 is the shift of the block of s containing 0 by d} and d}, respectively.

We now describe how d” (sh¥ (s)) changes. As k varies, d " (sh¥ (s)) measures the
shift between sh¥ (5)(0) and Sg (shk (5))(0). In regions where the principal n-subwords
of both sh®(s) and Sg (shk (s)) exist and are repeating d "(shk (s)) is constant. It is also
constant as it crosses boundary regions of sh*(s) and § 8 (sh*(s)) as long as those bound-
ary regions have length ¢, and are lined up with adjacent n-subwords. However for
m > n + 1, if the boundary section of an m-word of s or Sg(s) has length not divisi-
ble by g5, the relative alignment between s and Sg(s) changes. This happens on regions
of Upmsnt1 0m () UUpmsnt1 9(Sp(5))-

If n is mature for s, the principal n-word of s repeats on both sides of s(0) and thus
we see:

Lemma 73. Ifs is mature at stage n, then d" (s) is constant on the principal n-block of s.
Moreover, on d"(s) is constant on the even and odd overlaps of 2-subsections of n + 1
subwords of s and Sg(s).

The next lemma is used for the “nesting” arguments in Section 7.3. It says that the
measure of the set of s € S with d"(s) = d or d"(s) = d} can be closely computed as
a density in every scale bigger than 7.

Remark. The notation d;' and dj are supposed to be suggestive of the left and right
lanes. To a close approximation, if s is mature and in a left lane, then

d"(s) =df
and similarly for the right lanes.
Lemma 74. Letn < m € N be natural numbers. Then

0.1,2,....gm—1} =P UU U P}.
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such that for almost every s for which n is mature:*"

(1) if rm(s) € P}, thens € Ly,

(2) if rm(s) € P}, thens € Ry,

(3) |U| = 2qn,

@ [1P1/qm = Bril < 2qn/qm. and
5) [1PRl/qm = Bl < 2qn/qm.

Proof. As in Lemma 69, let

where i = p, D, (B) (see Figure 2). The partition d,,, splits each interval I € 4, into
dm/qn subintervals. Let U be the indices of the J,, intervals that lie over or under y and
vy + 1/qm. Explicitly: suppose that y € I,-’(;' andy + 1/qm € I,-’l". Let

U=1{i: forsome0<j<gq, I["= Rénllfg

U{i: forsome0 < j <gqp, I =<72({;n1i’1” .

1

Then |U| = 2¢,, and if i ¢ U, then either

1" < \J U/an: G +1/gn—p)or (6.3)
J<aqn

< JIG+D/gn—v. G+ D/an) (6.4)
J<aqn

Fori ¢ U,puti € P} if it satisfies equation (6.3) and i € Py, if it satisfies equation (6.4).
It follows that for almost all s, if 7 is mature for s and r,,(s) € P, then d"(s) = dJ and
similarly for Pg. Since Pg U P! UU is a partition of g, and |U| < 2¢,, the lemma
follows. ]

Lemma 75. Let f € {0, 1}N and let s be a typical member of S(B).

(1) Let By = pnDu(B) + f(i)/qn- Then the sequence (Rgx : n € N) converges to Rg
in the C*°-topology.

As a result, in the language of symbolic systems:

(2) Let Ay = Dy(B + f(i)/qn) and T the shift map on K. Then A, is either d}} or dy,
depending on the value of f and for almost every s € S,1im,, oo TA"s = Sg(s).

(3) With Ay, as in item (2) and K€ an arbitrary circular system with the given coeffi-
cient sequence {(ky,l, : n € N), define a,, and b,, to be the left and right endpoints
of the principal n-block of T47 (s). Then for almost all s, lim, s a, = —00 and
limy,— o0 by = 0.

30properly speaking the P % and P/ notation should indicate m as well. Without any contextual
indication of what m is we take m = n + 1.



Measure preserving diffeomorphisms of the torus are unclassifiable 2647

Proof. The firstitem follows because |8, — 8| < 2/q,. Hence B; converges rapidly to 8.
The second item follows from the first via the isomorphism ¢ . The third item follows
because Sg(s) € S and T4n (s) converges to S g (s) topologically. Hence for all n there
is an N such that for all m > N, the principal n-block of 74 (s) is the same as the
principal n-block of Sg(s). Since the principal m-block of T4m contains the principal
n-block of Sg(s) and Sg(s) € S, item (3) follows. |

If a, and b, are as in item (3), then

ay = —rp(s)+ A, and by, = qn —ru(s) + Ay. (6.5)

7. The displacement function

In this section we define a function A from S! to the extended positive real numbers that
will eventually be shown to have the properties that

e A(B) < oo implies that there is an element of the centralizer of K¢ having Rg as its
associated rotation.

o if K¢ is built suitably randomly, then every element of the centralizer of K¢, or
isomorphism from K¢ to (K¢)™! has rotation factor 8 with A(B) < oco.

The idea behind the displacement function is simple: the number B determines Sg and
hence a shift at each scale n. The words in ‘W, | are of the form €(wy, ..., w,—1). If
the shift at stage n lines up most n-words with other n-words in the same argument of €,
then it is possible to build an element of the centralizer of any K¢ having rotation factor
B. If not, and we build K¢ suitably randomly, then we can arrange that 8 is not a central
value.

Fix B for the rest of this section, and let T : Ky — Ky be the shift map. The next
lemma says that the principal n-blocks of 74" ®)(s) and § g (s) are exactly aligned.

Lemma 76. Lets,s* € K, be typical and n < m be mature for both. Define
= Tdm(s)—d”(s)(s*)‘

Then t*(0) is in the same position of its principal n-block as s*(0) is in the principal
n-block of s*. In particular, T4"$)=d" ) (s*) has its zero in a position inside an n-word
in the construction sequence for some copy of w.

Proof. Since the n-blocks of s* repeat on either side of the principal n-block of s*, and
these have length ¢y, it suffices to show d™(s) —d"(s) =4, 0. Lett = 74" ()=d" () (5)
and consider the point s’ = T¢" ) (s). Then 5'(0) is in the (r,, (s) + d™ (s))-th place in its
principal m-block. By Lemma 72, s'(0) is in the (r,,(s) + d"(s))-th place in its principal
n-block. Since t = T~"®) ("), the point ¢ has its 0 in the r,(s)-th place of its principal
n-block. Hence r,, (t) = r,(s) and by so by Remark 59, d™(s) — d"(s) =, 0. |

At first glance Lemma 76 looks puzzling as we are not assuming that any of

d™(s) =d™(s*), d"(s) =d"(s*), or rn(s) =r,(s¥).
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However, the assertion is a statement about how the n-towers sit inside the n + 1-towers.
For mature s, s* this nesting repeats on either side of the principal n-blocks and hence
behaves as in the cyclical approximations. Thus it is independent of the value of d” (s*),
d™(s*) or ry(s*), and simply reflects the cyclical structure.

For a particular s € K, the sequence of shifts 7¢" ¢ (s) converges to § g (s). Lemma 76
tells us that this happens promptly: for mature n, 7% ") (s) has its O-th place in the same
position of its principal n-block as Sg(s) does.

Consider the location of 0 in the principal n + 1-block of the point Td" T (6)=d"(s) (s)
relative to the position of O in the principal n + 1-block of s. For some jj and j; the
principal n-block of Td" T (6)=d"(s) (s) arises from the jo-th argument of €(wy, ..., wy)
and the principal n-block of s(0) is in a position coming from the j;-st argument.

Definition 77. Let s € K. With indices j, and j; as just described, the jo-th argument
of €(wy, ..., wy) B-matches the j,-st argument. The point s € K is well-B-matched
at stage n if s is mature at n and jo = j;. If n is mature for s and jo # j1, then s is
ill-B-matched.

Lemma 78. Let K€ be a circular system and consider S € K€. Let s,s* € S and sup-
pose that n is mature for w(s), w(s*), Sg(7w(s)) and Sg(w(s*)) and that 7 (s) is well-
B-matched at stage n. Let A, = d"(s) and Ap+1 = d" 1 (s). Then:

(1) one has
ra(T41s5%) = 1y (TA7415%)

and
() if I is the interval [—r, (T475*), ¢ — 1, (T475*)) C Z, then

(TAns* 1) = (TA+15* } ). (7.1)

Proof. Lemma 76 asserts that O is located in the same place in the principal n-block
of TAn+1=4n (7(s*))(0) as O is in the principal n-block of m(s*). Since n is mature
for s*, the principal n-block of s* is repeated on either side of s*(0). Since n is mature
for Sg(m(s*)), the principal n-block of TAn+15* is repeated at least twice on either
side of T4n+1(s*)(0). It follows that 0 is in the same place in the principal n-block of
TAn (TAn+1=4n (5*)) as 0 is in the principal n-block of 747 (s*)(0). This proves the first
assertion.

A repetition of this argument shows the second assertion as well, using the fact that
s is well-B-matched. Indeed the definition of well-fB-matched implies that the principal
n-words of T4n+1=4ng and s are identical. Applying 74" to both, and using the fact
that the principal n-words repeat one sees that the principal n-words T4»+1s and T47 s
are identical. Since the issue of alignment only involves m(s), item (2) holds for all s*
with 7 (s) = 7w (s*). Moreover, arguing as in the last paragraph using the repetition of the
principal n-blocks, shifting by an / < ¢, does not change this. ]

Comment. The terminology in this definition extends easily to general circular systems by
saying that jo-th argument and j;-st arguments are S-matched in s € K¢ if and only if this
is true in s™, where s” is the projection of s to K. Similarly we write d” (s) for d” (s (s)).
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7.1. The definition of A
Let (X, B, u, T) = (K¢, B, v, sh) be a circular system. Define
A, (B) = v({s : s is ill-B-matched at stage n}) (7.2)

and set’!

AB) =Y An(B). (7.3)

Definition 79. The number 8 € S is a central value iff A(B) < cc.

Note that A(B) is defined using the block structure of the 'Ws and hence is determined
by B together with the sequences (k,) and (/,,). Thus for B € S the property of being
central depends only on the circular coefficient sequence (k,, I, : n € N), rather than on
the particular circular system K¢.

In Section 8.1, we show that if A(f) is finite, then there is an element 7* in the weak
closure of {T" : n € Z} such that (T*)™ = Sg. In particular, 8 is the rotation factor of an
element of the centralizer. That result does not use the results of the rest of this section.

7.2. Deconstructing A(B)

Fix a . Recall that (¢, : n € N) is the sequence satisfying Numerical Requirement 2:
EN >0, N En-

Suppose that s is typical, n is mature and s is ill-B-matched. Then there are four
possibilities:
(1) d*(s) = dj ordy and
(2) dn+1(s) — dZ_H or dlré-H
Call these possibilities Pry, PLr, PRL, PRR-

Lemma 80. Letn,m € N withn + 1 < m. There is a partition

{P}:l;ln,hdz thdy,hd, € {L,R}} U{U}

of the set {0, 1, ...,qm — 1} such that for s € S, if n is mature for s, then

(1) Tm(s) € Pyy' g, implies (d" (s),d"*(s)) = (djy, . djig)s

() U] < 2¢n + 2qn+1-

Proof. This follows immediately from Lemma 74 by holding m fixed and applying the

lemma successively to n and n + 1. Except for a set U =gt U, U U, 4+ that has at most
2¢n + 2¢n+1 elements, every pointin {0, 1, ..., ¢, — 1} belongs to some Pl.” N Pj"'H. |

The levels of the g,,-tower reflect the construction of wg, from n-words with n < m.
If s and Sg(s) are mature at stage n < m, the locations of 5(0) and T én+1)=dn(8) (5)(0)

31Since being well or ill-matched only depends on 7(s) in this section we will not carefully
distinguish between s and 7 (s).
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in their principal m-block and the pair (d"(s),d"*!(s)) determine whether s is ill-B-
matched or not. For particular choices of id, hd, € {L, R} either all typical s in Ppg, pa,
with n mature for both s and Sg(s) are well-B-matched or none are.

In the next section we will fix a particular choice of idy and hd,. For now let n, hd;
and /d, be such that all n-mature s in configuration Ppg, 14, are ill-B-matched. We use
the symbol §f, (In LaTeX: \not\Downarrow) to indicate the misaligned points at stage
n. Let

¥, = {s : s isill-B-matched at stage n and in configuration P4, 14, }. (7.4)

We need to localize the sets Jf,,. The next lemma tells us that they are uniformly close to
open sets:

Proposition 81. Let n,m € N withn 4+ 1 < m. Then there is a set
d™m C{0,1,....qm — 1}

such that if s € S, n is mature for s and ry, (s) + k € d"™™, then

(1) n is mature for sh¥ (s),

2) d"(sh*(s)) = d, and d"T'(sh*(s)) = a1,

ES; shk((s) é)Jin ansd1 e e

|ld™™|

m

+ 1
— V() <2(q" q"“)+ e,
4dm lnfl

Proof. Let s be an arbitrary point in S that is mature for n. Take d-™ to be those numbers
of the form ry, (s) + k (where k € [—ru(5), gm — rm(s))) such that sh¥ (s) has its zero
point in the set P d hd> and 7 is mature for sh* (s). Then d "M s independent of the
choice of 5. By Lemma 49, the collection of k such that sh¥ (s) is not mature for n has
density at most — + En_1.- [

7.3. Red zones

Suppose that B is not central, i.e. A(8) = oco. Then for some fixed choice of (hd;, hd,),
with hd; belonging to {L, R},

Z v({s : s is ill-B-matched at stage n and in configuration Ppq, 14, })
n
is infinite. Fix such an hd;, hd,. Then with this choice for all n, §f, is well-defined, and
moreover there is a set G € N such that if # < m belong to G, thenn + 2 < m and

> v, = oo (7.5)
neG
Let s be a point in K, such that all of the shifts of s and Sg(s) are generic with respect
to basic open sets, the sets En, /. P; dm hd> and the sets L,, R,. For large enough M,
we will describe how to use s and the union ( J,c; #, to identify a subset of the inter-
val [—rar(s), gpr — rar(s)) consisting of misaligned points and having density arbitrarily
close to one.
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Assume that s € }f, and n is mature for s and Sg(s). In defining Jf,,, the choice that
(d™(s).d"*1(s)) = (hd1, hd?2) together with s(0), give us the relative locations of the
overlap of the principal n 4 1-blocks of s and Sg(s).

Let u be the principal n + 1-block of s and v be the principal n 4 1-block of Sg(s).
and assume that they are in the position determined by d”*!(s). By Lemma 42, on the
overlap the 2-subsections of v split the 2-subsections of u into either one or two pieces,
and the positions of all of the even pieces are shifted by the same amount relative to the
2-subsections of v and similarly for the odd pieces.

We analyze the case where s(0) occurs in an n + 1-block, where the 2-subsections
are split into two pieces. If they are only split into one piece (i.e. they are not split) the
analysis is similar and easier. Without loss of generality we will assume that s(0) occurs
in an even overlap.

Since neither s(0), nor $g(s)(0) occur in the first or last £,k, 1-subsections of the
principal 2-subsection that contains them, we know that the overlaps of the principal
2-subsections of 5(0) and Sg(s)(0) contain at least €, k, 1-subsections. The 0-subsections
of the form wjl"_1 of each 1- subsectlon of s in this overlap are split into at most three
pieces, powers of the form ws" w; and w; il ,where 0 <r <2,[, — (s§ +s7) <3 and
the middle power w; crosses a boundary section of Sg(s). The powers s; and s} are
constant on the overlap of the 2-subsections, constant in all of the even pieces of the over-
lap of the 2-subsections of the principal n + 1-block, and are determined by (hd;, hd>).
Moreover, s} > &,1,. Again, without loss of generality we assume that s(0) is in the left
overlap corresponding to the power s .

Observation. There is a number jo between 0 and k, — 1 that is determined by the pair
(d™(s).d™*1(s)) such that the even piece of a 2-subsection that contains s(0) is of the

form

H pIn—ii wjl-_leji,

j<jo
except that the last 1-subsection may be truncated. Moreover, since d n+1(sh¥ (s)) is
constant for k in the principal n + 1-block of s, if

1 =kn— Jo. (7.6)

thent # Oand forall j < jo the powers wjo are f-matched with sz'(-)H except for portions
of the first and last power.

In particular, if k is such that the O posmon of sh¥ (s) lies in the interior of initial power
w jO in an even overlap and j < jo, then sh¥ (s) € ¥, because it is lined up with w; 1.

Lemma 82. Let s € K and suppose that s and Sg(s) are generic, and that s is mature
at n. Suppose that m > n + 2. Then there is a set B, C{0,...,qm — 1} such that if
k € [—rm(s),qm — rm(s)) and ry, (s) + k € By, then:

(1) sh¥ (s) has its zero located in By,
(2) n is mature for sh*(s),
(3) sh*(s) € ¥,
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(4) there exista jo > enky and at # 0 such that By, is:

(a) a union of sets, each of the form Uj<j0 Ui,
(b) eachset| J; i<, Uj is a subset of a position of an occurrence in s of ann + 1-sub-
word ‘(?(uo,ul,.. Uk, —1) of wyy, (With u; = wyy),

(¢) each U; is a collectlon of non-n-boundary positions in u ]0 such that u 10 is
B- matched with u’0 Cpr except perhaps for the first or last copy of u; in u’; S “and

‘/ ’ n
(d) each set | J; i< jo Uj is the collection of all non-n-boundary positions in w0 in
a block of the form

J
1_[ pan—JiyyIn=1 4ji
j .

J<Jo

1
2(qn +‘In+1) 1 l ¥y,
n

m -1

and 3
- - V(J&n) <

qm

Proof. The first statement is automatic since B, € {0,1,...,¢, — 1}. Let d"™ be as in
Proposition 81. If k € "™, then, as in the discussion before the statement of Lemma 82,
sh¥ (5)(0) occurs in the position of a power uo, where u is the principal n-block of sh¥ (s)
and %6 occurs on the left overlap of 1-subsections of the principal n + 1-block of sh¥ ().

As in the observation before this lemma, to each k € 4™ we can associate a set
U i<io Ui contalmng k by taking all of the positions of the powers u 10 in the even overlap
determmed sh¥ (5)(0), where k is not in the boundary of a u;. Let B, be the union of all
of the collections | J; . ;) U; as k ranges over d"".

Assertion (4) (c) follows from the observatlon and the fact that d” and d**! are
constant (and equal to d’; and dhjl) ond™™,

We show thatif &/ € Bn, then # is mature for shk (s) and that sh¥’ (s) € ¥, The matu-
rity of n follows immediately from the maturity of s and the fact that the location of 0
in sh¥ (s) is in a non-boundary portion of an n-subword of its pr1n01pa1 n + 1-block. That
sh’ (s) € ¥, follows from the fact that uSO is f-matched with u and ¢ # 0.

To finish, note that
amm | U Ui < ¥

J<Jo

dnm| |UU/</0 <V(>u )
dn qn "

Thus Lemma 82 follows from Lemma 81. [

j+t

Hence

We now define the red zones corresponding to 8. Recall thatif n < m € G, then
n+2<m and Zv(J&n):oo
neG
For n < m consecutive elements of G, define

1
8y = 4((/]n+1) + + &n—1-

qdm n—1
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Then we see that:
® ) cgbn < 00,80

i ZneG(V(%n) —8n) = 00,

and if B,, is the set defined in Lemma 82, then v({f,,) — &, < lf_,;'l <v({,)-

Lemma 83. Let N be a natural number and § > 0. Suppose that s and Sg(s) are generic,

and that s is mature at N. Then there is a sequence of natural numbers (n; : 1 <i <i*),

an M and sets R; € {0,1,2,...,qum — 1}, for 1 <i <i*, such that

(1) N<nyandn;i +2 <njy1 <M,

(2) R; is disjoint from R; fori # j,

(3) R; is a union of blocks of the form By,; described in condition (4) in Lemma 82 inside
njy1-subwords of w§,,

(4) ifk € Ry, then sh*(s) € Jf,, .

(5) the density of | J; R; in{0,1,....qym — 1} is at least 1 — 6.

Proof. We can assume that N is so large that UnZ n 0n has measure less than /100 and
1/Iny + ey < 8/100. From the definition of G we can find a collection (n; : i <i*) of
consecutive elements of G so that

8
[T a=vlh)+60) < 1560

1<i<i*

Choose an M > n;+ + 2, and for notation purposes set n;j+1; = M.
Define sets R; and I; by reverse induction from i = i* to i = 1 with the following
properties:
@ 10,1, .gm = I\ ((Urs 5 1) U (Uixs ;5 Ry)) consists of entire locations
of words wf{l_ in wy,

(i) R €{0,1,....,qm — 1} \ (U;ssj=; 1) U (U;+s j=; R;)) and has relative den-
sity at least v(§f,,,) — On,

(i) thesetI; C U;l:,],H 9; N{0,1,...,qm — 1} and hence,

(iv)  I; has density less than or equal to 1//,, in {0, 1,...,qm — 1}

To start, apply Lemma 82 with m = n;«1, to getaset B, C {0,1,...,qp — 1} of
density atleast v(§,,,, ) — 8n,. satisfying conditions (3)—(4) of the lemma we are proving.
Set Rjx = By, . Let

M
Le= | 9;n{0.1.....qm —1}.
J=ngx+1

* *

Suppose that we have defined (R; : i
induction hypothesis (i)—(iv).
Apply Lemma 82 again to get a set B = B, asubsetof {0, 1,...,qn;,, — 1}. Inside

each copy {k,k +1,...,k + qn; ., — 1} corresponding to a location in wj, of a ng_l

> j >i)and (/; :i* > j > i) satisfying the
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in the complement of ((Ui*2j>l- I;)u (Ui*2j>i R;)), we have a translated copy of
B, k + B. Let R; be the union of the sets k + B, where k runs over the locations the
words wy. | in the complement of (Uirs =i 1) YU Uies j=i R)))-

Then the density of R; relative to

0 1oodan =13 ((i*gj{i Ij) -’ (i*g>i Rj))

is at least v(}f,,) — Oy, . It follows from conclusi(g)n (3) of Lemma 82 that R; is a union
. s0 -1 . ..
of non-boundary portions of blocks of length g, corresponding to positions of w,‘fi
in w§,.
Since R; consists of a union of the non-boundary portion of locations of words w;’,‘i,

{0,1,...,qM—1}\(( U Ij)u( ¥ Rj)URi)

i*>j>i i*zj>i
consists of the entire blocks of locations of wy, together with elements of J;
latter set has density less than or equal to 1//,, 1. Let

1i=({0,1,...,qM—1}mnOIa,-)\(( g Ij)u( g R_,-)URi).

J=n; i*=j>i i*=j>i

l=+nll aj. The

It remains is to calculate the density of | J;_;;« R;. Ateach step in the induction, we
remove a portion of density at least v(}f,,.) — &n; from

{0,1,...,qM—1}\(( g Ij)u( g R,-)).

i*>j>i i*>j>i

Let = {J;<;<ps On; - Then the density of the union of the sets R; is at least

ad
1= 1 a-pp-2,

i*>i>1 qm

which is at least 1 — §. ]

8. The centralizer and central values

In the first part of this section we show that every central value is a rotation factor of an
element of the closure of the powers of 7" and hence an element of the centralizer.

The second part shows a converse: if K¢ is built sufficiently randomly, then the rota-
tion factor of every element of the centralizer is a rotation by a central value.

We note in passing that every circular system is rigid: if s is mature for n, then
T97Un=2)(5) has the same principal n-block as s does. It follows that {T" : n € Z} is
a perfect Polish monothetic group.
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8.1. Building elements of the centralizer

If A(B) is finite, then the Borel-Cantelli lemma implies that for v-almost every s, there is
an ng such that for all n > ny, s is well-B-matched at stage n. As a consequence, certain
sequences of translations converge. Precisely:

Theorem 84. Suppose that K€ is a uniform circular system with coefficient sequence
(kn,In :n € N). Let T be the shift map on K¢ and let B € [0, 1) be a number such that
A(B) < oo. Then there is a sequence of integers (A, :n € N) such that (T47 :n € N)
converges pointwise almost everywhere to a T* € C(T') with (T*)™ = Sg. In particular,
there is a sequence (A, : n € N) such that (T4" : n € N) converges in the weak topology
toa T* with (T*)™ = Sg.

Corollary 85. If B is central, then there is a ¢ € m such that ¢* = Sg.
Proof. Let T be the tree of finite sequences o € {L, R}=°°. Choose an ng such that
G = {s : no is mature for s and for all m > ng, s is well-f-matched at stage m}
has positive measure. By the Konig Infinity Lemma there is a function
fi{m:m>no} - {L,R}

such that for allm > ng, {s € G : d"(s) = d}’(n) for all n with ng < n < m} has positive
measure. Let 4, = d7,,.

By Lemma 75, item (3) it follows that for a typical s the left and right endpoints of
the principal n-blocks of T47s go to negative and positive infinity, respectively. Let s*
be a typical element of S; e.g. w(s*) and Sg(w(s*)) both belong to S”, large enough n
are mature for s* and for all large n, 7 (s*) is well-B-matched at stage n. Then for all
large 7, the left and right endpoints of the principal n-block of 7475 and T4#+1s are the
same. If s* is well-S-matched at stage n, then the words constituting principal 7-block of
TAns and T4n+15 are the same. It follows that for typical s* € S, the sequence 747 s*
converges in the product topology on (X U {b, e})%.

We now show that the map

s > lim T47

is one-to-one. If s # s’, then either 7 (s) # 7 (s") or there is an N such that for alln > N
the principal n-blocks of s and s’ differ. We can assume that this N is so large that n is
mature and well-B-matched for 7 (s), 7 (s).

If 7(s) # 7(s), then Sg(7w(s)) # Sp(m(s’)). Hence the limits of T4ns and T4’
differ. So assume that 7 (s) = 7(s’). Then, since T4 is a translation by at most g, — 1
and n is mature for all parties (so the principal n-blocks of T47s and T47s’ repeat),
we know that the principal n-blocks of T47s and T4»s’ differ. But for all m > n, the
principal n-blocks of T4ms agree with the principal n-blocks of 7475 (and similarly
for s”). Hence for all m > N the principal N -blocks of T4 and T4m s’ differ. It follows
that the limit map is one-to-one.

We need to see that for almost all s, lim, o, 74”5 belongs to K¢. By the definition
of K¢ this is equivalent to showing that for almost all s if / € Z is an interval, then
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lim, o T47s | I is a subword of some w € W, for some m. However, by Lemma 78,
for almost all s we can find an n so large that:

(1) I S [=rn(s),qn — ra(s)),

(2) T4ns and limy—o T47s agree on the location of the principal n-block of contain-
ing /, and

(3) T47s and lim,_, o, 747 s agree on what word lies on the principal 7-block.

Since the principal n-block of 747 s belongs to Wy, we are done.

Summarizing, if one has T* = limy,— oo TAng then for almost all s, T*s is defined
and belongs to S. Moreover, T* is one-to-one and commutes with the shift map.

Define a measure v* on S by setting v*(A4) = v((T*)~! A). Then v* is a non-atomic,
shift invariant measure on S. By Lemma 38, we must have v* = v. In particular, we have
shown that 7* : K¢ — K¢ is an invertible measure preserving transformation belonging
to {T" : n € Z}, with (T*)™ = Sp. L]

We make the following remark without proof as it is not needed in the sequel:

Remark 86. Suppose that K¢ satisfies the hypothesis of Theorem 84 and f is a cen-
tral value. Then for any sequence of natural numbers (A4, : n € N) such that 4, con-
verges to B sufficiently fast, the sequence (T47 : n € N) converges toa T* € C(T') with
(T*)™ = 8.

8.2. Characterizing central values

The main result of this subsection is a converse of Corollary 85. If K¢ is a circular system
built from sufficiently random collections of words and ¢ is an isomorphism between K¢
and K¢, then ¢™ = Sg for some central 8. Moreover, if ¢ is an isomorphism between K¢
and (K¢)™!, then ¢™ is of the form rev(-) o fj o S5 for some central B.

In this subsection we will return to considering (K¢)™! as (rev(K¢), sh) with the
forward shift, and hence can use { instead of rev(-) o fj.

8.2.1. The timing assumptions. Randomness assumptions about the words in the sets 'Wy
will allow us to assert that the rotations associated with elements of the centralizer of
K¢ or isomorphisms between K¢ and (K¢)~! arise from central elements 8. The last
part of the paper shows that these additional randomness assumptions are consistent with
the randomness assumptions used in [8] and describes how to build words with both
collections of specifications.

Recall from Definition 34 that to specify a circular system with coefficient sequence
(kn, L, : n € N it suffices to inductively specify collections of prewords Py+1 C (WS)kn,
and define Wy, | as the collection of words

{B(U)O, ey Wkn_l) PWoWq ... Wg,—1 € Pn+1}.

In the construction, there will be an equivalence relation @] on Wy that is lifted from
an analogous equivalence relation on the first step of the odometer construction W;. It
is built in Section 10; we describe its properties here. Let (@7 : n € N) be the sequence
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of propagations of (Q} As the construction progresses there are groups G| acting freely
on the set of @7 equivalence classes of words in 'Ws. Each G7 is a finite sum of copies
of Z,. Inductively, G{*' = G7 or G{™! = G? & Z>. The action of G} on 'W¢_, arising
from the G'”'1 action via the 1nclus1on map of G” into G'”'1 is the skew dlagonal action.
We will write [w]; for the @ -equivalence class of aw € W and G}w]; for the orbit of
[w]y under G{. If w € Wy, and C € W, /@7, then we say that C occurs at t if there is
av € W¢ sitting on the 1nterva1 [t,t + gn) inside w and C = [v];.

Numerical Requirement 4. One has
> fat <
@ =
This can be satisfied by taking :(:2’1’} <27,
We note that G{ is determined directly by the first #-nodes in tree we are using in the
domain of the reduction, and hence |G| is determined by the tree. So this requirement on

|@"| does not depend on any of the other variables being chosen during the construction.
In what follows we call such requirements absolute requirements.

Notation. As an aid to tracking corresponding variables, script letters are used for sets
and non-script Roman letters for the corresponding cardinalities. For example we will
use @, for an equivalence relation and Q, for the number of classes in that equivalence
relation.

Here are the assumptions used to prove the converse to Corollary 85. The first three
assumptions follow immediately from the definitions in Section 5.10.

(T1) The equivalence relation (,‘2;'+1 is the equivalence relation on Wy, | propagated
from @7.

(T2) The group G acts freely on ‘W, /@ U rev('W, /@Q7)

(T3) The canonical generators of the group G7 send elements of Wy /@7 to elements of
rev(Ws /@") and vice versa.

The next axiom states that the @7 classes are widely separated from each other.

(T4) There is a number y such that 0 < y < 1/4 such that for each n and each pair
wo, wy € WS Urev(Ws) and each j > ¢, /2 if [wo]1 # [wi]1, then

d(wo 0, 7)., wy }0./)) > 7.
dwo ! gn — j.qn)s w1 | gn — j.qn)) = v

‘Z(wO MO, J)swi P gn — Jign)) = .
Remark 87. In axioms (T5)—(T7) we write |x,| ~ yLn to mean that ||x,| — yLn| < Un,
where (1, < min(e,, 1/07%).
Numerical Requirement 5. 11, is chosen small relative to min(e,, 1/ Q7). Explicitly: if
t, = min(e,, 1/07), then

0< ity <t,min2""2—,
k<n Ik
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In the next assumption we count the occurrences of particular n-word v that are lined
up in an n + 1-preword wo with the occurrences of a particular @7 -class in the shift of
another n + 1-preword w; or its reverse. The shift (by 7 n-subwords), must be non-zero
and be such that there is a non-trivial overlap after the shift.

(T5) Let wg, w; be prewords in P, 41, and w/1 be either w; or rev(w;). Write
/
Wo = VgV1...Vk,—1 and W] = UoU1 ... Uk,—1,

with u;,v; € Wi Urev(Wy). Let € € WS /@ or € € rev(W,)/@" according to
whether w| = w; or w} = rev(w;). For all integers ¢ with 1 <t < (1 —&,)(kn),
v € WS, we have:

(a) (This is comparing wo with sh’?” (w}).) Let
Jw)=1{k <k,—t:v=uv}.

Then
[k € J) uri €Y 1

[J()] Coor
(b) (This is comparing sh’?”" (wg) with w}.) Let

Jw)=4k:t <k <k,—1landv = vg}.
Then
[{k € J(v) : u;—g € €} 1
| ()] o1
(T6) Suppose that wow; . .. Wi, —1, Wow} ... wy | € Ppyq are prewords, and suppose
that 1 <t < (1 —e,)k, and exk, < jo <k, —t. Let

S ={k < jo : for some g € GT, glwi]1 = [wy,]1}-

Then "
S| 167

Jo o 0F
(T7) Let wo, wy be prewords in P,1, and let w] be either w; or rev(w;). Suppose that
[w/l]l ¢ G?[Wo]l. Write

Wo = VgU1 ...Vk,—1 and W] = Ugly...Uk,—1.
with u;, v; € WS Urev(Wf). Let € € W /Q7 or € € rev(W;)/@7 according to
whether w] = w; or wy = rev(wy). Then for all v € W if
J() ={t : v, = v},

then
{t € J(v) : u; € €} 1
|/ ()] o1
Definition 88. We will call the collection of axioms (T1)—(T7) the timing assumptions
for a construction sequence and an equivalence relation @ }

(8.1)
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8.2.2. Codes and d-distance. We now prove some lemmas about d>?

Lemma 89. Let wo € W, | and wy € W | Urev(Wy ) such that [wo]; ¢ G [w1]1.
Let r > 1000 and let Jy, J1 be intervals in Z. of length r % qn+1. Let I be the intersection
of the two intervals. Put wy on Jo and wy on Jy and suppose that all but (possibly) the
first or last copies of wg are included in 1. Let A be a stationary code such that the length
of A is less than ¢, /10000. Then:

- = 1 1

d(Alwg | 1], wy FI)>%(1—Q—¥))/. (8.2)
Proof. Since the length of the code A is much smaller than g, and r > 10000, the end
effects of A are limited to the first and last copies of wo and thus affect at most (1/5000)
proportion of d (A [wg I I],w] | I). Removing the portion of / across from the first or
last copy of wg leaves a segment of I of proportion at least 4999/5000.

For all of the copies of wg, except perhaps at most one at the end of Jy, there is a corre-
sponding copy of w; that overlaps wy in a section of at least g, 41 /2. Discard the portions
of I arising from copies of wg not overlapping the corresponding copies of w;. After the
first two removals we have a portion of / of proportion at least (1/2)(4999/5000).

Because wo and w; have the same lengths, the relative alignment between any two
corresponding copies of wg and w; in the powers wg and wy are the same. In particular,
the “even overlaps” and “odd overlaps” are the same in each remaining portion of the
corresponding copies of wgy and w;.

By Lemma 42, there are s, t < g, such that on the even overlaps all of the n-subwords
of sh® (w() are either lined up with an n-subword of w} or with a boundary section of wy,
and all of the n-subwords of wg in an odd overlap are lined up with an n-subword or
a boundary section of wf by sh’ (wg).

Either the even overlaps or the odd overlaps contain at least 1/2 of the n-subwords
that are not across from boundary portions of w;. Assume that 1/2 of the n-subwords lie
in even overlaps and discard the portion of / on the odd overlaps. (If more than 1/2 of
the n-subwords are in odd overlaps, we would focus on those.)

Let (wg)" = sh®(wg) on the even overlaps. Denote any particular copy of wg in (wg)”
as wg. Then, except for ‘Ws-words that get lined up with a boundary section of wy,
every n-subword of (wg)” coming from an even overlap of (wo)” gets lined up with an
n-subword of (wy)". Write wg = €(v1, V2,...,Vk,—1) and wy = €Uy, Uz, ..., Uk,—1)
(or, respectively, wy = €" (rev(u1),rev(uz), ..., rev(ug,—1))). Then each n-subword of
wg coming from an even overlap is of the form v; for some i. There is a ¢ such that for
all i if v; occurs in any copy of wg and comes from an even overlap, then either:

(a) w; is lined up with u; y, (respectively rev(ug, —(i+r)—1)) or
(b) wv; is lined up with a boundary portion of w; or

(c) w; is lined up with u; ;41 (respectively rev(ug, —i+¢+1)—1))-

32Basic notation and facts about stationary codes are reviewed in Section 4.4.
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On copies of v; coming from even overlaps of 2-subsections the powers of v; in alter-
natives a.) and c.) are constant. Since the even overlaps of the 2-subwords has size at least
half of the lengths of the 2-subwords, it follows that 0 < ¢ < k, /2.

Since all of vf'”l satisfies (a), (b), or (c), after discarding the words v; in case (b) half
of the remaining words v; satisfy (a) or (c). Keep the larger alternative and discard the
other. What is left after all of the trimming has size at least

(4999/5000)(1/2)(1/2)(1 — 2|dp41]) > 1/10

proportion of /.

For some ¢ what remains consists of n-subwords v; in even overlaps of (wg)” that,
after being shifted by s to be subwords of (wg)”, are aligned with occurrences of n-sub-
words of (w1)" of the form u; 1, (rev(uk,,—(i+1)—1) respectively). For the rest of this proof
of Lemma 89 we will call these the good occurrences of n-subwords.

Claim. Suppose that v € W} and let

J*(v) ={y €1 :y is at the beginning of a good occurrence of v in (wg)"}.
Furthermore, let € € W /QY or € € rev(W,)/ Q] depending on whether wy € Wy
orwy € rev(Wy, ). Then

{y € J*(v) : some element of € occurs at y in w}| 1 83)
|J* (V)] o1 '

is bounded by 2 /qn + 2/ 1y + pn.
We prove the claim. We have two cases:

Case 1: t = 0. In this case we have a trivial split in the language of Section 5.4. The
overlap of the 2-subsections contains the whole of the two subsections except for a por-
tion of one 1-subsection. Since [wo]; ¢ G7[w1]1, we can apply axiom (T7) to the words
wo and w;. The claim follows from inequality (8.1), which is the preword version of for-
mula (8.3), after taking into account the boundary and the words at the ends of the blocks
of (wg)" and the truncated 1-subsections.

Case 2: t # 0. In this case the split is non-trivial. Because the even overlaps are at least
as big as the odd overlaps of 2-subsections, the even overlap looks like

t*
1_[ (bq_ji v;—l eli )
Jj=0
but with a portion of its last 1-subsection possibly truncated. In particular, it has an initial

segment of the form
t*—1

l_[ (bq_ji v]l—leji)’

j=0
where t* > k, /2.
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It follows from the timing assumption (T5) that if J' = {y € J(v) : some element of
€ occurs across from a word starting at y in the first #* — 1 1-subsections}, then
EAl 1
Wl of
Any variation between the quantity in formula (8.3) and the estimate in (T5) is due to

the portion of the last 1-subsection of the even overlaps. This takes up a proportion of the
remaining even overlap less than or equal to 1/t* < 2/g,. This proves the Claim.*?

< Up-

We now shift (wg)” back to be w( and consider s. There is an [’ > [/2—1>1/3
such that all of the good occurrences of a v € ‘W, in (wg)" are in a power v!. Depending
on whether s < g, /2 or s > q,/2, for each good occurrence of a v; in (wg)" either:

(a) there are at least /’ — 1 powers of v; in the corresponding occurrence in wy such that
their left overlap with u; 1, has length at least g, /2 or

(b) there are at least !’ — 1 powers of v; in the corresponding occurrence in wyg such that
their right overlap with u; 4, has length at least g, /2

Without loss of generality we assume alternative (a). Suppose that the overlap has
length o in all of the good occurrences. Then the left side of v; overlaps the right side of
uj4; by atleast g, /2.

By axiom (T4), if v € 'W¢,

d(A[( }[0,0)],uj+: 1 [gn —0—1.qn)) < ¥/2,
d(A@ M0,0),ujrs 1 gn —0—1,qn)) < /2,

then [u;4+]1 = [u’4+]1. It follows that if we fix a v € Wy and let
J() ={j 1v; = v},
then

[/ € J() 1 d (e 1[0,0)uj4s Mgn—0—1.gn=1) <y/2}| 1
< — + Un-
|/ ()] of
Since at least 1/20 proportion of I consists of left halves of good occurrences of the
various v’s belonging to 'W¢, it follows that

- - 1 1
ARpug 1 1) = 55 (1= g7 = ) 072 8.4
1

The lemma follows. [

8.2.3. Elements of the centralizer. In this subsection we prove the theorem linking central
values to elements of the centralizer of K€.

33 Axiom (T5b) takes care of the case where the relevant overlaps is odd.
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Theorem 90. Suppose that (K¢, B, v, sh) is a circular system built from a circular con-
struction sequence satisfying the timing assumptions. Let ¢ : K¢ — K€ be an automor-
phism of (K¢, B, v, sh). Then ¢™ = Sg for some central value B.

Proof. Fix a ¢ and suppose that ¢ = Sg. We must show that f is central. Suppose not.
The idea of the proof is to choose a stationary code A* well approximating ¢ and an N
such for all M > N, passing over the principal M -block of most s € K¢ with A* gives
a string very close to ¢ (s) in d-distance. Consider an s where A* codes well on this
principal M -block.

Use Lemma 83 to build a red zone corresponding to M. Lemma 89 implies that A*
cannot code well on the red zone. Since the red zone takes up the vast majority of the prin-
cipal M-block, A* cannot code well on the principal M -block, yielding a contradiction.
In more detail:

Let y be as in axiom (T4). By Proposition 20 there is an code A* such that for almost
all s € K¢, B

d(A*(5),p(5)) < 107%y.

By the Ergodic Theorem there is an Ny so large that for a set £ C K¢ of measure 7/8
forall s € E and all N > Ny, s is mature for N and if B is the principal N-block of s,
then B

d(A*(s |} B),¢(s) } B) < 107°y. (8.5)
Lets € E. Choose an N > Nj such that the code length of A* is much smaller than gy,
1/OV <107 and Iy > 10'2. Apply Lemma 83, with § = 107° to find an integer M
and (R; :i < i*) satisfying the conclusions of Lemma 83. Since | J;_;« Ri € qum. we
view | J; ;= R; as a subset of the principal M -block of s.
Each R; is a union of collections of locations of the form

U
J<Jo

nj
with each U; consisting of the locations of ujo for j € [0, jo) (for some jo).** Moreover,
there is a ¢ such that each power
sl
is B-matched with a vj‘ﬂrt iI.I ¢ (s) for some ¢ # 0.

Because jo > e,ky, axiom (T6) applies and thus for at least

|G}’
1- n; + ILL"[
1

proportion of {ug, U1, ..., U ,—1}, u; and v;4, are in different G?"-orbits. In Lemma 89,
inequality (8.2) implies that if u; and v; 4, are in different G| orbits, then, restricted to
the overlaps of the locations of all of the

u

n; n;

S, N
O and v

0
u; 4t

34Note that s(r)l ’ is as in condition 4 (c) of Lemma 82.
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the d distance between A*(s) | U; and ¢(s) | U; is at least

1 (1 1 )
—_— —_— _I y.
50 "
nj

nj nj )
Since the first and last powers of u; in u;" ’s take up 2/s," of uj.” and sy' > I, /2 — 2,
we know that

- | 1
(60 1 U900 10 = (11055 (1= o
1

Because the proportion of indices j for which u; and v; 4, are in different G’ -orbits is
at least
Grl
n; //Lni )
1

d([\*(s) U e U U,.)

J<Jo J<Jo

|G i 1 1
(1——§,i+uni (1-10 “)% 1——-|r

1 1

1—

it follows that

is at least

This in turn is at least y/1000. Since R; is a union of sets of the form | J

(A*(s) | Ri,¢(s) | Ri) > 10%

i <o U;, we have

Since | J; ;« R; has density at least 1 — 107 if B is the principal M -block of s, it follows
that

e 4

d(A*(s [ B).¢(s) I B) > 17
However, this contradicts inequality (8.5). ]

Corollary 91. Let K€ be a circular system built from a circular construction sequence
satisfying the timing assumptions. Then B is a central value if and only if there is an
element ¢ € {T" : n € N} with ¢™ = Sg. It follows that for each construction sequence
{kn, Iy : n € N) satisfying the numerical requirements collected in Section 11, the central
values form a subgroup of the unit circle.

Proof. Theorem 84 says that if 8 is central, there is a ¢ € {T" : n € N} with ¢” = Sg.
Theorem 90 is the converse. To see the last statement, we prove in Section 10 that for
every coefficient sequence satisfying the numerical requirements, we can find a circular
construction sequence satisfying the timing assumptions. ]

8.2.4. Isomorphisms between K¢ and (K€)~'. We now prove a theorem closely related
to Theorem 90.
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Theorem 92. Suppose that (K¢, B, v, sh) is a circular system built from a circular con-
struction sequence satisfying the timing assumptions. Suppose that

¢ (K¢, B,v,sh) - (K°) !, B,v,sh)
is an isomorphism. Then ¢™ = I o §g for some central value B.

Proof. We concentrate here on the differences with the proof of Theorem 90. The general
outline is the same: Fix a ¢. Then there is a unique 8 such that ¢™ =[] o Sg. Suppose
that 8 is not central. Choose a stationary code A* that well approximates ¢ in terms of
d distance (say within y/] 1019), and derive a contradiction by choosing a large M and
getting lower bounds for d distance along the principal M -block of a generic s.

This is done by first comparing a typical s with Sg(s). As in Theorem 90, a definite
fraction of a large principal M -block of s is misaligned with Sg(s). But most of the
n-blocks of $g(s) are aligned with reversed n-blocks of §(Sg(s)) that have been shifted
by a very small amount. This can be quantified by looking at the codes A, for large n,
which agree with ] on the M -block of Sg(s™).

Here are more details. Recall { is the limit of a particular sequence of stationary codes
(An 1 n € N). The proof of Theorem 60 showed that for almost all s € X for all large
enough 7 the principal n-blocks of A,(s*) and A, (s™) agree. Fix a generic s € K¢
and a large N such that:

(1) the code A* codes ¢ well on the principal n-block of s for alln > N,

(2) foralln > N the principal n-blocks of A, (8g(r(s))) and [_\,,H(Sﬂ (7 (s))) agree,
(3) s is mature at N,

(4) the length of A is very small relative to N, and

(5) Iy is very large.

Comparing 7 (s) and Sg(m(s)), Lemma 83 gives us an M > N and a red zone in the
principal M -block s. We assume that the red zones take up at least 1 — 109 proportion
of the principal M -block and have the form given in Lemma 83.

We will derive a contradiction by showing that A* cannot code well. This is done
by considering the blocks of ¢(s) that are lined up with the red zones of the principal
M -block of s and using Lemma 89 to see that A* cannot code well on these sections.
This is possible because the mismatched n-blocks of Sg((s)) are lined up closely with
the n-blocks of {(Sg((s))) = ¢™(s). Explicitly: Use Lemma 83 to choose red zones
(R; :i < i*) that take up a 1 — 10~ proportion of the principal M -block of 5.

The boundary portions of n-words with n < M + 1 take up at most 2/ [y proportion
of the overlap of the principal M -blocks of s and ¢ (s). Since this proportion is so small,
Remark 22 allows us to completely ignore blocks corresponding to n;-words in s that are
lined up with boundary in ¢ (s) and vice versa.

We now examine the how [j(Sg (7 (s))) compares with Sg (7 (s)). Temporarily denote
Sp(m(s)) by s'. By the choice of s, for all n € [N, M] the alignments of the principal
n-blocks of Ay, (s’) and Az (s’) agree.

35We use the notation in Lemma 83 and Theorem 60.
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The red zones of s™ line up blocks of the form ujoy with blocks of the form v;‘j_t

occurring in s’ that are shifted by d"(s) (so t # 0). Except for those blocks that line
up with boundary portions of [j(s”) these blocks are lined up with blocks of the form
shni (rev(vr, —(j+1)—1)) in i(s’).* Inequality (5.17), says that A,, < 2¢y,,—1. In partic-
ular, the blocks of powers of v; 1, are lined up with a very small shift of rev(vg,,. —(j +¢)—1)
in f(s"). n: ’

Thus vast majority of blocks U; that are positions of ujo in s are lined up with
a shift by less than g, of a block of fj(s™) in a position of

Ill‘
0,0
kn; —(j+1)—1

in fj(s) . Consider s and ¢ (s). Suppose that u; are the n;-words of s corresponding to the
U; and Uk —(j+1)—1 are the n;-words of ¢ (s) across from them. By axiom (T5a), at most

1
Ani + Mn;
1
of the j < jo happen to have [u;]; € G|’ [V, —(j+0)—1]1- At least
1
1

proportion of the powers of u; the d-distance between A* and ¢ is at least

L1
500\ o7 )"

It follows that on R; the d-distance is at least y/1000. If we choose | J; _;+ R; to have
density at least I — 10~ and let B be the principal M -block of s, then (as in Theorem 90)

d(A*(s } B),¢(s) | B) > y/10%,

a contradiction. [

8.3. Synchronous and anti-synchronous isomorphisms

View a circular system (K¢, 8, v, sh) as an element 7" of the space MPT endowed with
the weak topology.

Theorem 93. Suppose that K€ is a circular system satisfying the timing assumptions.

Then:

(1) If there is an isomorphism ¢ : K¢ — K€ such that ¢ ¢ {T" : n € Z}, there is an iso-
morphism W : K¢ — K€ such that v & {T" :n € Z} and ™ is the identity map.

(2) If there exists an isomorphism ¢ : K¢ — (K)™1, then there exists an isomorphism
¥ K¢ — (KL such that ™ = 1.

36See the qualitative discussion of 1] that occurs after its definition in [12].
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Proof. To see assertion (1), let ¢ : K¢ — K¢ be an isomorphism with ¢ ¢ {T" : n € Z}.
Then by Theorem 90, ¢* = Sg for a central 8. Corollary 91 implies that there exists
af € {T":n € N}suchthat 0" = S_g. Then ¢ o § : K¢ — K€ is an isomorphism such
that (¢ o )™ is the identity map. Since {7” : n € N} isa group,¢p o8 ¢ {T" : n € N}.

The proof of assertion (2) is very similar. Suppose that ¢ : K¢ — (K¢)~! is an iso-
morphism. Then, by Theorem 92, ¢™ = fj o Sg for a central 8. Let § € {T" : n € N}
be such that 6" = S_g. Then ¢ o 6 is an isomorphism between K¢ and (K¢)~! with

(pob)” =1 u

9. The proof of the main theorem

In this section we prove the main theorem of this paper, Theorem 2. By Fact 24, it suffices
to prove the following:

Theorem 94. There is a continuous function F* : Trees — Diff°(T?2, 1) such that for
T € Trees, if T = F5(7),

(1) T has an infinite branch if and only if T = T,

(2) T has two distinct infinite branches if and only if

C(T)#{T" :nel).

We split the proof of this theorem into three parts. In the first we assume the timing
assumptions hold, define F* and show that it is a reduction. In the second part we show
that F* is continuous.

The third part of the proof augments the specifications of [8] with two additional
randomness properties, shows that the additional properties imply the timing assump-
tions and describes how to perform the word construction from [8] with these additional
requirements. We present the third part of the proof separately in Section 10.

We begin by defining F*. The main result of [8] relied on the construction of a con-
tinuous function F : Jrees — MPT such that for all T € Trees, if S = F(T), then:

Fact 1. The tree 7 has an infinite branch if and only if § =~ S~!.

Fact 2. The tree 7 has two distinct infinite branches if and only if
C(S)#{S":n eZ}.

Fact 3. The function F took values in the strongly uniform odometer based transforma-
tions and for S in the range of F, S = S~! if and only if there is an anti-synchronous
isomorphism ¢ between S and S~1.

Fact 4 ([8, Corollary 40, p. 1565]). If S is in the range of F and C(S) # {S" : n € Z},
then there is a synchronous ¢ € C(S) such that for some 7, non-identity element g € G/
and all generic s € K and all large enough m, if ¥ and v are the principal m-subwords of
s and ¢ (s) respectively, then

[vh = gluli.
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Fact 5 ([8, Equations 1 and 2 on p. 1546 and p. 1547]). For all ng there is an M such that
if 7 and 7 are trees and>’

TN{on:n<M}y=7"N{o,:n <M},

then the first n¢-steps of the construction sequences for F(J") are equal to the first 71¢-steps
of the construction sequence for F(T'); i.e. (Wp(T) : k < ng) = (Wi (T') : k < no).

Fact 6. The construction sequence for F(7) satisfies the specifications given in [8]. In
Section 10.2, these specifications are augmented by the addition of (J10.1) and (J11.1).
In Section 10.3 we argue that if (W, : n € N) is a construction sequence for an odome-
ter based system that satisfies the augmented specifications, then the associated circular
construction sequence (WS : n € N) satisfies the timing assumptions.

Moreover, the construction sequence for F(J) is strongly uniform and hence the
construction sequence for ¥ o F(7) is strongly uniform.

Fact 7. Construction sequences satisfying the augmented specifications are easily built
using the techniques of [8] with no essential changes; consequently we can assume that
the construction sequences for F(77) satisfy the augmented specifications.

In [11, Theorem 60] it is shown that if (W,¢ : n € N) is a strongly uniform circular
construction sequence with coefficients (k,, [, : n € N), where ([, : n € N) grows fast
enough and |W| goes to infinity then there is a smooth measure preserving diffeomor-
phism T € Diff>(T?2, 1) measure theoretically isomorphic to K¢. This gives a map R
from circular systems with fast growing coefficients to Diff*®(T 2, 1).

If ¥ is the canonical functor from odometer systems to circular systems, we define

FS=Ro¥oF

> | Odometer
F Based

|

l
(=
I R

Fig. 3. The definition of F*.

(see Figure 3).

37See Section 4.6 for notation.



M. Foreman, B. Weiss 2668

9.1. F* is a reduction

Because R preserves isomorphism, to show that F¥ = Ro ¥ o F is a reduction, it is
suffices to show that ¥ o F is a reduction. Let S be the transformation corresponding to
the system K = F(7) and T the transformation corresponding to K¢ = F o F (7).

Item (1) of Theorem 94. Suppose that T is a tree and 7 has an infinite branch. By Facts 1
and 3, there is an anti-synchronous isomorphism ¢ : K — K~!. By [12, Theorem 105],
if K¢ = ¥ (K), there is an isomorphism ¢¢ : K¢ — (K¢)~!.

Now suppose that F*(7) = (F*(7))~!. Then we have K¢ = (K¢)~!. By Fact 6,
the construction sequence (Wg : n € N) for #°(7) satisfies the timing assumptions. By
Theorem 93, there is an anti-synchronous isomorphism ¢¢ : K¢ — (K¢)~!. Again by
[12, Theorem 105], there is an isomorphism between K and K1, By [8], T has an infinite
branch.

Item (2) of Theorem 94. Suppose that 7 has at least two infinite branches. Then the
centralizer of S = F(77) is not equal to the powers of S. By Fact 4, we can find a syn-
chronous ¢ € C(S)\ {S” :n € Z}. Let Yy = F (¢); then ¢ is synchronous. We claim
that ¢ {T" : n € Z}. Using Fact 4, and lifting the group action of G} and the equiva-
lence relation @', we see that for all generic s € K¢, and all large enough m, if u¢ and
v¢ are the principal m-subwords of s¢ and v (s€), respectively, then

[Vl = glu‘h
for some g # e. In particular, [v¢]; # [u€];.
By the timing assumption (T4), there is a y > O such that for all large m and all
shifts A with | A| of size less than ¢,, /2, we have

d(TAu),v%) > y. 9.1)

Suppose that ¥ € {T" : n € Z}. Then, by Proposition 21, we can find an A € Z and
a generic s¢ such that B

d(T4(s). ¥ () <y/2. 9:2)
But inequality (9.2) and the Ergodic Theorem imply that for large enough m > A if u¢
and v¢ are the principal m-blocks of s¢ and ¥ (s€), then

d(T4w®),v%) <,
contradicting inequality (9.1).
Now suppose that there is a ¢ € C(T) such that ¥ ¢ {T" : n € Z}. Then by Theo-
rem 93, there is such a ¥ that is synchronous. In particular, for all n, ¥ # T". Thus if

S is the transformation corresponding to F(7°), then & ~!(v/) belongs to the centralizer
of § and is not a power of S

9.2. F°® is continuous

Fix a metric d on Diff*(T?2, 1) yielding the C*-topology. For each circular system 7,
let (PnT :n € N) be the sequence of collections of prewords used to construct 7. By
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[11, Proposition 61], given T = F*(7) and a C **-neighborhood B of T, there is a large
enough M, forall S € range(R) if (PS :n < M) = (P :n < M), then S € B. Forall
odometer based transformations, the sequence (W, : n < M) determines (P, : n < M).
Hence for all 77, if the first M members of the construction sequence for F(7) are the
same as the first M members of the construction sequence for F(7), then F(T7’) € U.
By Fact 5, there is a basic open interval V' C TJrees that contains 7 and is such that the
first M members of the construction sequence are the same for all 7’ € V. It follows that
foral 7' e V,FS(7') e U.

9.3. Numerical requirements arising from smooth realizations

The construction of R depends on various estimates that put lower bounds on the growth
of the coefficient sequences. We now list these numerical requirements. The claims in this
subsection presuppose a knowledge of [11].

The map R depends on various smoothed versions /;, of the permutations £, of the
unit interval arising from (W, : n € N). To solve this problem, we fix in advance such
approximations, making sure that each approximation A, agrees sufficiently well with £,
as to not disturb the other estimates.

This introduces various numerical constraints on the growth of the coefficients /,,. The
diffeomorphism 7' is built as a limit of periodic approximations 7},. To make the sequence
of T,, converge at each stage, /,, must be chosen sufficiently large. Thus the growth rate
of [,, depends on (k;, Sm, hm :m < n), (I, : m <n), Sy4+1,hy+1. Since there are only
finitely many possibilities for sequences (h,, : m < n) corresponding to a given sequence
(km :m <n), (sm :m <n+ 1), we can find one growth rate that is sufficiently fast to
work for all choices of permutations /,,. This is discussed in detail in [11, p. 34], where
the lower bound is called ;.

Numerical Requirement 6. The coefficient /,, is big enough relative to a lower bound
determined by (ky;, $m : m < n), (I, : m <n) and 5,4 to make the periodic approxi-
mations to the diffeomorphism converge. Moreover, k,, < [,,.

Remark 95. Choosing o1 close to o, is a fundamental idea of the method of Approx-
imation by Conjugacy, due to Anosov and Katok. By equations (5.5) and (5.6), this is
equivalent to taking [, large. The magnitude of [, is not calculated, but instead it shown
that as [, increases a sequence of periodic diffeomorphisms well approximates a given
periodic diffeomorphism. Then in the original sources [1] and [18], one simply takes [,
sufficiently large. This is what Numerical Requirement 6 is repeating.

The argument for the ergodicity of the diffeomorphism formally required that:
Numerical Requirement 7. We have s, — oo as n — 00, s, 41 is a multiple of s,,.

The reader is referred to Example 5 for a discussion of s(n) and its growth.
The next requirement makes it possible to choose s,4+1 and then, by making k,
sufficiently large, construct s, sufficiently random words using elements of ‘W,,.

Numerical Requirement 8. We have s, < s,’,‘".
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10. The specifications

In this section we describe how the timing assumptions are related to the specifications
given in [8], show that they are compatible and indicate how to construct odometer words
so that both sets of assumptions hold. This completes the proof of Theorem 94, subject to
the verification that all of the numerical requirements we have introduced are consistent
with the numerical requirements of [8]. We take this up in Section 11. We will assume
that the reader is familiar with [8, Sections 7 and 8].

10.1. Corresponding specifications

Table 1 links the timing assumptions we use in this paper to the corresponding specifi-
cation in [8]. (We remind the reader that Appendix A has a table giving corresponding
notation between [8] and this paper.)

Timing assumption ~ Specification

(T1) Q5
(T2) Q7
(T3) A8
(T4) New
(T5) J10
(T6) J10
(T7) J11

Tab. 1. The specifications in [8] related to the timing assumptions in this paper.

Specification (T4) does not directly correspond to one of the specifications, but (as
we will show) holds naturally in the circular words lifted from an odometer construction
satisfying the specifications.

Numerical Requirement 9. In the current construction we have two summable sequen-
ces: (e, :n € N) and (g, : n € N). We use the lunate “¢€,” notation for the specifica-
tions from [8] and the classical “e,” notation (“varepsilon” in LaTeX) for the numeri-
cal requirements relating to circular systems and their realizations as diffeomorphisms.
A requirement for the construction is that

€y < Ep.

We also assume that the €, are decreasing and €y < 1/40.

10.2. Augmenting the specifications from [8]

The paper [8] constructs a reduction F' from the space of trees to the odometer based
systems. The system K = F(J7") was built according to a list of specifications which we
reproduce here in order to show how to strengthen them to imply the timing assumptions
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used in the proofs of Theorems 93 and 94 and to verify that the strengthened assump-
tions are consistent. The specifications directly relevant to the timing assumptions are
(J10) and (J11). The others, which describe the scaffolding for the construction, are only
relevant in that they set the stage for the application of the functor ¥ defined in Section 5.

Here are some definitions from [8] that are used in the specifications. We advise
the reader that a table giving the notational changes between [8] and this paper is in
Appendix A.

Fix an enumeration of the finite sequences of natural numbers, (0, : n € N), with the
property that if o is an initial segment of 7, then o is enumerated before 7. Let 7 be
a tree whose elements are {(0,, : i € N). Here are the specifications for the construction
sequence W = W(7") used to build F (7).

There is a sequence of groups G built as follows. For all n, Gy is the trivial group
(e) and if we let

Xy ={on, :i <n and o,; has length s},

then

G;l = Z (ZZ)J»

oeX?

i.e. G? is a direct sum of copies of Z, indexed by elements of X'. There are canoni-
cal homomorphisms from G, | to G¢ that send a generator of G, corresponding to
a sequence of the form 7 to the generator of G} corresponding to .

The sequence (W, : n € N}, equivalence relations @ and the group actions of G7
are constructed inductively. The words in ‘W, are sequences of elements of ¥ = {0, 1}. To
start, Wo = {0, 1} and (:28 is the trivial equivalence relation with one class. The collection
of words ‘W, is built when the n-th element of T is considered. We will say that words in
‘W,, have even parity and words in rev(W,,) have odd parity.

We begin by restating the specifications from [8] using the indexing conventions in
this paper (n > n + 1 vs m — n). (E1)-(A9) are exactly the same, however we modify
the joining specifications (J10), (J11) slightly for the needs of this paper.

(E1) Any pair w;, wy of words in ‘W, have the same length.

(E2) Every word in ‘W, is built by concatenating words in ‘W,,. Every word in ‘W,
occurs in each word of ‘W, exactly p2 times, where p, is a large prime number
chosen when the n-th element of 7 is considered.

(E3) (Unique readability) If w € W,,4+; and
W= pwi...Wgs

where each w; € ‘W, and p or s are sequences of 0’s and 1’s that have length less
than that of any word in ‘W, then both p and e are the empty word. If w, w’ € W,
are such that w = wiw;y ... wg, and W' = w’lwg...w;{n with w;, w; € Wy, and
k = [k,/2] + 1, then we have W Wk 41 ... Wk, F Wjw, ... w,’c’l_[k]_l, i.e. the first
half of w’ is not equal to the second half of w.

Let s(n) be the length of the longest sequence among the first n sequences in 7 and if
T = (op, :i € N), then M(s) is the least i such that o,,; has length s.
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The equivalence relations @7 on W, are defined for all s < s(n). The equivalence
relation @Y on W is the trivial equivalence relation with one class.

(Q4) Suppose that n = M(s). Then any two words in the same @F equivalence class
agree on an initial segment of proportion least (1 — €,).

(Q5) For n > M(s) + 1, @7 is the product equivalence relation of (Qﬁw(s). Hence we
can view W,/Q% as sequences of elements of Way(s)/ (,‘Zﬁw(s) and similarly for
rev(W,)/@Q%.

(Q6) @7, refines QF and each @ class contains 2¢(m) many @7, classes, where e is
a strictly increasing function. The speed of growth of e is discussed in Section 11.

(A7) G7 acts freely on 'W,/@% Urev(W,/@%) and the G} action is subordinate to the
G{_, action via the natural homomorphism p; ;1 from G} to Gy _;.

(A8) The canonical )%Ienerators of G;W ) send elements of Wat(sy/ (Qﬁ” ) to elements of
(s) .
rev(Wa(s))/@;s  and vice versa.

(A9) If M(s) < n and we view
G!M*'=G"®H,

the action of the group G} on 'W,,/@Q% U rev('W, /@%) is extended to an action on
Wp1/@Q0 1 Urev(Wy41/Q" 1) by the skew diagonal action. If H is non-trivial,
then H = Z, and its canonical generator maps Wy41/@"+! to rev(Wy41/Q" 1),

Note. While it is not explicitly given as a specification in [8], the construction sequence
has the property that if g € G is a canonical generator, then for m > n, W,,/@QY is
closed under the skew diagonal action of g.

Suppose that u and v are elements of ‘W, 41 U rev(W,,4+1) and (u’, v’) an ordered pair
from ‘W, U rev('W,). Suppose that u and v are in positions shifted relative to each other
by ¢ units. Then an occurrence of (u’,v’) in (sh’(u), v) is a ¢’ such that u’ occurs in u
starting at ¢ + ¢" and in v starting at ¢’. Let Q7 be the number of classes of @7 and let C/
be the number of elements of each Q" class.*®

To prove the timing assumptions, we need to strengthen specifications (J10) and (J11)
to deal with d -distance on initial and tail segments and on words that are shifted. The spirit
of specification (J10) is that pairs of n-words (u’, v’) occur randomly in the overlap of u
and v when u is shifted by a suitable multiple ¢ of the lengths of n-words. Specification
(J10.1) says the same thing relative to non-trivial initial segments of the overlap of the
shift of u and v.

Specification (J11) says that if [u], is in the G} -orbit of [v]; and s is maximal with
this property, then the occurrences of (u’,v’) are approximately conditionally random.
More explicitly, suppose that g[u]s = [v]s, and we are given u’ € ‘W,,. Then there are Q7
many pairs of @%-classes ([u*]s, [v*]s) with g[u*]s = [v*]s, and so ([u']s, [v]s) should
occur randomly 1/Q% proportion of the time. There are CJ' many elements of W, in

38We have changed the variables used in the statement of J10 in [8] to conform to the notation
described in Appendix A.
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the @7-classes, and conditional on g[u'], = [v'],, the chances of such a pair (u’,v")
randomly matching is 1/(C")2. Specification (J11.1) strengthens this (but only for @7,
which is the trivial equivalence relation and G = (e)) by asking that this holds over any
non-trivial interval of length jo K, at the beginning or end of an n 4+ 1-word.

Here are the joining specifications as given in [8]:

(J10) Let u and v be elements of W, 11 Urev(W,4+1). Let 1 <t < (1 —¢,)(k,) be an
integer. Then for each pair u’, v’ € W,, U rev('W,) such that u’ has the same parity
as u and v’ has the same parity as v, let 7(u’, v’) be the number of occurrences of
(', v’ in (sh" " (u), v) on their overlap. Then

rw,v) 1

ky, —t 52

n

< €.

(J11) Suppose that u € W,,1 and v € W, 41 Urev(W,4+1). We let s = s(u, v) be the
maximal i such that there is a g¢ € G such that g[u]; = [v];. Let g = g(u,v) be
the unique g with this property and (u’,v’) € W, x (W, U rev(W,)) be such that
glu'ls = [v']s. Let r(u’, v") be the number of occurrences of (u’, v') in (u, v). Then

r(u’,v’) 1 1\?2
kn oy \ ¢y
The strengthening of (J10) is:

(J10.1) Letu and v be elements of Wy, 11 Urev(W,4+1).Let1 <t < (1 — ¢€,)(ky). Let jo
be a number between €, k, and k,, — . Then for each pair u’, v’ € ‘W, U rev(W,)
such that u’ has the same parity as v and v’ has the same parity as v, let r (u’, v')
be the number of j < jo such that (', v') occurs in (sh’ " (1), v) in the (jK,)-th
position in their overlap. Then

r(u',v’) 1

; 2
Jo Sn

< €.

The next assumption is a strengthening of a special case of (J11).

(J11.1) Suppose that u € W,y and v € Wy11 Urev(W,41) and [u]; ¢ G7[v];." Let
Jo be a number between €,k, and k,. Suppose that / is either an initial or a tail
segment of the interval {0, 1, ..., K, — 1} having length jo K,. Then for each
pair u’,v" € W, Urev(W,) such that u’ has the same parity as u and v’ has
the same parity as v, let r(u’, v’) be the number of occurrences of (u’,v’) in
(u M I,v }I). Then

r(u,v) 1

Jo 52
We have augmented the specifications in [8] with (J10.1) and (J11.1). Formally, we must
argue that it is possible to build construction sequences satisfying the additional specifi-
cations. This means constructing s,+; many pseudo-random words. This is done using

< €.

31n the language of (J11): s(u,v) = 0, Q4 =1land CJl = sn.
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a routine modification of the techniques of [8], where the collections of words W, are
built probabilistically. For n > 1 the words in ‘W, are built by iteratively substituting
words into K, 1/ Kp)-sequences of classes @7, by induction on i <i*, where i* is
maximal with M(i*) < n. The classes of words W, +1/@;,, , are built by induction on i.
Awordw € W,/ (Q;’Ll (orin ‘W, yq if i = i*) can be viewed as a result of substituting
elements of W, /@7, (or W) into a word in Wn+1/(£2;’+1.

Suppose that [w]; € W,,+1/(,‘2;’+1 has been built and is given by K, 41/ Ky ) many
consecutive classes C1Cz ... Ck, /Ky ;- Then [w]i+1 € nj<Kn+l/KM(i) C;. Viewing
these as independent trials and taking k, large enough (so that K, 11/ Kps(;) is very large)
the finitary Law of Large Numbers shows that the vast majority of choices of 2¢™ words

satisfy (J10), (J10.1), J11)and (J11.1):

Remark 96. As noted in Example 5, given the number of substitutions to be made (which
is one more than the maximal s such that @} is defined) and the size of the groups G}
one can give an explicit formula relating the sizes of e(n + 1) and s,,+1. Given one of the
two, one can solve for the other. Moreover, when one goes up the other does as well. This
co-determination means that the requirements can be stated in terms of either variable.
We state the requirements in terms of the s;,.

In the construction, getting the additional .1 for (J10) and (J11) only involves taking
ky larger than was necessary in [8]. This is described in this notation in [7].
This leads to a numerical requirement:

Numerical Requirement 10. The number k,, is chosen sufficiently large relative to
a lower bound determined by s, 4 for the Law of Large Numbers arguments to work.

10.3. Verifying the timing assumptions

In this subsection we prove that the augmented specifications (E1)—(J11.1) imply the
timing assumptions, introduced in Section 8.2.1. The first three timing assumptions, i.e.
(T1)—(T3), follow easily from the results in Section 5.10 together with specifications (Q5),
(A7) and (A8).

The following remark is easy and illustrates the idea behind the demonstrations of
(T4)—(T7).

Remark 97. Suppose that £ is an alphabet with s symbols initand € C £ with |€| = C.
For u, v words in £ of the same length and x,y € £, set r(x, y) to be the number of
occurrences of (x, y) in (4, v), r(x, €) to be the number of occurrences of some element
of € opposite an occurrence of x in u and f(x) to be the number of occurrences of x
in u. Then for all & > 0 there is an € = €(u, s) such that whenever u, v are two words in
&£ of the same length ¢, if forall x, y € £,

r(x,y) 1
14 52 ’
then for all x,
r(x,¢) C

fx) s
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Proof. Because f(x) = Zy r(x,y), by taking € sufficiently small we can arrange that
UAC/NE
14

and the approximation improves as € gets smaller. Simplemindedly,

b

5%

rey) _rxy) €0 10 1

o T o2y
Since r(x,€) = Zyef r(x,y), we see that
r(x,© C

fx) s’

As we take € smaller, the final approximation improves. ]

We now establish the timing assumptions (T4)—(T7). Recall that in the context of the
timing assumptions the notation a &~ b means that |[a — b| < ;.

Assumption (T5). Assume that specification (J10) holds for sufficiently small ¢,. To use
Remark 97 to see (T5), take £ = W,, the number f(x) to be |J(v)| and C to be the

cardinality of any equivalence class of @7 and s = s,. Since each class of @7 has the
1

same number of elements, & is equal to the number of classes: & = Q. Thus % = a7
and (T5) follows. !
Assumption (T6). We can write the set S as
S = U U {k < jo:v=wgandwy ., € g[v]}.
veWy geGY
which can be written in turn as
S = U U U {k < jo:v=wgandwy, =0}
veWs geGl vegv]y
Thus, using (J10.1), we can estimate the size of S as
Jo
NE sn|G;’|Cf(s—2)-

n

Igil Jo. Assumption (T6) follows.
1

Since Ct = %, we can simplify this to
1

Assumption (T7). Under the assumption that [w]]; ¢ G¥[wo]1, s =0 and @ is the

trivial equivalence relation. The estimate in (J11) simplifies to

r(u,v) 1

ky 52

< én. (10.1)

To apply Remark 97, we again set £ = W,, and x = v and |J(v)| = f(x), in the lan-
guage of the remark. With this notation, [ = k, and equation (10.1) is the hypothesis of
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Remark 97. The conclusion of the remark is that
{t € J(v) : € occurs at  in [uy]i[ur]y ... [uy 11} N C_nl
|J(v)] Sn
cl 1

Since s_Z = or assumption (T7) follows.

Note that the verification of (T5)—(T7) uses Remark 97 for a small enough € (i, s,).
We make this a requirement on €.

(10.2)

Numerical Requirement 11. The number ¢, is sufficiently small relative to i, that the
timing assumptions (T5)—(T7) hold.

Assumption (T4). Note that (T4) is the hardest timing assumption to verify. We motivate
the proof by remarking that if u, v are long mutually random words in a language £ that
has s letters, then d (u, v) ~ 1 — 1/s2. Thus u and v are far apart. Specifications (J10.1)
and (J11.1) imply that most (u, v) and their relative shifts are nearly mutually random.
We use this to establish that wy and wy are distant in d.

Numerical Requirement 12. One has €pko > 20, the €,k are increasing and Y 1/€,kp
is finite.

Let
1= —1/4—¢€0)(1 —1/eoko)(1 —1/1o).
Forn > 2, set
ya=v1 || (1=1001/kmém +1/qm + 1/ln + 1/ OF + €ém—1))
O0<m<n

and finally
y=y1 [[(0 =100/ kmem + 1/gm + 1/ lm + 1/ 0T + ém-1)).

0<m
Assumption (T4) says that if wo, w1 € WS Urev(Wy) are not @7-equivalent, then
the overlaps of sufficiently long initial segments, or sufficiently long tail segments or of
a sufficiently long initial segment with a tail segment of wy and w; are at least y distant
in d. In (T4) sufficiently long means at least half of the length of the word. We prove
something stronger by induction on n:

Proposition 98. Let n > 0 and wo, w1 € Wy | Urev(Wy ) with [wo]1 # [w1]1. Let

I be an initial segment and let T be a tail segment of {0, 1,...,qn+1 — 1} of the same
length £ > €,qn+1. Then we have
dwo M Lwy M) = Y1, (10.3)
d(wo } T,wi | T) = Yast1, (104)
dwo M Lwy }T) = yuyr. (10.5)

Proof. We will consider the situation where wo, w; € Wy 11~ The situation where they
both belong to rev(Wy ;) follows, and the argument in the case where wp, w; have
different parities is a small variation of the basic argument.



Measure preserving diffeomorphisms of the torus are unclassifiable 2677

The strategy for the proof is to consider n + 1-words wg and w; and gradually elim-
inate small portions of / and T so that we are left with only segments of n-words that
align in wg and w; in such a way that they have large d -distance. The remaining portions
of the wo and w; are far apart and they constitute most of the segments of each word. By
Remark 22, we get an estimate on the distance of wo and w;.

Suppose that

wo = C(uo, Uy, . -.,Uk,l—l)a
wp = 6(00701,--~,Ukn—1),

and letu} = ¢, (u;), v} = ¢ 1 (vi).
A general initial segment w | I of a word w € Wy, has the following form with
q =qn,k =kp,l =1, Forsome 0 < iy <¢g,,0 < jo <ky,

1_[ (1_[ pai wjl»_leji) * ( l_[ p9~ Vi wjl-_lejio) * (bq*wjl-;w*ej*),
i<ip “j<k J<Jjo
where w* is a possibly empty, possibly incomplete 7n-word, 0 < j* < j;,,0 <[* <[ —1,
0 <g* <q— ji,- This is a block of complete 2-subsections, followed by a block of
complete 1-subsections, followed by a possibly empty, incomplete 1-subsection.
Similarly, a general tail segment w | T as the following form:

(bq*w*wjl-;ej*)*( l_[ bq_j"owjl»_lej’b)* 1_[ (Hbq_jiwjl-_leji).

jo<j<k io<i<q “j<k

Initial segments. We now argue for inequality (10.3). To start, we take n = 0. In this case
qo = 1 and ¢q; = kolp. The initial segment w; | I are of the form

l_[ bwjl.o_1 * U,

J<Jo
where u is a proper initial segment of a word of the form bw]l-g_1 that has length M, for
some M < [.

If we throw away the tail segment u, we have thrown away proportion M/egkoly.
Since M < ly, we have removed a portion of less than €pk( and the segment I that is left
has proportion at least 1 — (1/€0ko) and is made up of a product of j, many 1-subsections.

We now consider n > 0. Since €,¢n+1 = (€nknlngn) * ¢n, one of the following holds:

(1) There are no complete 2-subsections, in which case we must have jo + 1 > €,k,q5,.
(2) There is at least one complete 2-subsection and jo > €,ky,.
(3) There is at least one complete 2-subsection and joy < €,k;,.

In the first case, since jo + 1 > €,k,qn, we know that jo > €,k;,. Thus eliminating the
partial 1-subsection at the end we are left with a concatenation of at least €,k, complete
1-subsections and we have removed less than 1/€,k,, portion of /. Similarly in the second
case we can eliminate the incomplete 1-subsection at the end by removing proportion less
than 1/€,k, of I. In the final case by removing both the final incomplete 1-subsection
and ([, b7 Jio w_f_lej"O) we eliminate at most 1/g,, proportion of /.
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In all three cases, we are left an Iy such that wg | Ip and w; | Iy are made up of
a possibly empty initial segment of complete 2-subsections followed either by no com-
plete 1-subsections or at least €, k, complete 1-subsections. We now delete the boundary
portions of wg | 1o, which are aligned with the boundary portions of wy | Io. These have
proportion 1/, in each complete 1-subsection — hence proportion 1/, of Iy. Let I; be
the remaining portion of /. Then /; contains proportion at least

(I —1/enkn —1/qn)(1 = 1/1)
of I.

Case 1: [wo]; ¢ G}[w1]1.** Letu’ be the concatenation of (up, u . .. up, ), and v’ sim-
ilarly the concatenation of the v;. Then u’, v’ € Wy,41 and [u']; ¢ GT[v'];. Letu,v € W,
and 7™ be an initial or final segment of {0, 1, ..., k, — 1} of length at least €, k;,.

Sublemma 99. If ¢, is sufficiently small as a function of Q7, then

i e I*: [uily = 11}
|1

. g 1 1
is within or of o

Proof. Let (u*,v*) be the concatenations of {u} : i € I*} and {v] :i € I*}. By (J11.1),
we see that the number r (1, v) of occurrences of (u, v) in (u™*, v*) satisfies

2
rav) (i) . (10.6)

[1% Sn

Fix such an /* and let € be a @7 -class. Then € has C;* elements. It follows from equation
(10.6) that the number of occurrences of a pair (u,v) in (u*,v*) with u,v € € takes

proportion of |I*| approximately
€2 _ ( ! )2
S o1

Since there are Q' many classes € that need to be considered we see that the number of
pairs v} and v; with [u]; = [v]]; is approximately

(1/9DIr*|. (10.7)
Hence for small enough ¢,, we can see the conclusion of the sublemma. [

Numerical Requirement 13. The numbers €, should be small enough as a function of
Q7 that estimate in the conclusion of Sublemma 99 hold:
iel*:u]; = 1 1
(A A G R 108)
7] o1l A

40We note that because G? = (e), if n = 0 we are in Case 1.
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The locations in wg [ I are made up of powers uf ~1. These fall into two categories,
those locations occurring in whole 2-subsections and those occurring in the final product
of 1-subsections. Applying the previous reasoning separately to the whole 2-subsections
and the either-empty-or-relatively-long product of 1-subsections at the end of I, we see
that the proportion of u; occurring in wo | /; across from a v; in wy | /; that is @F
equivalent is also extremely close to 1/Q7.

If n = 0, then specification (J11.1) implies that

- 3
’d(u*, v*) — 1 < €.

So cz(wo PMl,wy | I1) > (1 —1/4 —€p) and hence
d(wo } Iwy } 1) >y

In general, the induction hypothesis yields that @7 -inequivalent words have d-distance at
least y,-apart. Thus on /1,

d(wo MM 1, wi M) > (1 —=2/0)yn. (10.9)

Allowing for agreement on boundary portions and applying Remark 22 we see that

dwo M bwy M) >(1-2 1+ ! +1+1
w W >1-2 = —+ — > .
0 ! qu €nknp dn In Yn = Yn
Case 2: [wo]1 € Gf[w1]1. In this case n # 0. Let g € G} with g[wi]1 = [wo]:. Since
[wo]1 # [w1]1, g is not the identity. Since G{ acts diagonally, for all i with u; intersecting
the interval /1, we have [u;]; = g[v;]1. In particular, [u;]; # [vi]1.

Hence d (wo | Iy, w1 | I1) > yn, and thus

- 1 1 1
d(U)orl,wlrl)z(l—Z( +_+_))Vn>yn+1~
€nkn dn In
Tail segments. The argument for tail segments (inequality (10.4)) follows the argument
for initial segments, except that we delete small parts of the beginning of 7', instead of the
end of /.

Tail Segments compared to initial segments. To show inequality (10.5), we proceed by
induction, considering wo, wy € Wy ;. In the comparing two initial segments or two tail
segments, not only did the 2 and 1-subsections line up, but the n-subwords did as well.
When comparing initial segments with tail segments, the n-subwords may be shifted,
causing additional complications. The proof proceeds as in the easier cases, eliminating
small sections of I (or equivalently 7") a bit at a time until we are left with n-words. The
alignment of these n-words allows us to apply the induction hypothesis and conclude that
the vast majority of / and T have d-distance at least y;,.

(a) Of the 2-subsections of wy that intersect /, at most one is not a subset of / (namely
the last one), and similarly except for possibly the first 2-subsection intersecting wy | 7,
wy | T is made up of whole 2-subsections.
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(b) Each 2-subsection of wq | I overlaps one or two 2-subsections of w; | 7. An
overlap of a 2-subsection of wq | I with a 2-subsection of w; | T that has proportion
bigger than ¢,, of the 2-subsection implies that the overlap contains at least ¢, k,, complete
1-subsections.

(1) Among the complete 2-subsections of wqg | I, delete overlaps of proportion less
than ¢,.

(2) Delete the possible partial 2-subsection at the end of wg | 7 if it contains less than
€nky complete 1-subsections.

The proportion of I that has been deleted is less than 2¢,,.

(c) It could be that some of the portions of the remaining 2-subsections start or end
with incomplete 1-subsections; i.e. not a whole word of the form »9» —Ji vjl." eli. Delete
these incomplete sections. This leaves initial or tail segments of 2-subsections of the form
1)<, b7 vjl-”_lejl' that consist of at least €,k, whole 1-subsections. This trimming
removes at most 1/ ke, proportion of 1.

(d) We also remove the boundary sections of wg /. This removes at most 1/, of
what remains of I at this stage.

(e) We are left with a portion I’ C I such that wy | I’ consisting entirely of 0-sub-
sections. These are blocks of the form uﬁ-_l, where u; € 'W¢. Each individual n-word u;
can occur opposite a portion of wy | T 1n various ways. These are:

(i)  u; might occur exactly opposite a v; 4 ;*' or

(i)  u; might span portions of two copies of v;, in a power vlljrtl The two copies have
the form v; 44 v;j 4+¢, Or

(i) u; might overlap a portion of the boundary of w;. This can happen in two ways:
boundary inside a 2-subsection (i.e. boundary of the form e/i b9 ~/i ) and boundary
between consecutive 2-subsections (i.e. boundary of the form e/i b7 —J/i+1). In each
uf”_l there are at most three copies of u; overlapping boundary portions of w;.

Hence by removing proportion at most 4/ /,, we are left with a portion of wg | I consist-

ing of powers of the words u; that do not overlap any boundary in wj.

(f) After the deletions described in (a)—(e) the remaining portions of wg [ I consists
of blocks of powers of ;s in initial segments of 2-subsections:

UoUg ... Ug * Ug... UgHUUL ... U * UL ... UL #H---HuUp .. U *UE ... Uk
and in tail segments of 2-subsections:
Wjlj .o U *kUj . U U Uy U R Uy U Fe
HUup,—1.. Uky—1 % Uky—1 - - Uk —1,

where #*’s stand for u’s deleted opposite boundary of w; and #’s stand for the boundary
of wy that has been deleted. An important point for us is that in each block k > €, k, and
kn—j—1> e k.

41 This is what happens in the case that n = 0.
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Consider the words u; in situation described in item (e) (ii) above. The v;,’s split
u; into two pieces. By deleting a portion of the individual u;’s of size less than €,_1¢q,
we can assume that all of the overlap of u;’s is in sections of length at least €,_1¢,. By
doing this for all u;’s we remove a parts of the remaining elements of wy of proportion at
most €,_1.

(g) We now look more carefully at the two types of blocks of words described in item
(f). The case in item e.)i. is similar and easier than the case in item (e) (ii) so we omit it.
Along the blocks described in (f) the initial portions of u; are lined up with v; 4, and the
second portions are lined up with v; ;4. Critically, the ¢ is constant along the block.

According to whether # = 0 or not, we apply specifications (J11.1) (as in Case 1 of
the Initial segments argument) and (J10) to see that at most proportion 2/ Q" of the words
u; in a segment of the forms in (f) are lined up with v; 4, are @7-equivalent. Hence we
can make a final deletion of proportion at most 2/ Q7 to get a portion * C I consisting
of relatively long pieces of W¢-words in wg | I’ overlapping W¢-words in wy | T that
lie in different Q' equivalence classes.

We now finish the argument using Remark 22. After all of the deletions we are left
with [* having at least (1 — (2¢, + 1/€,kn + 5/ 1, + €,—1 + 2/ Q"))-proportion of /
and wo | I'* consists of relatively long pieces of W< words that are overlapping portions
of W words in wy | T that lie in different ‘W{ -classes. B

By the induction hypothesis each of the pieces of n-words in wg | I™* of d-distance
at least y, from the corresponding portion of w;. Consequently,

‘;(wo PLowy MT) > yu(1 — 2en + 1€k +5/1n +€p—1 + Z/QY)) > Yn+1,
thus finishing the proof of Proposition 98. ]

Since assumption (T4) is an immediate corollary of Proposition 98, we have finished
verifying the timing assumptions.

We note in passing that inequality (10.5) holds even if wg = w; provided that the
choice of initial and tail segment misalign corresponding 1-subsections.

We have proved:

Theorem 100. Suppose that K€ is a system in the range of F* with construction sequence
(We :n e N). Then (Wg : n € N) satisfies the timing assumptions.

11. The consistency of the numerical requirements

During the course of this construction we have accumulated numerical conditions about
growth and decay rates of several sequences. The majority of the numerical constants
are not inductively determined — they are given immediately by knowing a small por-
tion of the tree 7. We call these exogenous requirements. Other sequences of numbers
depend on previous choices for the numbers — hence are determined recursively. In this
section we list the recursive requirements, explicate their interdependencies and resolve
their consistency.
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Some of the conditions are easy to satisfy, as they do not refer to other sequences. For
example, Numerical Requirement 1 (that ), 1/, < 00) can be satisfied once and for all
by assuming that /,, > 20 % 2". Others are trickier, in that they depend on the growth rates
of the other sequences. For example, in defining the sequence of k,,’s we require that k,, be
large relative to the choice of s, 4. We call the former type of conditions Absolute and the
latter Dependent. The Dependent conditions introduce the risk of circular or inconsistent
growth and decay rate conditions.

Our approach here is to gather all of the conditions arising in this paper and its prede-
cessors and classify them as Absolute or Dependent. We label them A or D accordingly.
This process allows us to make a diagram of the Dependent conditions to verify that there
are no circularities. The lack of a cycle in the diagram gives a clear method of recursively
satisfying all of the numerical conditions.

Due to an overabundance of numerical parameters we were forced into some awk-
ward notational choices. As noted before we have two types of epsilons: the lunate €,,
often used for set membership and the classical €,. They play similar but slightly dif-
ferent roles. The lunate epsilons come from construction requirements arising in [8] and
their strengthenings. The classical epsilons come from requirements related to circular
systems and realizing them as smooth systems. As is to be expected there is interaction
between the two. This occurs via the intermediary numbers we called p,’s in Numerical
Requirements 5 and 11.

11.1. The numerical requirements collected

In this subsection we collect the relevant numerical requirements. Specifically, in con-
structing F*(77) we are presented with 7 as a subsequence (o0,; : i € N) of a fixed
enumeration of N<N,

In the formal statements of the specifications in [8] for the construction sequence cor-
responding to 7, W, is built just in case 0, € 7. This leads to a construction sequence
of the form (W, :i € N) with gaps corresponding to m’s, where 0, ¢ 7. To sim-
plify notation, we reindex (Wy; :i € N) as (W; :i € N), where (W; :i < j) is deter-
mined by (o,; 17 < j). In [8], the specifications discussed “successive” (or “consecu-
tive”) elements of 7. These are o,, and o, that belong to 7, but have no o; € 7 with
j € (m,n). In our new notation successive elements o, and o, of 7 correspond to
W; and W;1, where m = n;. Having adopted this convention we do not distinguish
between (W; :i € N) and (W, : n € N). To emphasize the dependence on T, we will
occasionally write (W, (7) : n € N).

We begin with the requirements inherited from [8].

Inherited numerical requirements. We have changed the notation from [8] as described
in Appendix A. The number of elements of W,, is denoted s,,; the numbers Q7' and C,"
denote the number of classes and sizes of each class of @', respectively. In [8] we have
sequences (€, : n € N, (s,, k,,e(n), p, : n € N)

Inherited Requirement 1. The sequence (¢, : n € N) is summable.
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Inherited Requirement 2. The number of @",, classes inside each @" class is 2¢(").
The numbers e(n) will be chosen to grow fast enough that

et < ¢ (11.1)
If s is the maximal length of an element of 7 N {0, : m < n} and
|7 N {om :m < n}| = io,

then we set
Clo — pelo)
N

as well. This forces s,, QF and C} all to be powers of 2 that are determined by e(n). In
particular, let o, and o, be successive elements of 7. Then s, is the number of words
one gets by iteratively substituting e (1) many elements into words in ‘W / Q7 and closing
under G are successive fori =0, 1,...,s.*

By Remark 96, s, and e(n) are monotonically co-determined. Hence we can state this
requirement as saying:

Sp+1 18 large enough in terms of €, that inequality (11.1) holds.

Inherited Requirement 3. If 7 = (0,, : i € N), then

2¢;s7 < €. (11.2)
Inherited Requirement 4. We have
€ikisT? — 00 asi — 0. (11.3)
Inherited Requirement 5. We have
[[a—en>o0. (11.4)
neN

Since this is equivalent to the summability of the €,-sequence, it is redundant and we will
ignore it in the rest of this paper.

Inherited Requirement 6. There will be prime numbers p, such that
K, = p;zlsn—lKn—l

(e k, = pﬁsn_l). The p,’s grow fast enough to allow the probabilistic arguments in [8]
involving k, to go through.

Inherited Requirement 7. The number s, is a power of 2.

Inherited Requirement 8. The construction of F () requires thatif 7 = (0;, : n € N),
then ¢, <277,

421t is possible to give a closed form formula for this, but it is complicated and uninformative.
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Numerical requirements introduced in this paper.
Numerical Requirement 1. One has /o > 20and ) ,_, 1/lx < 1/l,—1.

Numerical Requirement 2. (¢, : n € N) is a sequence of numbers in [0, 1) such that
6 N En <EN.

Numerical Requirement 3. The numbers &, [, and ¢, grow fast enough that £,k,, — oo,
enly — 00, e4q, — 00.

Numerical Requirement 4. One has

sletl
o1

IGY]
[
Numerical Requirement 5. 11, is chosen small relative to min(e,, 1/07).

which is satisfied if <27,

Numerical Requirement 6. The number /,, is big enough relative to a lower bound deter-
mined by (ky,, S : m < n), (I, : m < n) and s,4+1 to make the periodic approximations
to the diffeomorphism converge.*> Moreover, k,, < I,.

Numerical Requirement 7. We have s, — co as n — 0o and s, is a power of s,.
Numerical Requirement 8. We have 5,41 < sﬁ".
Numerical Requirement 9. The ¢, are decreasing, g < 1/40 and €, < &,.

Numerical Requirement 10. The number k,, is chosen sufficiently large relative to
a lower bound determined by s,1, €, so that the Law of Large Numbers argument from
[8] works.

Numerical Requirement 11. The number ¢, is small relative to (.

Numerical Requirement 12. One has €pk¢ > 20, the €,k are increasing and Y 1/€,kp
is finite.

Numerical Requirement 13. The numbers ¢, should be small enough, as a function
of O7, that estimate (10.8) holds.

11.2. Resolution

A list of parameters, their first appearances and their constraints. We classify the con-
straints on a given sequence according to whether they refer to other sequences or not.
Requirements that inductively refer to the same sequence are straightforwardly consis-
tent. Those that refer to other sequences risk the possibility of being circular and thus
inconsistent. As noted above refer to the former as Absolute conditions and the latter as
Dependent conditions.

43This is discussed in detail in [11, pp. 34—35], where the lower bound is called Iy
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D

2

3)

The sequence (k, : n € N).

Absolute conditions: None for (k, : n € N).

Dependent conditions:

(D1) Numerical Requirement 10, k, depends on s,,41, €.

(D2) Inherited Requirement 6. We can satisfy Inherited Requirement 6 by taking k,
large enough to satisfy Numerical Requirement 10 and of the form

2
kp = PypSn—1.-

(D3) From Inherited Requirement 4, equation (11.3) requires that €,k,s, 31 goes
to 0o as n goes to co. This can be satisfied by choosing k, large enough as
a function of €, s,—1. We note that equation (11.3) implies that Y 1/e,k, is
finite.

(D4) Numerical Requirement 12 says that €9k > 20 and the €, k,, are increasing and
> 1/euky, is finite. As noted the last condition follows from D3. The other parts
of Numerical Requirement 12 are satisfied by taking k,, large relative to €.

(D5) Numerical Requirement 8 implies that k,, is large enough that s, < s,]f" . This
implies that &, is large relative to s, 1.

From (D1)-(D5), we see that k, is dependent on the choices of (k,, [, : m < n),
(Sm :m < n+ 1), and ¢,.

The sequence (I, : n € N).
Absolute conditions:

(A1) Numerical Requirement 1 says that 1/, > Y2, ., 1/ lx. We also require that
[, > 20 % 2", an exogenous requirement.

Dependent conditions:

(D6) By Numerical Requirement 6, the number /,, is bigger than a number deter-
mined by (ky, Sm :m < n), ([, : m <n)and s;41.

(D7) The sequence (/, : n € N) must grow fast enough that &,41¢,+1 — 00. This
can be arranged by making e,41¢n+1 > n + 1. Since ¢n41 = knlnq?2, this puts
lower bound on /,, dependent on &, 1.

Thus /,, depends on (k,,, 5y, : m < n),{l, :m <n),epy1 and s,41.

The sequences (s, : n € N) and (e(n) : n € N). We treat these sequences as equiv-
alent since s, is a power of 2 determined by e(n) and the elements of the tree in the
domain of the reduction. Moreover, increasing one increases the other and vice versa.
Since they are co-determined, they are chosen at the same time.

Absolute conditions:

(A2) Inherited Requirement 7 says that s, is a power of 2.
Numerical Requirement 7 says that:

(A3) The sequence s, goes to infinity.

(A4) 5,41 is a multiple of sy,.
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(AS) Ase(n) determines Q7, Numerical Requirement 4 puts an exogenous sequence
of lower bounds on e(n), for example that

GT]

o1
This requires that e(n) be chosen large and, since e(n) and s, are inter-deter-
mined, can be satisfied by taking s(n) large.

< 27",

Dependent conditions:
(D8) Numerical Requirement 3 makes s, depend on €,_;.

The result is that the number 5,41 depends on the first n + 1 elements of the
tree T, (km,SmoIlm : m < n),s,, and €,.*

(4) The sequence (€, : n € N).
Absolute conditions:

(A6) Numerical Requirement 9 and Inherited Requirement 1 require that (¢, : n € N)
is decreasing and summable and €9 < 1/40.

(A7) Inherited Requirement 8 says that if 7 = (0;, : n € N), then ¢, < 27'n
Dependent conditions:

(D9) Numerical Requirement 9 requires that €, < &,.

(D10) Equation (11.2) of Inherited Requirement 3 says 26ns3 < €p—1.-

(D11) Numerical Requirement 11 says that €, must be small enough relative to u,.
(D12) Numerical Requirement 13 says that €, is small as a function of Q7.

The result is that €, depends exogenously on the first n elements of 7, and on Q7, s,
&n, €n—1 and wy,.

(5) The sequence (&, : n € N).
Absolute conditions:
(A8) Numerical Requirement 2 says that 6 ) ", _ » €, < en. This can be arranged by
taking &, < 127"g;,_1.

Dependent conditions: Numerical Requirement 3 imposes three Dependent condi-
tions on &, £,k,, — 00, &yl — 00, £yq, — 00. We deal with these in turn.

(a) The requirement that (¢, k, : n € N) goes to infinity already follows from the
fact that €, < ¢, and item (D4).

(b) (enl, : n € N) goes to infinity. This follows from k, < [,, which is covered in
Dependent condition (D6).

(¢) {(engn : n € N) goes to infinity. This follows from Dependent condition (D7).
Thus there are no new Dependent conditions.

(6) The sequence (Q7 : n € N).
Absolute conditions: There are no new Absolute conditions.

Mt is important to observe that the choice of s, 41 does not depend on kj or ;.
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(7

Dependent conditions:
(D13) Numerical Requirement 4 says that
|G1|
o1
But since Q7 is determined by s, and the first n-elements of the tree, Numer-
ical requirement 4 is taken care of by (A5).

< 27",

There are no new Dependent conditions.

The sequence (i, : n € N). This sequence gives the required pseudo-randomness
in the timing assumptions.

Absolute conditions: There are no new Absolute conditions.

Dependent conditions:

(D14) Numerical Requirement 5 requires that yt, be very small relative to &, and QL’f

The number ., is dependent on &, and Q7.

The recursive dependencies of the various coefficients are summarized in Figure 4, in
which an arrow from a coefficient to another coefficient shows that the latter is dependent
on the former. Here is the order the coefficients can be chosen consistently.

kn En+1

W

In

Fig. 4. Order of choice of Numerical parameters dependency diagram.
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11.3. The inductive order of choices

We begin by setting so = 2,51 = 8, po = 0,90 = ko = 1,1p = 21; Q(l) is not defined,
but Q1 is determined by s1; jto = €0 = ko = lop = 1,80 = 1.1, &1 = £9/12,

Assume:
The coefficient sequences (ky., I, O, b, €m 1 m < n), (e, :m < n) and
sp have been chosen. The first n 4+ 1 sequences on the tree 7 are known.

To do:

Choose ky, I, O, tn, €n, €nt1 and s,41. Each requirement is to choose the
corresponding variable large enough or small enough where these adjectives
are determined by the dependencies enumerated above.

Figure 4 gives an order to consistently choose the next elements on the sequences. Choose
the successor coefficients in the following order:

n
Q],8n+1»ﬂna€n,sn+1»kn»ln-

We note that Q7 is redundant in the diagram above since it is determined by s, but we
include it as a bridge from stage n — 1.

Appendix A. Notation table
In this paper we have adopted the notation used in [1], which conflicts with the notation

in [8], accordingly we provide a table for translating between the two. In the table, NEW
means the notation used in this paper, OLD means the notation used in [8].

NEW OLD Description

Sn Wy sy, is the number of words in ‘WS

kn lnt1/1In the number of words concatenated to make W, 1 from ‘W,

e(n) k(n) controls the number of @1 classes in each @; class

y S1 the separation between (Q'l’ classes

Ky In K}, is this paper’s notation for the lengths of the odometer based words
in Wy, I, was the notation for the lengths of the words in [8]

qn In the lengths of the circular words in current paper vs. odometer based
words in [8]; the new gy refers to the lengths of the words in Wy

In no analogue coefficient needed to grow fast for smooth transformations

An equivalent description of the numbers we are calling k,, in this paper is that they
are the number of words in 'W; concatenated to form elements of P,y ;. The number kj,
is equal to the number K, 1/ K, and [, 1/, in the old notation of [8].

Funding. The first author would like to acknowledge partial support from the US National Science
Foundation grant number 2100367.
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