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a b s t r a c t

This paper investigates the utility of the weighted Birkhoff average (WBA) for distinguishing between
regular and chaotic orbits of flows, extending previous results that applied the WBA to maps. It is
shown that the WBA can be super-convergent for flows when the dynamics and phase space function
are smooth, and the dynamics is conjugate to a rigid rotation with Diophantine rotation vector.
The dependence of the accuracy of the average on orbit length and width of the weight function
width are investigated. In practice, the average achieves machine precision of the rotation frequency
of quasiperiodic orbits for an integration time of O(103) periods. The contrasting, relatively slow
convergence for chaotic trajectories allows an efficient discrimination criterion. Three example systems
are studied: a two-wave Hamiltonian system, a quasiperiodically forced, dissipative system that has a
strange attractor with no positive Lyapunov exponents, and a model for magnetic field line flow.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Integrability is associated with quasiperiodic dynamics and
chaos with sensitive dependence on initial conditions. This con-
tradistinction is especially relevant for smooth Hamiltonian sys-
tems: when such a flow is integrable the orbits are confined to
tori on which the dynamics is conjugate to a rigid rotation. When
a Hamiltonian system is smoothly perturbed away from integra-
bility, some of these tori persist—according to KAM theory—and
some are replaced by isolated periodic orbits, islands, or chaotic
regions [1]. Typically as a perturbation grows the proportion of
chaotic orbits increases and more of the tori are destroyed.

Motivated by broad applications to dynamical systems, in-
cluding fluid flow, the n-body problem, and toroidal magnetic
confinement, there has been a concentrated effort to distinguish
between chaotic regions of phase space and those with regular
dynamics. Invariant tori in Hamiltonian systems can be computed
as limits of periodic orbits [2,3] or by the iterative, parameteriza-
tion method [4]. In these methods, one fixes a frequency vector
and attempts to find an invariant set on which the dynamics has
this frequency.

More generally—even when the system is not Hamiltonian—
one may try to detect when a given orbit is chaotic. By definition,
a dynamical system is chaotic on a compact invariant set when it
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is transitive and exhibits ‘‘sensitive dependence on initial condi-
tions’’ [5,6]. Often such dynamics are (nonuniformly) hyperbolic,
meaning that the maximal Lyapunov exponent is positive [7]. For
a flow

xt = 't (x0), (1)

on a phase space X , the exponent is

�(x0, v0) = lim sup
T!1

1
T
log kD't (x0)v0k. (2)

Here D't (x0) is the Jacobian matrix—the derivative of the flow
map at time t with respect to x0, an initial condition—and v0 is
the initial deviation vector. A positive Lyapunov exponent implies
that the length of the infinitesimal deviation grows exponentially
in T , at least asymptotically. The most common approach for
distinguishing chaos from regularity is to numerically compute
(2); however, accurate computation of � is difficult because con-
vergence is typically as slow as log(T )

T [8]. Computation of (2)
is also expensive because it is necessary to integrate both the
trajectory and the linearized dynamics to obtain the Jacobian
D't (x0).

There are a number of techniques that have been used to
improve the efficiency of estimates for exponential divergence.
These include methods based on (2) such as the Fast Lyapunov
Indicator (FLI) [9,10], which uses a large value of

FLI(x0, v0) = sup
t<T

log kD't (x0)v0k (3)
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as an indicator for chaos, where one normalizes the initial devi-
ation, kv0k = 1. A related idea, the Mean Exponential Growth
factor of Nearby Orbits (MEGNO) [8,11], uses—instead of the
supremum in (3)—the average of this log-length along an or-
bit. Further techniques include computing Greene’s residue [2],
Slater’s method [12], the 0–1 test [13], SALI and GALI [14], ex-
pansion entropy [15], and converse KAM theory [16,17]. Unlike
directly computing the Lyapunov spectrum, we remark that sev-
eral of these methods do not require the integration of the full
linearized dynamics, but only of a single vector. Consequently,
it can be more efficient to use ‘‘jet transport’’ techniques to
propagate a neighborhood of an initial condition.

In this paper, we explore an alternative technique to distin-
guish between chaotic and regular orbits of a flow based on the
Weighted Birkhoff Average (WBA) [18–20]. This method permits
one to accurately and efficiently compute the average of a func-
tion h : X ! R, when the orbit is regular. In particular, h can
be chosen to give the rotation vector for a regular orbit on an
invariant torus, so that it can also provide a distinction between
resonant and quasiperiodic dynamics. The technique is analo-
gous to ‘‘frequency analysis’’ [21,22], which uses a windowed
Fourier transform to compute rotation numbers. However, for the
WBA, the choice of a smooth window or weight function allows
for more rapid convergence. There are several other techniques
specifically for maps that enable accurate computation of rotation
numbers. For 1D invariant circles, an order-based technique such
as Slater’s method [12], or the topological method of [23,24] can
be used. More generally, an averaging technique, that is distinct
from WBA, was demonstrated in [25,26]. These techniques are
specific to maps and yield theoretical convergence results that are
slower than those for weighted Birkhoff averaging.

Indeed, as we recall in Section 2, the method proposed in [18]
uses a C1 weight function, which has been shown by [27] to lead
to super-polynomial convergence of the average for maps. We
will generalize these results for flows in Section 3. In
Theorem 3, we establish the super-polynomial convergence of the
WBA to the space average provided that the flow is quasiperiodic
on an n-torus with Diophantine rotation vector. Theorem 4 ex-
tends this, using the results of [28], to give weaker criteria for
super-polynomial convergence.

In Section 4 we use the distinction between convergence rates
for regular and chaotic orbits to give a criterion for detecting
chaos. The method is analogous to that used in [29,30] for maps.
In that paper, the WBA was shown to be a more efficient test
for chaos than the FLI and 0–1 test for Chirikov’s area-preserving
standard map. Finally, in Section 5, we apply this test to three
examples.

The first application, in Section 5.1, is to the two-wave model,
perhaps the simplest nonintegrable, 1 1

2 degree-of-freedom
Hamiltonian system. The model was also studied in [17,31] using
converse KAM theory to detect chaos, and consequently gives
a contrast between the two methods. We also investigate the
dependence of the accuracy of the WBA on the choice of orbit
length and weight function width.

In Section 5.2 we investigate the properties of the WBA for
a quasiperiodically forced pendulum that can have geometrically
strange attractors with no positive Lyapunov exponents [32].
Since the general definition of chaos requires only the topolog-
ical form of sensitive dependence on initial conditions and not
exponential divergence [15], orbits of this quasiperiodic system
with zero exponents may still be chaotic [33]. As we will show,
even though methods based on Lyapunov exponents would fail,
the WBA can still provide an efficient indicator of chaos.

The final application, in Section 5.3, is to magnetic field line
flow. Integrable magnetic field-line configurations are desirable
in the design of plasma confinement devices. For example, the
tokamak is designed to have a set of nested, axisymmetric tori
that are tangent to the magnetic field and correspond to iso-
pressure surfaces [34]. However, integrability can be destroyed by
instabilities or non-axisymmetric perturbations that can give rise
to magnetic islands and chaotic regions [35]. Using a model intro-
duced by [36], we will show that the weighted Birkhoff average
can rapidly and accurately measure the extent of these regions.
Moreover, in the study of plasma stability it is important to know
the rotation number, or rotational transform, on each magnetic
surface. We will demonstrate that the weighted Birkhoff average
efficiently computes the rotational transform.

2. Weighted Birkhoff averaging for flows

2.1. Birkhoff average

Suppose that (X,B, µ) is a compact probability space with
Borel � -algebra B [37], and that the probability measure µ is
invariant under a flow (1). The flow is ergodic with respect to
µ if, whenever S 2 B is invariant, i.e., 't (S) = S, 8t 2 R, then
µ(S) = 0 or 1. Thus invariant sets are either of zero measure,
such as periodic orbits, or of full measure, such as chaotic orbits.
Birkhoff’s ergodic theorem [38], states that if a flow is ergodic
then for µ-almost every x 2 X , the time average of a function h,

BT (h)(x) =
1
T

Z T

0
h('t (x))dt, (4)

converges to its space average

hhi ⌘

Z

X
hdµ (5)

as T ! 1.

Theorem 1 (Birkhoff Ergodic Theorem [38,39]). Suppose (X,B, µ) is
a probability space, 't : X ! X is a measure-preserving, ergodic
flow, and h 2 L1(X, µ). Then the time average exists and

lim
T!1

BT (h)(x) = hhi

for µ-almost every x 2 X.

The Birkhoff ergodic theorem for a map F : X ! X can be
obtained upon replacing the integration in (4) by a sum,

BN (h)(x) =
1
N

N�1X

j=0

h(F j(x)).

Indeed, in the literature, Theorem 1 is almost exclusively stated
and proven for maps [40–42]. However, as pointed out in [43],
there is a neat trick to obtain the continuous case from the map
case.

This is based on the result that if 't (x) is an ergodic flow then
for each ⌧ 2 R, except for a countable subset, the map, '⌧ , is also
ergodic [44]. For such a value of ⌧ , define h̃(x) =

R ⌧
0 h('t (x))dt

and the iterated time-⌧ map 'j
⌧ = 'j⌧ for each j 2 N. Then

Z T

0
h('t (x))dt =

bT/⌧cX

j=1

h̃('j
⌧ (x)) +

Z T

bT/⌧c

h('t (x))dt,

since '0
⌧ (x) = x. Since h is assumed to be L1(X, µ), then limT!1

1
T

R T
bT/⌧c

h('t (x))dt = 0. By the Birkhoff ergodic theorem for maps,
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it then follows that

lim
T!1

1
T

Z T

0
h('t (x))dt =

1
⌧

lim
T!1

1
T/⌧

bT/⌧cX

j=1

h̃('j
⌧ (x))

=
1
⌧

Z

X
h̃dµ =

1
⌧

Z

X

Z ⌧

0
h('t (x))dµ

=
1
⌧

Z ⌧

0

Z

X
h(x)dµ

=

Z

X
hdµ.

Here the penultimate equality is a consequence of Fubini’s theo-
rem and the fact that µ is invariant under 't .

Even though the convergence in Theorem 1 is guaranteed,
it can be arbitrarily slow depending on the choice of h [45].
Furthermore for almost all h 2 L1(X, µ), it has been demonstrated
that for maps the convergence is at most O(1/N) [46], and for
flows on a Lebesgue space is at most O(1/T ) for almost all x 2

X [28]. The only exceptions are when h is almost everywhere
constant.

2.2. Weighted Birkhoff average

A weighted Birkhoff average is analogous to (4), with the
addition of a weight function g : [0, 1] ! [0, 1), that is
normalized:

kgk1 ⌘

Z 1

0
g(s)ds = 1. (6)

For any g 2 G, the weighted Birkhoff average is defined by

WBT (h)(x) =
1
T

Z T

0
g( t

T )h('t (x))dt. (7)

In particular, choosing g(s) = 1 gives the Birkhoff average (4).
By a judicious choice of the weight g , the convergence of

WBT (h) to the space average can be accelerated, for certain orbits;
i.e., as we demonstrate below in Theorem 3, when the dynamics
is conjugate to a sufficiently incommensurable rotation. In partic-
ular, we will consider the space of bump functions whose value
and first m � 1 derivatives vanish on the boundary,

Gm =
�
g 2 Cm([0, 1],R+)

�� kgk1 = 1,

g (i)(0) = g (i)(1) = 0, i = 0, 1, . . . ,m � 1
 
. (8)

For example, the smooth bump function

g(s) =

(
Ce�[s(1�s)]�1 s 2 (0, 1)
0 s = 0, 1

, (9)

is in G1 and was adopted by [19,20,47] in their studies of maps.
Here, we set the normalization constant C ⇡ 142.2503758 to
satisfy (6).

Whenever g 2 G1 it can be shown, using a result of [48], that
the weighted Birkhoff average WBT (h)(x) converges to the space
average hhi for any h 2 L1(X, µ). Of course this applies to the case
(9) as well.

Proposition 2. Under the hypotheses of Theorem 1, then whenever
g 2 G1

lim
T!1

WBT (h) = hhi,

for µ-almost every x 2 X.

Proof. The proof relies on the summation criteria due to Silver-
man [48]. Specifically, suppose that k(T , t) is a function defined

for T 2 R+ and 0  t  T , that is integrable for fixed T and
satisfies the three criteria:

lim
T!1

Z T

0
k(T , t)dt = 1; (10a)

lim
T!1

k(T , t) = 0 uniformly in t on [0, q] for each q 2 R+
; (10b)

Z T

0
|k(T , t)|dt < A for some A > 0 whenever T 2 R+. (10c)

Then Silverman [48, Thm. 1] shows that whenever u : R+ ! R
satisfies limT!1 u(T ) = ū < 1

lim
T!1

Z T

0
k(T , t)u(t)dt = ū.

We will take u(T ) = BT (h)(x) given by (4). Using integration
by parts on (7), and the assumptions that g 2 C1([0, 1],R+) and
g(0) = 0 = g(1), then gives

WBT (h)(x) =
1
T

Z T

0
g( t

T )h('t (x)) dt

=
1
T


g( t

T )
Z t

0
h('s(x)) ds

�T

0

�
1
T 2

Z T

0
g 0( t

T )
Z t

0
h('s(x)) ds dt

=

Z T

0
k(T , t)Bt (h)(x) dt.

(11)

where we set

k(T , t) = �
t
T 2 g

0( t
T ). (12)

We will check Silverman’s criteria for (12). Again using integra-
tion by parts we have

�

Z T

0

t
T 2 g

0( t
T ) dt = �


t
T
g( t

T )
�T

0
+

1
T

Z T

0
g( t

T )dt = 1,

since kgk1 = 1. It follows that k is integrable for each T 2 R+

and that (10a) holds.
Now, for any q > 0, 0  t  q < T we have that

|k(T , t)| =
t
T 2 |g 0( t

T )| 
q
T 2 kg 0

k1,

where kg 0k1 < 1 because g is continuously differentiable on
a compact interval. It follows that limT!1 k(T , t) = 0 and thus
Eq. (10b) holds.

Finally, for all T 2 R+, (12) gives
Z T

0
|k(T , t)|dt  kg 0

k1T�2
Z T

0
t dt =

1
2kg

0
k1.

Thus (10c) holds with A =
1
2kg

0k1.
Hence, the choice (12) satisfies the criteria (10). Since by

Birkhoff’s ergodic theorem, BT (h)(x) ! hhi for µ-almost all x,
then [48, Thm. 1] applied to (11), gives WBT (h)(x) ! hhi. ⇤

3. Super-convergence for flows

It was shown in [20,27] that if a smooth map F has a quasiperi-
odic orbit {F t (x)} with Diophantine rotation vector and h and
g are C1, then the weighted average (7) is super-polynomial
convergent: WBT (h) converges to hhi faster than any power of T .
Super-convergence is especially useful for the case of Hamiltonian
flows or symplectic maps, where regular orbits lie on invariant
tori, and KAM theory implies the structural stability of those with
Diophantine rotation vectors.

3
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In this section we will extend the map result to the case
of flows. In addition, following [28], we will show that super-
polynomial convergence also holds under weaker hypotheses on
the ergodic flow and h.

Note that if the weight function g has only finitely many
vanishing derivatives at the endpoints, (8), then the convergence
rate is T�m. For example the weight g(t) / sin2(⇡ t) for t 2 (0, 1),
is first order smooth, but not second order, since g (2)(0+) 6=

g (2)(0�), and this implies that the convergence is O(T�2).
By contrast, the weighted average appears to converge only as

T�1/2 for chaotic orbits [29,49]. Thus, as we will discuss in Sec-
tion 4, the convergence rate of the weighted average can provide
a useful distinction between regular and chaotic orbits [29,30].

Definition 1 (Super-Convergent). A function f : [0, 1) ! R with
limT!1 f (T ) = f ⇤ < 1 is super-polynomial convergent if, for
each m 2 N, there is a constant cm > 0 such that

|f (T ) � f ⇤
|  cmT�m,

for all T > 0.

In particular the weighted Birkhoff average super-converges
to the space average for flows that are conjugate to a rigid
rotation with a sufficiently irrational vector, e.g., one that satisfies
a Diophantine property.

Definition 2 (Diophantine [50]). A vector ! 2 Rd is Diophantine if
there is a c > 0 and ⌧ � d � 1 such that

! 2 Dc,⌧ :=
�
! 2 Rd

| |k · !| > ckkk�⌧
1

, 8k 2 Zd
0
 
, (13)

where Zd
0 = Zd \ 0, and kkk1 is the sup-norm of k.

Thus, for example, the vector ! = (�, 1) 2 R2, where � =
1
2 (

p
5 � 1) is the (inverse of) the golden mean, is in D1/

p
5,1.

More generally, there are bounds for the Diophantine constants
for integral bases of an algebraic field of degree d [51,52].1

With these definitions, we can restate the result of [27] for
quasiperiodic flows.

Theorem 3. Let M ' Td be a smooth manifold and 't : M ! M be
a smooth, quasiperiodic flow with invariant probability measure µ.
Assume 't is C1 conjugate to a rigid rotation with a Diophantine
rotation vector ! 2 Dc,⌧ . Suppose that h 2 C1(M,R) and g 2

G1. Then for each x 2 M, the weighted Birkhoff average (7) is
super-polynomial convergent to the space average. Moreover, the
convergence is uniform in x.

More generally, if g 2 Gm then the convergence of (7) is as T�m

provided that h 2 Cl(M,R) for some l > d + m⌧ .

Proof. The proof follows the arguments of [27] with some minor
alterations for the flow case. By assumption ' is diffeomorphic
to the flow '!t (✓ ) = ✓ + t! on Td. Hence, it can be assumed that
we have taken coordinates ✓ 2 Td on M so that 't is simply '!t
and the invariant measure µ becomes the constant measure d✓ ,
which is preserved by '!t . Then

h('t (✓ )) = h(✓ + t!).

The weighted Birkhoff average (7) then becomes

WBT (h)(✓ ) =
1
T

Z T

0
g( t

T )h(✓ + t!)dt.

Since h is L2, it has a Fourier series

h =

X

k2Zd

ake2⇡ ik·✓ .

1 Note that for the discrete time case, a k-dimensional rotation vector ↵ is
Diophantine if the vector ! = (↵, 1) 2 Rk+1 is Diophantine in the sense of (13).

that is almost everywhere convergent [53]. Note that a0 =
R
M hd✓

and that a0 = WBT (a0)(✓0) for any ✓0 and T since a0 is constant.
It follows that
����WBT (h)(✓0) �

Z

M
hd✓

���� =

�������

X

k2Zd
0

akWBT
�
e2⇡ ik·✓

�
(✓0)

�������

=
1
T

�������

X

k2Zd
0

ake2⇡ ik·✓0
Z T

0
g( t

T )e
2⇡ itk·!dt

�������


1
T

X

k2Zd
0

|ak|
����

Z T

0
g( t

T )e
2⇡ itk·!dt

���� .

Set s = t/T so that Tds = dt and define ⌦k = 2⇡Tk · !. Then
����WBT (h)(✓0) �

Z

M
hd✓

���� 

X

k2Zd
0

|ak|
����

Z 1

0
g(s)ei⌦ksds

���� .

Integrating by parts m  l times and noting that the boundary
terms vanish by (8), it follows that
����

Z 1

0
g(s)ei⌦ksds

���� = |⌦k|
�m

����

Z 1

0
g (m)(s)ei⌦ksds

����

 |⌦k|
�m

kg (m)
k1,

where k k1 is the L1 norm.
Now, if h 2 Cl(Td,R) then |ak| = O(kkk�l), so that there is a

constant cl > 0, independent of k, such that

|ak| 
cl

kkkl ,

for each k 2 Zd
0 [53, Thm 3.3.9]. Thus,

����WBT (h)(✓0) �

Z

M
hd✓

����  cl(2⇡T )�m
X

k2Zd
0

kkk�l
|k · !|

�m
kg (m)

k1

= C⇤T�m
X

k2Zd
0

kkk�l
|k · !|

�m,

where we defined C⇤ = cl(2⇡ )�mkg (m)k1, which depends on m.
The theorem will follow provided we can show that

P
k2Zd

0
kkk�l

|k · !|
�m is bounded. Since ! 2 Dc,⌧ (13) it follows that

X

k2Zd
0

kkk�l
|k · !|

�m < c�m
X

k2Zd
0

kkkm⌧�l.

Finally, noting that whenever l � m⌧ > d, the sum above
converges, we have the desired bound. That is, the weighted
Birkhoff average converges as T�m provided that h 2 Cl with
l > d + m⌧ . ⇤

Remark 1. The weight function, g(t) / sin2(⇡ t) on [0, 1], is in G1
but not G2 since then its second derivative is not continuous on
the boundary. Nevertheless, the integration-by-parts in the proof
of the theorem can proceed up to m = 2, since the boundary
terms vanish for g and g 0 and g (2) 2 L1. Thus in this case when
h 2 Cl and l > d+ 2⌧ , the convergence is as T�2. So for example,
in [20], d = 2, and the rotation vector ! = (

p
2 � 1, 1) is

Diophantine with ⌧ = 1. So the convergence is m = 2 whenever
l > 4. They consider a case with h 2 C1 and numerically observe
a bit faster convergence, as T�2.5.

An alternative super-polynomial convergence result was ob-
tained by [28], we review it in the Appendix. This result follows
under weaker hypothesis on the flow than those in Theorem 3,
however, it requires that h has a particular structure.

4
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4. Weighted Birkhoff average as a test for chaos

The Weighted Birkhoff average can be used as a test for chaos
by examining the convergence rate of WBT (h)(x) to hhi as T !

1, for a given function h. As discussed in Section 3, if an orbit
is quasiperiodic with Diophantine rotation vector, the weighted
Birkhoff average is super-convergent. By contrast, it is observed
that the convergence rate for chaotic orbits is much slower.

Following [29,30] we estimate the convergence rate by com-
paring the values of (7) for successive time intervals of a fixed
length. That is, an estimate for the accuracy of (7) for a time T
is found by first computing WBT (h)(x0), and then WBT (h)(xT ), the
average along a second time T segment that begins at xT = 'T (x0).
A comparison of these values gives an estimate of the ‘error’ in
the time T average relative to the true average for the initial
point x0.

We consider two primary options to quantify this error. The
first,

absdigT (h)(x0) ⌘ � log10 |WBT (h)(x0) � WBT (h)(xT )|, (14)

we call the absolute digit accuracy. This is the measure proposed
in [29,30], where it was denoted simply by digT . Eq. (14) is the
number of decimal digits that two segments of the average have
in common. It should be useful when the expected averages are of
the same magnitude. A second error quantification is the relative
digit accuracy,

reldigT (h)(x0) ⌘ � log10
|WBT (h)(x0) � WBT (h)(xT )|

1
2 (|WBT (h)(x0)| + |WBT (h)(xT )|)

. (15)

This measures the number of digits relative to an expected value,
estimated as the mean absolute value of the two partial averages,
hence the factor of 1

2 in the denominator. This should be useful
when the average of h varies widely in magnitude as x0 varies.
Note, however, that it is not a good quantification if the average
is expected to be zero, in which case (14) is more appropriate.
Finally, we define the maximum digit accuracy

digT ⌘ max{absdigT , reldigT }. (16)

By comparing the values of these measures for different initial
conditions, we can differentiate between orbits for which the
averages converge more rapidly than others and hence, classify
which orbits are chaotic and which are regular.

5. Applications

In this section we apply the method outlined above to three
example flows: the two-wave model [54], a quasiperiodically
forced vector field with a strange attractor [32], and a model for
magnetic fields investigated in [36].

To numerically integrate these examples, we use the algo-
rithm Vern9, in the Julia package DifferentialEquation.jl [55,
56]. Each integration is computed in double precision, choos-
ing absolute and relative tolerances between 10�10 and 10�15,
depending on the differential equation. The WBA in (7) was
calculated by numerically solving the differential equation
d
dt

W (t) = g
� t
T

�
h('t (x0)), (17)

where g is the bump function (9). Integration of (17) is simply
done by adding it to the set of differential equations defining
the flow 't . Thus (17) is integrated with the same algorithm as
the trajectory. Finally we compute the time-T weighted Birkhoff
average as 1

T W (T ). This allows us to adjust the accuracy of the
integrator so that the computation of (7) has an accuracy com-
parable to the trajectory itself; indeed, the Vern9 algorithm will
adjust its step-size to attempt to attain the requested accuracy.

All computations were run on a laptop with an Intel i7 processor
running at 2.8 GHz using 32 GiB of RAM, running Linux version
5.19. Execution time for each produced data set was less than
12 h.

5.1. Two-wave model

Our first example corresponds to the 1D motion of a charged
particle in the electric field two longitudinal electrostatic waves
[54]. This two-wave model was used in [17,31] to illustrate the
so-called converse KAM method that detects the breakup of tori.
Since the destruction of tori is a signal of the onset of chaos, we
can use this model to compare the efficiency of the weighted
Birkhoff and converse KAM methods as chaos detectors.

Following [54], the two-wave system has the nonautonomous
Hamiltonian

H(q, p, t) =
1
2p

2
� µ cos(2⇡q) � µ cos(2⇡ (q � t)), (18)

for the position q and momentum p of the particle. Here, without
loss of generality, we choose the mass of the particle to be
one, the phase velocities of the two waves to be zero and one,
respectively, and the wavenumber of the first wave to be one.
For simplicity, we follow [17,31] to assume that the wavenumber
of the second wave is also one and that the two waves have
the same amplitude, µ. Thus this simplified model has only one
parameter. By taking q and t mod 1, the extended phase space
can be thought of as (q, p, t) 2 T ⇥ R ⇥ T.

A Poincaré section at t = 0 mod 1 is shown in Fig. 1 for
µ = 0.03. When µ ⌧ 1, most orbits lie on rotational, invariant
2D tori (i.e., tori that are homotopic to the set p = 0). For small
positive µ, there are two primary elliptic periodic orbits that cross
the Poincaré section near (0, 0) and (0, 1) and two hyperbolic
periodic orbits crossing the section near ( 12 , 0), (

1
2 , 1). Each of

these four orbits correspond to fixed points of the Poincaré map.
The section for the range p 2 [�0.2, 0.5] shown in Fig. 1 shows
only orbits trapped in the stationary wave, near p = 0. The
2D tori encircling the primary elliptic orbits are librational; they
correspond to particles trapped in one of the two electrostatic
waves. Also shown in Fig. 1 are other resonant islands; these
correspond to orbits trapped near elliptic periodic orbits with
rational winding numbers on T2. The largest seen in the figure
is a pair of islands surrounding a period-two orbit near p = 0.5
on the section.

5.1.1. Distinguishing regular and chaotic orbits
To demonstrate the difference in convergence of the WBA

between chaotic and regular orbits we consider the weighted
Birkhoff average of the function h(q, p, t) = p. Note that the
average of this function for any quasiperiodic orbit will be ⇢, the
rotation number of the orbit.

⇢ = lim
T!1

q(T ) � q(0)
T

= lim
T!1

1
T

Z T

0
p(⌧ )d⌧ = hpi, (19)

taking the lift of the coordinate q to R.
Fig. 2 shows the maximum digit accuracy (16) as a function

of T for two initial conditions, (q0, p0) = (0, 0.45) and (0, 0.3).
As can be seen in Fig. 1, the first orbit lies on a librational torus
in a period-two island, while the second appears to be chaotic.
For the regular orbit, the WBA appears to converge to ten digits
by T = 1000, and digT indicates double precision accuracy of hpi
by T = 2000. Since the lower bound of digT increases linearly
with T , the convergence appears to be exponential. By contrast,
digT fluctuates around 2 for the second, chaotic orbit. A similar
dichotomy was also seen for maps in [29].

To reinforce the distinction between convergence rates for
chaotic and regular orbits, Fig. 3 shows a heat map of the maxi-
mum digit accuracy for T = 1000 for 501 equally spaced initial
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Fig. 1. Poincaré section for (18) at t = 0 mod 1 µ = 0.03.

Fig. 2. The maximum digit accuracy digT vs T using the function h(q, p, t) = p for two orbits of (18) with µ = 0.03. The orbit with initial condition (q, p) = (0, 0.45)
is regular and that with initial condition (q, p) = (0, 0.3) is chaotic.

conditions (0, p0, 0), 0  p0  0.5 on the Poincaré section of
Fig. 1. Note that the regular orbits in the low-period islands have
digT & 10, while the strongly chaotic orbits outside these islands
have digT . 3. Hence, the colors show that there is a clear
distinction between the regular and chaotic orbits in Fig. 1.

5.1.2. Comparisons of relative and absolute accuracy
Fig. 4 shows the results of computations of the criteria (14)

and (15) for the same set of initial conditions as Fig. 3. Panel (a)
shows that reldigT performs poorly for the regular, librational tori
around (0, 0). This is expected since hpi = 0 for these orbits,

so that the denominator of (15) is near zero. However, reldigT
nears machine precision for the orbits that are trapped in the
period-two island chain, near p = 0.5.

Panel(b) shows that absdigT clearly distinguishes between the
regular, island-trapped orbits and the chaotic orbits that were
seen in Fig. 1. The initial momenta corresponding to chaotic orbits
have absdigT . 3, while the regular orbits have absdigT & 7,
and there are only five orbits with 4 < digT < 6. A plot of
digT , not shown, would be identical to panel (b): for this case
digT = absdigT for all orbits.
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Fig. 3. A Poincaré section of (18) for µ = 0.03. The 500 orbits have initial conditions (0, p0, 0), p0 2 [0, 0.5]. The colors, as shown in the color bar, represent digT
for T = 1000 and h = p. The white regions correspond to points that are not reached by the 500 orbits shown.

Fig. 4. Relative and absolute digit accuracy as a function of p0 for initial conditions along the line q0 = 0. In each case T = 1000 and h = p.

For the two-wave model, the results in Fig. 4 indicate a thresh-
old for distinguishing chaotic and regular orbits

dig1000 < 5, (chaos criterion), (20)

for the function h = p.
A curiosity of Fig. 4(b) is the decrease in absdigT near p0 =

0.1, even though most orbits trapped in the period-one island
appear to be regular. As can be seen in Fig. 3, this dip corresponds
to the region near a hyperbolic period-six orbit on the section
that starts near (0, 0.1). These regular orbits lie just outside the
separatrix of this island chain and thus take a long time to
complete a full rotation—indeed this time would go to infinity for
the integrable case as the orbit nears the separatrix. Moreover,
the librational rotation number of these orbits around the elliptic
point approaches the rational that corresponds to that of the
hyperbolic orbit. Consequently such orbits will explore a smaller
fraction of an invariant torus over some finite time than those
with initial condition further away. The result is a less-accurate,
finite-time approximation of the space average of h.

Since there are typically arbitrarily thin chaotic layers between
any pair of KAM tori in generic Hamiltonian systems, it can be
very difficult to distinguish orbits in such layers from those that
are regular. For example, for the two-wave model shown in Fig. 1,
there is a chaotic layer near the separatrix of the period seven

island chain that intersects the Poincare section near (0, 0.2137).
This layer has thickness at most 2 ⇥ 10�3. The WBA of the
function h = p for the initial point (0.001, 0.2138) has digT ⇡ 7
for times up to 5000. By the criterion we use, this orbit would
not be classified as chaotic. Nevertheless, this value of digT is
still distinct from that of the invariant circle through the point
(0.001, 0.2134), which has dig5000 ⇡ 13.

The computed rotation number (19) as a function of p0 is
shown in Fig. 5. In the region of librational tori near (0, 0), ⇢ =

0. Since most of these orbits are regular ⇢ is computed with
high accuracy. Indeed, as we saw in Fig. 4, absdigT > 5 for all
p0 2 [0, 0.251]. The rapid fluctuations in ⇢ as a function of initial
condition near p0 = 0.3 reflect the poor convergence of the WBA
for these chaotic orbits. Additional regular regions appear for
higher period islands around elliptic periodic orbits; these have
constant, rational rotation number. The chaotic regions between
pairs of neighboring islands give the scattered values between the
flat intervals.

5.1.3. Varying the width of the bump function
Another choice worth investigating is that of the weight func-

tion g : R ! [0, 1) in (7). Theorem 3 implies that super-
convergence follows whenever g is C1 and flat at 0 and 1. In

7
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Fig. 5. The computed rotation number ⇢ ⇡ WBT (p) for initial conditions (0, p0, 0) as a function of p0. As above this is for (18) with µ = 0.03.

Fig. 6. The weighted bump function (21) for five values of w.

this section we continue to use (9), but vary it slightly by adding
a width parameter, w > 0:

gw(s) =

(
C exp

⇣
�w

s(1�s)

⌘
, s 2 (0, 1)

0, s  0 or s � 1.
(21)

Again, C is chosen so that gw has the normalization (6). The
resulting function is shown for several values of w in Fig. 6. If
w ⌧ 1 then gw is near its maximum over a large fraction of
[0, 1], and the average limits to the unweighted, time-T average.
If w � 1 then gw is essentially zero except for a small interval.
Neither of these cases would seem to be desirable. But what
intermediate value of w is best?

Fig. 7, shows how digT depends on w for two different T ,
for a regular trajectory of the two-wave model. Interestingly,
these curves have local spikes indicating improved convergence
for nearly isolated values of w. Since, as seen in the figure, the
value of w for these spikes changes with T , and calculations

(not shown) indicate that they also vary as the orbit is varied,
consequently it is hard to argue that any specific choice for w
would be optimal. Moreover, w = 1 seems to be a reasonable
choice, since—if we ignore the spikes—neither large or small w
offers a uniform improvement

5.2. A quasiperiodically forced system

As Theorem 3 showed, the weighted Birkhoff average is super-
convergent for a quasiperiodic orbit with a Diophantine rotation
vector. When the dynamics is a conjugate to rigid rotation, then
there is an invariant measure on the torus. More generally, if
there is no invariant measure, then the Birkhoff ergodic theorem
does not apply. In this case it is not clear whether the accuracy
of the weighted Birkhoff average can distinguish between regular
and non-regular orbits.

In this subsection we study the quasiperiodically forced and
damped pendulum model of [32,57]:

✓̇ = p,
 ̇1 = � ,

 ̇2 = 1,
ṗ = �⌫p + a cos(2⇡✓ ) + b + c(cos(2⇡ 1) + cos(2⇡ 2)).

(22)

Here � 2 R \ Q is irrational and a, b, c, ⌫ 2 R are parame-
ters. Grebogi et al. [57] observed that this system can have a
geometrically strange attractor with no positive Lyapunov expo-
nents, a situation that they call a strange, nonchaotic attractor.
Even though such a system may be thought of as nonchaotic
because nearby orbits do not separate exponentially, the dynam-
ics may still exhibit the weaker, topological form of sensitive
dependence [33].

Formally the phase space for (22) is T3 ⇥ R, with coordinates
(✓ , 1, 2, p). A natural 3D Poincaré section is  2 = 0 mod 1.
Following [32] we take

⌫ = a = 6⇡ , c = 0.55⌫, � =
1
2 (�1 +

p
5), (23)

leaving one free parameter, b.2

2 In [32] the parameters are ⌫ = a = 2⇡p, b = 2⇡Kp, and c = 2⇡Vp, where p
is a damping parameter. The case p = 3, K = 1.33, and V = 0.55 of [32, Fig. 5]
corresponds to (23) with b = 1.33⌫.
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Fig. 7. The variation of digT (h)(z) with w, the width parameter of (21). The system is (18) with µ = 0.03, h = p, and initial condition (q0, p0) = (0, 0.1). (a) w 2 [0, 1]
and (b) w 2 [0.5, 50].

Fig. 8. Projections onto (✓ , p) of 5 ⇥ 104 points on the 3D Poincaré section  2 = 0 mod 1 of the system (22) using (23). The six panels show b =

[0.8, 0.829, 1.1, 1.33, 1.34, 1.77]⌫, respectively. The maximal Lyapunov exponent in the (q, p) subspace is negative, except for the last case, where attractor appears
to be 3D on the Poincaré section.

Six examples of attractors for (22) are shown in Fig. 8. These
figures are projections onto (✓ , p) of the Poincaré section  2 =

0 mod 1. On the 3D section the attractor is sometimes a two-
torus, sometimes geometrically strange with dimension between
two and three, and sometimes fully 3D. For example, when b =

1.33⌫ the system has a geometrically strange attractor with a
box-counting dimension larger than 1, but no positive Lyapunov
exponents: in the (✓ , p) subspace the maximal exponent is � =

�0.45 [32]. The maximal Lyapunov exponent reaches 0 at about
b = 1.66⌫ where the attractor in the Poincaré section appears to
be 3D, see the final panel of Fig. 8. The attractor collapses back to
a two-torus as b nears 1.8⌫ (not shown).

5.2.1. Distinguishing strange attractors
The different geometric structures shown in Fig. 8 make this

system a prime candidate for investigating whether weighted
Birkhoff averaging can be used to distinguish between regular
and strange nonchaotic attractors. Fig. 9 shows digT as a function
of T for values of b that correspond two-torus, strange, and 3D
attractors, respectively.

When b = 1.1⌫, the WBA appears to be super-convergent.
The maximum digit accuracy reaches 13 by T = 1200 and then
remains nearly constant; this is consistent with the accuracy
of the numerical integration, which was set to 10�13 for both
absolute and relative error. This suggests that the dynamics of
this orbit are conjugate to a Diophantine rigid rotation. When
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Fig. 9. The digit accuracy for the system (22) with parameters (23) and b = 1.1⌫, 1.33⌫, and 1.77⌫ as a function of T using h = p. The initial condition is
(✓ , 1, 2, p) = (0, 0, 0, 2).

b = 1.33⌫, where the attractor is strange but nonchaotic, the
convergence of the WBA in Fig. 9 is observed to be poor: it only
reaches 3 by T = 1200. The convergence is also poor when b =

1.77⌫, where the attractor is 3D. Even though digT is larger than
the previous case, it only reaches 5 when T = 1200, and in both
cases the WBA appears to converge—at best—at a polynomial rate
in T . Even if this attractor is simply a three-torus, the relatively
poor convergence suggests that its dynamics are more complex
than rigid rotation. Thus the weighted Birkhoff average effectively
distinguishes between a two-torus attractor, and more complex
or higher dimensional attractors.

5.2.2. Finding Two-Tori
We now look at how the accuracy of the WBA varies with

b in order to distinguish between two-torus and strange or 3D
attractors. Fig. 10 shows digT as a function of b 2 [0.6, 1.8]⌫. The
figure shows a clear stratification into three levels; the highest
corresponds to 13 < digT < 18. This high accuracy occurs, for
example, for the case b = 1.1⌫ and 1.34⌫ shown in Fig. 8 that are
clearly two-tori; these are the blue points in Fig. 10. The highest
accuracy, digT ⇠ 17, occurs near b = 0.6⌫. The attractors in
this case (not shown) are even simpler: they resemble librating
orbits of the pendulum in (✓ , p) that are simply extended in the
 1 direction.

The lowest level in Fig. 10 are those b values with digT ⇠ 4.
The two red points correspond to the values b = 0.8⌫, and 1.33⌫,
the strange attractors shown in Fig. 8.

The mid-level range, digT ⇠ 8, for Fig. 10 corresponds to
geometrically more complex attractors that are nevertheless, not
strange. For example, the green points in the figure, represent the
values b = 0.829⌫ and 1.77⌫ shown in Fig. 8. The first appears
to be the projection of a two-torus, however, it is geometrically
more complex than those tori that have higher values of digT .
The second green point corresponds to the 3D attractor in Fig. 8.
The rapid increase in digT as b increases beyond 1.77⌫ in Fig. 9
signals the collapse of this structure; by b = 1.8⌫, it has become
a two-torus similar to that at 1.1⌫ though without the loop seen
in Fig. 8.

The rotation number of ✓ :

⇢ = lim
n!1

✓ (n) � ✓ (0)
n

,

is shown in Fig. 11. The figure is similar to the Devil’s staircase
shown in [32, Fig. 8b], however the weighted Birkhoff average for
the function h = p provides a much more accurate computation.
The flat sections in ⇢ correspond to the two-torus attractors
with digT ⇠ 14, the highest level in Fig. 10. This figure shows
almost no scatter when compared with the corresponding plot
for two-wave model, Fig. 5.

5.3. Magnetic field line flow

As a final example we consider a family of model magnetic
fields studied in [36]. Here the domain is the solid torus D2 ⇥ S1,
where ( , ✓ ) 2 [0, 1] ⇥ S1 are polar coordinates on the disk D2

and ⇣ is the toroidal angle on S1. The fields are generated from
the vector potential A =  r✓ � �r⇣ with

� ( , ✓ , ⇣ ) =
1
2 

2
�

X

m,n2Z

"m,n ( � 1) cos (2⇡ (m✓ � n⇣ )) ,

This gives the magnetic field

B = r ⇥ A = r ⇥ r✓ � r� ( , ✓ , ⇣ ) ⇥ r⇣ . (24)

The field line of B for this case can also be thought of as the flow
of � as a nonautonomous Hamiltonian using (✓ , ) as canonical
variables and ⇣ as ‘‘time’’. These are the solutions to

 ̇ = �2⇡
X

m,n

m"m,n ( � 1) sin(2⇡ (m✓ � n⇣ )),

✓̇ =  �

X

m,n

"m,n(2 � 1) cos(2⇡ (m✓ � n⇣ )),

⇣̇ = 1.

(25)

Note that this system has invariant two-tori at  = 0 and  =

1. Moreover, when all the amplitudes "m,n = 0 the system is
completely integrable, since  is then invariant. More generally,
each m, n Fourier mode creates a resonant magnetic island near
 =

n
m with amplitude "m,n.
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Fig. 10. The maximum digit accuracy for the system (22) with parameters (23) for a grid of 1200 values of b 2 [0.6, 1.8]⌫. Here T = 1500 and h = p. The red points
correspond to b = 0.8⌫ and 1.33⌫, blue to b = 1.1⌫, 1.34⌫, and green to 0.829⌫ and 1.77⌫. The attractors for these b values were shown in Fig. 8.

Fig. 11. The rotation number of ✓ for (22) for the same parameters as Fig. 10 computed using the WBA for h = p.

In [36], a set of resonances with fixed m and a range of n
values are studied. To emphasize the creation of higher-order
islands by resonant beating, we instead use a set of Fourier
modes that correspond to resonances up to a given level on the
Farey tree [58]. In particular, we take (m, n) corresponding to the
resonances up to level three on the Farey tree with root ( 01 ,

1
1 ),

namely,

(m, n) 2 {(4, 1), (3, 1), (5, 2), (2, 1), (5, 3), (3, 2), (4, 3)}. (26)

Note that the Farey tree naturally generates a set of coprime
(m, n) pairs.

We will choose a one-parameter family of the amplitudes
so that there is a critical value at which the Chirikov overlap
criterion [58] is simultaneously satisfied for each neighboring
pair. The approximate island half-width in  for a single Fourier
mode in (25) can be obtained by neglecting the O(") term in the ✓̇
equation. Thus if "m,n ⌧ 1 the system is effectively a pendulum in
the variables (m✓�n⇣ ,m �n). This gives a resonance at  =

n
m

with the half-width

�m,n = 2
q
"m,n

n
m

�
1 �

n
m

�
.

Two neighboring resonant islands on the Farey tree then overlap
when

�m1,n1 +�m2,n2 =

����
n1

m1
�

n2

m2

���� =
1

m1m2
.

Here the last equality above follows because the two modes are
Farey neighbors. If we scale the amplitudes as

("4,1, "3,1, "5,2, "2,1, "5,3, "3,2, "4,3)

=
"

21600
(72, 27, 25, 96, 25, 27, 72) (27)

then the resonances simultaneously overlap at " = 1. For this
value the system should be chaotic, in the sense that the rota-
tional tori between each pair of islands are destroyed. Of course,
as is well known, the overlap criterion overestimates the critical
value for the destruction of the KAM tori [6].
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Fig. 12. Poincaré sections for (25) with parameters (27) at ⇣ = 0 mod 1 for four values of ".

5.3.1. Detecting chaos
A Poincaré section at ⇣ = 0 for the system (25) is shown

in Fig. 12 for four values of ". This figure shows only the range
 2 [0, 1

2 ], but for the symmetric amplitudes (27), "m,n = "m,m�n,
the phase portrait has the reflection symmetry  ! 1� . Thus
the dynamics in the interval  2 [

1
2 , 1] can be inferred.

When " = 0.05, Fig. 12(A) shows that almost all orbits lie
on tori, though there will invariably be small chaotic regions not
observed at this scale near the separatrices of the island chains.
When " = 0.25, a small amount of chaos is visible near the
separatrices of the period four and five islands. When " = 0.5
these chaotic regions grow; however, there are still rotational
tori that act as barriers to transport between each of the primary
island chains in the set (26). For " = 1.0, Fig. 12(D) shows that
all of the rotational tori for  in the interval (0.2, 0.8) have been
destroyed, though some low-period islands persist in the sea of
chaos.

The true critical value of " can be estimated numerically by
looking for an orbit that ‘‘crosses’’ all the resonances. Starting at
(✓0, 0, ⇣0) = (0.375, 0.27, 0), close to the hyperbolic-point of the
(4, 1) island, we found that the smallest " for which  (t) > 0.45
for some time t 2 [0, 104] is "cr = 0.665. This is certainly
consistent with the phase portraits in Fig. 12.

Note that the regions of regular tori around  = 0 and around
 = 1 persist as " grows. This is because the tori  = 0 and
 = 1 are invariant, and the Farey island set (26) does not include
any terms below 1

4 and above 3
4 .

To study the onset of chaos using the weighted Birkhoff av-
erage, we computed the maximum digit accuracy, digT , for initial
conditions ( 0, 0, 0) with  0 2 [0, 0.5]. We choose h =  so that
h i is a first approximation of the rotation number of a regular

torus. The results for the same four values of " in Fig. 12 are
shown in Fig. 13.

As can be seen in the figure, the distinction between digT for
chaotic and regular orbits becomes clearer as " increases. The
criterion (20) suggests that chaotic orbits have digT . 5. Note
that some of the regular orbits have digT up to 15, and that the
nearly horizontal, rotational tori in the range 0 <  0 < 0.2 have
digT ' 13. When " = 0.05, there are only 4 initial conditions on
the 501 point grid that would be designated as chaotic; though
since 4  digT  5 for each of these, they are near the threshold.
As " increases, chaotic regions surrounding the islands appear and
grow. By " = 0.25, there are small intervals of low-digit accuracy
around the 1

4 and 2
5 islands; however, only 14 initial conditions

have digT  5. As " increases, the chaotic regions around the
low-period islands grow, and for " = 0.5, initial conditions with
low digT are seen near  0 = 0.2, 0.3, 0.4 and 0.5. Finally, when
" = 1.0 the chaotic regions around the low period islands merge,
though the line of initial conditions with ✓0 = ⇣0 = 0 goes
through the elliptic center of each of the forced resonances in
the set (26). This gives rise to the peaks in digT near the low-
order islands that are visible in Fig. 12(D). Of course, the orbits
for  0 < 0.18, where regular tori seen in Fig. 12(D) persist, have
a maximum digit accuracy that remains high.

To conclude, it is clear by comparing Fig. 12 and Fig. 13, that
the weighted Birkhoff average accurately detects the onset of
chaos for this family of Farey magnetic fields.

5.3.2. A measure of non-integrability
In [36], the authors developed a measure of the ‘‘effective

volume of parallel diffusion’’ as a proxy for measuring the non-
integrable region. To do this, they first solve the steady-state
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Fig. 13. The maximum digit accuracy, digT (h), as a function of initial condition  0 on a grid with steps of 0.001, for four " values. Here T = 1000 and h( , ✓ , ⇣ ) =  .

temperature using the anisotropic diffusion equation,

r · (krkT + ?r?T ) = 0. (28)

Here T is the temperature, k, ? are the parallel, perpendicular
diffusion coefficients, respectively, and rk = b̂b̂ · r and r?

are the gradients parallel and perpendicular to the unit vector
b̂ = B/kBk, respectively. Eq. (28) is solved with the Dirichlet
boundary conditions that fix T on the boundary tori,  = 0 and
1. The measure they use is the fraction of the volume ⌦ in which
the local parallel heat transport is larger than the perpendicular
transport:

VPD =
1

Vol(⌦)

Z

⌦

⇥
�
k|rkT |

2
� ?|r?T |

2� dx3. (29)

Here ⇥ is the Heaviside step function.
In order that (29) be an effective measure of integrability,

Paul et al. [36] argue that when ? ⌧ k, T is approximately
constant along field lines of B. It follows, for a region foliated by
invariant tori, |rkT | will be relatively small, and thus the measure
VPD will be essentially zero. Conversely, they argue that regions
of phase-space with chaotic field lines will have relatively large
parallel diffusion. This second claim is shown by first proving that
surfaces of constant temperature must have the same topology as
the boundary surfaces. Consequently, these isotherms will not be
able to completely align to the structure of the field in chaotic
regions, increasing the value of |rkT |. However, as the authors
remark, the effective parallel diffusion will also be high within
islands, even if they are not chaotic. Thus regions where the
invariant surfaces do not have the same topology as the boundary
will also contribute to (29). In this regard, the measure of parallel
diffusion is analogous to converse KAM theory [17,31].

Regardless of what (29) precisely measures, such a measure
may in fact be more useful for the original purpose of [36] in
optimizing the structure of magnetic fields for plasma confine-
ment. However, the weighted Birkhoff averaging may provide a
reasonable alternative measure of chaos, if that is desired.

A simple measure of integrability is the relative fraction of
initial conditions deemed chaotic by weighted Birkhoff averaging.
For the model (25), we first used the same initial conditions as
Fig. 13: ( 0, ✓0, ⇣0) = ( 0, 0, 0). For each " 2 [0, 1.0] in steps of
0.01, we computed digT for T = 1000 and h =  . An orbit was
deemed chaotic if digT < 5 and regular otherwise. The relative
fraction of chaotic initial conditions for each " is shown using the
symbol ‘+’ in Fig. 14. A similar computation was performed along
the line ✓0 = 0.15. The result points are shown in Fig. 14 using
the symbol •.

For both sets of initial conditions, the fraction of chaotic initial
conditions is observed to vanish when " = 0, and increase—
though not always monotonically—with ". This is consistent with
Fig. 12. For small " (e.g., " < 0.2) we see the fraction of
chaotic initial conditions is very small. This is consistent with the
expected exponentially small splitting of separatrices. For larger
", the rate of increase of the chaotic fraction slows. This is most
prominent for ✓0 = 0.15 near " = 0.6, just below "cr = 0.665
where the last rotational tori in the interval  0 2 [0.18, 0.5] are
destroyed.

An issue with the use of the fraction of chaotic orbits along a
line of initial conditions in the 3D phase space is evident in the
difference between the two cases in Fig. 12. The line ✓0 = 0 is
special because it intersects the rotational periodic orbits at their
elliptic points; this is evidently due to a time-reversal symmetry
of the system (25) under the involution

( , ✓ , ⇣ ) ! ( , �✓ , �⇣ ).
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Fig. 14. The fraction of initial conditions that are chaotic for (25) with " 2 [0, 1.0], and initial conditions ( 0, ✓0, 0) with  0 2 [0, 0.5] in steps of 0.001.

A similar time-reversal symmetry of the Chirikov standard map
results in the so-called ‘‘dominant symmetry line’’ that contains
all the minimax rotational periodic orbits [58]—these are the or-
bits that are elliptic for small perturbations. The result is that the
sample of initial conditions along the line ✓0 = ⇣0 = 0 includes
more regular orbits, the elliptic islands around each of these
periodic orbits. In contrast, the line ✓0 = 0.15 intersects fewer
of the elliptic regions around the islands. Hence, the fraction of
chaotic orbits for ✓0 = 0 is less than that for ✓0 = 0.15.

Of course, a more general system than (25), e.g., one with
added phases in each Fourier term, would not have this symmetry
and would thus be less susceptible to this problem. In any case,
this issue could be ameliorated by sampling initial conditions on
a 2D grid in the Poincaré section; of course, this would add the
computational expense. One could keep track of which grid cells
are visited by each orbit, so as to reduce the number that need to
be considered.

6. Discussion

We have investigated the utility of the WBA for distinguishing
between regular and chaotic orbits for the two-wave Hamiltonian
system, a quasiperiodically forced, dissipative system that has
a strange attractor with no positive Lyapunov exponents, and a
model for magnetic field line flow. It was shown that the WBA is
super-convergent when the dynamical system and phase space
function are smooth and the dynamics is either conjugate to a
rigid rotation with Diophantine rotation vector or more gener-
ally satisfies (30). The contrasting, relatively slow convergence
of chaotic trajectories provides an efficient discrimination crite-
rion. However, there remain some open questions and interesting
further directions.

A first theoretical question is that of the convergence of the
weighted Birkhoff average for general ergodic flows. In each
application it was observed that the WBA for chaotic orbits con-
verged relatively slowly in comparison to the regular orbits. This
formed the basis for the WBA as a method to detect chaos.
However, this slow convergence does not yet have a theoretical
foundation. It may be possible to show that (30) is not only
sufficient for super-polynomial convergence, but also necessary.
If this is true, then it may provide a path forward to theoretically
confirming the slow convergence for chaotic orbits observed in
this paper and for the case of maps in [29,30].

One of the benefits of the WBA is that it can provide an
accurate computation of the average of a phase space function.
Indeed, when the average converges, one gets—for free—a good
approximation to hhi. Consequently, given a physically important
h, such as rotation number, its value is computed as a free
by-product of the method. Conversely, if the main goal is to
compute an orbit average of some smooth function, then super-
convergence of the WBA on regular orbits, also gives—for free—a
criterion distinguishing between regular and chaotic behavior.

This poses the question: which h is optimal for chaos de-
tection? This appears to be a difficult question. It is clear that
some choices are poor, and this is supported by the convergence
theorems for the Birkhoff average in [45,46]. Moreover, an ev-
erywhere constant function is also obviously a poor choice for
a different reason: its average over any orbit is the same for
any T . In some sense, an ideal function for distinguishing chaos
would be constant on regular orbits, but vary on chaotic ones.
In this case the average along the latter should still exhibit the
characteristically slow convergence that we observed above. Of
course, if one were able to construct such a function, then one
would already know the orbital structure of the flow, obviating
the necessity of a computation.

This argument suggests that an approximate integral of the
system might be a good choice for h. Such a choice would en-
sure that h has little variation on regular orbits, still leaving
room to see the distinction between convergence for regular and
chaotic orbits. We obtained several such approximate integral
functions for the two-wave system in [17]. However, our pre-
liminary studies using these approximate integrals as h in the
two-wave system did not appear to produce a stronger contrast
in digT between chaotic and regular orbits. In the future, we hope
to investigate the choice of h in the weighted Birkhoff average as
a means of detecting chaos.

A further line of future study is that of an effective measure of
(non)-integrability. This was one of the primary aims of the work
in [36]. Such a measure would help in optimizing field configura-
tions by minimize chaos. There are several improvements of the
crude measure of Fig. 14 that one could implement and use to
understand chaos in magnetic confinement devices.

Finally, it was evident in Section 5.2 that the WBA can distin-
guish between regular and strange ‘‘non-chaotic attractors’’. Thus,
the convergence rate distinction for the WBA does not rely on
exponential divergence of orbits. Future investigation is needed
to understand precisely which types of dynamics this method can
accurately discern.
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Appendix. Kachurovskii’s convergence result

Following the work of [28,46], super-polynomial convergence
can be guaranteed under weaker hypothesis on the flow than
those in Theorem 3, provided h has a particular structure.

Theorem 4. Let (M,B, µ) be a probability space and 't : X !

Xbe a smooth, ergodic flow with invariant probability measure µ.
Suppose that h 2 L1(X, µ) and there exists bounded function H 2

Cm(X,R) such that

h(x) = hhi �
dm

dtm
H('t (x))

����
t=0

, (30)

for all x 2 S where S is an invariant set of full measure. Moreover,
suppose the bump function g 2 G1. Then, there exists a constant cm
such that,

|WBT (h)(x) � hhi| 
cm
Tm for all x 2 S.

Proof. As S is invariant, the group property of 't guarantees, for
all x 2 S, ⌧ 2 R,

h('⌧ (x)) = hhi �
dm

dtm
H('t+⌧ (x))

����
t=0

= hhi �
dm

dtm
H('t (x))

����
t=⌧

.

Using this relation we can rewrite the difference between
weighted Birkhoff average and the phase space average as

|WBT (h)(x) � hhi| =

����
1
T

Z T

0
g
✓

t
T

◆
h('t (x)) dt � hhi

����

=

����

Z 1

0
g(s)h('Ts(x)) ds � hhi

����

=

����

Z 1

0
g(s)

dm

dtm
H('t )(x)

����
t=sT

ds
���� .

Finally, integrating by partsm times and noting that the boundary
terms vanish by (8) shows that, for all x 2 S,

|WBT (h)(x) � hhi| =
1
Tm

����

Z 1

0
g (m)(s)H('sT (x)) ds

����


1
Tm kg (m)

k1kHk1.

Since kg (m)k1 < 1 and kHk1 < 1 by assumption, we can take
cm = kg (m)k1kHk1 to give the result. ⇤

Remark 2. The condition (30) is equivalent to a function being
‘cohomologous’ to its average [46], with some further regularity
assumed. It is difficult to ascertain whether, for a given function
h, there exists a function H . This is due to the fact that finding
H in (30) requires knowledge of both the function h and the
flow 't . The numerical observations that were given in Section 5
imply that for a chaotic orbit super-polynomial convergence is
not observed. This indicates it is impossible to find the desired H
for a chaotic orbit.

Remark 3. Theorem 3 can be obtained as a corollary of
Theorem 4. As in the proof of Theorem 3, assume h 2 L2(Td)
and assume coordinates ✓ 2 Td is taken so that 't (✓ ) = ✓ + t!.
Denoting the Fourier series for h by h =

P
k2Zd ake2⇡ ik·✓ , we can

then set

H = �

X

k2Zd

ak
(2⇡ ik · !)m

e2⇡ ik·✓ .

Then, for each m, h is of the form (30). Note that as m grows, H
is bounded provided ! is Diophantine.
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