

**Changing the culture of peer review for a more
inclusive and equitable psychological science**

Mariam Aly^{*1}, Eliana Colunga², M.J. Crockett³, Matthew Goldrick⁴, Pablo Gomez⁵, Franki Y. H.

Kung⁶, Paul C. McKee⁷, Miriam Pérez⁸, Sarah M. Stilwell⁹, Amanda B. Diekman^{*10}

¹ Department of Psychology, Columbia University

²Department of Psychology and Neuroscience, University of Colorado Boulder

³Department of Psychology, Princeton University; University Center for Human Values,
Princeton University

⁴Department of Linguistics, Cognitive Science Program, Northwestern University

⁵Department of Psychology, California State University San Bernardino

⁶Department of Psychological Sciences, Purdue University

⁷ Department of Psychology and Neuroscience, Duke University

⁸Department of Psychology, North Park University

⁹Department of Health Behavior and Health Education, University of Michigan

¹⁰Department of Psychological and Brain Sciences, Indiana University Bloomington

Journal of Experimental Psychology: General

** M.A. and A.B.D. were selected as first and last (senior) authors to acknowledge their contributions to the paper. The remaining authors are listed alphabetically by last name.*

© 2023, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors' permission. The final article will be available, upon publication, via its DOI: 10.1037/xge0001461

Corresponding author: Amanda B. Diekman <abdiekma@iu.edu>

To learn more about Reviewer Zero: <https://www.reviewerzero.net/aboutAcknowledgements>: This work was funded by grants from the National Science Foundation (DGE-2224777) and the American Psychological Association (Commission on Ethnic Minority Recruitment, Retention, and Training). Any opinions, findings, conclusions or recommendations are those of the authors, and do not necessarily reflect the views of these funding agencies. In the development of this

manuscript, preliminary findings and ideas were presented at conferences: Midwestern Psychological Association in 2022 and 2023, Society for Experimental Social Psychology in 2022, Psychonomic Society in 2022, and The Society for Personality and Social Psychology in 2023. Survey findings were shared in an Executive Summary posted on OSF: <https://osf.io/jqy4k>. Finally, an earlier version of the manuscript was shared on the preprint server, PsyArXiv, in December 2022. We provide a brief summary of survey data; the instrument is available at <https://osf.io/u2d9j>. We thank members of the Reviewer Zero Advisory Board (Neil Lewis, Jr., Percival Matthews, Richard Prather, Valerie Purdie-Greenaway, Bernadette Sánchez, and Valerie Jones Taylor) and the SPARK Society founders (Jean E. Fox Tree, Alejandro Lleras, Ayanna K. Thomas, and Duane G. Watson) for their support of Reviewer Zero and their constructive advice. We also thank previous members of the Reviewer Zero committee (Shai Davidai, Anna Fisher, and Steven Zhao) for their contributions to design and analysis of survey data and work securing initial funding. Finally, we thank numerous individuals from the psychological science community for pointing out resources and providing feedback on a preprint of the manuscript.

CRediT AUTHOR CONTRIBUTIONS STATEMENT

Mariam Aly: Conceptualization, Methodology, Validation, Formal Analysis, Writing – Original Draft, Writing – Review & Editing, Funding acquisition

Eliana Colunga: Conceptualization, Methodology, Formal Analysis, Writing – Original Draft, Writing – Review & Editing

M.J. Crockett: Conceptualization, Methodology, Validation, Writing – Original Draft, Writing – Review & Editing, Project administration, Funding acquisition

Matthew Goldrick: Conceptualization, Methodology, Formal Analysis, Writing – Review & Editing, Project administration

Pablo Gomez: Conceptualization, Writing - Original Draft, Funding Acquisition, Project Administration.

Franki Y.H. Kung: Conceptualization, Methodology, Formal Analysis, Writing – Original Draft, Writing – Review & Editing

Paul C. McKee: Writing - Original Draft, Writing - Review & Editing

Miriam Pérez: Writing - Original Draft, Writing - Review & Editing

Sarah M. Stilwell: Conceptualization, Methodology, Formal Analysis, Writing – Original Draft, Writing – Review & Editing

Amanda B. Diekman: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Project administration, Funding acquisition

ABSTRACT

Peer review is a core component of scientific practice. Although peer review ideally improves research and promotes rigor, it also has consequences for what types of research are published and cited, and who wants to (and is able to) advance in research-focused careers. Despite these consequences, few reviewers or editors receive training or oversight to ensure their feedback is helpful, professional, and culturally sensitive. Here, we critically examine the peer review system in psychology and neuroscience at multiple levels, from ideas to institutions, interactions, and individuals. We highlight initiatives that aim to change the normative negativity of peer review and provide authors with constructive, actionable feedback that is sensitive to diverse identities, methods, topics, and environments. We conclude with a call to action for how individuals, groups, and organizations can improve the culture of peer review. We provide examples of how changes in the peer review system can be made with an eye to *diversity* (increasing the range of identities and experiences constituting the field), *equity* (fair processes and outcomes across groups), and *inclusion* (experiences that promote belonging across groups). These changes can improve scientists' experience of peer review, promote diverse perspectives and identities, and enhance the quality and impact of science.

Key words: peer review, psychological science, racial disparities, gender disparities, systemic bias, culture cycle

Public Significance Statement:

The peer review process is a crucial aspect of scientific research that influences the quality of published work and the career trajectories of researchers. This paper critically examines the current peer review system, highlighting initiatives that aim to foster a more constructive, inclusive, and equitable review culture. By embracing these changes, the scientific community

can better support diverse perspectives, enhance research quality, and create a more inclusive environment for scientists from all backgrounds. Implementing these recommendations holds the potential to benefit not only individual researchers but also the broader scientific enterprise and society as a whole.

Consider these scenarios: A Black PhD student's paper on racism in social perception is desk-rejected by a top social psychology journal, whose editor suggests "your focus on race is better suited for a specialist journal". A reviewer of a paper on gender bias in voting decisions writes, "this work is ideologically motivated, and therefore cannot be trusted." A paper is rejected at a second journal, and its first-generation early career author decides they need to prioritize other aspects of their job and never resubmits the paper elsewhere. A graduate student receives a revise-and-resubmit decision, but it is written so harshly that she does not realize it is actually good news.

Readers will see different levels of bias across these scenarios, but each reveals the potential for the current culture of peer review to create and perpetuate disparities in who continues in science, and in what the topics and methods of that science look like. In this review, we turn a critical and constructive eye to the process of peer review in an effort to understand the systemic biases that are built in — intentionally or unintentionally — to its normative practices and policies. Peer review as a system deserves this attention not only for its problems but for its potential: For example, a longitudinal study of early career authors from several countries revealed that these authors readily name peer review as positively contributing to the development of their work, even as they experience difficulties (Rodriguez-Bravo et al., 2017). This finding suggests that even though peer review involves a great deal of rejection, these 'negative' outcomes can be experienced as part of a positive, constructive process. To more fully realize the promise of peer review for a broader range of scholars and scholarship, we examine how the current culture of peer review can produce disparities in experiences and outcomes of historically excluded groups, and we point toward actions for change.

We write as Reviewer Zero (www.reviewerzero.net), a coalition of faculty and graduate students in psychology and neuroscience. We formed Reviewer Zero in Summer 2020 to address the need for greater equity in the peer review process in psychology and related fields. In contrast

to the dreaded “Reviewer 2”, Reviewer Zero envisions a “reset” of peer review culture in which the reviewing process primarily serves a formative rather than gatekeeping function. We also write as authors, reviewers, and editors who recognize that science is an inherently challenging process, where being wrong (and others pointing out where we are wrong) is essential to discovery. We do not advocate for “lowering the bar” or accepting articles indiscriminately. Rather, we aim to promote a more constructive and inclusive approach to peer review that simultaneously upholds the high standards of scientific research while fostering a supportive environment for a diverse set of scientists and topics.

Here, we seek to shed light on relationships between (a) normative peer review processes and (b) disparate experiences and outcomes of minoritized groups.¹ As we detail, peer review processes are essential to understand because of disparate *outcomes*. But there is also an urgent need to investigate peer review because of disparate *experiences*. It is not just that fewer papers or grants by members of historically excluded communities are accepted/funded (although that would be sufficient reason to act). Harsh or unprofessional reviews are commonly experienced by academic scholars (Silbiger & Stubler, 2019), and these problematic reviews are particularly demoralizing for minoritized groups, as we detail below. Trainees’ experiences with peer review can thus contribute to their decisions to stay in the science, technology, engineering, and math (STEM) pathway, or to pursue other career paths. Peer review thus must be examined with an eye to *diversity* (does peer review contribute to increasing the range of identities and experiences constituting the field), *equity* (are outcomes and processes equitable

¹ We use *minoritized* or *underrepresented* to refer to groups who lack numerical representation in certain fields, contexts, and opportunities. We use the terms *marginalized* or *underserved* to speak to communities who are left out from current systems or positions of power, even if they are well-represented numerically, or if their representation is not documented.

across groups), and *inclusion* (does peer review offer experiences of fit and belonging across groups).

Constraints on Generality

We note from the outset that our analysis is primarily applicable to the current peer review system in psychological and neuroscientific research in the United States. The target populations for this analysis include researchers, reviewers, editors, and institutions involved in the peer review process in psychology and neuroscience, with the hopes that the framework presented here will also be accessible and relevant across various disciplines. Although we are limited by the US-based context that dominates available evidence, we anticipate that the core processes highlighted here are likely to occur in different cultural contexts: Researchers who deviate from some perceived or imagined norm shaped by powerholders in that society will be underserved by status quo systems. In some cultural contexts, inequities will manifest in similar ways as in the US (see, e.g., Bornmann et al., 2007, for review of biases favoring men in European as well as North American granting agencies). In other cultural contexts, inequities will manifest in distinct ways (e.g., based on caste). Mitigating inequities directed at identities beyond those explored here requires understanding the power structure within particular cultures.

We also note that we primarily focus on race and gender disparities, because the bulk of the evidence to date focuses on these groups (typically in isolation from each other). Where possible, we include data from intersectional identity groups or from other marginalized groups. In line with an intersectional perspective (Cho et al., 2013; Cole, 2009; Crenshaw, 1990), we seek to understand both how marginalized groups experience different barriers and impacts in psychology and neuroscience, and how interlocking systems of oppression serve to reinforce the position of those already in power. As we move forward, it is important to note that the

effectiveness of proposed initiatives may vary across different countries, research fields, cultural contexts, and stages of career development. Therefore, the generalizability of any specific recommendation may be limited in certain scenarios; we instead urge individuals to consider how the goals outlined here can be fulfilled with strategies appropriate to specific contexts and stakeholders.

The Status Quo is Failing

Science needs to evolve and advance, and the path to a more robust, innovative, and useful science requires the active engagement of researchers from diverse backgrounds and identities (AlShebli et al., 2018; Lewis, 2021; Nielsen et al., 2017; Ruzycki & Ahmed, 2022; Yang et al., 2022). Numerous indicators demonstrate gender and race disparities in who engages in and advances in psychology and neuroscience, particularly in research-intensive careers. For example, the current system that privileges White individuals affects pathways to and gatekeeping of graduate admissions and faculty jobs (De Los Reyes & Uddin, 2021). Attrition from psychology doctoral programs occurs at a higher rate for Black or African, Hispanic or Latinx students than White or Asian students (Callahan et al., 2018). Racial disparities exist in grant funding (Chen et al., 2022; Ginther et al., 2011, 2018; Nguyen et al., 2023; Taffe & Gilpin, 2021), with at least some of the disparities in NIH funding arising from the grant criterion scores assigned by reviewers (Erosheva et al., 2020) as well as reviewer decisions about which grants to discuss and what research topics are preferred (Hoppe et al., 2019). Across STEM fields, gender and race disparities have been documented in citation practices (Bertolero et al., 2020; Kozlowski et al., 2022; Liu et al., 2023). Women compared to men in psychological science secure fewer tenure-track positions and earn lower salaries, among other gaps (Gruber et al., 2021).

Given disparities in who advances in science, there is an urgent need to understand and

change current practices that may push minoritized scholars out of STEM fields (De Los Reyes & Uddin, 2021). We contend that peer review is central for creating and maintaining group disparities, because disparities in many domains related to peer review — funding, publication, citations — accumulate into larger disparities in who enters, stays, and advances in scientific careers.

Peer review processes can contribute to disparities through multiple processes we elaborate below, but we note that *systemic bias* in peer review does not require *individual* implicit or explicit bias (see Sato et al., 2021, for review of individual and systemic bias contributing to gender disparities in grant funding). Actions that create and perpetuate group disparities may not necessarily be intended by individual actors. Nevertheless, individuals who participate in the current system may contribute to the exclusion of marginalized scholars because the system itself will favor the qualities associated with its designers. Without critical attention to how the system is biased to recreate the values and images of its creators, so-called objective measures of merit can only produce a narrow field of knowledge.

Some have argued that peer review as it is currently practiced is a “failed experiment” and should be abolished (e.g., Heesen & Bright, 2021; Mastroianni, 2022). Yet there are both principled and pragmatic reasons to iterate the current system rather than abandon it. In principle, the expert and constructive input of peers can contribute to building a more robust and high-quality science. Pragmatically, abolishing any cultural system is difficult, particularly without consensus about what its replacement should be. In the near term, we expect that peer review will continue to be a key part of how academics are evaluated for hiring and promotion; given this, we focus here on how the system can be improved rather than replaced. Discussion of what an alternative to a peer review system might be is beyond the scope of the current paper.

How Does Peer Review Contribute to Disparities?

We explore peer review as a critical site for intervention to reduce group-based disparities in psychological science (Buchanan et al., 2021a). The culture of science is shaped by the identities of those who built it (i.e., economically advantaged, White, cis-male individuals; Buchanan et al., 2021a; Garay & Remedios, 2021; Ledgerwood et al., 2022; Lewis, 2021; Stanley, 2007; Thomas et al., 2023). Within psychology and neuroscience, the overrepresentation of people from Western, educated, industrialized, rich and democratic (WEIRD) societies shapes the way research is done, who does the research, and which populations and questions are studied. The current system of centering White experience also affects the composition of participant samples (Avery et al., 2022; Henrich et al., 2010), the identities of the researchers who conduct and publish the findings of such research (Roberts et al., 2020), and the research topics pursued and published (Avery et al., 2022; Kozlowski et al., 2022; Settles et al., 2021; Syed et al., 2018). The dominance of the majority White perspective also shapes what counts as “good” science, such that studies of racism, sexism, or group disparities, and their impact on psychology, are deemed to be ideologically motivated rather than based on high-quality, concrete, and systematic evidence (e.g., Brown et al. 2022; Handley et al., 2015; Roberts, 2022). Consequently, the accepted values and practices in science can serve as roadblocks and barriers to the inclusion and advancement of minoritized scholars working on topics that are not prioritized by the majority White perspective.

Here, we first review evidence — from our work and others’ — that negative peer review experiences hold the potential to disproportionately harm scholars from under-represented and marginalized communities. We then critically evaluate the current peer review culture at multiple levels, from ideas and institutions to interactions and individuals. Next, we highlight ongoing initiatives that seek to improve peer review, from broader cultural ideals to specific individuals’ actions. We conclude with a call to action, describing what institutions, editors, and reviewers

can do to promote an inclusive and equitable culture in peer review. We consider how strategic, evidence-based, scalable interventions can help improve recruitment and retention of minoritized scholars in psychology, shift peer review practices and the opportunity for minoritized trainees to successfully navigate peer review, and ultimately transform the scientific review culture.

DISPARATE EXPERIENCE AND IMPACT OF NEGATIVE PEER REVIEW

Forms of Bias in Peer Review

Ideally, peer review is a system promoting impartial evaluation where scientists self-regulate the evidence that is integrated into cumulative knowledge. Practically, impartiality is threatened by numerous biases, and so the self-regulation of evidence is threatened (e.g., Lee et al., 2013).

Peer review is susceptible to bias in different forms, and at different stages in the process. Here we review numerous *individual-level* biases enacted by actors within peer review, but there are also *systemic* biases that occur given policies, practices, or positions that advantage some groups and disadvantage others (see Sato et al., 2021). Examples of individual bias are many: Reviewers are subject to confirmation bias (positively evaluating evidence that supports their pre-existing views), negativity bias (focusing disproportionately on flaws rather than strengths), or overconfidence bias (inflating certainty about their opinion or expertise; King et al., 2018).

Subtle biases can emerge in the use of non-neutral language (Parsons & Baglini, 2021): Statements that are in actuality subjective may be phrased as objective truth, without adequate acknowledgement of the reviewer's own subjectivity (e.g., "This paper is uninteresting" vs. "This paper is uninteresting to me").

Systemic biases can occur even if individual reviewers or editors act with fairness, if accepted practices favor some groups' experiences, presumed characteristics, or topics of study. For example, peer review criteria that focus on caliber of the scientist might contribute to gender

disparities in funding success (Witteman et al., 2019), particularly if male advantage compounds so that male scientists possess greater resources. Further, a threat to impartiality in the review process can be widely accepted, such as valuing or devaluing of certain topics or methods (King et al., 2018; Roberts et al., 2020; Roberts, 2022). *Cognitive particularism* (Travis & Collins, 1991) can lead traditionally-accepted topics and methods to be seen as more meritorious or important, as we detail more below. Group disparities in manuscript placement in mainstream journals can therefore occur when underserved individuals are overrepresented in topics or methods that are outside of or complementary to mainstream psychology and neuroscience (e.g., epistemic exclusion, Settles et al., 2021). Subdisciplines of psychology that have greater representation of editors and authors who are people of color tend to publish more research focusing on race (Roberts et al., 2020). Elevating some topics over others in journal pages corresponds to elevating some groups over others in scientific careers. Yet even when less-privileged topics are published in prestigious journals, their authors are disproportionately White (for example, race-related articles published in prestigious psychology journals were more likely to be written by White authors than authors of color; Roberts et al., 2020). Further, the impact and evaluation of research differs by author status: Work that is attributed to high-status authors is evaluated more favorably than identical work attributed to lower-status authors (Huber et al., 2022), consistent with the “Matthew effect” where more eminent scientists receive disproportionate credit for collaborative work (Merton, 1968).

Another form of bias in the system is *homophily* based on author, reviewer, or editor identities (e.g., gender, race, country). For example, an analysis of *Frontiers* articles found that women editors were more likely to appoint women as reviewers, and women reviewers were more likely to review the manuscripts of women authors (Helmer et al., 2017). Homophily can be associated with manuscript outcomes: Authors who shared gender or country with reviewers were more likely to have their papers accepted (Murray et al., 2019).

Finally, a key way in which a system can perpetuate inequities in outcomes is when equivalent inputs produce disparate impacts. Here, a focal inequity is that unprofessional or hostile reviews exert a disparate impact on minoritized scholars. A growing body of research has documented unprofessional behavior in peer review (e.g., Gerwing et al., 2020). In a recent survey of over 1100 scholars from a range of academic ranks (from Masters student to full professor) and from a range of STEM fields, over half of the participants responded that they have received an unprofessional peer review (Silbiger & Stubler, 2019). Although survey respondents in different identity groups reported equivalent rates of receiving unprofessional reviews, members of underrepresented groups (women, non-binary individuals, and people of color) reported a disproportionate negative impact of these unprofessional reviews on their perceptions of their own aptitude, productivity and career advancement. The impact of peer review harshness may be amplified by *identity threats* when minoritized scholars are seeking cues about whether their work is judged impartially and whether their identities are respected in specific contexts (e.g., Park et al., in press; Purdie-Vaughns et al., 2008; Steele et al., 2002). For example, evaluative contexts can cue *stereotype threat*, in which an individual fears confirming a negative stereotype of their group, leading to anxiety, cognitive load, and underperformance on the stereotype-relevant task (Steele & Aronson, 1995).

In sum, peer review is a core scientific practice that affects who *wants* to stay, and who is *able* to stay, in research-focused careers. Yet the process of peer review is vulnerable to a range of biases — some that may not be explicitly known or intended (e.g., homophily effects in selecting reviewers), and some that may be assumed as valuable norms or standards in the field (e.g., valuing of specific topics and methods). It is essential to acknowledge that the system of peer review can produce disparate and unfair outcomes, even if individual actors intend to or actually do act fairly: Even a neutral input to a biased system will create a biased outcome.

Survey of Peer Review Experiences in Psychology and Neuroscience

To examine self-reported experiences with peer review among early career researchers in psychology/neuroscience, we conducted a survey in Fall 2020. We surveyed individuals in academic positions in these fields (from undergraduate students to assistant professors) about their experiences with peer review. The survey (available at <https://osf.io/u2d9j>) was distributed via a variety of channels (university and community listservs, social media), with the goal of understanding the self-reported needs of individuals underserved by the status quo, especially with regard to the peer review process. We explicitly note that this sample is deliberately non-representative: We encouraged input from individuals who identified as underserved by the current system, and they self-selected into the study. Yet these individuals are precisely the ones who need to be heard to better understand how underserved individuals are experiencing and making sense of peer review.

We found (detailed results and methods at <https://osf.io/jqy4k>) that underserved individuals [i.e., those who identified as people of color (POC) or female or nonbinary] reported significantly more negative experiences and fewer positive experiences during peer review (unpublished data; total n = 583; 164 female/non-binary POC; 265 female/non-binary White; 49 cis-Male POC; 80 cis-male White). For example, POC reported receiving **less helpful feedback** in reviews (particularly POC cis-males) (1-10 scale, 10 = “Every review I have ever received has contained helpful feedback”; POC cis-male mean: 6.5; White cis-male mean: 7.1; $d = 0.50$). Furthermore, female/non-binary respondents were more likely to: (1) **report reduced belonging in science** (1-10 scale, 10 = “My experience has definitely increased my sense of belongingness in science”; Female/non-binary mean: 5.2; Cis-male mean: 5.8; $d = 0.32$); (2) **become less confident about their work** (1-10 scale, 10 = “My experience has made me much more confident about my work”; Female/non-binary mean: 5.6; Cis-male mean: 6.2; $d = 0.30$) and (3) **attribute negative reviews to themselves** (e.g., lack of ability) rather than the

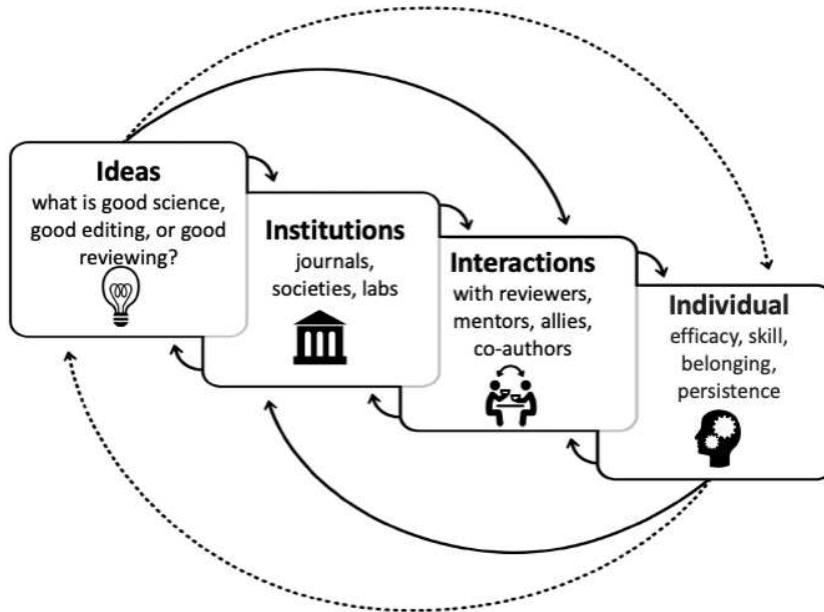
reviewer (e.g., misunderstanding; = 9 on 1-9 scale; Female/non-binary mean: 5.7; Cis-male mean: 6.0; $d = 0.24$).

We also examined open-ended responses for more in-depth understanding of these experiences. In response to a question about their most memorable peer review experiences, underserved trainees reported: (1) receiving harsh feedback about the quality of their work (e.g., the worst a reviewer has ever seen); (2) feeling demotivated and questioning whether they belong in science; (3) permanently abandoning projects after receiving critical peer reviews; (4) reviewer comments that question the existence of racism and microaggressions and/or the value of studying these issues; and (5) critical comments about their use of the English language.

The results of this survey of peer review experiences echo the negative experiences reported in other fields (Silbiger & Stubler, 2019) and suggest that reform of peer review in psychology/neuroscience may help to promote the retention and inclusion of individuals from a range of identities. Any group-based differences documented here are likely to be an underestimate compared to what might be found in a representative sample, given that most respondents in this survey identified as underserved in some way.

Section Summary

Peer review is an integral part of academia — dissemination of findings via publishing in academic journals and allocation of grant funding both depend critically on the peer review process. Despite the centrality of peer review to scientific processes, career success, and belongingness in science, learning how to engage with peer review remains part of the “hidden curriculum” (Calarco, 2020; Palminteri, 2023) that is not explicitly taught or discussed. Few people receive formal training in peer review (D’Arcy & Salmons, 2021; Hall et al., 2019; Publons, 2018) and there is rarely oversight to ensure that reviewers provide feedback that is


constructive, helpful, professional, and culturally-sensitive (i.e., delivered without further marginalizing underserved or minoritized scholars). Yet this vacuum of deliberate engagement also provides an opportunity for innovation. To support the intentional reconsideration of established systems and norms for greater equity, we next examine peer review processes as a culture cycle.

EXAMINING PEER REVIEW PROCESSES FROM A CULTURE CYCLE PERSPECTIVE

Disparities in scientific outcomes and experiences will not be closed simply by attempting to shift minoritized individuals to accommodate to the dominant culture. Instead, the culture needs to shift. Clear evidence of this need is demonstrated in an analysis of racial disparities in NIH funding: *“all three of the factors that underlie the funding gap—preference for some topics over others, assignment of poorer scores, and decision to discuss an application—revolve around decisions made by reviewers”* (Hoppe et al., 2019). Furthermore, reviewers’ less favorable assessment of women principal investigators — as opposed to less favorable assessments of the proposed science — seems to drive the gender gap in funding (Witteman et al., 2019). Cultural change to close disparities means shifting the definition of what good science is, who decides what good science is, who is perceived to do good science, and the process by which science improves.

Here, we examine peer review processes from a culture cycle perspective (Cheryan & Markus, 2020; Hamedani & Markus, 2019; Markus & Conner, 2014; Markus & Kitayama, 2010). Under this framework (**Figure 1**), institutional systems (e.g., peer review) interact with individual actors (authors, reviewers, editors). This culture cycle perspective is important both in understanding the current status quo and for understanding how to effectively initiate change. Initiatives to change culture will more likely succeed if they incorporate action at multiple levels, and initiatives that do not take into account broader culture may backfire (Hamedani & Markus,

2019).

Figure 1. Cultural change proceeds at multiple levels. Ideas for change are more likely to succeed if they incorporate action at multiple levels. Institutional systems (e.g., peer review processes implemented by journals) must interact with individual actors (e.g., editors, reviewers) who consider the broader culture in which the system is implemented. Figure adapted with permission (Cheryan & Markus, 2020; Hamedani & Markus, 2019; Markus & Conner, 2014; Markus & Kitayama, 2010).

Table 1 contrasts current peer review culture to what an inclusive and equitable culture of peer review might look like. Below, we discuss the current and ideal future of peer review in more detail, at each level of cultural change: Ideas, institutions, interactions, and individuals.

	Current culture	Inclusive & equitable culture
IDEAS	<p>Reviews serve gatekeeping function</p> <p>Excellent science means dominant topics, methods, samples</p>	<p>Reviews serve constructive, formative function</p> <p>Excellent science requires diversity of topics, methods, samples</p>

INSTITUTIONS	<p>Journals seen as more vs. less prestigious, with intense competition to publish in certain journals to improve chances of obtaining jobs and grants; this perpetuates the gatekeeping function of peer review</p> <p>Journal/grant review processes are “black box” for trainees, with little to no training or discussion of peer review processes</p>	<p>Quality of science should be assessed directly through examination of the work, rather than through flawed proxies, e.g., journal names and impact factors</p> <p>Illuminate hidden curriculum & provide training/discussion in constructive, rather than gatekeeping, review</p>
INTERACTIONS	<p>Reviewer/author interaction is anonymous; norms for negativity</p> <p>Inequitable opportunities to contextualize reviews</p>	<p>Formative and constructive reviews</p> <p>Systematic opportunity to contextualize reviews</p>
INDIVIDUALS	<p>Negative experiences & outcomes are common</p> <p>Reviewers/editors write negative, depersonalized reviews</p> <p>Reviewers are gatekeepers</p>	<p>Positive and supportive experiences are the norm</p> <p>Reviewers/editors engage in more formative and personalized feedback</p> <p>Reviewers are allies & role models</p>

Table 1. The cultural change framework applied to the peer review system.

Ideas. What are the normative and widely accepted beliefs and values about peer review? First, we note that peer review is an inherently critical process where editors and reviewers are tasked with identifying weaknesses and strengths of manuscripts. The critical focus of this task can contribute to the *normative negativity* of peer review, or a shared tendency to disproportionately focus on flaws rather than strengths (Table 1, interactions in current culture). Added to this, peer review is typically construed as serving a gatekeeping function, in which the editors and reviewers judge what manuscripts are above or below threshold for that particular journal. Such a gatekeeping function is necessary for identifying research that is flawed or poorly conducted — but gatekeeping can also be delivered or be perceived as an attack on an individual and their place in science. In contrast, a different view of peer review focuses on its developmental function: that the reviewers and editor work with authors to highlight strengths and to mitigate

weaknesses in the work, with the end goal of improving the contribution of the manuscript. These different functions align with fixed vs. growth mindset organizational cultures (e.g., Murphy & Dweck, 2010). A gatekeeping function is a hallmark of *fixed mindset culture*, in which individuals either possess ability or do not possess ability, and an evaluator's task is to determine and monitor the threshold. In contrast, a developmental purpose aligns with *growth mindset culture*, in which all individuals are seen as capable of developing skill, and an evaluator's task is to help cultivate that progress. In business and educational contexts, growth mindset organizational cultures are associated with substantial benefits, including increased employee commitment and trust (Canning et al., 2019). Especially relevant is that individuals asked to think about entering a growth-oriented organizational culture respond more proactively to critical feedback (Emerson & Murphy, 2015).

The ideals and values of peer review are in service of the ideals and values of science, because these ideas shape what reviewers and editors evaluate positively and negatively when considering manuscripts. As a consequence, understanding the culture cycle of peer review also requires inquiry into the ideals and values of the science that is the focus of peer review. As we noted early in the paper, contemporary psychological science and neuroscience were created and enacted by a privileged elite, and the topics, methods, and samples that predominate currently reflect a narrow slice of potential questions and epistemologies. The consequence is that research that examines questions or uses methods outside of the dominant mode can be devalued as lesser-quality science, even if the potential contribution is quite high. This *epistemic exclusion* (Settles et al., 2021) is a form of disciplinary bias where certain topics or methods are disadvantaged; because these topics are frequently pursued by minoritized scholars, this disciplinary bias can perpetuate group disparities. Indeed, Settles and colleagues found that women and faculty from minoritized groups (Black, Latinx, and Native American) report more scholarly devaluation of their research. Perceiving scholarly devaluation is

associated with lower job satisfaction and perceptions of a more negative climate, which are associated with turnover intention. Notably, scholarly devaluation predicts negative outcomes across identity groups, but women and faculty from minoritized groups are more likely to experience it. It is important to note that disciplinary bias can be subtle, and does not always appear as uniform devaluation: For example, in archival analyses in the organizational psychology literature (King et al., 2018), diversity-related manuscripts were as likely to be accepted as other papers *if* they reached three rounds of review; however, diversity-related papers were evaluated more negatively in initial rounds of review and thus less likely to reach that stage.

The logical corollary of epistemic exclusion is that other topics are preferentially *included*. The term *cognitive particularism* describes the tendency to favor research topics and questions like one's own, leading to favorability toward work that is similar to the reviewer's (Travis & Collins, 1991). Research that focuses on dominant questions or employs dominant methods is likely preferred because it aligns with the perspectives, training, and expertise of the majority. According more value to the methods or topics favored by majority or dominant groups can occur in both overt and subtle ways. For example, research on multiracial psychology continues to center Whiteness in multiple ways, such as assuming Whiteness as an unspoken standard or focusing disproportionately on perceptions or attitudes of White perceivers (Garay & Remedios, 2021). Archival analyses show that the race-related research published in prestigious cognitive, social, and developmental psychology journals is predominantly authored by White individuals (Roberts et al., 2020). It is essential to be aware that such preferences yield advantages if research focusing on dominant questions or employing dominant methods is perceived as more valuable.

A manifestation of disciplinary bias is that certain topics or populations of study may be deemed too "narrow" for high-profile journals, and instead authors of such work may be advised to

pursue publication in “speciality” journals (Roberts & Mortenson, 2022). The perception of some journals as more prestigious than others, and the tendency of those journals to prefer some methods and populations of study over others, can lead to a feedback loop that reinforces both those journals and those methods of study — with consequences for how reviewers may perceive their role in the peer review system.

Normative focus on the perceived prestige of journals — related to metrics such as the (flawed) impact factor (Brembs, Button, & Munafò, 2013) and exclusivity (percentage of papers desk rejected vs. reviewed vs. published) — may contribute to how reviewers and editors perceive the primary function of reviews as determining whether a paper is *good enough* or *novel enough* to merit publication in a given journal (Brembs, 2019). This may lead to up-weighting of factors such as a study’s perceived novelty, its riskiness, and how surprising the results are — factors that may be unrelated, or potentially even *negatively* related, to the reliability of the science (Brembs et al., 2013; Brembs, 2019). Indeed, journal impact factors are either uncorrelated (Brembs et al., 2013) or negatively correlated (Fraley & Vazire, 2014; Szucs & Ioannidis, 2021) with the statistical power of published studies. Acknowledgment of the limitations of impact factors has led to calls for more valid, fair, transparent, and reproducible approaches to indexing journal quality that take into account the range of functions of journals (i.e., registering, curating, evaluating, disseminating, archiving; see Wouters et al., 2019).

The perceived prestige of journals in which one publishes can in turn have consequences for one’s career, such as likelihood of obtaining jobs, being promoted, or obtaining funding. For example, applicants to STEM faculty positions have more on-site interviews and job offers if they have a paper in *Cell*, *Nature*, or *Science* (Fernandes et al., 2020). Furthermore, at least part of the NIH funding disparity between Black and White principal investigators relates to differences in the impact factors of journals that publish their work (Ginther et al., 2018). These ideas about what good science is are enacted through institutional training, hiring, and

promotion practices; changing peer review culture will require change at the level of university and departmental hiring practices, which frequently use journal impact factor or reputation as a proxy for the quality of science.

Institutions. In considering the culture of peer review, relevant institutions include journals, professional societies, academic departments, and even faculty-led research groups. In general, the institutional level includes a wide range of organizational units, including more and less formal entities, who engage in policies and practices that translate between ideas to interactions and individual experiences.

Institutional policies and practices reflect certain ideas about what good science is, or what good reviewing entails. For example, funding agencies are institutions that influence what topics and methods are highlighted in calls for proposals, in allocation of funds to certain programs, and in appointing program officers. One safeguard to the cognitive particularism that perpetuates a narrow view of good science is to ensure support for funding agencies that employ a range of perspectives and priorities as well as evaluation methods (Travis & Collins, 1991). This strategy of diversification of resources can work against the tendency to perpetuate narrow assumptions about good science or good methods of evaluation.

Likewise, journals are institutions that state their aims and scope, and select editors who write editorials conveying their principles and values. Institutional practices at journals have important consequences for the type of work that is perceived as rigorous or valuable. Many practices at journals focus primarily on gatekeeping, i.e., deciding which papers are appropriate for the aims of the journal or meet its definition of good science. Such gatekeeping may be done without adequate attention to the potential biases in the system or the development of papers through the editorial process. Without explicit guidelines about reducing bias or developing manuscripts, the normative focus on gatekeeping can perpetuate and exacerbate disparities in who publishes

or receives funding. For example, several analyses have shown that women authors are underrepresented in invited submissions to high-impact psychology journals (relative to the proportion of women associate and full professors at high research activity (R1) institutions; Mackelprang et al., 2022).²

Professional societies and departments are institutional spaces that can enact policies and practices centered on peer review. Although some societies in psychology, neuroscience, and related fields provide options for peer review training (see **Ongoing Initiatives** for further discussion), many others do not. Departments typically neither train nor incentivize high quality reviewing among faculty, postdoctoral scholars, or graduate students. There are three separate but related issues here: Lack of training, lack of accountability and transparency, and lack of incentives for high-quality reviewing and editing (leading to reliance on unpaid labor).

Training and skill development. The gatekeeping function of peer review, upheld by current ideas and institutions, is partly due to the “black box” of peer review, reflecting a lack of training. New reviewers and editors rarely receive training or input to develop their skills. In part, this lack of training reflects a high level of trust in their expertise, and certainly no training could completely prepare reviewers and editors for the range of challenges they will face. Yet, editorial and reviewing roles require skills that are separable from the skills needed to become a good creator of scientific knowledge. Developing reviewers’ and editors’ capacities to weigh different perspectives, communicate clearly, and cultivate excellent scientific output from a diverse range of authors would move our science forward. Within departments and labs, illuminating the hidden curriculum of peer review can happen in formal ways, such as assignments or courses related to writing good reviews, or informal ways, such as brown bags or lab meetings focused

² The Carnegie Classification of Institutions of Higher Education (2023) awards R1 status to universities that meet benchmarks in research activity and expenditures. Benchmarks include things such as the number of research doctorates awarded and the number of STEM research staff, amongst others.

on navigating rejection or responding to reviews.

Because of the current culture of peer review, new editors or reviewers may see themselves as gatekeepers unless explicitly redirected to be constructive, encouraging, and empathetic — a reviewer who provides authors with the opportunity for growth, rather than hurdles to jump. This requires not only illuminating the hidden curriculum of peer review, but overturning current ideas about its function in scientific and academic institutions. Without explicit guidance or attention, the interactions among reviewers, editors, and authors hold the potential to perpetuate and exacerbate bias, as we examine in the next section (see **Interactions**).

Accountability and transparency. Institutional practices around accountability and transparency can contribute to greater procedural fairness of the review process. For example, White scientists are over-represented on editorial boards, whereas scientists who are Black, Hispanic, or Asian and Pacific Islander are under-represented (Liu et al., 2023). Professional societies or publishers who ostensibly value diversity, equity, and inclusion should be monitoring and sharing the diversity of their editorial boards and reviewers. Journals could examine and share the representation of authors at every stage (submission, initial decision, resubmission, acceptance). Elements of the process could be made explicit: For example, if a rejected manuscript could be considered as a new manuscript with additional data or extensive rewriting, the decision letter could state that. Editors could also explicitly state whether they are open to conversations with authors or not. In the absence of these explicit guidelines, it is left to individual authors to negotiate another look at their paper, and individuals from advantaged groups may be more likely to do so. For example, a meta-analysis of the tendency to initiate negotiations finds a small but significant effect (Hedges $g = .20$) indicating that men are more likely to initiate negotiations than women (Kugler et al., 2018). Yet a strong moderator of this gender difference is situational ambiguity: When it is unclear whether negotiation is appropriate, men are substantially more likely to negotiate ($g = .47$) compared to when negotiation norms are

clear ($g = .16$). This meta-analytic evidence parallels experimental evidence demonstrating that explicit policy statements can reduce gender disparities in requesting extensions for assignment deadlines. Here, an explicit policy statement about deadlines led to women and men requesting extensions at equivalent rates (Whillans et al., 2021). Overall, this research suggests that ambiguities in the peer review process are likely to exacerbate disparities if minoritized authors feel less comfortable negotiating rejection decisions or asking for extensions.

Incentives for reviewing and editing. Unlike various types of departmental and university service (e.g., serving on committees or in administrative roles), there is usually no workload reallocation or monetary compensation for peer review. Editors often receive some compensation, but frequently not at rates that justify the time and effort devoted to these roles. In part, this tradition comes from seeing science as operating on a gift economy, in which scientists dedicate their expertise to the collective good without being swayed by a profit motive. Yet, receiving little credit for reviewing (whether monetary or other) means that some actors may abuse the system by reaping the benefits (e.g., advancing their own careers through publication) but not contributing.

The mismatch between the current scientific culture's need for peer review and the absence of rewards for reviewing contributes to the current "crisis" in peer review (Flaherty, 2022): it is becoming increasingly harder for editors to find peer reviewers, which in turn leads to substantial delays in publishing work. Such delays can affect career progression for those at critical inflection points (e.g., looking for their next position or promotion or trying to obtain funding), further harming marginalized scholars who already face multiple hurdles. Individuals who do agree to review may be juggling multiple, often uncompensated, review commitments; when added to other demands on their time, the resulting stress may make it difficult to provide constructive, equitable reviews. Furthermore, power differentials between minoritized individuals who are invited to review and editors who send invitations might make it more difficult for those

individuals to decline invitations, adding to an already overly high service burden for minoritized groups (Domingo et al., 2022; Rodríguez, Campbell, & Pololi, 2015; Social Sciences Feminist Network Research Interest Group, 2017).

Interactions. One of the consequences of the “black box” or hidden curriculum of peer review is that key interactions are often not considered explicitly, and some possibilities for interaction are not known by early career scholars (for example, negotiating with editors after a rejection). Here, we walk through the possible interactions in a typical manuscript submission both to level the playing field, given varying levels of experience with the peer review process, and to provide a foundation for the culture cycle analytic lens.

An author submits a manuscript to a particular journal, and that interaction might include a cover letter highlighting the fit of the work to the journal, or suggesting reviewers to approach or avoid. An editor provides an initial evaluation of the manuscript as to whether it should be externally reviewed or not (desk rejected). If the manuscript is considered suitable for external review, the editor invites reviewers — in part based on their expertise, and in part based on social networks, availability, conscientiousness, and a whole host of other factors. Biases can enter in at this stage: For example, an analysis of more than 26,000 articles published in top psychology journals between 1974-2018 found that White editors (relative to editors of color) were less likely to publish articles about race (Roberts et al., 2020). An analysis of editors and reviewers across a range of scientific fields showed clear homophily by gender in reviewer selection: Male editors tended to select male reviewers, and female editors tended to select female reviewers, and this homophily emerged across scientific disciplines that varied in their gender representation (Helmer et al., 2017). Similar biases can emerge when editors invite reviewers based on the citations in a manuscript, given evidence for gender and racial inequities in citation practices (Bertolero et al., 2020; Dworkin, Linn et al., 2020; Kozlowski et al., 2022; Teich et al., 2022; see Dworkin, Zurn, & Bassett, 2020, and Zurn, Bassett, & Rust, 2020 for review).

The peer review itself is an interaction between a reviewer and an author, and that interaction is framed by a communication from the editor in a decision letter. The decision letter ranges from clear rejection to a revise-and-resubmit decision to (much less frequently on first review) acceptance without revisions. As outlined by Day (2011), the high rate of rejection at most journals means that the experience of rejection is ubiquitous, but it is rarely discussed openly (e.g., see Jaremka et al., 2020). If a rejection is received, the author then decides their next step, which can include continuing to interact with this journal, moving on to another journal, or (perhaps too common) leaving the manuscript behind.

A key point is that each of these interactions can be construed differently by actors with different standpoints, different roles, different information, and different motives. For example, in the current culture, editors hold more power than authors in that their role requires them to decide whether the manuscript should go forward at the journal. Yet authors can and do adopt proactive strategies such as requesting specific action editors or reviewers; although not all editors heed these requests, some do. Some journals formally ask for this information in the manuscript submission process, and some leave it up to authors to suggest in their cover letters. Further, editorial decisions might lead to different author actions if a decision is perceived as “the final word” versus a conversation or negotiation. Some authors are more likely to contest editorial decisions or request another chance; some editors are more open to considering these requests. Even in the case of a clear rejection from a journal, some editors might suggest other outlets or provide encouragement about the potential contribution of the research program; this type of communication sends a more strongly growth-oriented message about the value of the research and the researchers than a message that simply states that the manuscript did not meet the threshold for publication in that particular journal.

Typically, the identities of peer reviewers are not known to authors, unless the peer reviewer chooses to sign their review and the journal allows reviewer identification. The anonymity of

reviewers is important to preserve particularly because it allows reviewers with less power in the system to critique those with more power, without fear of retaliation. In a five-journal study of a pilot program for open-review policies (in which reviews were published along with articles), only 8.1% of referees opted to be identified in their published review, and these identification decisions were much more likely when the review was positive (Bravo et al., 2019). Similarly, an analysis found less harshness in reviews for open-review biomedical journals, compared to a convenience sample of confidential reviews (Le Sueur et al., 2020). Although anonymous review holds value to protect vulnerable reviewers, its downsides should also be considered: Anonymity affords a harsher critique, and anonymity can lead to more aggressive or hostile responding (e.g., Zimmerman & Ybarra, 2016). Paired with the normative negativity of peer review, this anonymity can result in reviews that cause demoralization rather than provide constructive criticism. Reviewers who write anonymous reviews, and editors who deliver such reviews, can counteract the downside of anonymity by writing feedback that aligns with what they might share with an author face-to-face, and revise or flag language that is unduly harsh.

Another potential interaction relevant to peer review is discussing the reviews that authors have received with others — mentors, coauthors, or peers. Such discussions can be useful in contextualizing the feedback, venting frustrations, and identifying next steps. Early in training, authors are likely co-authoring with advisors or other mentors, and these mentors offer a valuable opportunity to put the reviews in context — that is, to flag inappropriate content, to offer perspective on the critiques, or to highlight concrete actions that could be taken from the review. Perhaps most important, mentors with more experience in the peer review process can reassure newer authors that negative critiques may not be personal, may not be accurate, and are unfortunately encountered by everyone who submits work to peer review. Not all advisors will engage in this contextualization, and thus many early career researchers may interpret negative peer review as diagnostic of their potential in the field, when in fact it is not. Further,

there may be a continued need to process and interpret reviews with the benefit of more objective eyes, but norms for independence may make early career researchers less likely to share their reviews — particularly harsh ones — with advisors, mentors, or colleagues who are not co-authors on the work.

Individuals. A wide range of individual-level processes contribute to inequities in peer review. It is important to note that these processes do not require individuals to intend to or even to be aware that their actions might result in inequitable outcomes. Indeed, individuals may be quite motivated to eradicate inequities, and yet their actions might contribute to inequities given the larger system. Importantly, however, individual actors vary in the level of power they hold in the system (and thus their ability to enact change at institutional levels). We focus here both on authors who navigate peer review systems, as well as reviewers and editors who enact peer review.

As reviewers and editors, individuals are strongly predisposed to favor research results that align with their own expertise and expectations (Mahoney, 1977). One striking empirical demonstration of how judgments of scientific merit are moderated by group membership comes from Handley et al. (2015), who asked participants to provide an evaluation of an actual scientific abstract reporting gender bias in STEM. Male evaluators rated the research as lower quality than female evaluators, and male faculty in STEM especially rated the research quality poorly. Further, an experiment that only varied the conclusion of the abstract (that gender bias was documented or was not documented) found that male evaluators' tendency to downgrade the research quality only emerged in the gender-bias condition. What evaluators see as "high quality" evidence — or a novel contribution, or innovative methods — is therefore influenced by their own values and position. Indeed, acceptance rates are higher when reviewers and editors share gender or country identities with authors (Murray et al., 2019). Thus, although ideally the reviewer's task is to assess the scientific merit of the submitted manuscript, in reality these

assessments are influenced by one's own values, identities, and expectations. These empirical findings showcase how critical it is to have a diverse range of scholars participate in peer review — otherwise, the perspectives of only the dominant group will shape the assessment of submitted work.

The actions of reviewers and editors provide both opportunities and constraints to authors, and authors' own values, position, and experience will influence their actions. Authors interpret reviews and editorial decisions from their own standpoints, which are likely influenced by their history in authoring manuscripts, their sense of trust in the peer review system, and their vulnerability to identity threat.

If a system is designed around the needs of a particular set of people, the goals, processes, and outcomes of that system will contribute to favorable consequences for that group — whether the actors in the system intend for this to happen or not (e.g., Perez, 2019). In this way, an editor who considers themselves “unbiased” may still contribute to disparate outcomes because the system of value in research favors particular groups and topics. Further, even in the hypothetical case where feedback is equivalently negative toward two authors, that negative feedback can translate to disparate impact if one of those authors is contending with questions of identity threat (e.g., Murphy & Taylor, 2012). If biases in the system signal to one of the authors (but not the other) that they do not belong in science (e.g., their identities are numerically underrepresented, their ideas are questioned in other settings), then the “unbiased” review can contribute to disparate psychological experiences, and ultimately to unfair outcomes.

Section Summary. Invoking a culture cycle framework allows actors within the peer review system to understand the multiple and intersecting ways that current peer review culture can create and perpetuate disparities in who engages in and advances in psychology and neuroscience. Understanding the many levels where systems of value are communicated and reinforced also provides opportunity to question these values and to introduce new ideals. A cultural cycle framework provides insight into why change is hard, but it also provides insight to where change is possible.

ONGOING INITIATIVES

Given that cultures are created and changed at multiple levels, culture shift will be most effective when multiple levels are engaged through both short-term and long-term strategies (Hamedani & Markus, 2019). Short-term strategies aim to change the ideas and practices of those who currently hold power in peer review: funding agencies, professional societies, journals, editors, and reviewers. Short-term solutions can also provide marginalized scholars with tools and strategies so that they can act as agents of change. Long-term strategies seek diffusion of cultural change by providing reviewers and editors with tools and knowledge to become agents of change in their own networks (e.g., labs, departments, professional societies), as well as providing concrete support for individual trainees through their developmental trajectory. Here, we selectively review some ongoing initiatives that seek to implement change across these different levels. We then describe how peer review processes can and should change from institutions to individuals, and provide a concrete call to action as a starting point for promoting this culture shift.

Peer review guidance and training

One approach to improving peer review culture focuses on providing training to reviewers. Indeed, a recent survey of researchers across the globe in diverse fields indicated that 88%

believe that reviewer training is important, and that 80% believe that more training will have a positive impact on peer review (Publons, 2018). Addressing this need, several ongoing initiatives aim to illuminate the hidden curriculum of peer review and provide formal training and discussion. Here, we highlight a select few to provide examples of the breadth and type of resources available. For example, books and articles introduce the peer review process, along with tips on how to review and cope with receiving reviews (e.g., Hall et al., 2019; Kelly, Sadeghieh, & Adeli, 2014; Wager, Godlee, & Jefferson, 2003). The Committee on Publication Ethics (2022) provides tips for reviewing along with ethical guidelines that reviewers should follow. The Web of Science (2022) provides courses related to peer review.

Some resources are more discipline-specific. For example, the equator network (n.d.) provides several resources for peer reviewing in health research. These include links to training materials and guidelines, and a tool (Good Reports, 2020) that clarifies reporting requirements for manuscripts. The latter can help reviewers ensure that reviewed manuscripts describe information required for reproducible and open science. Such resources would also be beneficial for psychology, neuroscience, and related fields. Although individual journals can provide similar guidelines (described below), the guidelines often differ across journals (Patel, 2014) and are not incorporated in formal peer review training.

Many organizations provide training in peer review. Funding agencies frequently provide resources for reviewers, and some more intensive training opportunities exist as well. One example is the NIH Center for Scientific Review, which offers a competitive program for early career researchers (NIH Center for Scientific Review, 2023); under this program, junior faculty review NIH grants and discuss them at the appointed grant panel. Another example is the PREreview Open Reviewers initiative (PREreview, 2022) intensive workshop series that trains individuals in reviewing manuscripts, culminating in guided and collaborative reviews of preprints. This initiative has also started a similar program, Open Grant Reviewers, for reviewing

grants (PREreview, 2021). Some professional societies also offer such training; for example, the Society for Neuroscience offers a Reviewer Mentor program to provide individuals with training in writing strong and constructive peer reviews (Journal of Neuroscience, 2022). The American Psychological Association (APA, 2022a) and the American Speech-Language-Hearing Association (ASHA Journals Academy, 2023) also offer peer review training resources.

Increasingly, societies and journals are initiating programs and policies that directly aim to reduce race, gender, or other group biases in scientific publishing. For example, the APA offers resources specifically for inclusive peer review as part of a toolkit for journal editors (APA, 2021). The Society for Personality and Social Psychology (SPSP) has approved evidence-based recommendations from its Anti-Colorism/Eurocentrism in Methods and Practices (ACEMAP) task force (e.g., tracking diversity of authors, reviewers, and editors; requiring incoming editors to specify plans for increasing representation; instituting a new feedback form that provides a mechanism for authors to report exclusionary experiences to the Publications Committee; Ledgerwood, personal communication, 2023). The journal *Personality and Social Psychology Review* (PSPR) has created an Emerging Editor Board, which provides training in good peer review practices to advanced graduate students and postdocs (Personality and Social Psychology Review, 2023). PSPR also has initiated an Emerging Editor Fellowship, which “seeks to create a supportive pathway to editorial leadership for psychologists from communities that have been historically excluded from these roles” (SPSP, 2023).

Several journals are making strides toward improving the quality and fairness of the peer review process by putting forth specific guidelines for reviewers. These include Elsevier’s certified peer review course and fundamentals of peer review modules (Elsevier Research Academy, n.d.a., n.d.b), as well as similar training initiatives by Taylor & Francis (2022), Springer Nature (2022a), the British Medical Journal (The BMJ, 2022), and the Society for Industrial and Organizational Psychology and the Consortium for Advanced Research Methods and Analysis (CARMA, 2022).

Springer Nature (2022b) additionally offers guidelines that consider race, racism, sex, and gender. For example, they note that race is a sociopolitical construct that should not be used as a proxy for other variables. They also explicitly state that editors reserve the right to refuse publication of racist content. A tool to help journals in this process is the Diversity Accountability Index for Journals (DAI-J; Buchanan et al., 2021b); journals can undertake a self-assessment to understand their strengths and weaknesses along several dimensions that contribute to diversity, equity, and inclusion in scientific publishing.

These resources are likely helpful for training individuals to become constructive and fair reviewers and editors. Yet, as with many interventions, systematic study of the impact of these resources is limited: Are these resources used, and if so, do they produce the desired outcomes? Some studies suggest that peer review training can reduce interrater variability (Recio-Saucedo et al., 2022), and other studies indicate that such training may have little or only short-term impact on review quality (Bruce et al., 2016; Callaham & Tercier, 2007; Houry, Green, & Callaham, 2012; Patel, 2014; Schroter et al., 2004; Schroter et al., 2008). Yet clearer design and impact of interventions to improve peer review can be achieved with clearer theoretical grounding about what aspects of peer review are problematic and why they occur (Hug, 2022). Our theoretical framework highlights biases related to cultural norms and how they are reiterated in the culture cycle of peer review. Previous assessments of review quality, however, did not include explicit attention to cultural sensitivity or biases related to studying WEIRD samples (see **Call to Action**). Thus, further work will be needed to determine whether and how reviewer training may affect not only traditional measures of review quality (Van Rooyen, Black, & Godlee, 1999; e.g., highlighting strengths and weaknesses, providing constructive feedback, providing examples to back up claims, and detecting errors) but newer measures that incorporate cultural competence and recognition of work that does not use “dominant” approaches or WEIRD samples. Overall, we believe that working to improve peer

review from theoretically and empirically based frameworks will strengthen efforts to improve peer review.

Another limitation of reviewer training is that engagement with such training resources currently depends on individual motivation, and those most motivated to take part in such training activities may be those who are already cognizant of the importance of fair review processes. In our **Call to Action**, we will highlight ways that changes should be implemented more broadly to affect the culture of peer review.

Some journals have started to make such broader culture changes. For example, *eLife* (2022a) and *Nature Reviews Psychology* (2022) have instituted editorial oversight policies intended to reduce the burden on authors from contradictory or unclear reviews. By attempting to have reviewers reach consensus, and by having editors clarify to authors the revisions that are needed vs. requests that can be ignored, these journals seek to make the path to paper acceptance clear and concrete for authors. More recently, *eLife* (2022b) has changed its publishing model so that it no longer accepts or rejects papers; instead, all reviewed papers are published as “reviewed preprints” that include the manuscript, an assessment by *eLife*, and public reviews. This change removes the power that reviewers have to gatekeep papers; however, editorial decisions on what to review still remain. Although the pros and cons of this particular policy may be debated, it raises the point that radical measures may be needed to change the culture of peer review.

Editors wield a great deal of power in today’s peer review system — power not only over specific manuscript decisions, but over the process of peer review itself, including decisions about whether a paper is reviewed (or reviewed again), and what parts of the process should be made visible to others. Because of editors’ formal and informal power, it is critical to ensure that editorial boards reflect the diversity of the population and our field. Indeed, some journals have

made efforts to diversify their editorial boards (e.g., Cognitive Neuroscience Society, 2020; eLife, 2021a, 2021b; Thomas, 2020) — in part to reduce biases related to reviewer-author homophily (Murray et al., 2019). Other journals have established mentoring of individuals to become future editors (some journals are supporting editorial fellowships to provide editorial experience and mentorship for individuals from historically excluded groups; APA, 2022b; SPSP, 2023). There are also resources to support English writing and translation for researchers from non-Anglo-traditions (Arunachalam et al., 2022). Finally, more journals are joining the call to focus on topics that are relevant to individuals from under-represented and under-served communities (e.g., Arunachalam et al., 2022; Bauer, 2023; Jimerson et al., 2021). Such changes are essential, because they move beyond reviewer-specific changes to broader, journal-wide changes that can impact the culture of review.

Services for authors & trainees

The resources highlighted above are primarily aimed at helping individuals become better peer reviewers. There are also initiatives that seek to help authors put their best foot forward in submitting their work for peer review (Moradi et al., 2023) or preparing a revision (Palminteri, 2023). For example, the Peer Review for Inclusion, Diversity, and Equity (PRIDE, n.d.) initiative provides a database of volunteer reviewers who are willing to provide feedback on fellowship applications of LGBTQ+ and other minoritized students in STEM. Other organizations provide students with mentorship and feedback about graduate school applications. Examples of these organizations include Black in Neuro's Personal Statement Workshop (Black in Neuro, n.d.), the Stanford Neuroscience Application Assistance Program (SNAAP, n.d.), the Mentoring Aspiring Graduate students and building an Inclusive Community program (MAGIC, n.d.), the Graduate Student Mentorship Initiative by Científico Latino (Científico Latino, n.d.), and the Application Statement Feedback Program (ASFP, 2021). Other initiatives provide feedback to authors submitting manuscripts for peer review; for example, LingProof (GLOSSA Psycholinguistics,

2017) is a proofreading service offered by a community of linguists. They aim to combat linguistic discrimination in peer review by proofreading papers by scientists who are not native English speakers. Similarly, Reviewer Zero piloted a prereview program in which experienced reviewers provided formative feedback to students on their National Science Foundation graduate fellowship applications prior to their submission.

Although these initiatives are likely useful for individuals navigating the peer review system, they are nevertheless limited. As we noted earlier, there is little data to speak to the uptake, experience, or impact of engaging with these programs. These efforts can provide important feedback to authors and potentially improve their experiences with peer review, but they do not aim to change the broader culture of the peer review system. These initiatives can help more people navigate the system as it stands; eventually, through generational shifts, advancing individuals from a wider range of positionalities and perspectives *might* result in changes to norms. But individuals tend to adapt to the norms and values upheld by current systems, and thus generational change is by no means assured. More critically, too much would be lost in waiting for that to happen. Instead, increasing diversity, equity, and inclusion within psychology and neuroscience is more likely to be realized by efforts aimed at multiple levels of the system (Hamedani & Markus, 2019) that engage institutional practice and policy. Author-oriented initiatives will therefore carry greater impact when combined with broader strategies aimed at reviewers, editors, policies, and normative practices.

CALL TO ACTION

In any multi-actor and multilevel system, systemic errors, or bias, enter in at multiple points. Thus, following the culture cycle framework, specific strategies must be enacted at multiple levels to promote a more inclusive and equitable peer review culture (**Table 2**). Here, we focus

on three goals and describe concrete actions that reviewers, editors, and institutions can take in efforts to reach them.

Goal: Reviews and editorial decisions serve a constructive, formative function

The first row of **Table 2** presents specific actions that might be enacted by reviewers, editors, and institutional leaders to increase the likelihood that reviews serve a constructive, formative function. Reviews and editorial decisions can be offered with an eye to what would make the work a stronger contribution, even while rendering a “reject” decision. Reviewer or editor feedback can communicate rigorous standards while simultaneously communicating belief that the particular manuscript or author holds the capacity to meet these standards. Indeed, research on such “wise feedback” (Cohen et al., 1999) illustrates the beneficial effects of pairing critical feedback with explicit mention of high standards and a statement of belief that the author can meet those standards. Such communication can resolve the potential that critical feedback delivered to minoritized authors is perceived as due to racial bias; indeed, wise feedback eliminated racial disparities in perceiving bias from the evaluator and racial disparities in task motivation. More recently, research on the delivery of critical feedback to at-risk middle schoolers shows that growth-oriented feedback leads to substantial improvements in students’ rate of revising their written work and in the quality of student writing (Yeager et al., 2014). If similar processes occur among submitting authors, more constructive reviews would lead to greater author engagement, greater feelings of belonging, and greater persistence. Analyses of review content and subsequent author actions — and whether these differ across racial identities of authors — would provide insight to the impact of constructive feedback.

One way that wise feedback principles can be implemented in a manner that is not labor-intensive is by modifying the templates used to generate decision letters in many online editorial management systems. Such templates could communicate that the editor knows that it is

disheartening to receive rejections when much effort has been put into the work; that rejections should not be taken as an indication that the work is not valuable or appreciated; and that the editor believes the authors have the capacity to contribute meaningfully to the scientific field. Editors can also point to the value of resubmission, for example by noting that research on grant applications shows that among PIs whose initial submission are rejected, those who revise and resubmit initially unfunded applications are more likely to receive funding than those who submit entirely new applications (Doyle et al., 2021). These modifications can be accompanied by surveys to assess how the feedback was perceived by the authors, whether the message increased their sense of belonging in science, and their subsequent actions regarding the manuscript and the research it reports. Such data analysis can show whether simple modifications to boilerplate emails can help ease the sting of rejection.

Table 2.

Inclusive & equitable culture	Actions to develop and promote inclusive, equitable peer review culture		
	Reviewers	Editors	Institutions
Reviews and editorial decisions serve constructive, formative function	<ul style="list-style-type: none"> ○ Provide concrete, specific feedback; actionable suggestions ○ Evaluate the work, not the person ○ Evaluate scientific objectives, not writing style/language/grammar ○ Acknowledge strengths ○ Highlight potential & paths forward for work 	<ul style="list-style-type: none"> ○ Articulate purpose of review process and offer tools to aid reviewers in operationalizing this (e.g., checklists) ○ Write decision letter templates that can authentically communicate recognition of author's effort or potential of the work ○ Implement gender + race citation balance checks ○ Reward excellence in reviewing ○ Make processes transparent ○ Do not allow hostile, unprofessional, or 	<ul style="list-style-type: none"> ○ Incentivize constructive, formative reviewing ○ Provide trainees with systematic opportunities to contextualize reviews

		inappropriate reviews; communicate to review, redact, and/or frame as inappropriate for author	
Underserved trainees have a positive and supportive experience	<ul style="list-style-type: none"> ○ Communicate basic respect for authors; provide prompt reviews ○ Emphasize potential contributions of an improved manuscript ○ Make clear feedback comes from place of high expectations that you think authors can meet 	<ul style="list-style-type: none"> ○ Communicate basic respect; provide prompt decisions. ○ Edit or have reviewers revise problematic reviews ○ Recruit and reward diverse editorial boards ○ Monitor and report outcomes and experiences of underserved authors ○ Accountability: Publicly report and iteratively revise processes based on monitoring results 	<ul style="list-style-type: none"> ○ Provide reviewer and author training opportunities to illuminate hidden curriculum ○ Monitor and report outcomes and experiences of underserved authors
Adopt a more expansive view of "good" science	<ul style="list-style-type: none"> ○ Recognize and raise importance of research that better represents diversity of humanity ○ Consider differential burdens of working with different populations ○ Recognize value of applied as well as theoretically-driven research ○ Use inclusive language ○ Include different writing angles and approaches 	<ul style="list-style-type: none"> ○ Require all authors to justify sampled population, characterize demographics of sample, and explicitly state limits on generalizability ○ Incentivize diverse research samples via awards, special submission categories ○ Reconsider what counts as 'specialized' vs. 'appealing to a general audience' ○ Critically reflect on what work is seen as interesting or novel (and why these are editorial criteria) ○ Select diverse reviewers/editorial board 	<ul style="list-style-type: none"> ○ Provide resources and recognition for community-based, participatory research on diverse populations ○ Recognize high-effort work required to broaden populations participating in research ○ Change metrics and processes for assessing quality of work, focusing on holistic assessment of science ○ Promote, reward, and offer structure to support team science across cultures and sample populations

Table 2. Actions reviewers, editors, and institutions can take to develop and promote an inclusive, equitable culture

Goal: Underserved trainees have a more positive and supportive experience

Current reviewing culture is normatively negative, and often assumes that the function of reviews is purely gatekeeping. A cultural shift toward a positive, supportive peer review experience may ameliorate the reduced sense of belonging and other negative experiences of underserved trainees (reviewed above). As shown in the second row of **Table 2**, this will require changes at all levels. At a very basic level, communicating respect for authors (e.g., using respectful language, articulating a clear rationale for editorial actions) helps signal that the reviewer/editor views the author as a valued member of the scientific community³. Diverse editorial boards also provide clear signals to scholars that their research is valued by the community (Auelua-Tommey & Roberts, 2022). Adopting a growth orientation (discussed above) will enable a supportive experience for authors, emphasizing their potential to meet high standards for journal publications.

Given how ingrained negativity and gatekeeping are in reviewing culture, these changes will not be easy to implement. Furthermore, the specific changes that are actually effective in providing underserved trainees with a more positive, supportive experience are not known, and different strategies may be more useful for different identity groups or different career stages. It is therefore imperative that journals, societies, and institutions gather and share data on what predicts trainee experiences and outcomes in the review process (see, e.g., *eLife* research discussed above; Murray et al., 2019). Such empirically-based and systematic investigation may be revealing of systemic biases, and findings can be shared publicly and used to iteratively drive reforms. This work can reveal, for example, biases in whose papers are more likely to be

³ This goal can also be addressed by editors and reviewers proactively calling out racist, sexist, ableist, etc., content appearing in manuscripts, so that such harmful content does not enter the literature.

accepted vs. rejected, which research topics are prioritized, and interactions between author identity and research area that influence paper acceptance vs. rejection (Roberts et al., 2020). Importantly, to reach consensus on systematic biases and inequities in the peer review process, these investigations should be harmonized across journals, funding agencies, and societies, so that the operationalization of key variables and outcomes are consistent, enabling comparison across studies (Sato et al., 2021). Critically, such data collection and analysis must be accompanied by the development of theories of *why* and *how* such biases arise (Hug, 2022), which can then inspire approaches for counteracting them. Finally, it is important for data collection and analysis to track both immediate consequences of peer review outcomes (e.g., feelings of confidence and belonging, manuscripts abandoned vs. resubmitted; biases in acceptance rates) and more distant consequences that affect who wants to stay or is able to stay in academia and what research fields they pursue (e.g., long-term funding, tenure outcomes, changes in research topics).

Goal: Promote a more expansive view of “good” science

As noted earlier, many scientific fields were created by a privileged group of (White) individuals, and thus the topics, methods, and samples that dominate reflect a narrow slice of topics worthy of study. The consequence is that some research is determined to be of broad interest and importance, whereas research studying non-WEIRD populations and/or using non-dominant methods is deemed (at best) to be of interest to “specialty” journals only (Roberts & Mortenson, 2022). Recently, Roberts (2022) recounted in detail a recent experience with this system, analyzing his case as exemplifying

“an intellectual echo chamber in which a single worldview held by the majority group (in this case, the editor, reviewers, and authors) formalizes itself in the permanent scientific record under the guise of a scientific debate. That single

worldview is then used as the scientific metric by which to evaluate opposing worldviews, and to then accuse those opposing worldviews of being ideologically motivated and unscientific. By definition, then, what counts as “good” science is what only aligns with the ideological needs of the dominant group (see West, 2001).” (p.8).

We, like others (Bauer, 2022), argue that good science is necessarily diverse science, that science cannot be rigorous and generalizable unless it studies the entire population rather than a slice (Majid, 2023; Roberts et al., 2020), and that there is value to the scientific enterprise in using methods that provide complementary insights (Lewis, 2021). Below, we discuss the importance of studying diverse populations using varied techniques (Table 2, third row). We note that diversity of scientists, perspectives, and methods are highly related. Individuals who are from minoritized groups may be more likely to have perspectives that are not well-represented, study populations who are not well-represented, and potentially use qualitative or cross-cultural approaches that are not mainstream. Promoting diversity of scientists without promoting diverse perspectives, samples, and methods does not fully address the myriad places in which diversity is critical, or acknowledge the multiple and intersecting barriers to achieving diversity, equity, and inclusion. We therefore advocate for a comprehensive and expansive view of diversity that considers the scientists doing the work as well as their perspectives, the populations they study, and how the studies are conducted. Further, investigating how these factors intersect is essential: Such empirically-based and systematic investigation may be revealing of systemic biases, and findings can be shared publicly and used to iteratively drive reforms. This work can reveal, for example, biases in whose papers are more likely to be accepted vs. rejected, which research topics are prioritized, and interactions between author identity and research area that influence paper acceptance vs. rejection (Roberts et al., 2020).

Who is being studied? The importance of diverse samples. To broaden representation and inclusion in science, it is critical for the stakeholders of the peer-review process to consciously counteract practices that center Whiteness (Garay & Remedios, 2021), rely on WEIRD samples as the “default” (Henrich et al., 2010; Prather, 2021; Ricard et al., 2023; Roberts & Mortenson, 2022), and, in centering a normative experience, marginalize the experience and cognitive properties of others (Majid, 2023; Thomas et al., 2023). One example of this bias in action is seeing samples from Majority World (non-Western) countries as a better fit for “local” journals (Draper et al., 2022) or requiring a White comparison group rather than centering non-White experiences. Reliance on WEIRD samples fundamentally limits the inferences that can be drawn, but this limitation is rarely noted (Decolonial Psychology Editorial Collective, 2021; Majid, 2023; Roberts & Mortenson, 2022). Clarifying the constraints on generality due to WEIRD sample characteristics aligns with a broader effort to encourage and incentivize authors to acknowledge the limitations and assumptions underlying their inferences (e.g., Simons et al., 2017). Editors and reviewers should recognize and normalize the value of studying non-WEIRD samples to build a more generalizable science (Decolonial Psychology Editorial Collective, 2021; Girolamo et al., 2022; Majid, 2023). Furthermore, even if a WEIRD sample is justified, attention should be given to the racial and ethnic composition of the sample to ensure it is representative of the population being studied. Indeed, others have proposed re-defining WEIRD as “White, English-speaking, normatively-Invisible, Racially color-evasive, socially Dominant class” (Thomas et al., 2023). Such a redefinition brings to the foreground that the classic definition of WEIRD obscures that only some of the Western population (typically White individuals) are well-represented in psychology studies.

When reviewing scientific work, editors and reviewers also need to acknowledge the importance and difficulties of data collection in populations that are rarely represented in psychological science. They should consider the differential burdens placed on researchers who work with

such populations when requesting follow-up studies and abandon using WEIRD samples as a standard control population that serves as a precondition for publication (see Apfelbaum et al., 2014). Evaluation of scientific contributions will benefit from a thoughtful balance between the weights of the inevitable challenges associated with investigating an understudied population (e.g., sample size) versus the dire need for psychology and neuroscience to expand the understanding of diverse human populations. Diversifying the samples and culturally relevant ideas that journals publish can also provide greater pathways to psychology and neuroscience from a diverse set of players in science as a system, given that different topics in STEM are associated with author identities (Kozlowski et al., 2022).

For both accountability and transparency, authors can routinely justify sample populations, characterize the demographics of their sample, and explicitly state limits on generalizability (Girolamo et al., 2022). Relatedly, Rad et al. (2018) suggest that editors establish incentives such as diversity badges and set diversity targets in terms of the population studied. More broadly, institutions should support both etic (cross-cultural) and emic (culture-specific) research on diverse populations. Community-based, participatory projects that provide infrastructure for a geographically-dispersed community to engage with research are emerging (e.g., Many Labs, Many Babies; Psychological Science Accelerator). For emic research, institutions should reward researchers conducting field research on diverse or rare populations, and partner with and support research labs in non-WEIRD global regions. Two examples include the Research for Indigenous Social Action and Equity Center (RISE, n.d.) and Busara Center for Behavioral Economics based in Nairobi, Kenya (Busara, 2022).

How is the research conducted? The importance of diverse methods. The dominance of certain techniques in psychological science means that the field may overlook the importance of other approaches that can yield critical insights. Studies in mainstream psychological science journals typically focus on carefully controlled experiments that test specific hypotheses with

quantitative approaches. Although such studies are no doubt useful, important contributions are also yielded from research that is descriptive rather than experimental, or that prioritizes ecological validity (and is therefore less controlled). Numerous qualitative methods and analytic techniques exist within psychological research, and these can inform the field's understanding in complementary and distinct ways (Madill & Gough, 2008). The dominance of carefully controlled quantitative research, however, can lead to devaluation of ecologically valid, descriptive, and/or qualitative research (Tafreshi et al., 2016). In turn, this devaluation of certain methods can lead to harsher review of content areas that benefit the most from qualitative approaches (e.g., developmental, social, or cross-cultural psychology). Adopting an expansive view of what "good science" is requires embracing the diversity of methods at our disposal and recognizing that some questions are better answered via qualitative or descriptive approaches (Brady et al., 2018; Kosie & Lew-Williams, 2022). Using multiple approaches allows better observation and characterization of the diversity of human behavior in the myriad contexts in which it unfolds.

Inclusion of non-WEIRD samples will also require innovation to overcome methodological limitations arising from developing methods, measures, and techniques within a narrow set of participants. For example, as noted in a call to expand child development research around the globe, Draper and colleagues (2022, p. 7) note that "gold standard" measures are largely from Minority World (Western) countries, optimized for children who speak English as a home language, and compatible with typical environments in these countries that may not be as relevant in Majority World countries (e.g., nuclear families with educated parents).

Technological limitations arising from biases in methods development can also lead to overt exclusion from research: For example, Black participants may be commonly excluded from studies using fNIRS, EEG, and fMRI (Girolamo et al., 2022; Ricard et al., 2023). The fNIRS signal is affected by skin melanation and hair type; EEG electrodes may not achieve adequate skin contact with coarse and/or curly hair; and fMRI head coils may not provide enough space

for some hairstyles (and preclude scanning of individuals with metal in hair extensions; Girolamo et al., 2022). Addressing these limitations is not as simple as trying to recruit non-WEIRD samples; instead, the techniques themselves need to be adjusted. For example, hair braiding can reduce electrode-skin impedance and EEG electrodes can be redesigned to further reduce impedance with coarse/curly hair (Etienne et al., 2020). This example highlights the importance of developing new methods, and taking advantage of existing methods, that allow inclusion of many populations and enable insights not provided by mainstream techniques.

Section Summary. The goal of adopting a more expansive view of “good” science is inherently challenging because scientists are trained within particular epistemological and ideological perspectives; we value the particular way of knowing that we enact. The liability is that we cannot always see the water we swim in, and there can be a tendency (particularly with research that exists outside of the mainstream in some way) to consider other work as ideologically-driven, but one’s own work as not. Yet, every epistemology comes with assumptions and values, and thus a transparent, fair, and valid science is one that owns those assumptions and values.

CONCLUSIONS

Peer review is a core component of scientific progression at the level of the scientific field and at the level of individual scientists’ careers. At the field level, peer review ideally propels scientific knowledge forward through critique by experts, thus demarcating certain knowledge as valuable and trustworthy. At the individual level, scientific careers are built on article publication, funding, and citation by other scientists. As scientists, reviewers, editors, and readers, we engage with peer review based on trust that the process is fair and impartial, and that ultimately results in higher quality science. Yet, there are pervasive reasons to doubt whether this trust in peer review is warranted.

Peer review can serve a positive, constructive, and formative function when done with an eye toward improving science rather than gatekeeping it. Eliminating the biases built into the current system — biases in who is studied, how research is conducted, what topics are deemed relevant and important — requires a cultural change across many levels, from ideas and institutions to individuals. This cultural change should prioritize peer reviews that are constructive, include and promote groups that are marginalized, and adopt an expansive view of what counts as “good science.” These changes can improve scientists’ experience of peer review, promote diverse perspectives and identities, and enhance the quality and impact of science.

REFERENCES

AlShebli, B. K., Rahwan, T., & Woon, W. L. (2018). The preeminence of ethnic diversity in scientific collaboration. *Nature Communications*, 9(1), 1-10.

American Psychological Association. (2021). Equity, diversity, and inclusion toolkit for journal editors. <https://www.apa.org/pubs/authors/equity-diversity-inclusin-toolkit-journal-editors.pdf>

American Psychological Association (2022a). Reviewer resource center. <https://www.apa.org/pubs/journals/resources/reviewers-resources>

American Psychological Association (2022b). Calls for editorial fellowship nominations. <https://www.apa.org/pubs/journals/resources/call-editorial-fellowships>

Apfelbaum, E. P., Phillips, K. W., & Richeson, J. A. (2014). Rethinking the baseline in diversity research: Should we be explaining the effects of homogeneity?. *Perspectives on Psychological Science*, 9(3), 235-244.

Arunachalam, S., Deen, K. U., Huang, Y. T., Lidz, J., Miller, K., Ota, M., & Szendroi, K. (2022). Some concrete steps for journal editorial boards: A commentary on Kidd and Garcia (2022). *First Language*. <https://doi.org/10.1177/01427237221096083>

ASFP. (2021). Application Statement Feedback Program. <https://www.asfp.io/>

ASHA Journals Academy (2023). The peer review excellence program. <https://academy.pubs.asha.org/prep-the-asha-journals-peer-review-excellence-program/>

Auelua-Toomey, S. L., & Roberts, S. O. (2022). The effects of editorial-board diversity on race scholars and their scholarship: A field experiment. *Perspectives on Psychological Science*, 17(6), 1766-1777.

Avery, D. R., Dumas, T. L., George, E., Joshi, A., Loyd, D. L., van Knippenberg, D., ... & Xu, H. (2022). Racial Biases in the Publication Process: Exploring Expressions and Solutions. *Journal of Management*, 48(1), 7-16.

The BMJ. (2022). Reviewer training materials. <https://www.bmj.com/about-bmj/resources-reviewers/training-materials>

Bauer, P. J. (2023). Responding to the Association for Psychological Science Strategic Plan, 2022–2027. *Psychological Science*, 34(1), 3-7.

<https://doi.org/10.1177/09567976221133816>

Bertolero, M. A., Dworkin, J. D., David, S. U., Lloreda, C. L., Srivastava, P., Stiso, J., Zhou, D., Dzirasa, K., Fair, D. A., & Kaczkurkin, A. N. (2020). Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. *BioRxiv*.

<https://doi.org/10.1101/2020.10.12.336230>

Black in Neuro. (n.d.). Black in Neuro Workshops. <https://blackinneuro.com/workshops>

Bornmann, L., Mutz, R., & Daniel, H. D. (2007). Gender differences in grant peer review: A meta-analysis. *Journal of Informetrics*, 1, 226-238.

Brady, L. M., Fryberg, S. A., & Shoda, Y. (2018). Expanding the interpretive power of psychological science by attending to culture. *Proceedings of the National Academy of Sciences*, 115, 11406–11413.

Bravo, G., Grimaldo, F., López-Iñesta, E., Mehmani, B., & Squazzoni, F. (2019). The effect of publishing peer review reports on referee behavior in five scholarly journals. *Nature Communications*, 10(1), Article 1. <https://doi.org/10.1038/s41467-018-08250-2>

Brembs, B. (2019). Reliable novelty: New should not trump true. *PLoS Biology*, 17(2), e3000117

Brembs, B., Button, K., & Munafò, M. (2013). Deep impact: unintended consequences of journal rank. *Frontiers in human Neuroscience*, 291.

Brown, E. R., Smith, J. L., & Rossmann, D. (2022). “Broad” Impact: Perceptions of Sex/Gender-Related Psychology Journals. *Frontiers in Psychology*, 13, 796069.

<https://doi.org/10.3389/fpsyg.2022.796069>

Bruce, R., Chauvin, A., Trinquart, L., Ravaud, P., & Boutron, I. (2016). Impact of interventions to improve the quality of peer review of biomedical journals: a systematic review and meta-

analysis. *BMC medicine*, 14(1), 1-16.

Buchanan, N. T., Perez, M., Prinstein, M. J., & Thurston, I. B. (2021a). Upending racism in psychological science: Strategies to change how science is conducted, reported, reviewed, and disseminated. *American Psychologist*, 76(7), 1097.

Buchanan, N. T., Perez, M., Prinstein, M. J., & Thurston, I. (2021b, June 12). Diversity Accountability Index for Journals (DAI-J): Increasing awareness and establishing accountability across psychology journals. <https://doi.org/10.31234/osf.io/zp9em>

Busara. (2022). Changing the world, one behavior at a time. <https://busaracenter.org/>

Calarco, J. M. (2020). *A Field Guide to Grad School: Uncovering the Hidden Curriculum*. Princeton University Press.

Callaham, M. L., & Tercier, J. (2007). The relationship of previous training and experience of journal peer reviewers to subsequent review quality. *PLoS medicine*, 4(1), e40.

Callahan, J. L., Smotherman, J. M., Dziurzynski, K. E., Love, P. K., Kilmer, E. D., Niemann, Y. F., & Ruggero, C. J. (2018). Diversity in the professional psychology training-to-workforce pipeline: Results from doctoral psychology student population data. *Training and Education in Professional Psychology*, 12(4), 273–285.
<https://doi.org/10.1037/tep0000203>

Canning, E. A., Murphy, M. C., Emerson, K. T. U., Chatman, J. A., Dweck, C. S., & Kray, L. J. (2019). Cultures of genius at work: Organizational mindsets predict cultural norms, trust, and commitment. *Personality and Social Psychology Bulletin*, 46, 626–642.
<https://doi.org/10.1177/0146167219872473>

CARMA. (2022). SIOP/CARMA Introductory Reviewer Development workshop.
<http://carmarmep.org/siop-carma-reviewer-series/>

Carnegie Classification of Institutions of Higher Education. (2023).
<https://carnegieclassifications.acenet.edu/>

Chen, C. Y., Kahanamoku, S. S., Tripati, A., Alegado, R. A., Morris, V. R., Andrade, K., &

Hosbey, J. (2022). Meta-research: Systemic racial disparities in funding rates at the National Science Foundation. *eLife*. <https://doi.org/10.7554/eLife.83071>

Cheryan, S., & Markus, H. R. (2020). Masculine defaults: Identifying and mitigating hidden cultural biases. *Psychological Review*, 127, 1022–1052.
<https://doi.org/10.1037/rev0000209>

Cho, S., Crenshaw, K. W., & McCall, L. (2013). Toward a Field of Intersectionality Studies: Theory, Applications, and Praxis. *Signs: Journal of Women in Culture and Society*, 38(4), 785–810. <https://doi.org/10.1086/669608>

Científico Latino. (n.d.). Graduate student mentorship initiative.
<https://www.cientificolatino.com/gsmi>

Cognitive Neuroscience Society (2020). The Next Phase of Publishing in Cognitive Neuroscience. <https://www.cogneuroscience.org/the-next-phase-of-publishing-in-cognitive-neuroscience/>

Cohen, G. L., Steele, C. M., & Ross, L. D. (1999). The mentor's dilemma: Providing critical feedback across the racial divide. *Personality and social psychology bulletin*, 25(10), 1302-1318.

Cole, E. R. (2009). Intersectionality and research in psychology. *American Psychologist*, 64, 170–180.

Committee on Publication Ethics. (2022). Creating a culture of publication integrity together.
<https://publicationethics.org/>

Crenshaw, K. (1990). Mapping the Margins: Intersectionality, Identity Politics, and Violence against Women of Color. *Stanford Law Review*, 43, 1241.

D'Arcy, A., & Salmons J. (2021). Peer review in linguistics journals: Best practices and emerging standards. *Language*, 97, e383-e407.

Day, N. E. (2011). The silent majority: Manuscript rejection and its impact on scholars. *Academy of Management Learning & Education*, 10(4), 704-718.

Decolonial Psychology Editorial Collective. (2021). General psychology otherwise: A decolonial articulation. *Review of General Psychology*, 25(4), 339-353.

De Los Reyes, A., & Uddin, L. Q. (2021). Revising evaluation metrics for graduate admissions and faculty advancement to dismantle privilege. *Nature neuroscience*, 24(6), 755-758.

Domingo, C. R., Gerber, N. C., Harris, D., Mamo, L., Pasion, S. G., Rebanal, R. D., & Rosser, S. V. (2022). More service or more advancement: Institutional barriers to academic success for women and women of color faculty at a large public comprehensive minority-serving state university. *Journal of Diversity in Higher Education*, 15(3), 365.

Doyle, J. M., Baiocchi, M. T., & Kiernan, M. (2021). Downstream funding success of early career researchers for resubmitted versus new applications: A matched cohort. *Plos one*, 16(11), e0257559.

Draper, C. E., Barnett, L. M., Cook, C. J., Cuartas, J. A., Howard, S. J., McCoy, D. C., Merkley, R., Molano, A., Maldonado-Carreño, C., Obradović, J., Scerif, G., Valentini, N. C., Venetsanou, F., & Yousafzai, A. K. (2022). Publishing child development research from around the world: An unfair playing field resulting in most of the world's child population under-represented in research. *Infant and Child Development*, e2375.
<https://doi.org/10.1002/icd.2375>

Dworkin, J. D., Linn, K. A., Teich, E. G., Zurn, P., Shinohara, R. T., & Bassett, D. S. (2020). The extent and drivers of gender imbalance in neuroscience reference lists. *Nature neuroscience*, 23(8), 918-926.

Dworkin, J., Zurn, P., & Bassett, D. S. (2020). (In) citing action to realize an equitable future. *Neuron*, 106(6), 890-894.

eLife (2021a). eLife latest: Update on our actions to promote diversity, equity, and inclusion.
<https://elifesciences.org/inside-elife/89170bcd/elife-latest-update-on-our-actions-to-promote-equity-diversity-and-inclusion>

eLife. (2021b). eLife latest: The diversity of our editorial community.

<https://elifesciences.org/inside-elife/12096861/elife-latest-the-diversity-of-our-editorial-community>

eLife. (2022a). Peer review. <https://elifesciences.org/about/peer-review>

eLife. (2022b). Scientific Publishing: Peer review without gatekeeping.

<https://elifesciences.org/articles/83889>

Elsevier Researcher Academy. (n.d.a). Fundamentals of peer review.

<https://researcheracademy.elsevier.com/navigating-peer-review/fundamentals-peer-review>

Elsevier Researcher Academy (n.d.b). Certified peer reviewer course.

<https://researcheracademy.elsevier.com/navigating-peer-review/certified-peer-reviewer-course>

Emerson, K. T. U., & Murphy, M. C. (2015). A company I can trust? Organizational lay theories moderate stereotype threat for women. *Personality and Social Psychology Bulletin*, 41(2), 295–307. <https://doi.org/10.1177/0146167214564969>

Equator Network (n.d.). Enhancing the quality and transparency of health research.

<https://www.equator-network.org/>

Erosheva, E. A., Grant, S., Chen, M.-C., Lindner, M. D., Nakamura, R. K., & Lee, C. J. (2020). NIH peer review: Criterion scores completely account for racial disparities in overall impact scores. *Science Advances*, 6(23), eaaz4868.

<https://doi.org/10.1126/sciadv.aaz4868>

Etienne, A., Laroia, T., Weigle, H., Afelin, A., Kelly, S. K., Krishnan, A., et al. (2020). “Novel electrodes for reliable EEG recordings on coarse and curly hair,” in IEEE Engineering in Medicine and Biology Society. Annual International Conference, (Piscataway, NJ). doi: 10.1109/EMBC44109.2020.9176067

Fernandes, J. D., Sarabipour, S., Smith, C. T., Niemi, N. M., Jadavji, N. M., Kozik, A. J., ... & Haage, A. (2020). Research Culture: A survey-based analysis of the academic job

market. *eLife*, 9, e54097.

Flaherty, C. (2022). The peer-review crisis.
<https://www.insidehighered.com/news/2022/06/13/peer-review-crisis-creates-problems-journals-and-scholars>

Fraley, R. C., & Vazire, S. (2014). The N-pact factor: Evaluating the quality of empirical journals with respect to sample size and statistical power. *PLoS one*, 9(10), e109019.

Garay, M. M., & Remedios, J. D. (2021). A review of White-centering practices in multiracial research in social psychology. *Social and Personality Psychology Compass*, 15(10), e12642.

Gerwing, T. G., Allen Gerwing, A. M., Avery-Gomm, S., Choi, C. Y., Clements, J. C., & Rash, J. A. (2020). Quantifying professionalism in peer review. *Research Integrity and Peer Review*, 5(1), 1-8.

Ginther, D. K., Basner, J., Jensen, U., Schnell, J., Kington, R., & Schaffer, W. T. (2018). Publications as predictors of racial and ethnic differences in NIH research awards. *PLOS ONE*, 13(11), e0205929. <https://doi.org/10.1371/journal.pone.0205929>

Ginther, D. K., Schaffer, W. T., Schnell, J., Masimore, B., Liu, F., Haak, L. L., & Kington, R. (2011). Race, Ethnicity, and NIH Research Awards. *Science*, 333(6045), 1015–1019.
<https://doi.org/10.1126/science.1196783>

Girolamo, T., Parker, T. C., & Eigsti, I. M. (2022). Incorporating Dis/ability Studies and Critical Race Theory to combat systematic exclusion of Black, Indigenous, and People of Color in clinical neuroscience. *Frontiers in Neuroscience*, 16.

GLOSSA Psycholinguistics. (2017). LingProof.
<https://escholarship.org/uc/glossapsycholinguistics/lingproof>

Good Reports (2020). Reporting checklists for medical researchers.
<https://www.goodreports.org/>

Gruber, J., Mendle, J., Lindquist, K. A., Schmader, T., Clark, L. A., Bliss-Moreau, E., Akinola,

M., Atlas, L., Barch, D. M., Barrett, L. F., Borelli, J. L., Brannon, T. N., Bunge, S. A., Campos, B., Cantlon, J., Carter, R., Carter-Sowell, A. R., Chen, S., Craske, M. G., ... Williams, L. A. (2021). The Future of Women in Psychological Science. *Perspectives on Psychological Science*, 16(3), 483–516. <https://doi.org/10.1177/1745691620952789>

Hall, J. L., Hatcher, W., McDonald III, B. D., Shields, P., & Sowa, J. E. (2019). The art of peer reviewing: Toward an effective developmental process. *Journal of Public Affairs Education*, 25(3), 296-313.

Hamedani, M. Y. G., & Markus, H. R. (2019). Understanding Culture Clashes and Catalyzing Change: A Culture Cycle Approach. *Frontiers in Psychology*, 10. <https://www.frontiersin.org/article/10.3389/fpsyg.2019.00700>

Handley, I. M., Brown, E. R., Moss-Racusin, C. A., & Smith, J. L. (2015). Quality of evidence revealing subtle gender biases in science is in the eye of the beholder. *Proceedings of the National Academy of Sciences*, 112(43), 13201–13206. <https://doi.org/10.1073/pnas.1510649112>

Heesen, R., & Bright, L. K. (2021). Is Peer Review a Good Idea? *The British Journal for the Philosophy of Science*, 72, 635–663. <https://doi.org/10.1093/bjps/axz029>

Helmer, M., Schottdorf, M., Neef, A., & Battaglia, D. (2017). Gender bias in scholarly peer review. *eLife*, 6, e21718.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. *Nature*, 466(7302), 29–29. <https://doi.org/10.1038/466029a>

Hoppe, T. A., Litovitz, A., Willis, K. A., Meseroll, R. A., Perkins, M. J., Hutchins, B. I., Davis, A. F., Lauer, M. S., Valentine, H. A., Anderson, J. M., & Santangelo, G. M. (2019). Topic choice contributes to the lower rate of NIH awards to African-American/black scientists. *Science Advances*, 5(10), eaaw7238. <https://doi.org/10.1126/sciadv.aaw7238>

Houry, D., Green, S., & Callaham, M. (2012). Does mentoring new peer reviewers improve review quality? A randomized trial. *BMC Medical Education*, 12(1), 1-7.

Huber, J., Inoua, S., Kerschbamer, R., König-Kersting, C., Palan, S., & Smith, V. L. (2022). Nobel and novice: Author prominence affects peer review. *Proceedings of the National Academy of Sciences*, 119(41), e2205779119. <https://doi.org/10.1073/pnas.2205779119>

Hug, S. E. (2022). Towards theorizing peer review. *Quantitative Science Studies*, 3(3), 815-831.

Jaremka, L. M., Ackerman, J. M., Gawronski, B., Rule, N. O., Sweeny, K., Tropp, L. R., Metz, M. A., Molina, L., Ryan, W. S., & Vick, S. B. (2020). Common Academic Experiences No One Talks About: Repeated Rejection, Impostor Syndrome, and Burnout. *Perspectives on Psychological Science*, 15, 519–543. <https://doi.org/10.1177/1745691619898848>

Jimerson, S. R., Arora, P., Blake, J. J., Canivez, G. L., Espelage, D. L., Gonzalez, J. E., ... & Worrell, F. C. (2021). Advancing diversity, equity, and inclusion in school psychology: Be the change. *School Psychology Review*, 50(1), 1-7.

Journal of Neuroscience (2022). SfN Reviewer Mentor Program.
<https://www.jneurosci.org/content/sfn-reviewer-mentor-program>

Kelly, J., Sadeghieh, T., & Adeli, K. (2014). Peer review in scientific publications: benefits, critiques, & a survival guide. *EJIFCC*, 25(3), 227.

King, E. B., Avery, D. R., Hebl, M. R., & Cortina, J. M. (2018). Systematic subjectivity: How subtle biases infect the scholarship review process. *Journal of Management*, 44(3), 843-853.

Kosie, J. E., & Lew-Williams, C. (2022). Open science considerations for descriptive research in developmental science. *Infant and Child Development*, e2377.

Kozlowski, D., Larivière, V., Sugimoto, C. R., & Monroe-White, T. (2022). Intersectional inequalities in science. *Proceedings of the National Academy of Sciences*, 119(2), e2113067119. <https://doi.org/10.1073/pnas.2113067119>

Kugler, K. G., Reif, J. A. M., Kaschner, T., & Brodbeck, F. C. (2018). Gender differences in the initiation of negotiations: A meta-analysis. *Psychological Bulletin*, 144, 198–222.
<https://doi.org/10.1037/bul0000135>

Ledgerwood, A., Hudson, S. T. J., Lewis, N. A., Maddox, K. B., Pickett, C. L., Remedios, J. D., Cheryan, S., Diekman, A. B., Dutra, N. B., Goh, J. X., Goodwin, S. A., Munakata, Y., Navarro, D. J., Onyeador, I. N., Srivastava, S., & Wilkins, C. L. (2022). The Pandemic as a Portal: Reimagining Psychological Science as Truly Open and Inclusive. *Perspectives on Psychological Science*, 17456916211036654.

<https://doi.org/10.1177/17456916211036654>

Le Sueur, H., Dagliati, A., Buchan, I., Whetton, A. D., Martin, G. P., Dornan, T., & Geifman, N. (2020). Pride and prejudice – What can we learn from peer review? *Medical Teacher*, 42(9), 1012–1018. <https://doi.org/10.1080/0142159X.2020.1774527>

Lee, C. J., Sugimoto, C. R., Zhang, G., & Cronin, B. (2013). Bias in peer review. *Journal of the American Society for Information Science and Technology*, 64(1), 2–17.

<https://doi.org/10.1002/asi.22784>

Lewis, N. A., Jr. (2021). What counts as good science? How the battle for methodological legitimacy affects public psychology. *American Psychologist*, 76(8), 1323-1333.

<https://psycnet.apa.org/fulltext/2022-28577-009.pdf>

Liu, F., Rahwan, T., & AlShebli, B. (2023). Non-White scientists appear on fewer editorial boards, spend more time under review, and receive fewer citations. *Proceedings of the National Academy of Sciences*, 120(13), e2215324120.

Mackelprang, J. L., Johansen, E. E., & Orr, C. (2022). Gender disparities in authorship of invited submissions in high-impact psychology journals. *American Psychologist*. Advance online publication. <https://dx.doi.org/10.1037/amp0001106>

Madill, A., & Gough, B. (2008). Qualitative research and its place in psychological science. *Psychological Methods*, 13(3), 254.

MAGIC. (n.d.). Mentoring Aspiring Graduate students and building an Inclusive Community.

<https://magic.initiative.uconn.edu/>

Mahoney, M. J. (1977). Publication prejudices: An experimental study of confirmatory bias in the

peer review system. *Cognitive therapy and research*, 1(2), 161-175.

Majid, A. (2023). Establishing psychological universals. *Nature Reviews Psychology*, 2, 199-200.

Markus, H. R., & Conner, A. L. (2014). *Clash!: How to thrive in a multicultural world*. New York, NY: Penguin.

Markus, H. R., & Kitayama, S. (2010). Cultures and Selves: A Cycle of Mutual Constitution. *Perspectives on Psychological Science*, 5(4), 420–430.
<https://doi.org/10.1177/1745691610375557>

Mastroianni, A. (2022). The rise and fall of peer review. *Experimental History*.
<https://experimentalhistory.substack.com/p/the-rise-and-fall-of-peer-review>

Merton, R. K. (1968). *The Matthew Effect in science: The reward and communication systems of science are considered*. *Science*, 159(3810), 56–63.
<https://doi.org/10.1126/science.159.3810.56>

Moradi, B., Brewster, M. E., Grzanka, P. R., & Miller, M. J. (2023). The hidden curriculum of academic writing: Toward demystifying manuscript preparation in counseling psychology. *Journal of Counseling Psychology*, 70(2), 119–132.
<https://doi.org/10.1037/cou0000650>

Murphy, M. C., & Dweck, C. S. (2010). A culture of genius: How an organization's lay theory shapes people's cognition, affect, and behavior. *Personality and Social Psychology Bulletin*, 36(3), 283–296. <https://doi.org/10.1177/0146167209347380>

Murphy, M. C., & Taylor, V. J. (2012). The role of situational cues in signaling and maintaining stereotype threat. In *Stereotype threat: Theory, process, and application* (pp. 17–33). Oxford University Press.

Murray, D., Siler, K., Larivière, V., Chan, W. M., Collings, A. M., Raymond, J., & Sugimoto, C. R. (2019). Author-reviewer homophily in peer review. *bioRxiv* 400515; doi: <https://doi.org/10.1101/400515>

National Institute of Health (NIH) Center for Scientific Review. (2023). *Early Career Reviewer (ECR) Program*. <https://public.csr.nih.gov/ForReviewers/BecomeAReviewer/ECR>

Nature Reviews Psychology. (2022). Behind the scenes at Nature Reviews Psychology: Peer review edition. <https://socialsciences.nature.com/posts/behind-the-scenes-at-nature-reviews-psychology-peer-review-edition>

Nielsen, M. W., Alegria, S., Börjeson, L., Etzkowitz, H., Falk-Krzesinski, H. J., Joshi, A., ... & Schiebinger, L. (2017). Gender diversity leads to better science. *Proceedings of the National Academy of Sciences*, 114(8), 1740-1742.

Nguyen, M., Chaudhry, S. I., Desai, M. M., Dzirasa, K., Cavazos, J. E., & Boatright, D. (2023). Gender, Racial, and Ethnic Inequities in Receipt of Multiple National Institutes of Health Research Project Grants. *JAMA Network Open*, 6(2), e230855. <https://doi.org/10.1001/jamanetworkopen.2023.0855>

Palminteri, S. (2023). How to prepare a rebuttal letter: Some advice from a scientist, reviewer and editor. <https://psyarxiv.com/kyfus/>

Park, L. E., Naidu, E., Lemay, E. P., Canning, E. A., Ward, D. E., Panlilio, Z. A., & Vessels, V. (in press). Social evaluative threat across individual, relational, and collective selves. *Advances in Experimental Social Psychology*.

<https://doi.org/10.1016/bs.aesp.2023.03.00>

Parsons, C. E., & Baglini, R. B. (2021). Peer review: the case for neutral language. *Trends in Cognitive Sciences*, 25(8), 639-641.

Patel, J. (2014). Why training and specialization is needed for peer review: a case study of peer review for randomized controlled trials. *Bmc Medicine*, 12(1), 1-7.

Perez, C. C. (2019). *Invisible Women*. New York: Penguin.

Personality and Social Psychology Review. (2023). Editorial Board.

<https://journals.sagepub.com/editorial-board/PSR>

Prather, R. (2021). Reconstructing the study of human cognition. PsyArXiv.

<https://psyarxiv.com/45a2q/>

PREreview. (October 2021). Beyond manuscript peer review – Announcing Open Grant
Reviewers in the making. <https://content.prereview.org/new-collaboration-and-job/>

PREreview. (2022). PREreview Open Reviewers. <https://content.prereview.org/openreviewers/>

PRIDE. (n.d.). Peer Review for Inclusion, Diversity, and Equity. <https://www.kurtlab.com/pride>

Publons (2018). *Global state of peer review*. <https://doi.org/10.14322/publons.GSPR2018>

Purdie-Vaughns, V., Steele, C. M., Davies, P. G., Ditlmann, R., & Crosby, J. R. (2008). Social
identity contingencies: How diversity cues signal threat or safety for African Americans in
mainstream institutions. *Journal of Personality and Social Psychology*, 94(4), 615–630.
<https://doi.org/10.1037/0022-3514.94.4.615>

Rad, M. S., Martingano, A. J., & Ginges, J. (2018). Toward a psychology of *Homo sapiens*:
Making psychological science more representative of the human population.
Proceedings of the National Academy of Sciences, 115(45), 11401-11405.

Recio-Saucedo, A., Crane, K., Meadmore, K., Fackrell, K., Church, H., Fraser, S., & Blatch-
Jones, A. (2022). What works for peer review and decision-making in research funding:
a realist synthesis. *Research Integrity and Peer Review*, 7(1), 1-28.

Ricard, J. A., Parker, T. C., Dhamala, E., Kwasa, J., Allsop, A., & Holmes, A. J. (2023).
Confronting racially exclusionary practices in the acquisition and analyses of
neuroimaging data. *Nature Neuroscience*, 26, 4–11.

RISE. (n.d.). The Research for Indigenous Social Action and Equity Center.
<https://sites.lsa.umich.edu/rise/>

Roberts, S. (2022, December 2). Dealing with Diversity in Psychology: Science and Ideology.
PsyArXiv. psyarxiv.com/xk4yu

Roberts, S. O., Bareket-Shavit, C., Dollins, F. A., Goldie, P. D., & Mortenson, E. (2020). Racial
Inequality in Psychological Research: Trends of the Past and Recommendations for the
Future. *Perspectives on Psychological Science*, 1745691620927709.

<https://doi.org/10.1177/1745691620927709>

Roberts, S. O., & Mortenson, E. (2022). Challenging the White= neutral framework in psychology. *Perspectives on Psychological Science*.

<https://doi.org/10.1177/17456916221077117>

Rodríguez, J. E., Campbell, K. M., & Pololi, L. H. (2015). Addressing disparities in academic medicine: what of the minority tax?. *BMC Medical Education*, 15(1), 1-5.

Rodríguez-Bravo, B., Nicholas, D., Herman, E., Boukacem-Zeghmouri, C., Watkinson, A., Xu, J., Abrizah, A., & Świgon, M. (2017). Peer review: The experience and views of early career researchers. *Learned Publishing*, 30(4), 269–277.

<https://doi.org/10.1002/leap.1111>

Ruzycki, S. M., & Ahmed, S. B. (2022). Equity, diversity and inclusion are foundational research skills. *Nature Human Behaviour*, 6(7), 910–912.

Sato, S., Gygax, P. M., Randall, J., & Schmid Mast, M. (2021). The leaky pipeline in research grant peer review and funding decisions: Challenges and future directions. *Higher Education*, 82, 145–162. <https://doi.org/10.1007/s10734-020-00626-y>

Schroter, S., Black, N., Evans, S., Carpenter, J., Godlee, F., & Smith, R. (2004). Effects of training on quality of peer review: randomised controlled trial. *Bmj*, 328(7441), 673.

Schroter, S., Black, N., Evans, S., Godlee, F., Osorio, L., & Smith, R. (2008). What errors do peer reviewers detect, and does training improve their ability to detect them?. *Journal of the Royal Society of Medicine*, 101(10), 507-514.

Settles, I. H., Jones, M. K., Buchanan, N. T., & Dotson, K. (2021). Epistemic exclusion: Scholar (ly) devaluation that marginalizes faculty of color. *Journal of Diversity in Higher Education*, 14(4), 493.

Silbiger, N. J., & Stubler, A. D. (2019). Unprofessional peer reviews disproportionately harm underrepresented groups in STEM. *PeerJ*, 7, e8247. <https://doi.org/10.7717/peerj.8247>

Simons, D. J., Shoda, Y., & Lindsay, D. S. (2017). Constraints on generality (COG): A proposed

addition to all empirical papers. *Perspectives on Psychological Science*, 12(6), 1123-1128.

SNAAP. (n.d.). Stanford Neuroscience Application Assistance Program.

<https://www.stanfordgradaap.com/>

Social Sciences Feminist Network Research Interest Group. (2017). The burden of invisible

work in academia: Social inequalities and time use in five university departments.

Humboldt Journal of Social Relations, 39, 228-245.

Springer Nature. (2022a). How to peer review.

<https://www.springernature.com/in/authors/campaigns/how-to-peer-review>

Springer Nature. (2022). Editorial Principles and Guidance: Content that may be harmful to

human population groups. https://resource-cms.springernature.com/springer-cms/rest/v1/content/20312376/data/Harmful_research?sap-outbound-id=4592BFEA3EFF2868A56D3B4D7A32F31C0D3B608F&utm_source=hybris-campaign&utm_medium=email&utm_campaign=101_WADI01_0000022647_CONR_EB_MPR_LYLT_GL_PCOM_EBMNL_June22&utm_content=EN_internal_42375_20220609&mkt-key=42010A0557EB1EDA9BA566B811C9807D

SPSP. (2023). *PSPR News: Announcing Inaugural Editorial Fellow, Spotlighting Emerging Editor Board*. <https://spsp.org/news/spsp-news/pspr-editorial-fellow-emerging-editor-board>

Stanley, C. A. (2007). When counter narratives meet master narratives in the journal editorial-review process. *Educational Researcher*, 36(1), 14-24.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. *Journal of Personality and Social Psychology*, 69(5), 797-811.

<https://doi.org/10.1037/0022-3514.69.5.797>

Steele, C. M., Spencer, S. J., & Aronson, J. (2002). Contending with group image: The psychology of stereotype and social identity threat. In *Advances in Experimental Social*

Psychology (Vol. 34, pp. 379–440). Academic Press. [https://doi.org/10.1016/S0065-2601\(02\)80009-0](https://doi.org/10.1016/S0065-2601(02)80009-0)

Syed, M., Santos, C., Yoo, H. C., & Juang, L. P. (2018). Invisibility of racial/ethnic minorities in developmental science: Implications for research and institutional practices. *American Psychologist*, 73(6), 812–826. <https://doi.org/10.1037/amp0000294>

Szucs, D., & Ioannidis, J. P. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. *PLoS biology*, 15(3), e2000797.

Taffe, M. A., & Gilpin, N. W. (2021). Racial inequity in grant funding from the US National Institutes of Health. *eLife*, 10, e65697. <https://elifesciences.org/articles/65697>

Tafreshi, D., Slaney, K. L., & Neufeld, S. D. (2016). Quantification in psychology: Critical analysis of an unreflective practice. *Journal of Theoretical and Philosophical Psychology*, 36, 233–249.

Taylor & Francis Editor Resources. (2022). A guide to becoming a peer reviewer.
<https://editorresources.taylorandfrancis.com/reviewer-guidelines/>

Teich, E. G., Kim, J. Z., Lynn, C. W., Simon, S. C., Klishin, A. A., Szymula, K. P., Srivastava, P., Bassett, L. C., Zurn, P., Dworkin, J. D., & Bassett, D. S. (2022). Citation inequity and gendered citation practices in contemporary physics. *Nature Physics*, 18(10), Article 10. <https://doi.org/10.1038/s41567-022-01770-1>

Thomas, A. (2020). Why diverse perspectives matter for Memory & Cognition. *Memory and Cognition*, 48, 173–175. <https://doi.org/10.3758/s13421-019-01004-5>

Thomas, A., McKinney de Royston, M., & Powell, S. (2023). Color evasive cognition: The unavoidable impact of scientific racism in the founding of a field. *Current Directions in Psychological Science*, 32(2), 137-144. <https://doi.org/10.1177/09637214221141713>

Travis, G. D. L., & Collins, H. M. (1991). New Light on Old Boys: Cognitive and Institutional Particularism in the Peer Review System. *Science, Technology, & Human Values*, 16(3),

322–341. <https://doi.org/10.1177/016224399101600303>

Van Rooyen, S., Black, N., & Godlee, F. (1999). Development of the review quality instrument (RQI) for assessing peer reviews of manuscripts. *Journal of Clinical Epidemiology*, 52(7), 625-629.

Wager, E., Godlee, F., & Jefferson, T. (2003). How to survive peer review. BMJ books.

Web of Science. (2022). Web of Science Academy.

<https://clarivate.com/webofsciencegroup/solutions/web-of-science-academy/>

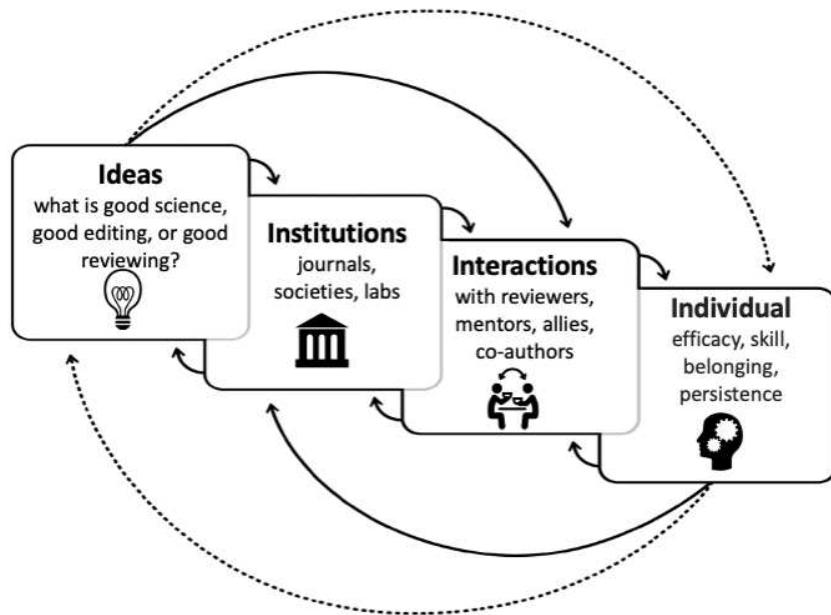
West, C. (2001). A genealogy of modern racism. In P. Essed & D. T. Goldberg (Eds.) *Race critical theories: Text and context* (pp. 90-112). Malden, MA: Wiley-Blackwell.

Whillans, A. V., Yoon, J., Turek, A., & Donnelly, G. E. (2021). Extension request avoidance predicts greater time stress among women. *Proceedings of the National Academy of Sciences*, 118(45). <https://doi.org/10.1073/pnas.2105622118>

Witteman, H. O., Hendricks, M., Straus, S., & Tannenbaum, C. (2019). Are gender gaps due to evaluations of the applicant or the science? A natural experiment at a national funding agency. *The Lancet*, 393(10171), 531-540.

Wouters, P., Sugimoto, C. R., Larivière, V., McVeigh, M. E., Pulverer, B., de Rijcke, S., & Waltman, L. (2019). Rethinking impact factors: Better ways to judge a journal. *Nature*, 569(7758), 621–623. <https://doi.org/10.1038/d41586-019-01643-3>

Yang, Y., Tian, T. Y., Woodruff, T. K., Jones, B. F., & Uzzi, B. (2022). Gender-diverse teams produce more novel and higher-impact scientific ideas. *Proceedings of the National Academy of Sciences*, 119(36), e2200841119.


Yeager, D. S., Purdie-Vaughns, V., Garcia, J., Apfel, N., Brzustoski, P., Master, A., Hessert, W. T., Williams, M. E., & Cohen, G. L. (2014). Breaking the cycle of mistrust: Wise interventions to provide critical feedback across the racial divide. *Journal of Experimental Psychology: General*, 143(2), 804–824. <https://doi.org/10.1037/a0033906>

Zimmerman, A. G., & Ybarra, G. J. (2016). Online aggression: The influences of anonymity and

social modeling. *Psychology of Popular Media Culture*, 5, 181–193.

<https://doi.org/10.1037/ppm0000038>

Zurn, P., Bassett, D. S., & Rust, N. C. (2020). The citation diversity statement: a practice of transparency, a way of life. *Trends in Cognitive Sciences*, 24(9), 669-672.

Figure 1. Cultural change proceeds at multiple levels. Ideas for change are more likely to succeed if they incorporate action at multiple levels. Institutional systems (e.g., peer review processes implemented by journals) must interact with individual actors (e.g., editors, reviewers) who consider the broader culture in which the system is implemented. Figure adapted with permission (Cheryan & Markus, 2020; Hamedani & Markus, 2019; Markus & Conner, 2014; Markus & Kitayama, 2010).