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Abstract

Understanding controls on soil organic carbon (SOC) will be crucial to managing soils for climate change
mitigation and food security. Climate exerts an overarching influence on SOC, affecting both carbon (C) inputs to

soil and soil physicochemical properties participating in C retention. To test our hypothesis that climate, C inputs,
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and soil properties would differently affect particulate organic carbon (POC) and mineral-associated organic carbon
(MAOC), we sampled 16 agricultural sites (n = 124 plots) in the United States, ranging in climate (mean annual
precipitation (MAP) - potential evapotranspiration (PET; MAP-PET)), soil pH (5.8 — 7.9), and soil texture (silt +
clay = 13 — 96%). As MAP-PET increased, soils increased in oxalate-extractable iron (Feo) and aluminum (Alo),
decreased in exchangeable calcium (Cacx) and magnesium (Mgex), and received greater C inputs. Soil
physicochemical properties did not strongly predict POC, confirming the relative independence of this SOC fraction
from the soil matrix. In contrast, MAOC was well predicted by combining Alp + [1/2]Feo with Cacx + Mgex in a
‘matrix capacity index’, which performed better than individual soil physicochemical properties across all pH levels
(r>0.79). Structural equation modeling indicated a similar total effect of MAP-PET on MAOC and POC, which
was mediated by total C inputs and the matrix capacity index for MAOC but not POC. Our results emphasize the
need to separately conceptualize controls on MAOC and POC and justify the use of a unified soil matrix capacity

index for predicting soil MAOC storage.
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Maintaining or increasing soil organic carbon (SOC) in agricultural soils will be crucial for mitigating
climate change (Minasny et al. 2017; Lessmann et al. 2022) and for supporting soil functioning (King et al. 2020;
Cotrufo and Lavallee 2022). To effectively manage agricultural SOC, we need to develop process-based models of
SOC based on a sound understanding of how SOC responds to environmental controls. Although environmental
controls on SOC storage have a rich history of theoretical and empirical work, encompassing SOC responses to
climate (Jobbagy and Jackson 2000), soil texture (Hassink 1997) and other soil physicochemical properties
(Rasmussen et al. 2018; Rowley et al. 2018; Heckman et al. 2020), and carbon (C) inputs (Six et al. 2002), on-going
refinements are yet to be fully integrated. For instance, separating SOC into distinct physical fractions is
increasingly leveraged to improve our understanding of environmental controls on SOC storage (Cotrufo et al. 2021;
Yu et al. 2022). Nevertheless, to our knowledge no studies have synthesized climate, soil physicochemical, and C
input controls on agricultural soil C fractions at a continental scale.

Conceptualizing SOC into contrasting fractions of mineral-associated organic carbon (MAOC) and
particulate organic carbon (POC) has been proposed to aid in understanding controls on SOC storage (Lavallee et al.
2020). The more stable MAOC pool forms primarily from microbial necromass and soluble, unprocessed plant
compounds (Kallenbach et al. 2016; Liang et al. 2017) and is primarily stabilized through adsorption, wherein soil
minerals protect adsorbed C from decomposition (Kleber et al. 2015). In contrast, POC is formed predominantly
from structural plant inputs and has shorter residence times than MAOC (von Liitzow et al. 2007), but may persist
through a combination of physical and physiological constraints on decomposers (Cotrufo and Lavallee 2022).
Given these contrasting pathways of formation and mechanisms of persistence for POC and MAOC (Lavallee et al.
2020), these fractions may be regulated by different suites of controls from among those factors already widely
recognized in controlling SOC.

Climate can be viewed as an overarching control on SOC pools, because it can affect factors that control
both C inputs to soil and losses of C from soil (Cotrufo and Lavallee 2022). The control of climate on C inputs
operates mainly via water limitations on net primary productivity — and consequently C inputs — at continental scales
(Gentine et al. 2019). Water availability can be estimated via water balance as the difference between mean annual
precipitation (MAP) and potential evapotranspiration (PET; MAP-PET). In turn, C inputs to soil often (Gulde et al.
2008), but not always (Zhou et al. 2019), increase SOC. To date, it is unclear whether C inputs similarly affect POC

and MAOC pools. As POC is minimally dependent on protection from the soil matrix, POC formation may be
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expected to more directly reflect plant C inputs to soil than MAOC. The formation of MAOC is expected to depend
on microbial transformations and soil matrix adsorption capacity (Cotrufo et al. 2013), and may therefore exhibit a
moderated relationship to C inputs. Currently, many process-based models predict a saturating increase of SOC with
increases in C inputs (Georgiou et al. 2021; Zhang et al. 2021), but these predictions may be refined by assessing the
impact of C inputs on contrasting SOC fractions.

Climate also controls C losses from the soil, including via microbial activity and soil physicochemical
properties. While microbial activity has received abundant attention (Zhang et al. 2008), soil physicochemical
properties are increasingly acknowledged for their protective capacity over SOC (Rasmussen et al. 2018). Soil
physicochemical properties are modified by MAP-PET: wetness decreases soil pH (Slessarev et al. 2016), increases
oxalate-extractable iron and aluminum (Feo and Alo; Hall et al. 2020), and decreases exchangeable calcium (Cacy;
von Fromm et al. 2021). As Cacx and Al + Feo are stabilizing agents of SOC, they therefore introduce a climate-
dependent role of soil physicochemical properties in C retention (Rasmussen et al. 2018; Rowley et al. 2018). The
extent to which these soil properties influence retention of POC vs retention of MAOC has been rarely explored
empirically, but it might be expected that soil physicochemical properties more closely control MAOC compared to
POC given the dependence of MAOC on matrix protection (Kleber et al. 2015). Updating the soil physicochemical
controls for different soil fractions is especially likely to improve soil C modeling, because currently soil C models
rely on soil texture as the property that controls partitioning of new C inputs to soil (Georgiou et al. 2021; Zhang et
al. 2021).

A tool that would aid in modeling soil physicochemical controls on MAOC (and potentially on POC)
across climates would be a widely applicable, quantitative measure of the capacity of the soil matrix to stabilize C.
Rasmussen et al. (2018) showed that soil texture was not a useful predictor of SOC in a global dataset and suggested
that stabilization of SOC by soil physicochemical properties is pH- and climate-specific: exchangeable calcium
(Caex) dominates soil C stabilization in high pH and arid environments, while Fep and Alp dominate in low pH and
humid environments. It remains unclear how to advance process-based SOC models with this division, i.e., whether
is it necessary to introduce a pH cutoff at which some soil properties affect C stabilization but others do not, or if a
synthetic index for the stabilization capacity of the soil matrix could serve universally to inform SOC dynamics

across soil pH levels.
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To investigate a suite of interacting environmental controls on SOC, POC, and MAOC in agricultural soils,
we studied topsoils (0-20 cm) from 16 long-term agricultural research sites and 124 plots across the United States.
We selected sites to include soils of the broadest pH range feasible under agriculture — expected to result in a range
of soil polyvalent exchangeable cations (Cacx + Mgex) and Alp + Feo. We asked: how does climate influence C
inputs, soil physicochemical properties, and SOC, POC, and MAOC? As soil physicochemical properties and C
inputs are potential drivers of SOC, POC, and MAOC, we aimed to investigate relationships between them
independently and to evaluate whether synthesizing soil physicochemical properties could be used to calculate a
widely applicable soil matrix capacity index. Finally, we aimed to assess the extent to which effects of MAP-PET on
POC and MAOC storage were mediated by C inputs and soil physicochemical properties. We hypothesized,
broadly, that POC and MAOC would exhibit distinct responses to environmental controls. Specifically, we
hypothesized that C inputs would be a stronger control on POC than on MAOC due to the independence of POC
from matrix protection, and that MAOC would be better explained by soil physicochemical properties than POC due

to the dependence of MAOC on matrix protection.

Methods
Site selection and soil sampling

Soils were sampled from 0-20 cm in the fall of 2020 from 16 agricultural sites (SI Table 1). From each site,
6-10 plots were sampled, which represented two replicated treatments of contrasting management practices. As our
aim was to assess continental-scale relationships, we did not assess soil response to management histories, but used
the contrasting management to achieve differences in C inputs within the same climate and soil type. All plots
received agronomically realistic rates of synthetic N fertilizer, most were under no-till, and no plots received
exogenous organic amendments or irrigation. For complete information on sites, soil sampling, and sample

processing, see supplementary information text and SI Tables 1-3.

Soil physicochemical properties
We assessed a suite of soil physicochemical properties on each plot-level soil sample. Soil pH was

measured in a slurry of 1:1 soil:water by mass after 10 minutes of rest. Soil texture was assessed using the
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hydrometer method to determine clay content and mass recovery of sand particles (> 53 um) was used to determine
sand content. Soil exchangeable cations were extracted in ammonium acetate following Thomas (1982). Briefly,
~2.5-g of 2-mm sieved, air-dry soil was shaken for 30 minutes with 25-mL IN ammonium acetate at pH 7, then
filtered through a Whatman #1 filter paper (nominal pore size = 11 pm) and analyzed via inductively coupled
plasma optical emission spectrometer (ICP-OES, Optima 7300 DV, PerkinElmer, Waltham, MA, USA) for Ca?" and
Mg?*, reported by total positive charge (cmol kg soil™!). These polyvalent cations provide mechanism of C retention
via their role in cation bridging (Wiesmeier et al. 2019). Soil Fe and Al were extracted via the acid ammonium
oxalate method following Loeppert and Inskeep (1996). This method estimates Fe and Al in amorphous phases
(referred to as Fep and Alp). For the acid ammonium oxalate extraction, ~0.5-g ground, air-dry soil was mixed with
30-mL 0.175 mol/L ammonium oxalate at pH 3 and shaken for 2 hours in the dark, then filtered through a Whatman
#1 filter paper. Calcareous soils were identified by reaction with HCI, as described below, and their carbonates
removed before the acid ammonium oxalate extraction by reacting the sample with 30-mL 1 mol/L ammonium
acetate at pH 5.5. Ammonium oxalate extracts were also run on the ICP-OES, and summation of Alp and Feo was
corrected to larger atomic mass of Fe by dividing Fe by half ([1/2]Feo, Wagai et al. 2020). All analyses performed

were air-dry soils and are reported in oven-dry equivalents.

Soil size fractionation into POC and MAOC

Soils were separated by size into sand + POC (> 53 pm) and silt + clay + MAOC (<53 um) following
Cambardella and Elliott, (1992). These fractions are hereafter referred to as ‘POC’ and ‘MAOC’, respectively.
Briefly, 5.75-6.25-g of 2-mm sieved bulk soil dried at 60° C was shaken for 18 hours with 12 glass beads in 30-mL
0.5% sodium hexametaphosphate to disrupt all aggregates. The resulting soil slurry was rinsed with DI water over a
53 um sieve to isolate POC and remove glass beads. Soil solution passing through the sieve was deemed MAOC.
Both the POC and MAOC fractions were dried at 60° C until reaching constant mass. Recoveries of the initial soil
masses in the summed fractions were between 95 and 103% for all samples, with a mean recovery of 100.5%. Soils
and fractions containing carbonates (identified by effervescence after addition of 5% HCI, 18 samples) were treated
to remove inorganic carbon via HCI fumigation (Harris et al. 2001). SOC, MAOC, and POC were ground using a
mortar and pestle before running on a Costech elemental analyzer (Costech ECS4010, Analytical Technologies, Inc.,

Milano, Italy). The average recovery of SOC in POC and MAOC fractions was 92% (standard error = 0.9%).
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Crop C inputs to soil and climate data

The best available crop yield data from across the history of each site were used to estimate C inputs from
crops to soil (SI Table 4). Allometric equations (Bolinder et al. 2007) were used to estimate shoot and root + exudate
inputs for each crop; belowground inputs were truncated to the 20—cm soil depth sampled using crop-specific root
distributions (Fan et al. 2016). For perennial crops grown over multiple years, annual root inputs were estimated as
62% of root inputs from the initial year, following an assumption of partial root turnover (King and Blesh 2018).
Shoot inputs were reduced by the proportions of shoots that were removed for stover production, if any, and
rotation-average crop inputs were calculated (Mg C ha! yr'!). As yield information was not consistently available
for all harvests across site history, we did not investigate interannual variability in C inputs. For each site, mean
annual precipitation (MAP) and mean annual air temperature (MAT) were extracted from WorldClim at 30 s
resolution (Fick and Hijmans 2017, 1970-2000). Potential evapotranspiration (PET), calculated using a Penman-
Montieth equation, was extracted from the Global Aridity Index Database v2 (Trabucco and Zomer 2018, 1970-

2000), and was used to estimate ecosystem water balance (MAP-PET; Slessarev et al. 2016).

Calculation of soil matrix capacity index

To investigate the capacity for combined values of Alp + [1/2]Feo and Caex + Mge to stabilize SOC, we
calculated a matrix capacity index (MCI) for all 124 plots across the 16 sites. First, to overcome different reporting
units for Alp + [1/2]Feo and Caex + Mgex (Rasmussen et al. 2018), we calculated their standardized values for each

observation in the sample (n=124) using the z-score approach:

z=-— [1]

where Z is the standardized value, x is the observed value, u is the mean of the sample and o is the
standard deviation of the sample. The Z-score standardization results in a vector with the same relative distances
between all points as the original vector but with a mean of zero and a standard deviation of 1. In our data, means of
samples were 2.22 g kg soil! for Alp + [1/2]Feo and 18.02 cmol kg soil! for Cacx + Mgex, and standard deviations
were 0.75 g kg soil”! for Alp + [1/2]Feo and 8.70 cmol kg soil™! for Caex + Mgey. To calculate the reported MCI, we

summed standardized values for each observation:
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MCI = ZCaex+Mgex + ZAlO*’[%]FeO .

where Z¢q, +mg,, 1S the standardized value of Caex + Mgex and Z is the standardized value of Al

Alg+[5]Feo
+ [1/2]Feo. Plot-level MCI values were averaged within each site for subsequent analyses, to align with data
treatment for all other soil physicochemical properties. Multiple regression using all possible model subsets of Alo,
Feo, Caex, Mgex and silt + clay identified Alo, Feo, and Cae as the best predictors of MAOC based on adjusted R?
values (SI Table 5), whereas the same model selection with summed soil physicochemical properties identified Al
+ [1/2]Feo and Caex + Mgex as the best predictors (SI Table 6). Thus, model selection did not include Mg in the best
model initiated with individual soil properties across these sites. In light of acknowledged soil chemical controls on
SOC (Wiesmeier et al. 2019), and considering previous efforts to synthesize soil matrix controls on SOC (Possinger
et al. 2021), we retained Mgy in the proposed MCI in all main figures but also include tests with the MCI as

calculated with Al + [1/2]Feo and Caey in SI Tables 8-10.

Statistical methods

We used simple linear regression to test for relationships between soil physicochemical and climatic factors
and their relationships with SOC, POC, and MAOC across the entire dataset. We did not use mixed models with a
random effect for site, which would have estimated common slopes aggregated from within-site relationships,
because the focus of this study was on between-site relationships. In some cases, relationships between predictor and
response variables exhibited heteroskedasticity of variance (Bruesch-Pagan test p-value < 0.05). In these cases, we
attempted to remove heteroskedasticity by log or square root transforming either predictor or response. Where a data
transformation was successful, we applied it to the reported regression coefficients and indicate in every instance
where a transformation was used. Where these data transformations did not improve variance distributions, we used
raw data in regressions. We used z-score standardized parameters only for the MCI data; no other data were z-score
standardized. Low and high soil pH groups were delineated based on the median of the sample (pH = 6.5), with n =
8 for the low pH group and n = 8 for the high pH group.

We used structural equation modeling using the R package ‘lavaan’, to investigate the direct and indirect
effects of MAP-PET, C inputs, and soil physicochemical properties on POC and MAOC. To construct the structural
equation models (SEM), we chose the C input and the soil physicochemical parameters that were most closely

related to MAOC or POC based on our linear regressions (Alo + Feo only for POC, as no C input variables were
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significant; total C and the MCI for MAOC). Each model allowed for a direct effect of MAP-PET on the SOC
fraction as well as indirect pathways for an effect of MAP-PET on SOC via C inputs (MAOC only) and the other via
a soil physicochemical property. Despite the relatively low number of observations in our SEMs, the model fit
criteria were met: both models had a comparative fit index (CFI) of > 0.9, root mean square error of approximation
(RMSEA) of < 0.08, and standardized root mean square residual (SRMR) of < 0.08; (Hooper et al. 2008). We
assessed direct and indirect effects of MAP-PET on POC and MAOC by extracting coefficients from individual
pathways, then multiplying these coefficients to calculate indirect pathways (e.g., effect of MAP-PET on total C
inputs and effect of total C inputs on MAOC); we summed indirect coefficients for both indirect pathways to

estimate total indirect effects (SI Tables 12—13). All analyses were carried out in R version 4.1.2.

Results and Discussion

Climate influence on soil physicochemical properties and C inputs, SOC, POC, and MAOC

The sampling sites spanned a climatic gradient in MAP-PET (-1675 to -112 mm, Fig. 1, SI Table 1). Although
the study area also encompassed a range of MAT (5.7-12.4 °C) and MAP (357-1066 mm), MAP-PET emerged as a
more consistent driver of soil physicochemical properties and C inputs than either MAP or MAT. Compared to
MAP-PET, MAP exhibited similar but less defined relationships to soil physicochemical properties and C inputs,
while MAT was minimally related to both (SI Table 7). As expected following previous work (Slessarev et al. 2016;
von Fromm et al. 2021), MAP-PET was associated with decreasing soil pH and Ca.x + Mge and increasing Alo +
[1/2]Feo (Fig 1a-b). In our dataset, a particularly high pH site (pH = 7.9) contributed to producing these previously
established relationships between soil pH, Cacx + Mgex and Alp + [1/2]Feo. The observed variability in some
relationships, for instance between MAP-PET and Caex + Mgex (R? = 0.23), likely emerges from soil factors not
assessed, such as soil age, which interacts with climate and parent material in creating soil weathering status.

Greater MAP-PET was also associated with increased total C inputs (Fig 1d), which aligns with reduced
moisture constraints on plant productivity (Gentine et al. 2019). Variability in total C inputs around the upper range
of MAP-PET (Fig 1d) may also reflect a loosening of moisture constraints on plant productivity and introduction of
soil or agricultural management influences. In a similar vein, shoot C inputs were less sensitive to MAP-PET than

root C inputs (SI Table 7, R?> = 0.05 vs. R? = 0.50), which was likely due to variable harvesting of aboveground
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biomass across these sites. For instance, at some sites, crop aboveground biomass was fully removed (e.g., for hay
or biofuel), whereas at other sites all the stem and leaf biomass were returned after grain harvest. Given the
relatively consistent return of root inputs to soil, root inputs more closely reflect a moisture constraint on overall
crop productivity for agricultural systems. Soil C pools also exhibited positive relationships to MAP-PET (Fig le-g);

we used SEMs to explore the direct vs. indirect effects of MAP-PET on these soil C pools.
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Fig. 1 Relationships between mean annual precipitation minus potential evapotranspiration (MAP-PET), soil pH,
and soil physicochemical properties (left panels), and relationships between MAP-PET, carbon (C) inputs, and soil
C (right panels). Soils measured 0—20 cm depth across 16 agricultural sites in the United States. Large points
represent site-level averages and small points represent plots within sites (n = 124). Large point circles = soil pH >
6.5 large points triangles = soil pH < 6.5. Error bars represent standard errors; standard errors not available for C

inputs. Gray bars represent 95% confidence intervals. Axis text colors for panels (a) and (c) correspond to color of
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points and regression lines. In panels (d-g), orange points correspond to soil C observations while yellow points
correspond to C input observations. Regression coefficients for data shown, with related tests, are reported in SI

Table 7.

Effect of soil physicochemical properties and C inputs on SOC, POC, and MAOC

We show that SOC response to soil physicochemical factors is a composite of the responses of various controls
that operate distinctly on POC vs MAOC pools (Fig 2). Consistent with our hypothesis, soil physicochemical factors
were stronger controls on MAOC than POC. Our finding that MAOC depends on stabilization by reactive surfaces
of the soil matrix is supported by previous work (Kleber et al. 2015). We find that Cacx + Mgex and Alp + [1/2]Feo
better represent these effects on MAOC stabilization than silt + clay. Predictors of total SOC were more similar to
those of MAOC than of POC, which was expected as MAOC made up the bulk of SOC (average = 81%), as is
common in agricultural soils (Lugato et al. 2021). While there was evidence of a positive association between Alg +
[1/2]Feo and increased POC (Fig 2), our finding that POC overall was not as well predicted by soil physicochemical
properties as MAOC is mirrored in findings from previous work (Hassink 1997; Six et al. 2002).

When soils were divided into low and high pH groups, soil Cac, Mgex, Alo, and Fep emerged as having stronger
association with MAOC in the pH group in which they were less abundant (Fig 3). We observed that Cacx + Mgex
exhibited much weaker association with MAOC in high pH soils compared to low pH soils, while Alo + [1/2]Feo
exhibited weaker associations with MAOC in the low pH soils (Fig 3, SI Table 7). To some extent, this observation
may be explained by soil interactions with climate. For instance, some high pH, arid soils containing CaCOs (which
enters into Caex during extraction) also supported low C inputs, likely due to a moisture constraint on crop
productivity. While we removed inorganic C from these soils prior to analysis, the effect of low C inputs in situ may
have outweighed any effect of CaCOs in contributing to aggregate- or mineral-associated C stabilization (Rowley et
al. 2021). The lower R? of the relationship between Alp + [1/2]Feo and MAOC in the low pH soils in which these
compounds are more abundant may be explained by an excess of Alp + [1/2]Feo relative to MAOC, although
confirmation of this concept requires further investigation.

Contrary to our hypothesis, C inputs were a better predictor of MAOC than POC, which held when analyzed

across shoot, root, and total C inputs (Fig 4). This finding overturned our expectation of matrix-mediated soil C

11
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stabilization contrasting with C input-dependent POC pools. We now propose that C inputs are a poor predictor of
POC in agricultural soils because POC pools are more controlled by loss pathways, being less protected (supported
by more rapid turnover times, Poeplau et al. 2018) and more vulnerable to the micro-climate effects of
decomposition than MAOC. Differences in C input chemistry between sites due to the range of crop species planted,
from leguminous annual cover crops to perennial grasses, likely also contributed to differential rates of retention of
C inputs (Johnson et al. 2007). While it is surprising that root inputs in particular were poorly associated with an
overall increase in POC given their preferential retention in soil (Austin et al. 2017), an increase in minimum values
of POC with root inputs does support the current understanding of the role of root inputs for SOC. Total C and shoot
C inputs best predicted MAOC levels, and we explore interrelationships between C inputs and MAOC through the

use of SEM below.
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Fig. 2 Effect of soil physicochemical properties on soil organic carbon (SOC), particulate organic carbon (POC),

and mineral-associated organic carbon (MAOC), 0-20 cm depth, across 16 agricultural sites (n = 124 plots) in the
United States. Large points represent site-level averages and small points represent plots within sites (n = 124).

Error bars represent standard errors. Regression lines plotted when p < 0.05. A ‘¢ indicates the p-value and R?

reflect response variables that were log-transformed to reduce heteroskedasticity. Caex + Mgex = sum of

exchangeable Ca and Mg. Alp + [1/2]Feo = sum of oxalate-extractable Al and oxalate-extractable Fe. MCI = matrix

capacity index, defined in Methods. Complete regression coefficients for all observations and separate pH groups,

and with Cacx, Mgex, Feo, and Alo separated, are reported in SI Tables 8—10.
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Fig. 3 Pearson correlation coefficients between soil physicochemical properties and soil mineral-associated organic

carbon (MAOC), 0-20 cm depth, across 16 agricultural sites (averaged from 124 plots) in the United States. Site-
level average soil pH ranged from 5.8—6.4 in the low pH group and 6.6—7.9 in the high pH group. MCI = matrix

capacity index, the sum of z-score standardized values of Cacx + Mgex and Alp + [1/2]Feo, defined in Methods.
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organic carbon (POC), and mineral-associated organic carbon (MAOC), 0-20 cm depth, across 16 agricultural sites
(n =124 plots) in the United States. Large points represent site-level averages and small points represent plots

within sites (n = 124). Regression lines plotted when p < 0.05. Error bars represent standard errors; standard errors

not available for C inputs. Complete regression coefficients for all observations are reported in SI Table 11.

A unified index for soil matrix capacity to stabilize MAOC
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Our approach of creating an MCI to predict MAOC, based on the unified stabilization capacity of Cacx+
Mg, with Feo and Alo, appears justified, as the MCI had more predictive power over MAOC than other
physicochemical properties (Fig 2, Fig 3; SI Tables 5-6). The MCI also predicted MAOC when calculated with only
Cax as the exchangeable cation (SI Table 10), likely due to greater abundance of Cacx compared to Mg in our soils.
Further investigation is needed to determine if Mgey is required in an MCI than spans a broader range of climate and
vegetation covers. Mechanisms of Caex, Mgex, Feo and Alo in stabilizing soil C, which have been proposed and
examined elsewhere, include cation bridging and ligand exchange with organic complexes, as well as aggregate
formation (Rowley et al. 2018; Wagai et al. 2020).

The pH-independent MCI proposed here (Fig 2, Fig 3) appears at first to contrast findings of Rasmussen et
al. (2018). Rasmussen et al. (2018) showed that soil physicochemical properties associated with SOC differ in arid
vs. humid climates, i.e., Feo and Alo were positively related to SOC in humid climates and Cacx was positively
related to SOC in arid climates, with only a moderate degree of overlap. Rasmussen et al. (2018) attributed these
patterns to a differential abundance of Feo, Alo, and Cacx with changes in water balance and soil pH. The same
patterns of differential abundance of these compounds across soil pH are evident in this study (Fig 1 a—c). By
dividing SOC into POC and MAOC, however, we observed that Alp + [1/2]Feo are associated with increasing levels
of MAOC in both low pH and high pH soils, and that Cacx + Mg are associated with increasing MAOC even in low
pH soils (Fig 3, SI Table 10).

Although this study is limited to agricultural soils, we speculate that if the MCI proposed here were
investigated in a global dataset in which SOC were fractionated into POC and MAOC, the MCI may similarly
predict MAOC storage, and we present this hypothesis as an important topic of future work. Fractionating SOC
gains importance in non-agricultural soils because non-agricultural soils store a greater proportion of SOC as POC
(Lugato et al. 2021), and the effect of soil physicochemical controls on MAOC may be obscured by this abundance
of POC. ). In the global dataset of Rasmussen et al. (2018), which contained grassland and forest soils, POC may
have comprised a greater proportion of SOC in extremes of water balance (Fig 5), where microbial decomposition
may be limited (Cotrufo et al. 2021). In arid environments, Fep and Alp may poorly correlate to SOC (Rasmussen et
al., 2018) due to the prevalence of Cac and the presence of POC, which was not related to Cac in this study (SI
Table 9). In contrast, in humid environments, Feg and Alp may be related to total SOC (Rasmussen et al., 2018) due

to both their prevalence and to their moderate contribution to POC stabilization (Fig 2). While the soils in this study
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are a continental rather than global dataset, by fractionating SOC and studying a range of soil pH and
physicochemical properties we identify the efficacy of an MCI across agricultural soils. Our data do not support the
concept of a pH threshold in which a single feature of the soil matrix begins to stabilize SOC, and instead suggest
that a milieu of soil compounds, differing in abundance, can operate concurrently to stabilize MAOC and that
considering their unified stabilization potential offers a comprehensive view of SOC dynamics.

The utility of this MCI will vary with research aims, its generalizability across non-agricultural systems,
and community reporting practices. This MCI may prove a valuable tool for parsimonious, process-based SOC
modeling in that it may quantify matrix stabilization capacity beyond that of clay while avoiding the complication of
representing multiple soil physicochemical properties separately. While soil pH may appear a reasonable substitute
for soil texture given pH-dependent MAOC stabilization mechanisms, soil pH was a poor predictor of MAOC
compared to the MCI (SI Table 10), likely because total matrix stabilizing agents are independent of soil pH.
However, if the research aim is to understand the relative importance of soil physicochemical properties for MAOC
in specific contexts, then keeping soil properties separate will enable more granular investigation than combining
them in an MCI. The extent to which a similar relationship of the MCI with MAOC holds across non-agricultural
ecosystems requires investigation, as do interactions of matrix stabilization with climate (Possinger et al. 2021) and
stocks vs. persistence of MAOC (sensu Heckman et al. 2020). Finally, as the MCI of a given soil will change
depending on the mean and standard deviation used to calculate z-scores, we emphasize the need for consistent

reporting of means and standard deviations if MCI values are to be comparable across studies.
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Fig. 5 Quadratic relationship between MAP-PET and particulate organic carbon (POC) as a percentage of soil

organic carbon (SOC), where raw C data are in g C kg soil".. Quadratic regression was performed log transformed

response; coefficients are back-transformed for presentation. Large points represent site-level averages and small

points represent plots within sites (n = 124).

Direct and indirect effects of MAP-PET on POC and MAOC

To assess the direct and indirect effects of MAP-PET on soil C, we constructed two SEMs, one each for
POC and MAOC (Fig 6). As potential mediators of an indirect effect of MAP-PET on POC, we used Alp + [1/2]Feo
because it was the only factor related to POC in simple linear regression (Fig 2). Since there were many
environmental properties correlated with MAOC, we used the MCI and total C inputs in the SEM, as they were the
factors exhibiting the strongest relationship to MAOC in simple linear regressions (Fig 2, Fig 3). Here, we use
‘direct’ and ‘indirect’ to describe pathways elaborated in the structural equation model, acknowledging that
pathways established as ‘direct’ in the model may nevertheless be mediated by properties not measured in this study.
Structural equation modeling revealed that MAP-PET exerted only a direct effect on POC and a combination of

direct and indirect effects of MAOC (Fig 6).
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A direct, positive association of MAP-PET with POC was not anticipated in this study but suggests that
POC pools are more sensitive to decomposition than C input rates. We predicted that higher MAP-PET would
correlate with greater C inputs or greater matrix protective capacity created by Alp + [1/2]Feo, potentially resulting
in higher POC through aggregation (Wagai et al. 2020). These hypotheses were not supported by the results of the
simple linear regression, which showed no relationship between C inputs and POC (Figure 4), or the results of the
SEM, which showed that despite increases with MAP-PET, Alo + [1/2]Feo had a relatively little subsequent
relationship to POC (Figure 6). Although MAP-PET likely mediates soil moisture and thereby controls rates of
microbial decomposition, the extent to which increasing soil moisture in these agricultural soils could reduce
microbial decomposition — and, therefore, the retention of C inputs in POC — remains an open question (Keiluweit et
al. 2017). Another pathway through which MAP-PET could influence POC is that of root tissue chemistry. There is
suggestive evidence that roots decrease nitrogen (N) content with increasing precipitation (Ordonez et al. 2020),
which could delay decomposition, however, this putative mechanism requires further investigation to verify.

Increasing MAP-PET had a total, positive association with MAOC, comprised primarily of indirect effects
that were mediated by both increasing MCI and increasing total C inputs (Fig 5). The association of MAP-PET with
the MCI was weaker than with Alg + [1/2]Feo but still significant, likely due to contrasting effects of MAP-PET on
Alo + [1/2]Fep and on Cacx + Mgex (Fig 1). The SEM also showed a series of positive interactions between the MCI,
total C inputs, and MAOC (Fig 6). The clearest interpretation of these interactions is that both the MCI (Kleber et al.
2015; Rowley et al. 2021) and C inputs (Gulde et al. 2008) lead to higher MAOC. However, iterations of the model
without an MCI — C input relationship specified were returned as poorly fit (CFI < 0.90, Hooper et al. 2008),
suggesting that higher MCI also promoted crop productivity. We speculate that components of the MCI may have
contributed to crop nutrient requirements: while Al is not an essential plant nutrient, Fe and Ca are, and oxalate-
extractable Fe in soil can correspond to crop Fe uptake (Morris et al. 1990). As a major component of SOC, MAOC
may have also positively affected crop productivity (Oldfield et al. 2018) and therefore C inputs through its benefits

for soil available water holding capacity, N mineralization, and soil structure (King et al. 2020).
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Fig. 6 Structural equation model (SEM) showing direct and indirect effects of mean annual precipitation — potential
evapotranspiration (MAP-PET, mm) on particulate (POC, left) and mineral-associated (MAOC, right) organic
carbon. Soils measured 0-20 cm depth across 16 agricultural sites (n = 124 plots) in the United States; site-level
averages used in SEM. The SEM for POC includes Al + [1/2]Feo (g kg soil!), while the SEM for MAOC includes
a matrix capacity index (MCI, unitless) and total C inputs (Mg C ha™! yr'!). The widths of the arrows correspond to
the standardized path coefficients, which are also shown in numbers next to each arrow. R? values represent total
proportion of variability explained by all paths. Yellow arrows and bars represent pathway from MAP-PET to C
fraction as mediated by C inputs. Red arrows and bars represent pathway from MAP-PET to C fraction as mediated
by soil physicochemical property. Navy arrow represents direct effect of MAP-PET on C fraction. Effects of
complete paths are show in the barplot, where ‘indirect.min’ = effect of MAP-PET on soil C via Alp + Feg or the
MCI, and ‘indirect.c’ = effect of MAP-PET on MAOC via total C inputs. In all cases, n.s. = ‘not significant’; * p <

0.01; ** p <0.05, and ***p < 0.01. The SEM fit the data well, as indicated by comparative fit index (CFI > 0.9) and
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root mean square error of approximation (RMSEA < 0.08) and standardized root mean square residual (SRMR <

0.08; Hooper et al. 2008). Full model output provided in SI Table 10 and SI Table 11.

Implications

Here, we show that fractionating cropland SOC into POC and MAOC allows for improved resolution of
their environmental controls at the continental scale, aligning with findings from forests and grasslands. Given the
strong relationship of the proposed MCI to MAOC, updating process-based soil C models to incorporate an MCI
may offer a promising path for their improvement. However, the data necessary to support this effort, including
MAOC, Feo, Alo, Cacx and Mg. are not currently a consistent part of large-scale data products (Poggio et al. 2021).
Future research will need to investigate the MCI demonstrated here for croplands across other ecosystems to
understand its generalizability, as the MCI may show different relationships to MAOC in other ecosystems. Larger
datasets could also allow more exhaustive weighing of different approaches for summing values of soil Feo, Alo,
Cacx, Mgex, as well as the interacting roles of soil age, parent material, and climate in driving an MCI. Coupling
investigations of an MCI with processes of C transformation, C turnover, and determinants of maximum MAOC
storage, including in subsoils, will also be valuable for advancing soil C modeling. Our work shows that
understanding POC dynamics requires information beyond C input quantity and soil physicochemical properties to
adequately describe its variation at continental scales. Soil temperature and moisture sensors, information on C input
chemistry, and/or alternative fractionation of the POC pool (i.e., by density) could allow for improved resolution of
POC dynamics.

Finally, we observed a series of positive associations between crop C inputs, MAOC, and the MCI. These
relationships indicate the possibility of reinforcing feedbacks between crop productivity, soil MAOC accumulation,
and soil fertility, where soil fertility is measured by Cac and Feo but is also associated with N supply to crops from
soil organic matter. While these pathways are individually acknowledged, considering and quantifying feedbacks
between these pathways over broad spatial scales and beyond croplands may allow for improved understanding of

future interacting between of soils, plant growth, and climate.
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