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Abstract  28 
 29 

Understanding controls on soil organic carbon (SOC) will be crucial to managing soils for climate change 30 

mitigation and food security. Climate exerts an overarching influence on SOC, affecting both carbon (C) inputs to 31 

soil and soil physicochemical properties participating in C retention. To test our hypothesis that climate, C inputs, 32 
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and soil properties would differently affect particulate organic carbon (POC) and mineral-associated organic carbon 33 

(MAOC), we sampled 16 agricultural sites (n = 124 plots) in the United States, ranging in climate (mean annual 34 

precipitation (MAP) - potential evapotranspiration (PET; MAP-PET)), soil pH (5.8 – 7.9), and soil texture (silt + 35 

clay = 13 – 96%). As MAP-PET increased, soils increased in oxalate-extractable iron (FeO) and aluminum (AlO), 36 

decreased in exchangeable calcium (Caex) and magnesium (Mgex), and received greater C inputs. Soil 37 

physicochemical properties did not strongly predict POC, confirming the relative independence of this SOC fraction 38 

from the soil matrix. In contrast, MAOC was well predicted by combining AlO + [1/2]FeO with Caex + Mgex in a 39 

‘matrix capacity index’, which performed better than individual soil physicochemical properties across all pH levels 40 

(r > 0.79). Structural equation modeling indicated a similar total effect of MAP-PET on MAOC and POC, which 41 

was mediated by total C inputs and the matrix capacity index for MAOC but not POC. Our results emphasize the 42 

need to separately conceptualize controls on MAOC and POC and justify the use of a unified soil matrix capacity 43 

index for predicting soil MAOC storage.   44 

 45 

Acknowledgments  46 

We gratefully acknowledge the Colorado State University Soil, Water & Plant Testing Laboratory, Cotrufo 47 

Soil Innovation Laboratory members, and Jim Ippolito for technical support. Thanks to Matt Liebman and Ilsa 48 

Kantola for contributing crop yield data and to Tom Moorman, Michael Thompson, Ala Khaleel, Paul Jasa, Harold 49 

van Es, and Michael H. Davis for site access and sampling. Five anonymous reviewers offered feedback that 50 

improved the manuscript. Funding for this project was provided by the United States Department of Agriculture 51 

National Institute of Food and Agriculture Postdoctoral Fellowship to A. E. King (Award 2020-67034-31762). Soils 52 

from Kellogg Biological Station were provided with support from the Great Lakes Bioenergy Research Center, U.S. 53 

Department of Energy, Office of Science, Office of Biological and Environmental Research (Award DE-54 

SC0018409), by the National Science Foundation Long-term Ecological Research Program (DEB 1832042) at the 55 

Kellogg Biological Station, and by Michigan State University AgBioResearch. 56 

 57 

 58 

Introduction  59 



 3

Maintaining or increasing soil organic carbon (SOC) in agricultural soils will be crucial for mitigating 60 

climate change (Minasny et al. 2017; Lessmann et al. 2022) and for supporting soil functioning (King et al. 2020; 61 

Cotrufo and Lavallee 2022). To effectively manage agricultural SOC, we need to develop process-based models of 62 

SOC based on a sound understanding of how SOC responds to environmental controls. Although environmental 63 

controls on SOC storage have a rich history of theoretical and empirical work, encompassing SOC responses to 64 

climate (Jobbagy and Jackson 2000), soil texture (Hassink 1997) and other soil physicochemical properties 65 

(Rasmussen et al. 2018; Rowley et al. 2018; Heckman et al. 2020), and carbon (C) inputs (Six et al. 2002), on-going 66 

refinements are yet to be fully integrated. For instance, separating SOC into distinct physical fractions is 67 

increasingly leveraged to improve our understanding of environmental controls on SOC storage (Cotrufo et al. 2021; 68 

Yu et al. 2022). Nevertheless, to our knowledge no studies have synthesized climate, soil physicochemical, and C 69 

input controls on agricultural soil C fractions at a continental scale.  70 

Conceptualizing SOC into contrasting fractions of mineral-associated organic carbon (MAOC) and 71 

particulate organic carbon (POC) has been proposed to aid in understanding controls on SOC storage (Lavallee et al. 72 

2020). The more stable MAOC pool forms primarily from microbial necromass and soluble, unprocessed plant 73 

compounds (Kallenbach et al. 2016; Liang et al. 2017) and is primarily stabilized through adsorption, wherein soil 74 

minerals protect adsorbed C from decomposition (Kleber et al. 2015). In contrast, POC is formed predominantly 75 

from structural plant inputs and has shorter residence times than MAOC (von Lützow et al. 2007), but may persist 76 

through a combination of physical and physiological constraints on decomposers (Cotrufo and Lavallee 2022). 77 

Given these contrasting pathways of formation and mechanisms of persistence for POC and MAOC (Lavallee et al. 78 

2020), these fractions may be regulated by different suites of controls from among those factors already widely 79 

recognized in controlling SOC.  80 

Climate can be viewed as an overarching control on SOC pools, because it can affect factors that control 81 

both C inputs to soil and losses of C from soil (Cotrufo and Lavallee 2022). The control of climate on C inputs 82 

operates mainly via water limitations on net primary productivity – and consequently C inputs – at continental scales 83 

(Gentine et al. 2019). Water availability can be estimated via water balance as the difference between mean annual 84 

precipitation (MAP) and potential evapotranspiration (PET; MAP-PET). In turn, C inputs to soil often (Gulde et al. 85 

2008), but not always (Zhou et al. 2019), increase SOC. To date, it is unclear whether C inputs similarly affect POC 86 

and MAOC pools. As POC is minimally dependent on protection from the soil matrix, POC formation may be 87 
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expected to more directly reflect plant C inputs to soil than MAOC. The formation of MAOC is expected to depend 88 

on microbial transformations and soil matrix adsorption capacity (Cotrufo et al. 2013), and may therefore exhibit a 89 

moderated relationship to C inputs. Currently, many process-based models predict a saturating increase of SOC with 90 

increases in C inputs (Georgiou et al. 2021; Zhang et al. 2021), but these predictions may be refined by assessing the 91 

impact of C inputs on contrasting SOC fractions.  92 

Climate also controls C losses from the soil, including via microbial activity and soil physicochemical 93 

properties. While microbial activity has received abundant attention (Zhang et al. 2008), soil physicochemical 94 

properties are increasingly acknowledged for their protective capacity over SOC (Rasmussen et al. 2018). Soil 95 

physicochemical properties are modified by MAP-PET: wetness decreases soil pH (Slessarev et al. 2016), increases 96 

oxalate-extractable iron and aluminum (FeO and AlO; Hall et al. 2020), and decreases exchangeable calcium (Caex; 97 

von Fromm et al. 2021). As Caex and AlO + FeO are stabilizing agents of SOC, they therefore introduce a climate-98 

dependent role of soil physicochemical properties in C retention (Rasmussen et al. 2018; Rowley et al. 2018). The 99 

extent to which these soil properties influence retention of POC vs retention of MAOC has been rarely explored 100 

empirically, but it might be expected that soil physicochemical properties more closely control MAOC compared to 101 

POC given the dependence of MAOC on matrix protection (Kleber et al. 2015). Updating the soil physicochemical 102 

controls for different soil fractions is especially likely to improve soil C modeling, because currently soil C models 103 

rely on soil texture as the property that controls partitioning of new C inputs to soil (Georgiou et al. 2021; Zhang et 104 

al. 2021). 105 

 A tool that would aid in modeling soil physicochemical controls on MAOC (and potentially on POC) 106 

across climates would be a widely applicable, quantitative measure of the capacity of the soil matrix to stabilize C. 107 

Rasmussen et al. (2018) showed that soil texture was not a useful predictor of SOC in a global dataset and suggested 108 

that stabilization of SOC by soil physicochemical properties is pH- and climate-specific: exchangeable calcium 109 

(Caex) dominates soil C stabilization in high pH and arid environments, while FeO and AlO dominate in low pH and 110 

humid environments. It remains unclear how to advance process-based SOC models with this division, i.e., whether 111 

is it necessary to introduce a pH cutoff at which some soil properties affect C stabilization but others do not, or if a 112 

synthetic index for the stabilization capacity of the soil matrix could serve universally to inform SOC dynamics 113 

across soil pH levels. 114 
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To investigate a suite of interacting environmental controls on SOC, POC, and MAOC in agricultural soils, 115 

we studied topsoils (0–20 cm) from 16 long-term agricultural research sites and 124 plots across the United States. 116 

We selected sites to include soils of the broadest pH range feasible under agriculture – expected to result in a range 117 

of soil polyvalent exchangeable cations (Caex + Mgex) and AlO + FeO. We asked: how does climate influence C 118 

inputs, soil physicochemical properties, and SOC, POC, and MAOC? As soil physicochemical properties and C 119 

inputs are potential drivers of SOC, POC, and MAOC, we aimed to investigate relationships between them 120 

independently and to evaluate whether synthesizing soil physicochemical properties could be used to calculate a 121 

widely applicable soil matrix capacity index. Finally, we aimed to assess the extent to which effects of MAP-PET on 122 

POC and MAOC storage were mediated by C inputs and soil physicochemical properties. We hypothesized, 123 

broadly, that POC and MAOC would exhibit distinct responses to environmental controls. Specifically, we 124 

hypothesized that C inputs would be a stronger control on POC than on MAOC due to the independence of POC 125 

from matrix protection, and that MAOC would be better explained by soil physicochemical properties than POC due 126 

to the dependence of MAOC on matrix protection.  127 

 128 

 129 

Methods  130 

Site selection and soil sampling  131 

Soils were sampled from 0–20 cm in the fall of 2020 from 16 agricultural sites (SI Table 1). From each site, 132 

6–10 plots were sampled, which represented two replicated treatments of contrasting management practices. As our 133 

aim was to assess continental-scale relationships, we did not assess soil response to management histories, but used 134 

the contrasting management to achieve differences in C inputs within the same climate and soil type. All plots 135 

received agronomically realistic rates of synthetic N fertilizer, most were under no-till, and no plots received 136 

exogenous organic amendments or irrigation. For complete information on sites, soil sampling, and sample 137 

processing, see supplementary information text and SI Tables 1–3. 138 

 139 

Soil physicochemical properties 140 

We assessed a suite of soil physicochemical properties on each plot-level soil sample. Soil pH was 141 

measured in a slurry of 1:1 soil:water by mass after 10 minutes of rest. Soil texture was assessed using the 142 
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hydrometer method to determine clay content and mass recovery of sand particles (> 53 µm) was used to determine 143 

sand content. Soil exchangeable cations were extracted in ammonium acetate following Thomas (1982). Briefly, 144 

~2.5-g of 2-mm sieved, air-dry soil was shaken for 30 minutes with 25-mL 1N ammonium acetate at pH 7, then 145 

filtered through a Whatman #1 filter paper (nominal pore size = 11 µm) and analyzed via inductively coupled 146 

plasma optical emission spectrometer (ICP-OES, Optima 7300 DV, PerkinElmer, Waltham, MA, USA) for Ca2+ and 147 

Mg2+, reported by total positive charge (cmol kg soil-1). These polyvalent cations provide mechanism of C retention 148 

via their role in cation bridging (Wiesmeier et al. 2019). Soil Fe and Al were extracted via the acid ammonium 149 

oxalate method following Loeppert and Inskeep (1996). This method estimates Fe and Al in amorphous phases 150 

(referred to as FeO and AlO). For the acid ammonium oxalate extraction, ~0.5-g ground, air-dry soil was mixed with 151 

30-mL 0.175 mol/L ammonium oxalate at pH 3 and shaken for 2 hours in the dark, then filtered through a Whatman 152 

#1 filter paper. Calcareous soils were identified by reaction with HCl, as described below, and their carbonates 153 

removed before the acid ammonium oxalate extraction by reacting the sample with 30-mL 1 mol/L ammonium 154 

acetate at pH 5.5. Ammonium oxalate extracts were also run on the ICP-OES, and summation of AlO and FeO was 155 

corrected to larger atomic mass of Fe by dividing Fe by half ([1/2]FeO, Wagai et al. 2020). All analyses performed 156 

were air-dry soils and are reported in oven-dry equivalents.  157 

 158 

Soil size fractionation into POC and MAOC 159 

Soils were separated by size into sand + POC (> 53 µm) and silt + clay + MAOC (<53 µm) following 160 

Cambardella and Elliott, (1992). These fractions are hereafter referred to as ‘POC’ and ‘MAOC’, respectively. 161 

Briefly, 5.75–6.25-g of 2-mm sieved bulk soil dried at 60° C was shaken for 18 hours with 12 glass beads in 30-mL 162 

0.5% sodium hexametaphosphate to disrupt all aggregates. The resulting soil slurry was rinsed with DI water over a 163 

53 µm sieve to isolate POC and remove glass beads. Soil solution passing through the sieve was deemed MAOC. 164 

Both the POC and MAOC fractions were dried at 60° C until reaching constant mass. Recoveries of the initial soil 165 

masses in the summed fractions were between 95 and 103% for all samples, with a mean recovery of 100.5%. Soils 166 

and fractions containing carbonates (identified by effervescence after addition of 5% HCl, 18 samples) were treated 167 

to remove inorganic carbon via HCl fumigation (Harris et al. 2001). SOC, MAOC, and POC were ground using a 168 

mortar and pestle before running on a Costech elemental analyzer (Costech ECS4010, Analytical Technologies, Inc., 169 

Milano, Italy). The average recovery of SOC in POC and MAOC fractions was 92% (standard error = 0.9%). 170 
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 171 

Crop C inputs to soil and climate data 172 

The best available crop yield data from across the history of each site were used to estimate C inputs from 173 

crops to soil (SI Table 4). Allometric equations (Bolinder et al. 2007) were used to estimate shoot and root + exudate 174 

inputs for each crop; belowground inputs were truncated to the 20–cm soil depth sampled using crop-specific root 175 

distributions (Fan et al. 2016). For perennial crops grown over multiple years, annual root inputs were estimated as 176 

62% of root inputs from the initial year, following an assumption of partial root turnover (King and Blesh 2018). 177 

Shoot inputs were reduced by the proportions of shoots that were removed for stover production, if any, and 178 

rotation-average crop inputs were calculated (Mg C ha-1 yr-1). As yield information was not consistently available 179 

for all harvests across site history, we did not investigate interannual variability in C inputs. For each site, mean 180 

annual precipitation (MAP) and mean annual air temperature (MAT) were extracted from WorldClim at 30 s 181 

resolution (Fick and Hijmans 2017, 1970–2000). Potential evapotranspiration (PET), calculated using a Penman-182 

Montieth equation, was extracted from the Global Aridity Index Database v2 (Trabucco and Zomer 2018, 1970–183 

2000), and was used to estimate ecosystem water balance (MAP-PET; Slessarev et al. 2016).  184 

 185 

Calculation of soil matrix capacity index 186 

To investigate the capacity for combined values of AlO + [1/2]FeO and Caex + Mgex to stabilize SOC, we 187 

calculated a matrix capacity index (MCI) for all 124 plots across the 16 sites. First, to overcome different reporting 188 

units for AlO + [1/2]FeO and Caex + Mgex (Rasmussen et al. 2018), we calculated their standardized values for each 189 

observation in the sample (n=124) using the z-score approach:  190 

 Z = 
௫ି௨

ఙ
          [1] 191 

where Z is the standardized value, 𝑥 is the observed value, 𝑢 is the mean of the sample and 𝜎 is the 192 

standard deviation of the sample. The Z-score standardization results in a vector with the same relative distances 193 

between all points as the original vector but with a mean of zero and a standard deviation of 1. In our data, means of 194 

samples were 2.22 g kg soil-1 for AlO + [1/2]FeO and 18.02 cmol kg soil-1 for Caex + Mgex, and standard deviations 195 

were 0.75 g kg soil-1 for AlO + [1/2]FeO and 8.70 cmol kg soil-1 for Caex + Mgex. To calculate the reported MCI, we 196 

summed standardized values for each observation:  197 
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𝑀𝐶𝐼 ൌ 𝑍஼௔೐ೣାெ௚೐ೣ ൅  𝑍஺௟ೀାሾభమሿி௘ೀ
      [2] 198 

where 𝑍஼௔೐ೣାெ௚೐ೣ is the standardized value of Caex + Mgex and 𝑍஺௟ೀାሾభమሿி௘ೀ
 is the standardized value of AlO 199 

+ [1/2]FeO. Plot-level MCI values were averaged within each site for subsequent analyses, to align with data 200 

treatment for all other soil physicochemical properties. Multiple regression using all possible model subsets of AlO, 201 

FeO, Caex, Mgex and silt + clay identified AlO, FeO, and Caex as the best predictors of MAOC based on adjusted R2 202 

values (SI Table 5), whereas the same model selection with summed soil physicochemical properties identified AlO 203 

+ [1/2]FeO and Caex + Mgex as the best predictors (SI Table 6). Thus, model selection did not include Mg in the best 204 

model initiated with individual soil properties across these sites. In light of acknowledged soil chemical controls on 205 

SOC (Wiesmeier et al. 2019), and considering previous efforts to synthesize soil matrix controls on SOC (Possinger 206 

et al. 2021), we retained Mgex in the proposed MCI in all main figures but also include tests with the MCI as 207 

calculated with AlO + [1/2]FeO and Caex in SI Tables 8-10. 208 

 209 

Statistical methods  210 

We used simple linear regression to test for relationships between soil physicochemical and climatic factors 211 

and their relationships with SOC, POC, and MAOC across the entire dataset. We did not use mixed models with a 212 

random effect for site, which would have estimated common slopes aggregated from within-site relationships, 213 

because the focus of this study was on between-site relationships. In some cases, relationships between predictor and 214 

response variables exhibited heteroskedasticity of variance (Bruesch-Pagan test p-value < 0.05). In these cases, we 215 

attempted to remove heteroskedasticity by log or square root transforming either predictor or response. Where a data 216 

transformation was successful, we applied it to the reported regression coefficients and indicate in every instance 217 

where a transformation was used. Where these data transformations did not improve variance distributions, we used 218 

raw data in regressions. We used z-score standardized parameters only for the MCI data; no other data were z-score 219 

standardized. Low and high soil pH groups were delineated based on the median of the sample (pH = 6.5), with n = 220 

8 for the low pH group and n = 8 for the high pH group.  221 

We used structural equation modeling using the R package ‘lavaan’, to investigate the direct and indirect 222 

effects of MAP-PET, C inputs, and soil physicochemical properties on POC and MAOC. To construct the structural 223 

equation models (SEM), we chose the C input and the soil physicochemical parameters that were most closely 224 

related to MAOC or POC based on our linear regressions (AlO + FeO only for POC, as no C input variables were 225 



 9

significant; total C and the MCI for MAOC). Each model allowed for a direct effect of MAP-PET on the SOC 226 

fraction as well as indirect pathways for an effect of MAP-PET on SOC via C inputs (MAOC only) and the other via 227 

a soil physicochemical property. Despite the relatively low number of observations in our SEMs, the model fit 228 

criteria were met: both models had a comparative fit index (CFI) of > 0.9, root mean square error of approximation 229 

(RMSEA) of < 0.08, and standardized root mean square residual (SRMR) of < 0.08; (Hooper et al. 2008). We 230 

assessed direct and indirect effects of MAP-PET on POC and MAOC by extracting coefficients from individual 231 

pathways, then multiplying these coefficients to calculate indirect pathways (e.g., effect of MAP-PET on total C 232 

inputs and effect of total C inputs on MAOC); we summed indirect coefficients for both indirect pathways to 233 

estimate total indirect effects (SI Tables 12–13). All analyses were carried out in R version 4.1.2.  234 

 235 

Results and Discussion  236 

 237 

Climate influence on soil physicochemical properties and C inputs, SOC, POC, and MAOC 238 

The sampling sites spanned a climatic gradient in MAP-PET (-1675 to -112 mm, Fig. 1, SI Table 1). Although 239 

the study area also encompassed a range of MAT (5.7–12.4 °C) and MAP (357–1066 mm), MAP-PET emerged as a 240 

more consistent driver of soil physicochemical properties and C inputs than either MAP or MAT. Compared to 241 

MAP-PET, MAP exhibited similar but less defined relationships to soil physicochemical properties and C inputs, 242 

while MAT was minimally related to both (SI Table 7). As expected following previous work (Slessarev et al. 2016; 243 

von Fromm et al. 2021), MAP-PET was associated with decreasing soil pH and Caex + Mgex and increasing AlO + 244 

[1/2]FeO (Fig 1a-b). In our dataset, a particularly high pH site (pH = 7.9) contributed to producing these previously 245 

established relationships between soil pH, Caex + Mgex and AlO + [1/2]FeO. The observed variability in some 246 

relationships, for instance between MAP-PET and Caex + Mgex (R2 = 0.23), likely emerges from soil factors not 247 

assessed, such as soil age, which interacts with climate and parent material in creating soil weathering status. 248 

Greater MAP-PET was also associated with increased total C inputs (Fig 1d), which aligns with reduced 249 

moisture constraints on plant productivity (Gentine et al. 2019). Variability in total C inputs around the upper range 250 

of MAP-PET (Fig 1d) may also reflect a loosening of moisture constraints on plant productivity and introduction of 251 

soil or agricultural management influences. In a similar vein, shoot C inputs were less sensitive to MAP-PET than 252 

root C inputs (SI Table 7, R2 = 0.05 vs. R2 = 0.50), which was likely due to variable harvesting of aboveground 253 
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biomass across these sites. For instance, at some sites, crop aboveground biomass was fully removed (e.g., for hay 254 

or biofuel), whereas at other sites all the stem and leaf biomass were returned after grain harvest. Given the 255 

relatively consistent return of root inputs to soil, root inputs more closely reflect a moisture constraint on overall 256 

crop productivity for agricultural systems. Soil C pools also exhibited positive relationships to MAP-PET (Fig 1e-g); 257 

we used SEMs to explore the direct vs. indirect effects of MAP-PET on these soil C pools.  258 

 259 

260 

Fig. 1 Relationships between mean annual precipitation minus potential evapotranspiration (MAP-PET), soil pH, 261 

and soil physicochemical properties (left panels), and relationships between MAP-PET, carbon (C) inputs, and soil 262 

C (right panels). Soils measured 0–20 cm depth across 16 agricultural sites in the United States. Large points 263 

represent site-level averages and small points represent plots within sites (n = 124). Large point circles = soil pH > 264 

6.5 large points triangles = soil pH < 6.5. Error bars represent standard errors; standard errors not available for C 265 

inputs. Gray bars represent 95% confidence intervals. Axis text colors for panels (a) and (c) correspond to color of 266 
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points and regression lines. In panels (d-g), orange points correspond to soil C observations while yellow points 267 

correspond to C input observations. Regression coefficients for data shown, with related tests, are reported in SI 268 

Table 7.  269 

 270 

 271 

Effect of soil physicochemical properties and C inputs on SOC, POC, and MAOC 272 

We show that SOC response to soil physicochemical factors is a composite of the responses of various controls 273 

that operate distinctly on POC vs MAOC pools (Fig 2). Consistent with our hypothesis, soil physicochemical factors 274 

were stronger controls on MAOC than POC. Our finding that MAOC depends on stabilization by reactive surfaces 275 

of the soil matrix is supported by previous work (Kleber et al. 2015). We find that Caex + Mgex and AlO + [1/2]FeO 276 

better represent these effects on MAOC stabilization than silt + clay. Predictors of total SOC were more similar to 277 

those of MAOC than of POC, which was expected as MAOC made up the bulk of SOC (average = 81%), as is 278 

common in agricultural soils (Lugato et al. 2021). While there was evidence of a positive association between AlO + 279 

[1/2]FeO and increased POC (Fig 2), our finding that POC overall was not as well predicted by soil physicochemical 280 

properties as MAOC is mirrored in findings from previous work (Hassink 1997; Six et al. 2002). 281 

When soils were divided into low and high pH groups, soil Caex, Mgex, AlO, and FeO emerged as having stronger 282 

association with MAOC in the pH group in which they were less abundant (Fig 3). We observed that Caex + Mgex 283 

exhibited much weaker association with MAOC in high pH soils compared to low pH soils, while AlO + [1/2]FeO 284 

exhibited weaker associations with MAOC in the low pH soils (Fig 3, SI Table 7). To some extent, this observation 285 

may be explained by soil interactions with climate. For instance, some high pH, arid soils containing CaCO3 (which 286 

enters into Caex during extraction) also supported low C inputs, likely due to a moisture constraint on crop 287 

productivity. While we removed inorganic C from these soils prior to analysis, the effect of low C inputs in situ may 288 

have outweighed any effect of CaCO3 in contributing to aggregate- or mineral-associated C stabilization (Rowley et 289 

al. 2021). The lower R2 of the relationship between AlO + [1/2]FeO and MAOC in the low pH soils in which these 290 

compounds are more abundant may be explained by an excess of AlO + [1/2]FeO relative to MAOC, although 291 

confirmation of this concept requires further investigation.  292 

Contrary to our hypothesis, C inputs were a better predictor of MAOC than POC, which held when analyzed 293 

across shoot, root, and total C inputs (Fig 4). This finding overturned our expectation of matrix-mediated soil C 294 
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stabilization contrasting with C input-dependent POC pools. We now propose that C inputs are a poor predictor of 295 

POC in agricultural soils because POC pools are more controlled by loss pathways, being less protected (supported 296 

by more rapid turnover times, Poeplau et al. 2018) and more vulnerable to the micro-climate effects of 297 

decomposition than MAOC. Differences in C input chemistry between sites due to the range of crop species planted, 298 

from leguminous annual cover crops to perennial grasses, likely also contributed to differential rates of retention of 299 

C inputs (Johnson et al. 2007). While it is surprising that root inputs in particular were poorly associated with an 300 

overall increase in POC given their preferential retention in soil (Austin et al. 2017), an increase in minimum values 301 

of POC with root inputs does support the current understanding of the role of root inputs for SOC. Total C and shoot 302 

C inputs best predicted MAOC levels, and we explore interrelationships between C inputs and MAOC through the 303 

use of SEM below. 304 

 305 

 306 
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 307 

Fig. 2 Effect of soil physicochemical properties on soil organic carbon (SOC), particulate organic carbon (POC), 308 

and mineral-associated organic carbon (MAOC), 0–20 cm depth, across 16 agricultural sites (n = 124 plots) in the 309 

United States. Large points represent site-level averages and small points represent plots within sites (n = 124). 310 

Error bars represent standard errors. Regression lines plotted when p < 0.05. A ‘t’ indicates the p-value and R2 311 

reflect response variables that were log-transformed to reduce heteroskedasticity. Caex + Mgex = sum of 312 

exchangeable Ca and Mg. AlO + [1/2]FeO = sum of oxalate-extractable Al and oxalate-extractable Fe. MCI = matrix 313 

capacity index, defined in Methods. Complete regression coefficients for all observations and separate pH groups, 314 

and with Caex, Mgex, FeO, and AlO separated, are reported in SI Tables 8–10.  315 

 316 
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 317 

Fig. 3 Pearson correlation coefficients between soil physicochemical properties and soil mineral-associated organic 318 

carbon (MAOC), 0–20 cm depth, across 16 agricultural sites (averaged from 124 plots) in the United States. Site-319 

level average soil pH ranged from 5.8–6.4 in the low pH group and 6.6–7.9 in the high pH group. MCI = matrix 320 

capacity index, the sum of z-score standardized values of Caex + Mgex and AlO + [1/2]FeO, defined in Methods. 321 

 322 

 323 
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 324 

 325 

Fig. 4 Relationships between root, shoot, and total average C inputs and soil organic carbon (SOC), particulate 326 

organic carbon (POC), and mineral-associated organic carbon (MAOC), 0–20 cm depth, across 16 agricultural sites 327 

(n = 124 plots) in the United States. Large points represent site-level averages and small points represent plots 328 

within sites (n = 124). Regression lines plotted when p < 0.05. Error bars represent standard errors; standard errors 329 

not available for C inputs. Complete regression coefficients for all observations are reported in SI Table 11.  330 

 331 

 332 

A unified index for soil matrix capacity to stabilize MAOC 333 
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Our approach of creating an MCI to predict MAOC, based on the unified stabilization capacity of Caex + 334 

Mgex with FeO and AlO, appears justified, as the MCI had more predictive power over MAOC than other 335 

physicochemical properties (Fig 2, Fig 3; SI Tables 5–6). The MCI also predicted MAOC when calculated with only 336 

Caex as the exchangeable cation (SI Table 10), likely due to greater abundance of Caex compared to Mgex in our soils. 337 

Further investigation is needed to determine if Mgex is required in an MCI than spans a broader range of climate and 338 

vegetation covers. Mechanisms of Caex, Mgex, FeO and AlO  in stabilizing soil C, which  have been proposed and 339 

examined elsewhere, include cation bridging and ligand exchange with organic complexes, as well as aggregate 340 

formation (Rowley et al. 2018; Wagai et al. 2020).  341 

The pH-independent MCI proposed here (Fig 2, Fig 3) appears at first to contrast findings of Rasmussen et 342 

al. (2018). Rasmussen et al. (2018) showed that soil physicochemical properties associated with SOC differ in arid 343 

vs. humid climates, i.e., FeO and AlO were positively related to SOC in humid climates and Caex was positively 344 

related to SOC in arid climates, with only a moderate degree of overlap. Rasmussen et al. (2018) attributed these 345 

patterns to a differential abundance of FeO, AlO, and Caex with changes in water balance and soil pH. The same 346 

patterns of differential abundance of these compounds across soil pH are evident in this study (Fig 1 a–c). By 347 

dividing SOC into POC and MAOC, however, we observed that AlO + [1/2]FeO are associated with increasing levels 348 

of MAOC in both low pH and high pH soils, and that Caex + Mgex are associated with increasing MAOC even in low 349 

pH soils (Fig 3, SI Table 10).  350 

Although this study is limited to agricultural soils, we speculate that if the MCI proposed here were 351 

investigated in a global dataset in which SOC were fractionated into POC and MAOC, the MCI may similarly 352 

predict MAOC storage, and we present this hypothesis as an important topic of future work. Fractionating SOC 353 

gains importance in non-agricultural soils because non-agricultural soils store a greater proportion of SOC as POC 354 

(Lugato et al. 2021), and the effect of soil physicochemical controls on MAOC may be obscured by this abundance 355 

of POC. ). In the global dataset of Rasmussen et al. (2018), which contained grassland and forest soils, POC may 356 

have comprised a greater proportion of SOC in extremes of water balance (Fig 5), where microbial decomposition 357 

may be limited (Cotrufo et al. 2021). In arid environments, FeO and AlO may poorly correlate to SOC (Rasmussen et 358 

al., 2018) due to the prevalence of Caex and the presence of POC, which was not related to Caex in this study (SI 359 

Table 9). In contrast, in humid environments, FeO and AlO may be related to total SOC (Rasmussen et al., 2018) due 360 

to both their prevalence and to their moderate contribution to POC stabilization (Fig 2). While the soils in this study 361 



 17

are a continental rather than global dataset, by fractionating SOC and studying a range of soil pH and 362 

physicochemical properties we identify the efficacy of an MCI across agricultural soils. Our data do not support the 363 

concept of a pH threshold in which a single feature of the soil matrix begins to stabilize SOC, and instead suggest 364 

that a milieu of soil compounds, differing in abundance, can operate concurrently to stabilize MAOC and that 365 

considering their unified stabilization potential offers a comprehensive view of SOC dynamics. 366 

The utility of this MCI will vary with research aims, its generalizability across non-agricultural systems, 367 

and community reporting practices. This MCI may prove a valuable tool for parsimonious, process-based SOC 368 

modeling in that it may quantify matrix stabilization capacity beyond that of clay while avoiding the complication of 369 

representing multiple soil physicochemical properties separately. While soil pH may appear a reasonable substitute 370 

for soil texture given pH-dependent MAOC stabilization mechanisms, soil pH was a poor predictor of MAOC 371 

compared to the MCI (SI Table 10), likely because total matrix stabilizing agents are independent of soil pH. 372 

However, if the research aim is to understand the relative importance of soil physicochemical properties for MAOC 373 

in specific contexts, then keeping soil properties separate will enable more granular investigation than combining 374 

them in an MCI. The extent to which a similar relationship of the MCI with MAOC holds across non-agricultural 375 

ecosystems requires investigation, as do interactions of matrix stabilization with climate (Possinger et al. 2021) and 376 

stocks vs. persistence of MAOC (sensu Heckman et al. 2020). Finally, as the MCI of a given soil will change 377 

depending on the mean and standard deviation used to calculate z-scores, we emphasize the need for consistent 378 

reporting of means and standard deviations if MCI values are to be comparable across studies.  379 

 380 
 381 
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 382 
Fig. 5 Quadratic relationship between MAP-PET and particulate organic carbon (POC) as a percentage of soil 383 

organic carbon (SOC), where raw C data are in g C kg soil-1. Quadratic regression was performed log transformed 384 

response; coefficients are back-transformed for presentation. Large points represent site-level averages and small 385 

points represent plots within sites (n = 124). 386 

 387 

Direct and indirect effects of MAP-PET on POC and MAOC  388 

To assess the direct and indirect effects of MAP-PET on soil C, we constructed two SEMs, one each for 389 

POC and MAOC (Fig 6). As potential mediators of an indirect effect of MAP-PET on POC, we used AlO + [1/2]FeO 390 

because it was the only factor related to POC in simple linear regression (Fig 2). Since there were many 391 

environmental properties correlated with MAOC, we used the MCI and total C inputs in the SEM, as they were the 392 

factors exhibiting the strongest relationship to MAOC in simple linear regressions (Fig 2, Fig 3). Here, we use 393 

‘direct’ and ‘indirect’ to describe pathways elaborated in the structural equation model, acknowledging that 394 

pathways established as ‘direct’ in the model may nevertheless be mediated by properties not measured in this study. 395 

Structural equation modeling revealed that MAP-PET exerted only a direct effect on POC and a combination of 396 

direct and indirect effects of MAOC (Fig 6).  397 
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A direct, positive association of MAP-PET with POC was not anticipated in this study but suggests that 398 

POC pools are more sensitive to decomposition than C input rates. We predicted that higher MAP-PET would 399 

correlate with greater C inputs or greater matrix protective capacity created by AlO + [1/2]FeO, potentially resulting 400 

in higher POC through aggregation (Wagai et al. 2020). These hypotheses were not supported by the results of the 401 

simple linear regression, which showed no relationship between C inputs and POC (Figure 4), or the results of the 402 

SEM, which showed that despite increases with MAP-PET, AlO + [1/2]FeO had a relatively little subsequent 403 

relationship to POC (Figure 6). Although MAP-PET likely mediates soil moisture and thereby controls rates of 404 

microbial decomposition, the extent to which increasing soil moisture in these agricultural soils could reduce 405 

microbial decomposition – and, therefore, the retention of C inputs in POC – remains an open question (Keiluweit et 406 

al. 2017). Another pathway through which MAP-PET could influence POC is that of root tissue chemistry. There is 407 

suggestive evidence that roots decrease nitrogen (N) content with increasing precipitation (Ordóñez et al. 2020), 408 

which could delay decomposition, however, this putative mechanism requires further investigation to verify.     409 

Increasing MAP-PET had a total, positive association with MAOC, comprised primarily of indirect effects 410 

that were mediated by both increasing MCI and increasing total C inputs (Fig 5). The association of MAP-PET with 411 

the MCI was weaker than with AlO + [1/2]FeO but still significant, likely due to contrasting effects of MAP-PET on 412 

AlO + [1/2]FeO and on Caex + Mgex (Fig 1). The SEM also showed a series of positive interactions between the MCI, 413 

total C inputs, and MAOC (Fig 6). The clearest interpretation of these interactions is that both the MCI (Kleber et al. 414 

2015; Rowley et al. 2021) and C inputs (Gulde et al. 2008) lead to higher MAOC. However, iterations of the model 415 

without an MCI – C input relationship specified were returned as poorly fit (CFI < 0.90, Hooper et al. 2008), 416 

suggesting that higher MCI also promoted crop productivity. We speculate that components of the MCI may have 417 

contributed to crop nutrient requirements: while Al is not an essential plant nutrient, Fe and Ca are, and oxalate-418 

extractable Fe in soil can correspond to crop Fe uptake (Morris et al. 1990). As a major component of SOC, MAOC 419 

may have also positively affected crop productivity (Oldfield et al. 2018) and therefore C inputs through its benefits 420 

for soil available water holding capacity, N mineralization, and soil structure (King et al. 2020). 421 
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 422 

Fig. 6 Structural equation model (SEM) showing direct and indirect effects of mean annual precipitation – potential 423 

evapotranspiration (MAP-PET, mm) on particulate (POC, left) and mineral-associated (MAOC, right) organic 424 

carbon. Soils measured 0–20 cm depth across 16 agricultural sites (n = 124 plots) in the United States; site-level 425 

averages used in SEM. The SEM for POC includes AlO + [1/2]FeO (g kg soil-1), while the SEM for MAOC includes 426 

a matrix capacity index (MCI, unitless) and total C inputs (Mg C ha-1 yr-1). The widths of the arrows correspond to 427 

the standardized path coefficients, which are also shown in numbers next to each arrow. R2 values represent total 428 

proportion of variability explained by all paths. Yellow arrows and bars represent pathway from MAP-PET to C 429 

fraction as mediated by C inputs. Red arrows and bars represent pathway from MAP-PET to C fraction as mediated 430 

by soil physicochemical property. Navy arrow represents direct effect of MAP-PET on C fraction. Effects of 431 

complete paths are show in the barplot, where ‘indirect.min’ = effect of MAP-PET on soil C via AlO + FeO or the 432 

MCI, and ‘indirect.c’ = effect of MAP-PET on MAOC via total C inputs. In all cases, n.s. = ‘not significant’; * p < 433 

0.01; ** p < 0.05, and ***p < 0.01. The SEM fit the data well, as indicated by comparative fit index (CFI > 0.9) and 434 
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root mean square error of approximation (RMSEA < 0.08) and standardized root mean square residual (SRMR < 435 

0.08; Hooper et al. 2008). Full model output provided in SI Table 10 and SI Table 11.  436 

 437 

Implications 438 

 Here, we show that fractionating cropland SOC into POC and MAOC allows for improved resolution of 439 

their environmental controls at the continental scale, aligning with findings from forests and grasslands. Given the 440 

strong relationship of the proposed MCI to MAOC, updating process-based soil C models to incorporate an MCI 441 

may offer a promising path for their improvement. However, the data necessary to support this effort, including 442 

MAOC, FeO, AlO, Caex and Mgex are not currently a consistent part of large-scale data products (Poggio et al. 2021). 443 

Future research will need to investigate the MCI demonstrated here for croplands across other ecosystems to 444 

understand its generalizability, as the MCI may show different relationships to MAOC in other ecosystems. Larger 445 

datasets could also allow more exhaustive weighing of different approaches for summing values of soil FeO, AlO, 446 

Caex, Mgex, as well as the interacting roles of soil age, parent material, and climate in driving an MCI. Coupling 447 

investigations of an MCI with processes of C transformation, C turnover, and determinants of maximum MAOC 448 

storage, including in subsoils, will also be valuable for advancing soil C modeling. Our work shows that 449 

understanding POC dynamics requires information beyond C input quantity and soil physicochemical properties to 450 

adequately describe its variation at continental scales. Soil temperature and moisture sensors, information on C input 451 

chemistry, and/or alternative fractionation of the POC pool (i.e., by density) could allow for improved resolution of 452 

POC dynamics.  453 

Finally, we observed a series of positive associations between crop C inputs, MAOC, and the MCI. These 454 

relationships indicate the possibility of reinforcing feedbacks between crop productivity, soil MAOC accumulation, 455 

and soil fertility, where soil fertility is measured by Caex and FeO but is also associated with N supply to crops from 456 

soil organic matter. While these pathways are individually acknowledged, considering and quantifying feedbacks 457 

between these pathways over broad spatial scales and beyond croplands may allow for improved understanding of 458 

future interacting between of soils, plant growth, and climate.  459 
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