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ABSTRACT: Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems
and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-
related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than
two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and
machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks.
As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and
supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central
Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based
on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the
probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both
a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but
outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning
models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system.
We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and
heatwaves.

SIGNIFICANCE STATEMENT: Heatwaves (prolonged extremely warm temperatures) cause thousands of fatalities
worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to
improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning meth-
ods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves
more than two weeks in advance. These early warnings can be used to activate effective and timely response plans
targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves.
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1. Introduction

A heatwave is an extended period of extremely hot weather
relative to the expected local conditions at that time of the
year. These high temperatures can cause substantial damage
to human health, agriculture, infrastructure, and biodiversity
(Barriopedro et al. 2011; Perkins 2015). Heatwaves are among
the most dangerous natural hazards (Basu and Samet 2002;
Lowe et al. 2011), having caused more than 166 000 deaths
across the world between 1998 and 2017, including 70 000
fatalities during the 2003 European heatwave (Wallemacq
et al. 2018). Summer heatwaves are associated with higher
wet-bulb temperatures than winter heatwaves (Buzan and
Huber 2020), resulting in higher mortality (Huynen et al.

2001). In addition, the probability of other natural disasters,
such as wildfires, is higher during heatwaves [e.g., the 2020
Australian wildfires ignited amid a record-breaking heatwave
(Deb et al. 2020)]. Furthermore, climate change leads to more
extreme hot weather (Barriopedro et al. 2011; Perkins 2015),
and an increase in heatwave intensity, duration, and fre-
quency (Ford et al. 2018; Perkins and Alexander 2013;
Perkins-Kirkpatrick and Lewis 2020; Seneviratne et al. 2014).

Preparation for heatwaves is possible to a certain extent,
for example, through early warning systems (EWS; Merz et al.
2020), which enable an effective and timely response targeting
vulnerable populations and regions. For instance, EWS help
to determine when crops will need more irrigation, when
cooling centers must be set up, or when local hospitals must
prepare for an additional number of patients (Bassil and Cole
2010). Moreover, measures for heatwave preparedness on the
order of seasons to decades have to be taken by governments
and municipalities (Casanueva et al. 2019; Kotharkar and
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Ghosh 2022). Hence, the time needed to prepare for heat-
waves is often beyond the time scales of medium-range
weather forecasts (up to two weeks) (de Perez et al. 2018).
While forecasts on seasonal time scales show potential, a skill
gap between two weeks and seasonal time scales remains
(Robertson et al. 2015; White et al. 2017). Alternative ap-
proaches must therefore be explored to extend the lead time
of skillful forecasts to subseasonal time scales (from two
weeks to two months).

Central European heatwave predictability can be enhanced
by a range of precursors, including both local and remote
drivers linked to European temperatures via teleconnections.
Heatwaves are generally associated with local persistent
blocking anticyclones or upper-level ridges (Kautz et al. 2022;
Suarez-Gutierrez et al. 2020). The atmospheric circulation
associated with these persistent features exhibits predictabil-
ity time scales of up to two weeks (Weyn et al. 2019; Zheng
and Frederiksen 2007). In turn, the latitude and speed of the
North Atlantic (NA) jet stream, which are influenced by the
distribution of topography (Jiménez-Esteve and Domeisen
2022), affect the occurrence and location of these atmospheric
features and, hence, central European heatwaves (Bladé et al.
2012; Oliveira et al. 2020). For instance, when the summer
east Atlantic (SEA) pattern (i.e., the second dominant mode
of summer low-frequency variability in the Euro-Atlantic re-
gion) is in its positive phase, with low pressure west of the
British Isles and high pressure to the east, the weather tends
to be unusually warm over Europe (Wulff et al. 2017). The
SEA pattern shows longer predictability time scales than local
geopotential, on the order of 2–3 weeks (Vitart 2014; Zuo
et al. 2016).

Cold sea surface temperature (SST) anomalies in the NA
are also found to be present prior to the onset of the most ex-
treme European heatwaves since 1980 (Duchez et al. 2016)
[e.g., anomalously cold NA SSTs were key to the develop-
ment of the 2015 European heatwave (Mecking et al. 2019)].
Moreover, northwestern Mediterranean (NWMED) SSTs are
linked to temperatures over the European continent due to
their proximity and large heat capacity, acting as a heat buffer
for land temperatures (e.g., the 2003 European heatwave was
connected to warm Mediterranean SSTs; Black et al. 2004).
Since SST anomalies tend to be highly persistent, in extratropical

regions, weekly mean SST anomalies are associated with longer
predictability of weeks to months (Hu et al. 2012; Kumar and
Zhu 2018).

Furthermore, precipitation is linked to surface air tempera-
ture via several mechanisms, including changes in incoming
solar radiation and surface sensible heat flux. Precipitation is
characterized by high-frequency variability and, thus, it is not
expected to be predictable at lead times longer than a few
weeks (Li and Robertson 2015; Wheeler et al. 2016). Precipi-
tation directly influences soil moisture, which is another driver
of summer heatwaves (Fischer et al. 2007). Dry soils (low soil
moisture) and warming reinforce each other through a posi-
tive feedback effect (Kolstad et al. 2017): Moist soils mostly
cool through latent heat flux to the atmosphere, while dry
soils emit more sensible heat (Laguë et al. 2019) and hence
heat up the atmosphere faster than moist soils. This warmer
atmosphere, in turn, results in even more dryness, closing the
positive feedback loop (Seneviratne et al. 2010). In addition,
increased sensible heating can help maintain a blocking
anticyclone over land (Miller et al. 2021). Consequently, dry
springs are more likely to be followed by extremely high
summertime temperatures (Mueller and Seneviratne 2012;
Perkins 2015).

We here investigate whether the subseasonal forecasting ac-
curacy of summer temperature anomalies and heatwaves in
central Europe (CE) can be improved by using linear and ran-
dom forest (RF) machine learning (ML) models based on these
precursors. Other studies use ML and deep learning (DL) to
forecast temperature and heatwaves, targeting time scales dif-
ferent from subseasonal (Khan et al. 2019; Kämäräinen et al.
2019; Pyrina et al. 2021) or North America instead of CE
(Chattopadhyay et al. 2020; Miller et al. 2021; Sobhani et al.
2018; Vijverberg et al. 2020). Moreover, DL architectures suc-
cessfully predict the onset of long-lasting extreme heatwaves in
France two weeks in advance (Jacques-Dumas et al. 2022) and
yield increased predictability with respect to the European
Centre for Medium-Range Weather Forecasts (ECMWF) at
lead times of 3–4 weeks (Lopez-Gomez et al. 2023), agreeing
with the findings of the present study despite using a different
set of predictors. Finally, additional predictors are identified in
a related study by using explainable ML methods (van Straaten
et al. 2022).

TABLE 1. Properties of the predictors. For each predictor, the name of the corresponding variable (physical magnitude) as labeled
in the dataset (source) is presented. We also indicate the temporal and spatial resolution at which each variable was downloaded, the
extracted vertical level, the selected spatial location, and the method used to convert the three-dimensional time–latitude–longitude
space into a one-dimensional time series. The soil moisture [0–28 cm underground (u.g.)] is calculated as the average over the first
two layers (layer one: 0–7 cm u.g. and layer two: 7–28 cm u.g.). The monthly SST predictors are interpolated to daily time resolution.

Predictor Physical magnitude (units) Source (space, time resolution) Level Box Method

Temperature 2-m air temperature (8C) E-OBS (0.258, daily) 2 m AGL CE Avg
Geopotential Geopotential (m2 s22) ERA-Interim (2.58, daily) 500 hPa CE Avg
Precipitation Rainfall (mm) E-OBS (0.258, daily) Surface CE Avg
Soil moisture Volumetric soil water layer (m3 m23) ERA5-Land (2.58, daily) 0–28 cm u.g. CE Avg
SEA index Geopotential (m2 s22) ERA-Interim (2.58, daily) 500 hPa NA PCA
NWMED SST Sea surface temperature (8C) HadISST (18, monthly) Sea level NWMED Avg
CNAA SST Sea surface temperature (8C) HadISST (18, monthly) Sea level CNAA Avg
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2. Methods

a. Data

1) PREDICTOR SELECTION

Seven atmospheric and surface predictors that are expected
to be related to summer temperature and heatwaves in CE
based on previous studies (section 1) and a correlation analy-
sis [section 3b(1)] are selected: 2-m air temperature, 500-hPa
geopotential, precipitation, soil moisture, the SEA index,
NWMED SST, and cold North Atlantic anomaly (CNAA)
SST. Geopotential at the 500-hPa pressure level is used in-
stead of sea level pressure to avoid capturing the influence of
high surface temperatures on the local low-level surface pres-
sure (Suarez-Gutierrez et al. 2020). The following predictors
were also evaluated but were not used, as they correlated
only weakly with 2-m air temperature: deep soil moisture
(28–289 cm underground), the summer North Atlantic Oscil-
lation (i.e., the first dominant mode of summer low-frequency
variability in the Euro-Atlantic region), southeastern Medi-
terranean SST, Baltic SST, El Niño–Southern Oscillation
SST, the North Atlantic SST index by Ossó et al. (2020), and
the Pacific–Caribbean dipole index by Wulff et al. (2017). The
seven selected predictors are considered in the extended sum-
mer season (MJJAS), during the time period between 1 May
1981 and 30 September 2018. Technical details about these
predictors can be found in Table 1. Since both local predictors
and remote teleconnections are included, their locations are
shown in Fig. 1 and their latitude–longitude coordinates are
provided in Table 2.

The changes in speed and location of the NA jet stream are
included in our set of predictors through the SEA index. First,
the SEA pattern is calculated via principal component analy-
sis (PCA) (Storch and Zwiers 2003), applied on the detrended
500-hPa geopotential height anomalies over the NA box for
the summer season (JJA). The SEA index corresponds to the
time-dependent coefficients (or PCA amplitudes) of the sec-
ond PCA pattern (Wulff et al. 2017). Then, the daily SEA in-
dex is calculated for MJJAS by projecting the SEA pattern on
the daily values of the 500-hPa geopotential height anomalies

from May to September and the obtained time series are nor-
malized (m 5 0, s 5 1).

2) DATA PREPROCESSING PIPELINE

First, we select latitude–longitude boxes for each physical
magnitude and take either the arithmetic mean of the area
(avg) or perform PCA (Table 1) to obtain one-dimensional
time series. The maximum overlap period for the selected
predictors is chosen as 1 May 1981 to 30 September 2018
(38 summers). We then detrend each time series by subtracting
the linear trend. Detrending the data removes linear long-term
trends, which could be influenced by external climate forcing.
Next, we compute the daily climatology (xclim), defined as the
mean over the full time period for a particular day of the year.
We smooth the daily climatology by a centered 31-day rolling
mean window. We then compute the anomalies with respect
to climatology as: xanom 5 x 2 xclim. This way, also periodic
changes due to seasonality are removed. Afterward, to reduce
the noise caused by natural variability, which might lead to
overfitted statistical models, these anomalies are smoothed out
via a 7-day centered rolling mean. Then, we standardize the
predictors: xstd_anom 5 xanom/xstd, where xstd_anom are the stan-
dardized anomalies and xstd the standard deviation of the distri-
bution of each predictor. Furthermore, for each of the six
prediction lead times (1–6 weeks), the predictors are provided
to the ML models for the four weeks before initialization. For
example, for a forecast at two weeks lead time (meaning that

FIG. 1. Location of latitude–longitude boxes. These are used to define the location of the predic-
tors shown in Table 1. The latitude–longitude coordinates of the boxes are shown in Table 2.

TABLE 2. Coordinates of latitude–longitude boxes. The boxes
correspond to the location of the predictors of Table 1 as seen in
Fig. 1.

Box Lat Lon

Central Europe (CE) 458–558N 58–158E
North Atlantic (NA) 408–708N 908W–308E
Northwestern Mediterranean

(NWMED)
358–458N 08–158E

Cold North Atlantic anomaly
(CNAA) (Duchez et al. 2016)

458N–608N 158–408W
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we are using a statistical model initialized two weeks before the
target week for which we make the forecast), the precipitation
from two, three, four, and five weeks before the target week is
used as a predictor by the ML models. Finally, since we want
to investigate the predictability of summer temperature, the
MJJAS months are selected.

3) HEATWAVE INDEX DEFINITIONS

We define weekly heatwaves via a binary index: one for a
heatwave week and zero, otherwise. While there is no univer-
sal definition for heatwaves and a range of different indices
are found across the literature, percentile-based definitions
are widely used (Perkins and Alexander 2013; Perkins 2015;
Perkins-Kirkpatrick and Lewis 2020; Spensberger et al. 2020).
We use two different heatwave definitions, thereby defining
two independent classification problems: 11s for high and
11.5s for extremely high temperature anomalies (Fig. 2). The
11s weekly heatwave index is defined as one for the weekly
mean temperature anomalies above one standard deviation
(s) (i.e., to the right of the orange line in Fig. 2) and zero, oth-
erwise. Analogously, the 11.5s weekly heatwave index is de-
fined as one for the weekly mean temperature anomalies
above 1.5 standard deviations (i.e., to the right of the red line
in Fig. 2) and zero, otherwise. The number of heatwave and
no-heatwave samples can be found in Table 3.

b. Lead time

We forecast at 1–6 weeks lead time. The statistical models
are trained separately for each lead time and do not learn
from each other. For instance, the two-weeks-lead-time fore-
cast does not receive the one-week-lead-time forecast as an
additional input. Moreover, since our data is averaged via a
7-day rolling mean [section 2a(2)], weeks are labeled by their
central day. A one-week-lead-time prediction leaves no gap
between the days used to calculate the one-week-lag predic-
tors and the days used to determine the target. For instance,
the one-week-lead-time forecast run on 4 June (average over

1–7 June) forecasts 11 June (average over 8–14 June). Simi-
larly, a lead time of two weeks leaves a gap of 7 unused days.

c. Machine learning models

For our study, we choose statistical models at the two ex-
tremes of the bias-variance trade-off (Mehta et al. 2019).
1) The simpler linear models are prone to have high bias,
meaning that the model will match the training set less
closely. These models have a higher potential for underfit-
ting. Linear models, however, have low variance, meaning
that the predictions of the model do not fluctuate much with
a change of dataset. Overall, these models are focused on
the larger trends rather than on the complicated patterns of
the training set. 2) By contrast, the more complex decision
trees (DTs) are likely to overfit the data, but also to capture
most of the relevant patterns. They tend to have high vari-
ance, but low bias. To mitigate the risk of DTs overfitting,
we use RFs instead.

Two statistical models from each of these two families
(1 and 2) are used for the regression and classification fore-
casts: ridge regressor (RR), ridge classifier (RC), random for-
est regressor (RFR), and random forest classifier (RFC).
Moreover, the final forecasts by each model are the average
of an ensemble of these ML models trained on slightly differ-
ent samples (section 2h).

1) LINEAR MODELS

Linear regression models forecast the target time series y5 (yt)
as a linear combination of N predictor time series xn 5 (xn,t):

ŷ(v, X) 5 v0 1 v1x1 1 · · · 1 vNxN (1)

where v0 is the intercept, vn (0 , n # N) are the regression
coefficients, and t 2 [1, T] is the time step. The coefficients are
chosen to minimize the residual sum of squares between the
forecast (ŷ) and the observed target (y): minv‖ŷ 2 y‖. Linear
classification models first convert binary targets to {21, 1} and
then treat the problem as a regression task. The forecast class
corresponds to the sign of the regressor’s forecast. We use
Ridge regularization to control excessively fluctuating func-
tions by adding an additional penalty term in the error func-
tion, such that the coefficients do not take extreme values
(Hastie et al. 2009, chapter 3). Ridge shrinks the predictor co-

efficients based on the L2-norm (‖v‖2 5
!!!!!!!!!!!
∑N

n51v
2
n

√
). The loss

function for minimization then becomes ‖ŷ 2 y‖1 a‖v‖22,
where the complexity parameter a is a hyperparameter that
controls the amount of shrinkage.

FIG. 2. Histogram of temperature anomalies averaged over CE
for the definition of heatwave indices. The blue bars correspond to
the standardized (m 5 0, s 5 1) temperature anomalies. The data
are smoothed by a 7-day running mean [section 2a(2)]. The vertical
blue line marks the mean (m 5 0) of the distribution. The stippled
orange (red) line marks 11 (11.5) standard deviations (s) from
the mean and is used to define heatwaves.

TABLE 3. Class imbalance. Class distribution of the 5934 samples
in MJJAS and the 1981–2018 time period.

Weekly heatwave index 11s 11.5s

Absolute number of heatwave events 1121 430
Absolute number of no-heatwave events 4813 5504
Percentage of heatwaves 18.89% 7.25%
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2) RANDOM FORESTS

A DT makes a recursive partition of the input space into
rectangles, by selecting the predictor and the respective cut-
ting point that discriminate best at each node. The resulting
leaves correspond to a specific forecast value (regression)
or to a probability of belonging to the positive class (binary
classification). However, DTs have two key disadvantages:
1) Trees usually have high variance due to their greedy split
process, which implies that a small change in training data can
result in significantly different splits. 2) Since the tree estimate
is not smooth, DTs may not be appropriate when the underly-
ing function is smooth (Khan et al. 2019). A more accurate
and robust statistical model can be constructed by creating a
random ensemble of DTs whose averaged prediction is more
accurate than that of any individual tree. RFs use two sources
of randomness while training: bagging and feature random-
ness (Breiman 2001). 1) Bagging (or bootstrap aggregation)
consists in selecting a random subset of the training set with
replacement (meaning that individual data points can be cho-
sen more than once) to train each individual tree. 2) When
splitting a node in a classical DT, all features are considered
and the one that provides the greatest separation between ob-
servations is selected. In contrast, each individual tree in a RF
can pick only from a random subset of features (Hastie et al.
2009, chapter 15). Finally, the mean or majority-vote forecast
of all the regression or classification trees in the forest is se-
lected as the final result, respectively. RFs are chosen over
other tree-based algorithms since they are more interpretable
(Rudin 2019) than gradient boosting and less prone to overfit
than single DTs.

d. Hyperparameter optimization

We split the available data into a training period (1 May
1981–30 September 2000), a validation period (1 May 2001–
30 September 2009), and a testing period (1 May 2010–
30 September 2018) (Fig. 3). The validation period is used to

optimize the statistical model’s hyperparameters for each lead
time. After the hyperparameter optimization, the model is re-
trained on the full training period (1 May 1981–30 September
2009), which is the combination of the validation and the
training period. A nested cross-validation (CV) scheme is also
implemented (appendix B, Fig. B1).

For the RFs, we use an exhaustive grid-search hyperpara-
meter optimization including all possible combinations (750)
of the following parameters: number of trees in the forest
2 {50, 100, 200, 400, 600}, maximum tree depth 2 5–14, and a
range of 15 values centered around the full training set’s
length Tft divided by 100 in steps of Tft/500 for the minimum
number of samples per leaf. The minimum number of samples
for splitting a node is set to the minimum number of samples
per leaf multiplied by a factor of 2 and, for classification, the
class weight is set to balanced. For the two linear models, the
complexity parameter a is selected from the range [0, 1] in
steps of 0.05. The reference metrics for optimization are the
root-mean-square error (RMSE) for regression and the Brier
score (BS) for classification (section 2e). The selected hyper-
parameters are shown in appendix C (Table C1).

e. Metrics for the evaluation of forecasting performance

1) REGRESSION METRICS

For regression, two different metrics are considered: RMSE
and Pearson correlation. The RMSE evaluates how far away
the forecast (ŷ) and the ground truth (y) time series are from
each other and is defined as

RMSE(ŷ, y) 5
!!!!!!!!!!!!!!!
MSE(ŷ, y)

√
5

!!!!!!!!!!!!!!!!!!!!
1
T
∑
T

t51
(ŷt 2 yt)

2

√

(2)

for T the number of time steps (sample size).
The Pearson correlation measures to what extent the curve

follows the changes and is given by

FIG. 3. Schematic of the training–validation–test split.
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Corr(ŷ, y) 5
∑
T

t51
(ŷt 2 ŷ)(yt 2 y)

!!!!!!!!!!!!!!!!!

∑
T

t51
(ŷt 2 ŷ)2

√ !!!!!!!!!!!!!!!!

∑
T

t51
(yt 2 y)2

√ (3)

for z 5 (1/T)∑T
t51zt the mean over all time steps.

2) CLASSIFICATION METRICS

For classification, the BS and the receiver operating charac-
teristic (ROC) area under curve (AUC) are used to evaluate
the probabilistic forecast. The BS is the mean-squared error
of the probability forecasts [i.e., Eq. (2) squared], consider-
ing that an observation is yt 5 1 if the event occurs and
yt 5 0 if the event does not occur at time t. Since individual
probabilistic forecasts and observations are bounded by
zero and one, the BS can only take values in the range [0, 1]
(Wilks 2019).

The ROC is the true positive rate (TPR) as a function of
the false positive rate (FPR) (Bradley 1997). The TPR (or
recall) is defined as the proportion of positive data points
that are correctly considered positive, with respect to all
positive data points. The TPR is given by TP/(FN1TP) for
true positives (TPs) and false negatives (FNs). The FPR
(or false alarm) is defined as the proportion of negative
data points that are mistakenly considered positive, with
respect to all negative data points. The FPR is calculated
as FP/(FP 1 TN) for false positives (FPs) and true nega-
tives (TNs) (see Table 4 for the definition of TP, FP, FN,
and TN).

Moreover, the performance of the binary classification is as-
sessed via the FPR-to-TPR ratio, extremal dependence index
(EDI), and frequency bias (B). The EDI is used to evaluate
forecasts of rare binary events and is calculated as (Ferro and
Stephenson 2011)

EDI 5
ln(FPR) 2 ln(TPR)
ln(FPR) 1 ln(TPR) : (4)

This score is ill defined if any of the four cells in the confusion
matrix (Table 4) equals zero, since ln(0) or a division by zero
yield infinity. However, such models can still be interpreted
by adding an infinitely small number (pseudocount) to those
cells containing zeros (Wunderlich et al. 2019).

The frequency bias is the ratio of the number of positive-
class forecasts to the number of positive-class observations:

B 5
TP 1 FP
TP 1 FN

: (5)

Unbiased forecasts exhibit B 5 1, indicating that the event is
forecast the same number of times as observed (Wilks 2019).

We define a useful probabilistic forecast as having BS , 0.25
(Steyerberg et al. 2010) and ROC AUC . 0.5 (Bradley 1997).
We consider a binary forecast useful if FPR/TPR , 1 and
EDI . 0 (Wilks 2019). In addition, B should be as close to one
as possible.

f. Calibration of the classification forecasts

Good forecasts should not only be accurate (as measured by
ROC AUC, EDI, and the FPR-to-TPR ratio) but also well
calibrated (as measured by BS and B) (Jolliffe and Stephenson
2005), meaning that the subsample relative frequency should
be exactly equal to the forecast probability in each subsample
(Wilks 2019). For example, if a model forecasts 100 positive-
class events (e.g., heatwave weeks), each with a probability of
80%, we expect 80 of the events to be correctly classified (i.e.,
to actually be a heatwave).

1) PLATT SCALING FOR THE PROBABILISTIC FORECASTS

Unlike accuracy, reliability can be improved in a postpro-
cessing step by calibrating the probabilistic forecasts (Jolliffe
and Stephenson 2005). The linear ML models already predict
calibrated probabilities and do not need an additional calibra-
tion step. We use Platt scaling to recalibrate the probabilistic
forecasts by the RFs. Platt scaling consists in projecting the
(ill calibrated) probabilities predicted by the ML models onto
the right probability distribution using a logistic regression
model (Smola et al. 2000). The RFs are trained on the training
set and calibrated on the validation set to determine the pa-
rameters of the logistic regression. The calibrated RF models
are then used to predict the test set. These datasets correspond
to the ones defined in Fig. 3. Since the logistic function is
monotonic, the calibration via Platt scaling does not change the
ordering of the samples, and, consequently, the ROC AUC
score remains the same. Instead, the BS is considerably reduced
after the calibration step.

2) PROBABILITY THRESHOLD MOVING FOR THE

BINARY FORECASTS

Forecasting the two weekly summer heatwave indices de-
fined in section 2a(3) (11s and 11.5s) results in imbalanced
classification problems (Table 3). A binary classifier trained
on these imbalanced data will learn to always forecast the
negative class, leading to a trivial and ill-calibrated statistical
model. Balancing the data before the training or moving the
probability threshold are two potential solutions to this prob-
lem. Random undersampling and oversampling methods have
been explored to balance the training data (Lemaitre et al.
2017). However, these methods are not used for the final ver-
sion of the statistical models since, in this particular case, they
result in overforecasting heatwaves.

TABLE 4. Confusion matrix. The positive class corresponds to
a heatwave and the negative class to no heatwave. For a sensible
model, the principal diagonal values must be high and the off-
diagonal values must be low (Bradley 1997).

Actual value (y)

Positive (1) Negative (0)

Forecast value (ŷ)
Positive (1) TP FP
Negative (0) FN TN
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Instead, for this study, the data imbalance is accounted for
by adjusting the probability threshold: The (noncalibrated)
classification models output a probability for each validation
sample to belong to the positive class. Then, the probability
threshold between zero and one that corresponds to no fre-
quency bias (i.e., B5 1) on the validation set is selected to binar-
ize the output (Wilks 2019). To avoid a strong dependency on
the distribution of the validation set, an internal cross-validation
scheme is used for selecting the probability threshold. Thirty
validation sets of nine randomly selected nonconsecutive years
belonging to the full training set (1981–2009) are constructed.
The remaining 20 years are used for training. The threshold that
minimizes the deviation from the mean frequency bias of the
30 validation sets from one is selected.

g. Reference forecasts

We compare our statistical models to the (i) climatology,
(ii) persistence, and (iii) ECMWF hindcast forecasts:

(i) For regression, temperature anomalies with respect to
climatology are forecast. Thus, the climatology forecast
is zero for all times per definition. For classification, the
climatology forecast is the mode class for each day of
the year. Since, in our dataset, the negative class pre-
dominates strongly over the positive class, the climatol-
ogy forecast is found to always predict the negative class
(no heatwave).

(ii) Persistence forecasts predict that the future weather
condition will be the same as the present condition. In
practice, the persistence forecast is defined as keeping
the value from initialization time until verification time.
For instance, for the regression forecast at two weeks
lead time, the persistence is the temperature anomaly
two weeks before verification time.

(iii) Early warnings are issued by the operational ECMWF
subseasonal prediction system, using 51 ensemble mem-
bers and information beyond the ensemble mean. How-
ever, these forecasts are currently only available for the
years 2015–22. Therefore, in order to evaluate our ML
models’ skill for the full test period (2010–18), we com-
pare to ECMWF subseasonal hindcast system’s ensem-
ble mean instead. This hindcast system is initialized
twice a week and provides 20-yr hindcasts with 11 en-
semble members integrated over 46 days. The hindcasts
used here cover the period 2000–19 and use the model
version of the Integrated Forecasting System cycle 47r1
(Haiden et al. 2019).
The mean daily 2-m air temperature is downloaded at a

spatial resolution of 18 3 18 and the arithmetic mean
of the area over CE (as defined in Fig. 1) is calculated. Then,
the temperature anomalies are calculated by removing the
lead-time-dependent climatology at each initialization, cal-
culated by the 20-yr mean of the 11-member ensemble
started on the same day and month for each year of the
reference period (2000–19). For instance, if a hindcast
was initialized on 31 May, the lead-time-dependent cli-
matology corresponding to that hindcast is calculated
as the mean of the 11-member ensemble initialized on

31 May and averaged over the 20-yr reference period
(2000–19) separately for each of the 46 days. After the cal-
culation of the temperature anomalies, a 7-day rolling
mean is applied for each initialization. In this way, we end
up with 40 days per initialization, with each day being the
center of the 7-day rolling mean. For instance, the first
day predicted by the initialization on 31 May will be
4 June (average over 1–7 June).

Removing different climatologies for individual dynam-
ical models and reanalysis or observational datasets is
standard practice, as the climatological normals are slightly
different across datasets (Flato et al. 2013). Moreover, in
the case of subseasonal forecasting, calculating anomalies
with respect to a lead-time-dependent climatology is ex-
pected to remove systematic biases that are lead-time
dependent (Manzanas 2020; Molteni et al. 2011). However,
the methodology followed for the calculation of the dy-
namical model’s climatology can influence the forecast’s
skill (Manrique-Suñén et al. 2020).

h. Ensembles and uncertainty estimation

For both ECMWF and the ML models, the final forecast is
calculated as the mean forecast by an ensemble of Kmodels:

m(Ŷ) 5 1
K
∑
K

k51
ŷk, (6)

with ŷk as the time series prediction by each ensemble mem-
ber. Then, the M metrics cm defined in section 2e for the final
forecast are calculated as cm[m(Ŷ), y], for m 5 1, … ,M. To
quantify the uncertainty of these metrics, the M metrics are
calculated with respect to the ground truth (y) for each en-
semble member [cm,k 5 cm(ŷk, y)]. Then, for each metric m,
the unbiased standard deviation of the ensemble [sm(Ŷ)] is
used to represent the uncertainty of the final forecast’s
metrics:

sm(Ŷ) 5
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1
K 2 1

∑
K

k51
[cm,k 2 m(cm)]

2

√

, (7)

for m(cm)5 (1/K)∑K
k51cm,k the mean metric m of all models

in the ensemble.
For ECMWF, the considered ensemble consists of K 5 11

subseasonal hindcasts. For both the linear and RF models,
block bootstrapping is used to create an ensemble. Bootstrap-
ping consists of randomly drawing samples with replacement
from the full training dataset (as defined in section 2d), with
each sample having the same size as the original training data-
set. Bootstrap resampling generally results in ’37% of the
observations not being selected. This resampling procedure is
repeated K 5 600 times, producing K bootstrap training data-
sets used to train K ML models (Hastie et al. 2009, chapter 7).
However, standard bootstrapping fails to represent the statis-
tics of dependent data, like time series. Block bootstrapping
overcomes this limitation by resampling independent chunks
of continuous observations instead of single dependent ones
(Kunsch 1989). Therefore, under the assumption of interannual
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independency of summers, we apply block bootstrapping
with a block size of one year, which means that the smallest
unit considered for resampling is one year instead of one
day.

3. Results and discussion

a. Forecasts

1) REGRESSION FORECASTS

In Fig. 4, the regression forecasts by two different ML mod-
els (RR and RFR) at six different lead times (1–6 weeks) are
compared to three reference forecasts: climatology, persis-
tence, and ECMWF. The analogous results for nested CV are
shown in appendix B (Fig. B2).

As can be observed in Fig. 4, all metrics are best for a lead
time of one week. The uncertainty in the forecasts by most
models, which is represented by the error bars, increases with
lead time. The RR’s performance decays linearly with increas-
ing lead time, with a correlation that ranges from 0.48 for one
week lead time to 0.09 for six weeks lead time. The RF’s cor-
relation decreases overall from one to six weeks lead time
(from 0.43 to 0.16) but remains noticeably constant for lead
times longer than two weeks. The evolution of the RMSE is
similar, but with the difference that it saturates when reaching
the RMSE value that corresponds to the climatology forecast.
The RMSE for the best statistical model at each lead time
ranges between 1.83 for one week lead time and 2.07 at six
weeks lead time.

The linear ML model outperforms the RF in terms of corre-
lation at short lead times (up to three weeks), but the RF model
provides a better forecast at long lead times (5–6 weeks). Both
ML models outperform the persistence forecast at all lead
times. However, the climatology forecast has a relatively low
RMSE, being a comparatively good guess at long lead times,
when forecasting becomes difficult. For lead times longer than
two weeks, the RMSEs of the ML models saturate at the clima-
tology’s RMSE and the ensemble mean of ECMWF’s hindcast
has a worse RMSE than the climatology forecast. Still, the cli-
matology forecast does not correlate with the ground truth and
the ML and ECMWF models outperform climatology at all

lead times in terms of correlation, since these models always
correlate positively with the ground truth. While ECMWF pro-
vides highly skilled forecasts in terms of correlation and RMSE
for one and two weeks lead time, the skill decreases fast with in-
creasing lead time; for lead times of three weeks and longer, the
ML models forecast the temperature anomalies more accu-
rately than the ensemble mean of ECMWF’s hindcast.

The ML models generally pick up the sign of the anomalies
but their sharpness, which refers to the ability of a probabilis-
tic forecast to spread away from the climatological average
(Gneiting et al. 2007), is lower than the one from ECMWF
and extreme values are not well captured (appendix A, Fig. A1).
For longer lead times, all models exhibit low sharpness in their
forecasts, tending to the climatology forecast. In the case of the
ML models, this tendency toward climatology can be a conse-
quence of the loss function. The loss functions for the RR and
the RFR models are the linear least squares function and the
mean-squared error, respectively. Both metrics measure the dis-
tance between the forecast and the target curves. Since forecast-
ing anomalies accurately becomes more difficult with increasing
lead time, a statistical model that is trained to minimize the error
will tend to forecast the mean of the distribution of possible out-
comes, becoming smoother and losing sharpness compared to
the observations (Rasp and Thuerey 2021). ML models trained
to optimize alternative loss functions, like in the study by Lopez-
Gomez et al. (2023), would be worth exploring.

2) CLASSIFICATION FORECASTS

The classification models output a probability for each sam-
ple in the test set to belong to the positive class (i.e., for a
week to be classified as a heatwave week). These probabilities
are calibrated to obtain the probabilistic forecast for the RFC
model and kept unchanged for the RC model. For both classi-
fiers, the noncalibrated probabilities are binarized via a probabil-
ity threshold, meaning that a zero (no heatwave) or a one
(heatwave) is assigned to each sample in the test set (section 2f).
In Fig. 5, the probabilistic classification forecasts by two ML
models (RC and RFC) at six different lead times (1–6 weeks) are
compared to the three reference forecasts. In Fig. 6, the perfor-
mance of the binary classification is shown. The analogous results
for nested CV are shown in appendix B (Figs. B3 and B4). Two

FIG. 4. Performance of the regression models for six different lead times. (a) RMSE and (b) correlation for the re-
gression forecasts. An accurate forecast is characterized by a low RMSE and a high correlation. The error bars show
the uncertainty of each forecast estimated via the standard deviation of the ensemble.
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different heatwave indices are used: 11s for high and 11.5s for
extremely high temperature anomalies [section 2a(3)].

For the probabilistic forecasts, the linear models have a
higher ROC AUC than the RFCs for short lead times (up to

4 weeks for the 11s heatwave index and up to 2 weeks for
the 11.5s heatwave index). However, the RFC’s ROC AUC
remains more constant than the linear model’s ROC AUC
across lead times, outperforming the linear models for longer

FIG. 6. Performance of the binary classification models for six different lead times. (a) EDI and (b) TPR (colored bars)
and FPR (stippled bars) for the11s weekly heatwave index. (c),(d) As in (a) and (b), but for the11.5s weekly heatwave
index. An accurate binary classification forecast is characterized by a high EDI, a high TPR, and a low FPR. The error bars
show the uncertainty of each forecast estimated via the standard deviation of the ensemble. Since the climatology forecast
predicts only zeros (no heatwave), both its TPR and FPR are equal to zero at all lead times in (b) and (d). Moreover, at a
lead time of four weeks, there is no overlapping between the 11.5s heatwave events in the ground truth and persistence
forecast, resulting in zero hits (TP5 0). Therefore, the EDI is not defined for the persistence forecast at this lead time and
the pseudocount correction yields a considerably lower value for the EDI in (c) compared to the persistence forecast at the
other lead times. This is an artifact of the limited sample size and does not appear in nested CV (appendix B, Fig. B4c).

FIG. 5. Performance of the probabilistic classification models for six different lead times. BS and ROC AUC for the
(a),(b) 11s and (c),(d) 11.5s weekly heatwave indices. An accurate probabilistic classification forecast is character-
ized by a low BS and a high ROC AUC. A no-skill probabilistic classification forecast is represented by a BS of 1 and
a ROC AUC of 0.5 (as indicated by the climatology). The error bars show the uncertainty of each forecast estimated
via the standard deviation of the ensemble.
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lead times (Figs. 5b,d). Moreover, the probabilistic forecasts
by both classification ML models outperform persistence and
climatology at all lead times and the ensemble mean of
ECMWF’s hindcast for lead times longer than two weeks,
except for the 11.5s forecast at lead times of 5–6 weeks by
the RC model. Overall, the forecast uncertainties by all
models increase with lead time, resulting in overlapping er-
ror bars. These patterns are analogous to the ones observed
for the regression forecast (Fig. 4b). In terms of BS, both
statistical models present a smaller loss than the ensemble
mean of ECMWF’s hindcast at lead times of two weeks and
higher (Figs. 5a,c). As for regression, the climatology shows
a constant Brier loss, which is comparable to the BS of the
ML models. The probabilistic forecasts by both statistical
models (taking the uncertainty into account) are useful at each
of the considered lead times (1–6 weeks), except for the RC
model at 5–6 weeks lead time, where the uncertainty bars
overlap with the no-skill ROC AUC score. Meant by useful is
BS , 0.25 and ROC AUC . 0.5. It is remarkable that nonnull
skill by the RFCmodel is present at these long lead times.

Moreover, in terms of Brier loss, extremely high temperature
anomalies (11.5s) are easier to forecast than high temperature
anomalies (11s), which agrees with the findings of Wulff and
Domeisen (2019). The performance of the ensemble mean of
ECMWF’s hindcast in predicting extremely high temperature
anomalies (11.5s) drops drastically between two and three
weeks lead time and remains constant for lead times longer
than three weeks. In contrast, ECMWF’s classification skill
when forecasting high temperature anomalies (11s) decays
close to linearly with lead time. The probabilistic RFC is slightly
more skilled in capturing extremes than the probabilistic linear
model: the RFC forecasts extremely high temperature anoma-
lies (11.5s) more accurately than high temperature anomalies
(11s) compared to the linear model. This difference in skill is
possibly due to nonlinear effects driving extreme temperature
that the RFC is able to capture but the linear model is not.

For the binary classification, the overall skill of the statisti-
cal models is poorer than for the probabilistic classification.
As the lead time increases, the two statistical models and the en-
semble mean of ECMWF’s hindcast predict fewer weekly heat-
wave events and the TPR decreases with lead time (Figs. 6b,d).
Moreover, despite moving the probability threshold to forecast
an unbiased validation set [section 2f(2)], the binary forecasts of
the test set by the statistical models (in particular, for the 11.5s

heatwave index) are considerably biased compared to the predic-
tions by the ensemble mean of ECMWF’s hindcast (Table 5).
Useful binary forecasts by at least one of the statistical models
(taking the uncertainty into account) are found at 1–5 weeks lead
time for the 11s heatwave index and at lead times of one, four,
and five weeks for the 11.5s heatwave index, where useful is
defined as FPR/TPR, 1 and EDI. 0.

Finally, the RFC tends to overfit the training set consider-
ably, with ROC AUCs and EDIs above 0.99 at all considered
lead times (1–6 weeks). The hyperparameters chosen during
the grid search for the RFC correspond to the deepest possible
trees and the smallest possible leaves (appendix C, Table C1).

b. Predictor importance

The relevance of each of the seven predictors for forecast-
ing summer temperature anomalies is investigated by per-
forming a linear correlation analysis and examining which
predictors were predominantly used by each ML model.

1) LINEAR CORRELATION ANALYSIS

In Fig. 7, the linear correlations between the temperature and
the predictors in MJJAS are shown for six different time lags
(1–6 weeks). At short time lags, the temperature shows a strong
autocorrelation. The geopotential has an even stronger positive
correlation to the temperature, indicating that during anticyclonic
conditions higher temperatures than normal are expected. In
contrast, precipitation, soil moisture, and the SEA index corre-
late negatively with temperature at short time lags. Precipitation
is associated with cyclones, cloudy conditions, and lower surface
air temperatures. Moreover, dryness (low soil moisture) and high
temperature reinforce each other (section 1). The correlations
with the atmospheric predictors (temperature, geopotential, pre-
cipitation, and SEA) decay fast. In addition, the linear correla-
tion with soil moisture becomes nonsignificant for lead times of
two weeks and longer. In contrast, the SST predictors show a
more constant linear correlation over time and dominate on time
scales longer than a week, since they are more persistent. While
the NWMED SST correlates positively with the temperature
over CE, the CNAA SST correlates negatively with both.

2) RELEVANCE OF LAGGED PREDICTORS FOR THE
MACHINE LEARNING MODELS

Each of the seven predictors is provided to the ML models
at four time lags, building a set of 28 lagged predictors for

TABLE 5. Frequency bias of the ensemble mean forecasts of each of the two classification targets in the test period (2010–18) by
the two ML models (RC and RFC) and ECMWF’s hindcast. A well-calibrated model should have B 5 1. For B , 1, the forecast
underestimates the total number of heatwave events and for B . 1, the events are overestimated. Biases of the ensemble mean
forecasts above 1.5 or below 0.5 are bold.

Heatwave index Model 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

11s RC 1.11 6 0.37 1.26 6 0.47 1.23 6 0.49 1.03 6 0.46 0.72 6 0.58 0.81 6 0.57
RFC 0.87 6 0.29 1.03 6 0.31 1.45 6 0.36 1.62 6 0.44 1.09 6 0.46 0.93 6 0.43
ECMWF 1.05 6 0.04 1.11 6 0.10 1.03 6 0.11 0.97 6 0.14 0.97 6 0.18 1.13 6 0.12

11.5s RC 0.61 6 0.71 1.32 6 0.95 1.62 6 1.23 1.18 6 1.07 0.52 6 1.13 0.49 6 0.92
RFC 0.55 6 0.42 0.58 6 0.58 1.38 6 0.81 0.99 6 0.59 0.93 6 0.75 0.20 6 0.63
ECMWF 1.12 6 0.08 1.04 6 0.14 1.04 6 0.22 0.88 6 0.18 0.67 6 0.31 1.04 6 0.27
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each lead time [section 2a(2)]. The relevance of a lagged pre-
dictor for each ML model is given by the absolute value of its
regression coefficient for the linear models and its feature im-
portance for the RF models. Here, the impurity-based feature
(or Gini) importance for a predictor Xi is computed by the
sum of all impurity decrease measures of all nodes in the for-
est at which a split based on Xi has been conducted, normal-
ized by the number of trees (Menze et al. 2009; Nembrini
et al. 2018). These values are shown in Tables D1 and D2 for the
linear models (RR and RC, respectively) and in Tables D3 and
D4 for the RFs (RFR and RFC, respectively) in appendix D.

In general, predictors at short lags are more useful to the
statistical models. Also, the longer the forecast’s lead time,
the higher the relative contribution from SST becomes. The
location of the most important SST region is lead-time depen-
dent: the NWMED SST dominates for short lead times (up to
two weeks) and the CNAA SST prevails for longer lead times
(3–6 weeks). The CNAA SST’s dominance at long lead times
is consistent with the linear correlation shown in Fig. 7, which
remains significant for CNAA SSTs at the longest lead times.

When forecasting the 11s and the 11.5s heatwave indices,
the overall set of relevant lagged predictors is similar, with two
exceptions: First, the SST is used more to forecast high tempera-
ture anomalies (11s) compared to extremely high temperature
anomalies (11.5s). Second, the RFC model relies more on soil
moisture to forecast extremely high temperature anomalies
(11.5s) compared to high temperature anomalies (11s), coin-
ciding with the findings by Lopez-Gomez et al. (2023). The differ-
ent importances of the SST and soil moisture for forecasting the
two heatwave indices could be due to the positive feedback be-
tween temperature and soil moisture (section 1) being more pro-
nounced for extremely high compared to high temperature
anomalies. Nevertheless, we can find more marked differences
between the two families of statistical models:

(i) For the linear models, SSTs dominate at all lead times.
In particular, the CNAA SST is the most relevant pre-
dictor for the RR model at lead times of 2–6 weeks.

Nonetheless, the temperature is a useful predictor for
the RR model at short lead times (1–3 weeks) as well. At a
lead time of one week, also the precipitation and soil mois-
ture contribute to the regression forecast. In contrast, these
three lagged predictors are not used by the RC model,
which relies almost exclusively on SSTs. Therefore, the pre-
diction skill of the ML models incorporating only the
NWMED and CNAA SST predictors has been tested ad-
ditionally (appendix E, Figs. E1–E3). The regression mod-
els have poorer prediction skill when using SST-based
predictors only. By contrast, the RC probabilistic classifica-
tion model benefits from including SST-only predictors at
lead times of 4–6 weeks for11.5s, indicating that the SSTs
are the most important predictors for these forecasts
(appendix D, Table D2) and the other predictors only in-
crease the model’s complexity. Overall, poorer prediction
skill is observed for the binary classification models that use
only SST predictors, especially for the11.5s prediction.

(ii) For the RF models, temperature, geopotential, precipi-
tation, the SEA index, and NWMED SST at short lags
are the most important predictors at short lead times
(one week) and SSTs are found to dominate for longer
lead times (2–6 weeks). In addition, soil moisture and
the SEA index are useful at lead times of 3–6 and
1–5 weeks, respectively. At lead times longer than one
week, these two predictors have no significant linear
correlation with the temperature (Fig. 7) and are used
by the RF models but not by the linear models. A plau-
sible explanation for this phenomenon is the presence of
highly nonlinear links between temperature and soil
moisture, and temperature and the SEA index. The
physical mechanism behind the nonlinear link between
temperature and soil moisture can be the positive feed-
back described in section 1 as well as threshold behav-
ior. For example, over transitional wet/dry regimes, soil
moisture exhibits large variability and therefore air tem-
perature can be altered by up to 6–7 K, while typical soil
moisture variations can impact air temperature by up to

FIG. 7. Lagged linear correlations between the predictors and the temperature in MJJAS at
weekly time resolution. Hatched cells correspond to nonsignificant linear Pearson correlation co-
efficients at 5% significance level.
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1.1–1.3 K (Schwingshackl et al. 2017). The SEA pattern
and its relation to enhanced summer temperature anom-
alies resemble the one of air temperature and the sum-
mer North Atlantic Oscillation (Folland et al. 2009).
The anomalous subsidence associated with the positive
geopotential center of the SEA pattern over CE causes
a reduction of cloud cover and thus increased solar
radiation and surface sensible heating. Increased sen-
sible heating can help maintain the anticyclone over
land, contribute to further dryness of the soil, and
thus lead to a positive feedback loop with increasing
temperatures. These two nonlinear links between tem-
perature and soil moisture, and temperature and the
SEA index (including soil moisture) would explain the
enhanced skill of the RF models compared to the linear
models at lead times higher than four weeks (section 3a).

4. Limitations and downstream tasks

In this section, the current limitations are discussed and fur-
ther research ideas to improve the forecasts are suggested:
1) alternative statistical models, 2) approaches to overcome
the limitations due to the small sample size, and 3) nonopera-
tional statistical models.

1) The statistical models used in our study belong to the field
of classical ML. The complex nature of climate data (e.g.,
nonlinear dependencies between predictors, autocorrela-
tion, and unobserved predictors) poses important chal-
lenges to traditional ML models. As discussed in section 1,
DL is also being used for extreme weather forecasting. DL
can capture more complex relationships between predic-
tors and target, and might therefore be better suited to
describe the mechanisms behind heatwaves, which most
likely include nonlinear processes. In addition, classical
ML approaches benefit from domain-specific hand-crafted
features to account for dependencies in time or space but
rarely exploit spatiotemporal dependencies exhaustively.
In contrast, DL can automatically extract abstract spatio-
temporal features (Reichstein et al. 2019). Yet, DL models
require larger datasets than the ones used for this study
and were therefore not used.

2) One of the main limitations of this study is the size of the
dataset. The initial dataset is considerably larger, but pre-
cious information gets lost when taking the average over
latitude–longitude boxes. It might be interesting to ex-
plore the effect of using several smaller subboxes instead
of one large box. Additional columns could be added to
the dataset, such as a box label or its latitude–longitude
coordinates. Also, the currently used boxes are rectangular
and their coordinates are chosen based on our physical un-
derstanding and the correlation to the target. This could
be refined by letting an algorithm select subregions of dif-
ferent shapes for each predictor based on the correlation
of each grid cell to the target (Vijverberg et al. 2020) or
even including the spatial information of the predictors
(van Straaten et al. 2022). While lower-dimensional statistical

models like RR and RC might not be able to distinguish be-
tween distinct mechanisms acting in different regions, RFs
are expected to benefit from additional gridded observa-
tional data.

3) The proposed ML models use input data at daily resolu-
tion and make weekly predictions. Therefore, to provide
the predictions by these models operationally, there is a
need for input data updates with at least weekly fre-
quency. Since this high frequency of updates is not avail-
able for the data from gridded observations used in this
study, the proposed ML models cannot be used opera-
tionally. ERA5 reanalysis data, which provides prelimi-
nary product updates every 5 days (Hersbach et al.
2020), could be explored as an alternative input.

5. Conclusions

To conclude, we summarize the improvements on subseaso-
nal central European temperature anomalies and heatwave
prediction by the chosen ML models: The performance of the
linear and RF models decays with lead time but outperforms
persistence and climatology at all lead times. ECMWF yields
accurate forecasts for 1–2 weeks lead time but our ML models
compete with the ensemble mean of ECMWF’s hindcast at
lead times longer than two weeks. While the linear models
perform better for shorter lead times (1–3 weeks), the RFs
take over at lead times longer than four weeks.

The statistical regression forecast of summer temperature is
better than a random prediction in forecasting the sign of the
anomalies at all considered lead times (1–6 weeks) and out-
performs the ensemble mean of ECMWF’s hindcast at long
lead times (3–6 weeks). However, extreme values are poorly
captured. For the classification problem, both statistical models
yield a useful probabilistic forecast (meaning BS, 0.25 and ROC
AUC . 0.5) for each of the considered lead times (1–6 weeks),
except for the RC model at 5–6 weeks lead time. It is remarkable
that nonnull skill by the RFC model is present at these long lead
times. The binary forecast by at least one of the statistical models
is useful (meaning FPR/TPR , 1 and EDI . 0) at 1–5 weeks
lead time for the 11s heatwave index and at lead times of one,
four, and five weeks for the11.5s heatwave index (section 3a).

At short lead times (1 week), the following variables are
found to be the best predictors of summer temperature anoma-
lies and heatwaves in CE: local 2-m air temperature, 500-hPa
geopotential, precipitation, and NWMED SST. At longer lead
times (2–6 weeks), NWMED and CNAA SST are the most rele-
vant predictors. Moreover, the SEA index and soil moisture
have a linear link with temperature at one week lead time and a
possible nonlinear link at longer lead times (section 3b).

In summary, even though our ML models cannot cur-
rently be used operationally, these statistical models seem
to capture a signal that the ensemble mean of ECMWF’s
hindcast is not capturing. ML models can, therefore, help
extend the forecasting lead time of summer temperature
anomalies and heatwaves to subseasonal scales and are a
promising direction for further research in subseasonal fore-
casting. Nevertheless, making better forecasts is not enough.
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Forecasts acquire value through their ability to influence the
decisions made by their users (Murphy 1993). As discussed
in the introduction (section 1), EWS involve not only fore-
casting the heatwave event but also triggering effective and
timely response plans that target vulnerable populations
and regions. This second step must also be successfully im-
plemented to reduce the impact of such damaging events
(Merz et al. 2020; White et al. 2022).
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APPENDIX A

Regression Forecasts’ Time Series

In Fig. A1, the time series forecasts by the regression models
are shown.

FIG. A1. Regression time series. The ground truth time series, the reference forecasts, and the predictions by the ML regression models of
the temperature anomalies are shown for the nine summers in the test time period (2010–18). (a)–(f) Lead times 1–6, respectively.
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APPENDIX B

Nested Cross Validation

To assess the robustness of our ML models, a CV scheme
is implemented. In CV, the model is trained on different
data subsets, which reduces overfitting and results in a bet-
ter generalization. Moreover, CV removes the dependency
on an arbitrarily selected test set (i.e., on decadal climate
variability), making the metrics more robust (Vabalas et al.
2019). Here, a nested CV scheme with five outer and two
inner splits is used (Fig. B1). The main benefit of nested
CV compared to other CV schemes is that the statistical
model is trained and tested on the full dataset while main-
taining the independence of the test set, making this
method well suited for a limited sample size.

Nested CV is generally not used for time series data since
consecutive time steps are strongly correlated. However,
since the correlation between the considered predictors de-
cays after a maximum of a few months and only summer
data points are selected for this study, summers belonging
to different years can be considered independent. To avoid
a strong correlation between the sets at the splitting points,
the data is split during the winter months.

The metrics obtained with nested CV (Figs. B2–B4) are
similar, although smoother, compared to the results without
CV (Figs. 4–6), except for the binary classification by the
RC model (Fig. B4c). The linear models also show higher
skill than the RF models for lead times up to three weeks
and the RFs outperform the linear models at 5–6 weeks
lead time. While the skill of the ML models at short lead

FIG. B2. Performance of the regression models for six different lead times with nested CV. (a) RMSE and
(b) correlation for the regression forecasts. An accurate forecast is characterized by a low RMSE and a high correla-
tion. The error bars show the uncertainty of each forecast estimated via the standard deviation of the ensemble.

FIG. B1. Nested cross-validation scheme. The N5 5 different test sets are predicted by the statistical models and the metrics with respect
to the ground truth are calculated for each test set. The final metrics are obtained by averaging the metrics for the five test sets. The uncer-
tainties of these metrics are estimated via the standard deviation of these 5-member ensembles. This figure is adopted from Vabalas et al.
(2019).
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times (up to three weeks) is similar with and without CV,
the models in nested CV perform slightly worse for longer
lead times. Moreover, the uncertainty of the ML models is
higher with nested CV. Therefore, while at least two ML
models outperform persistence and climatology on average for

all lead times, the error bars overlap with the reference fore-
casts for lead times of three weeks and longer. A comparison
to the ECMWF forecast cannot be included for nested CV,
because the dynamical model is not available during the full
test period used for this CV scheme (1981–2018).

FIG. B3. Performance of the probabilistic classification models for six different lead times with nested CV. BS and
ROC AUC for the (a),(b) 11s and (c),(d) 11.5s weekly heatwave indices. An accurate probabilistic classification
forecast is characterized by a low BS and a high ROC AUC. A no-skill probabilistic classification forecast is repre-
sented by a BS of 1 and a ROC AUC of 0.5 (as indicated by the climatology). The error bars show the uncertainty of
each forecast estimated via the standard deviation of the ensemble.

FIG. B4. Performance of the binary classification models for six different lead times with nested CV. (a) EDI and
(b) TPR (colored bars) and FPR (stippled bars) for the11s weekly heatwave index. (c),(d) As in (a) and (b), but for
the 11.5s weekly heatwave index. An accurate binary classification forecast is characterized by a high EDI, a high
TPR, and a low FPR. The error bars show the uncertainty of each forecast estimated via the standard deviation of the
ensemble. Since the climatology forecast predicts only zeros (no heatwave), both its TPR and FPR are equal to zero
at all lead times in (b) and (d).
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APPENDIX C

Hyperparameters

Table C1 shows the optimized hyperparameters for the
ML models.

APPENDIX D

Regression Coefficients and Feature Importances

The regression coefficients and feature importances are
shown in Tables D1–D2 and D3–D4, respectively.

TABLE C1. Optimized hyperparameters. Linear (a) and RF (number of estimators, minimum samples per leaf, and maximum depth)
hyperparameters for three targets and six lead times.

Target Lead time (weeks) a Number of estimators Min samples/leaf Max depth

Temperature anomalies 1 1.0 100 20 5
2 0.0 200 116 8
3 1.0 100 52 5
4 1.0 50 4 5
5 1.0 200 12 5
6 0.0 400 100 5

11s heatwave index 1 1.0 600 4 14
2 0.95 400 4 14
3 1.0 400 4 14
4 0.0 600 4 14
5 1.0 600 4 14
6 1.0 600 4 14

11.5s heatwave index 1 1.0 600 4 14
2 0.75 400 4 14
3 1.0 600 4 14
4 1.0 600 4 14
5 1.0 600 4 14
6 1.0 600 4 14

TABLE D1. Regression coefficients for a single RR model trained on the full training set. Coefficients with absolute values
above 0.5 are bold.

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
Predictor Lag (weeks)

Temperature 1 0.47 } } } } }
2 20.4 20.3 } } } }
3 20.23 20.51 20.42 } } }
4 0.05 0.02 20.07 } } }
5 } 0.26 0.35 0.31 0.26 }
6 } } 0.2 0.32 0.29 0.31
7 } } } 20.28 20.22 20.14
8 } } } } 20.14 20.08
9 } } } } } 20.07

Geopotential 1 0.07 } } } } }
2 0.21 0.21 } } } }
3 0.14 0.33 0.25 } } }
4 20.22 20.17 20.14 20.13 } }
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TABLE D1. (Continued)

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
Predictor Lag (weeks)

5 } 20.3 20.38 20.37 20.4 }
6 } } 20.18 20.34 20.31 20.32
7 } } } 0.29 0.15 0.08
8 } } } } 0.25 0.18
9 } } } } } 0.15

Precipitation 1 20.66 } } } } }
2 0.07 0.22 } } } }
3 0.21 0.27 0.3 } } }
4 20.03 0.02 0.04 20.01 } }
5 } 20.05 20.05 0.02 20.04 }
6 } } 20.1 20.01 0.04 20.05
7 } } } 0.08 0.17 0.13
8 } } } } 0.2 0.28
9 } } } } } 0.33

Soil moisture 1 0.94 } } } } }
2 20.65 20.08 } } } }
3 20.24 20.28 20.39 } } }
4 0.04 0.08 20.04 20.32 } }
5 } 0.03 0.14 20.02 20.27 }
6 } } 0.08 0 20.05 20.17
7 } } } 0.19 20.06 20.06
8 } } } } 0.18 20.11
9 } } } } } 0.03

SEA 1 20.06 } } } } }
2 20.01 20.04 } } } }
3 20.14 20.12 20.13 } } }
4 20.11 20.14 20.14 20.17 } }
5 } 0.17 0.2 0.24 0.18 }
6 } } 0.03 0.08 0.13 0.14
7 } } } 0.01 0.04 0
8 } } } } 0.04 0.04
9 } } } } } 20.1

NWMED SST 1 2.1 } } } } }
2 21.67 3.05 } } } }
3 20.2 23.31 1.99 } } }
4 0.31 0.4 22.37 1.35 } }
5 } 0.46 0.12 22.5 0.46 }
6 } } 0.69 1.52 21.09 20.35
7 } } } 20.02 1.45 0.98
8 } } } } 20.56 20.23
9 } } } } } 20.26

CNAA SST 1 21.74 } } } } }
2 1.8 23.24 } } } }
3 0.36 3.67 23.27 } } }
4 20.39 0.47 3.25 24.15 } }
5 } 21 2.04 7.83 20.97 }
6 } } 22.16 24.93 2.34 1.38
7 } } } 1.08 23.27 23.73
8 } } } } 1.74 3.05
9 } } } } } 20.76
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TABLE D2. Regression coefficients for a single RC model trained on the full training set. Coefficients with absolute values above 0.5 are bold.

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

Target 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s
Predictor Lag (weeks)

Temperature 1 0.16 0.09 } } } } } } } } } }
2 20.13 20.06 20.1 20.03 } } } } } } } }
3 20.05 20.08 20.13 20.12 20.11 20.09 } } } } } }
4 20.06 20.03 20.07 20.04 20.1 20.06 20.11 20.07 } } } }
5 } } 0.06 0.05 0.07 0.06 0.05 0.05 0.04 0.04 } }
6 } } } } 0.07 0.04 0.09 0.07 0.07 0.06 0.07 0.06
7 } } } } } } 20.03 20.09 20.01 20.08 0 20.07
8 } } } } } } } } 20.01 20.02 0.03 0.01
9 } } } } } } } } } } 20.09 20.08

Geopotential 1 20.02 20.04 } } } } } } } } } }
2 0.09 0.06 0.08 0.05 } } } } } } } }
3 0.02 0.07 0.08 0.1 0.06 0.09 } } } } } }
4 0.01 20.01 0.02 20.01 0.04 0.01 0.04 0.01 } } } }
5 } } 20.05 20.03 20.06 20.02 20.04 20.02 20.07 20.03 } }
6 } } } } 20.04 20.04 20.06 20.06 20.04 20.06 20.04 20.05
7 } } } } } } 0.03 0.05 20.02 0.03 20.04 0.02
8 } } } } } } } } 0.06 0.04 0.04 0.03
9 } } } } } } } } } } 0.12 0.08

Precipitation 1 20.19 20.1 } } } } } } } } } }
2 20.01 20.03 0.04 0.01 } } } } } } } }
3 0 0 0.02 0.02 0.03 0.04 } } } } } }
4 20.01 0 20.02 0 20.01 0.01 20.01 0.01 } } } }
5 } } 20.02 0 20.02 20.02 20.01 20.01 0 20.01 } }
6 } } } } 20.02 20.02 20.01 20.01 0.01 0 20.02 20.02
7 } } } } } } 0.03 0 0.07 0.02 0.05 0.01
8 } } } } } } } } 0.08 0.03 0.09 0.03
9 } } } } } } } } } } 0.15 0.07

Soil moisture 1 0.29 0.16 } } } } } } } } } }
2 20.17 0 0 0.08 } } } } } } } }
3 20.01 20.05 20.02 20.06 20.04 20.02 } } } } } }
4 20.02 20.05 0.03 20.05 0 20.05 20.04 20.07 } } } }
5 } } 20.01 0.02 0.01 0.07 0 0.05 20.06 20.02 } }
6 } } } } 0.03 20.02 0 0 0 20.01 20.01 0
7 } } } } } } 0.02 0 20.08 20.04 20.08 20.04
8 } } } } } } } } 0.08 0.04 0.04 0.04
9 } } } } } } } } } } 20.06 20.04

SEA 1 20.07 20.03 } } } } } } } } } }
2 20.03 20.01 20.03 20.01 } } } } } } } }
3 20.07 20.04 20.05 20.03 20.05 20.03 } } } } } }
4 20.06 20.03 20.07 20.03 20.06 20.03 20.06 20.03 } } } }
5 } } 0.05 0.02 0.05 0.03 0.06 0.03 0.04 0.02 } }
6 } } } } 0.03 0.02 0.04 0.03 0.06 0.03 0.06 0.04
7 } } } } } } 0 20.01 0.01 20.01 0 20.02
8 } } } } } } } } 0.01 0.02 0.02 0.02
9 } } } } } } } } } } 20.02 20.03

NWMED SST 1 0.66 0.37 } } } } } } } } } }
2 20.71 20.29 0.7 0.47 } } } } } } } }
3 0.25 0.01 20.66 20.54 0.46 0.25 } } } } } }
4 20.04 0.01 20.02 0.14 20.39 20.23 0.49 0.25 } } } }
5 } } 0.15 0.02 20.32 20.11 20.9 20.43 0.16 0.03 } }
6 } } } } 0.38 0.15 0.41 0.21 20.39 0.03 20.09 0.08
7 } } } } } } 0.11 0.02 0.34 20.12 0.15 20.08
8 } } } } } } } } 20.03 0.12 0.01 20.03
9 } } } } } } } } } } 20.02 0.08

CNAA SST 1 20.18 0 } } } } } } } } } }
2 0.54 0.09 20.45 20.24 } } } } } } } }
3 20.29 20.05 0.4 0.18 20.67 20.42 } } } } } }
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TABLE D2. (Continued)

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

Target 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s
Predictor Lag (weeks)

4 0.02 20.01 0.25 0.19 0.25 0.23 21.55 20.73 } } } }
5 } } 20.16 20.12 1.17 0.58 2.8 1.3 20.52 20.18 } }
6 } } } } 20.75 20.4 21.53 20.67 0.97 0.18 0.12 20.12
7 } } } } } } 0.27 0.09 20.66 0.03 20.25 0.11
8 } } } } } } } } 0.2 20.05 0.21 0.08
9 } } } } } } } } } } 20.06 20.08

TABLE D3. Predictor importances for a single RFR model trained on the full training set. Values above 0.04 are bold.

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
Predictor Lag (weeks)

Temperature 1 0.02 } } } } }
2 0.01 0.03 } } } }
3 0.01 0.02 0.01 } } }
4 0.01 0.05 0.03 0.01 } }
5 } 0.01 0 0.01 0.01 }
6 } } 0.01 0.02 0.02 0.02
7 } } } 0.03 0.03 0.01
8 } } } } 0.01 0.01
9 } } } } } 0.01

Geopotential 1 0.23 } } } } }
2 0.01 0.01 } } } }
3 0.01 0 0 } } }
4 0.01 0.01 0.01 0 } }
5 } 0 0.01 0.01 0.01 }
6 } } 0 0.01 0.01 0
7 } } } 0.02 0.02 0.01
8 } } } } 0.01 0
9 } } } } } 0.01

Precipitation 1 0.18 } } } } }
2 0.03 0.01 } } } }
3 0.01 0.01 0.01 } } }
4 0 0 0 0.01 } }
5 } 0 0 0.01 0.01 }
6 } } 0.01 0.02 0.02 0.02
7 } } } 0.01 0 0.01
8 } } } } 0.01 0.01
9 } } } } } 0.02

Soil moisture 1 0.01 } } } } }
2 0.01 0.02 } } } }
3 0.01 0.02 0.02 } } }
4 0.02 0.01 0.02 0.02 } }
5 } 0.04 0.05 0.04 0.05 }
6 } } 0.05 0.05 0.05 0.06
7 } } } 0.01 0.01 0.01
8 } } } } 0.02 0.04
9 } } } } } 0.03

SEA 1 0.07 } } } } }
2 0.01 0.03 } } } }
3 0.01 0.01 0.03 } } }
4 0.01 0.02 0.01 0.02 } }
5 } 0.06 0.08 0.06 0.05 }
6 } } 0.04 0.02 0.02 0.04
7 } } } 0.03 0.03 0.04
8 } } } } 0.01 0.02
9 } } } } } 0.01
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TABLE D3. (Continued)

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
Predictor Lag (weeks)

NWMED SST 1 0.21 } } } } }
2 0.01 0.35 } } } }
3 0.03 0.05 0.13 } } }
4 0.01 0.03 0.03 0.07 } }
5 } 0.01 0.04 0.04 0.05 }
6 } } 0.06 0.04 0.05 0.05
7 } } } 0.12 0.1 0.07
8 } } } } 0.04 0.04
9 } } } } } 0.05

CNAA SST 1 0.02 } } } } }
2 0.02 0.1 } } } }
3 0.01 0.01 0.12 } } }
4 0.02 0.03 0.03 0.06 } }
5 } 0.09 0.07 0.1 0.13 }
6 } } 0.12 0.15 0.16 0.23
7 } } } 0.03 0.02 0.01
8 } } } } 0.07 0.02
9 } } } } } 0.16

TABLE D4. Predictor importances for a single RFC model trained on the full training set. Values above 0.04 are bold.

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

Target 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s
Predictor Lag (weeks)

Temperature 1 0.06 0.08 } } } } } } } } } }
2 0.02 0.02 0.03 0.02 } } } } } } } }
3 0.03 0.03 0.02 0.03 0.03 0.02 } } } } } }
4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 } } } }
5 } } 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 } }
6 } } } } 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
7 } } } } } } 0.03 0.04 0.03 0.04 0.03 0.04
8 } } } } } } } } 0.03 0.03 0.03 0.03
9 } } } } } } } } } } 0.03 0.03

Geopotential 1 0.06 0.06 } } } } } } } } } }
2 0.02 0.02 0.03 0.03 } } } } } } } }
3 0.02 0.02 0.02 0.02 0.02 0.02 } } } } } }
4 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.02 } } } }
5 } } 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 } }
6 } } } } 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03
7 } } } } } } 0.03 0.03 0.03 0.03 0.03 0.03
8 } } } } } } } } 0.03 0.03 0.03 0.02
9 } } } } } } } } } } 0.02 0.03

Precipitation 1 0.07 0.06 } } } } } } } } } }
2 0.02 0.02 0.03 0.03 } } } } } } } }
3 0.02 0.02 0.02 0.02 0.02 0.03 } } } } } }
4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 } } } }
5 } } 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.02 } }
6 } } } } 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
7 } } } } } } 0.03 0.02 0.02 0.02 0.02 0.02
8 } } } } } } } } 0.02 0.03 0.02 0.03
9 } } } } } } } } } } 0.03 0.03

Soil moisture 1 0.03 0.03 } } } } } } } } } }
2 0.03 0.04 0.03 0.04 } } } } } } } }
3 0.03 0.02 0.03 0.03 0.03 0.03 } } } } } }
4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 } } } }
5 } } 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.05 } }
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APPENDIX E

Only-SST Runs

In Figs. E1–E3, the prediction skill of the ML models using
only the NWMED and CNAA SST predictors is shown.

TABLE D4. (Continued)

Lead time 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

Target 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s 11s 11.5s
Predictor Lag (weeks)

6 } } } } 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.03
7 } } } } } } 0.03 0.03 0.03 0.03 0.03 0.03
8 } } } } } } } } 0.03 0.03 0.04 0.03
9 } } } } } } } } } } 0.03 0.03

SEA 1 0.05 0.06 } } } } } } } } } }
2 0.03 0.03 0.04 0.04 } } } } } } } }
3 0.03 0.04 0.04 0.05 0.04 0.05 } } } } } }
4 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04 } } } }
5 } } 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 } }
6 } } } } 0.04 0.04 0.03 0.03 0.03 0.04 0.03 0.03
7 } } } } } } 0.03 0.03 0.03 0.02 0.03 0.03
8 } } } } } } } } 0.03 0.03 0.03 0.03
9 } } } } } } } } } } 0.03 0.04

NWMED SST 1 0.06 0.08 } } } } } } } } } }
2 0.04 0.04 0.06 0.07 } } } } } } } }
3 0.04 0.04 0.05 0.05 0.05 0.06 } } } } } }
4 0.03 0.03 0.04 0.04 0.05 0.04 0.05 0.04 } } } }
5 } } 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 } }
6 } } } } 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05
7 } } } } } } 0.04 0.05 0.04 0.05 0.04 0.05
8 } } } } } } } } 0.05 0.04 0.04 0.04
9 } } } } } } } } } } 0.05 0.06

CNAA SST 1 0.04 0.03 } } } } } } } } } }
2 0.04 0.03 0.06 0.04 } } } } } } } }
3 0.04 0.03 0.04 0.04 0.05 0.04 } } } } } }
4 0.04 0.03 0.05 0.04 0.05 0.04 0.05 0.04 } } } }
5 } } 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 } }
6 } } } } 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.05
7 } } } } } } 0.05 0.06 0.05 0.06 0.05 0.05
8 } } } } } } } } 0.05 0.05 0.05 0.05
9 } } } } } } } } } } 0.06 0.05

FIG. E1. Performance of the regression models for six different lead times using only the NWMED and CNAA SST pre-
dictors. (a) RMSE and (b) correlation for the regression forecasts. An accurate forecast is characterized by a low RMSE and
a high correlation. The error bars show the uncertainty of each forecast estimated via the standard deviation of the ensemble.
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FIG. E3. Performance of the binary classification models for six different lead times using only the NWMED and
CNAA SST predictors. (a) EDI and (b) TPR (colored bars) and FPR (stippled bars) for the11s weekly heatwave in-
dex. (c),(d) As in (a) and (b), but for the 11.5s weekly heatwave index. An accurate binary classification forecast is
characterized by a high EDI, a high TPR, and a low FPR. The error bars show the uncertainty of each forecast esti-
mated via the standard deviation of the ensemble. Since the climatology forecast predicts only zeros (no heatwave),
both its TPR and FPR are equal to zero at all lead times in (b) and (d).

FIG. E2. Performance of the probabilistic classification models for six different lead times using only the NWMED
and CNAA SST predictors. BS and ROC AUC for the (a),(b) 11s and (c),(d) 11.5s weekly heatwave indices. An
accurate probabilistic classification forecast is characterized by a low BS and a high ROC AUC. A no-skill probabilis-
tic classification forecast is represented by a BS of 1 and a ROC AUC of 0.5 (as indicated by the climatology). The
error bars show the uncertainty of each forecast estimated via the standard deviation of the ensemble.
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