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Phyllosphere exudates create specialized microhabitats that shape microbial community
diversity. We explored the microbiome associated with two sorghum phyllosphere
exudates, the epicuticular wax and aerial root mucilage. We assessed the microbiome
associated with the wax from sorghum plants over two growth stages, and the root
mucilage additionally from nitrogen-fertilized and non-fertilized plants. In parallel, we
isolated and characterized hundreds of bacteria from wax and mucilage, and integrated
data from cultivation-independent and cultivation-dependent approaches to gain insights
into exudate diversity and bacterial phenotypes. We found that Sphingomonadaceae and
Rhizobiaceae families were the major taxa in the wax regardless of water availability and
plant developmental stage to plants. The cultivation-independent mucilage-associated
bacterial microbiome contained Erwiniaceae, Flavobacteriaceae, Rhizobiaceae,
Pseudomonadaceae, Sphingomonadaceae, and its structure was strongly influenced by
sorghum development but only modestly influenced by fertilization. In contrast, the fungal
community structure of mucilage was strongly affected by the year of sampling but not by
fertilization or plant developmental stage, suggesting a decoupling of fungal-bacterial
dynamics in the mucilage. Our bacterial isolate collection from wax and mucilage had
several isolates that matched 100% to detected amplicon sequence variants, and were
enriched on media that selected for phenotypes including phosphate solubilization,
putative diazotrophy, resistance to desiccation, capability to grow on methanol as a
carbon source, and ability to grow in the presence of linalool and (-caryophyllene

(terpenes in sorghum wax). This work expands our understanding of the microbiome of
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phyllosphere exudates and supports our long-term goal to translate microbiome research

to support sorghum cultivation.

Keywords: bioenergy, agriculture microbiome, bacterial isolates, plant-association,

diazotroph, irrigation, fertilizer, amplicon sequencing, cultivation

INTRODUCTION

The phyllosphere, which includes the above-ground plant structures, has diverse
surface features (Ruinen 1965; Vacher et al. 2016; Doan et al. 2020). It is a microbial
habitat that is exposed to rapid environmental fluctuations and stressors, including in
ultraviolet radiation, temperature, and nutrient and water availability. Thus, the diversity
and functions of the phyllosphere microbiome reflects this complex habitat (Lindow and
Brandl 2003; Vorholt 2012; Vacher et al. 2016). To adapt to abiotic stresses, plants
produce a diversity of exudates on their external surfaces (Chai and Schachtman 2022).
The secreted exudates vary in composition and structure, creating specialized
phyllosphere microhabitats (Galloway et al. 2020). Exudates that accumulate in the
phyllosphere include epicuticular wax on stems and leaves (Kunst and Samuels 2003),
sugar-rich mucilage on aerial root structures (Bennett et al. 2020), floral nectaries
(Rering et al. 2018), and extrafloral nectaries in stems and leaves (Pierce 2019).
Because of their potential as locations of microbial engagement with the host, research
has been initiated to explore these microbial communities that reside on phyllosphere

exudates.
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Plants secrete epicuticular wax on leaves, leaf sheaths, and stems for prevention
of water loss under drought stress (Xue et al. 2017), reflection of solar radiation
(Steinmdiller and Tevini 1985), and pathogen protection (Serrano et al. 2014; Wang et
al. 2020). Epicuticular waxes are enriched in long-chain hydrocarbons. The major wax
components include alkanes, alcohols, esters, and fatty acids, as well as varying levels
of triterpenoids, sterols, and flavonoids (von Wettstein-Knowles 1974; Kunst and
Samuels 2003; Busta et al. 2021). The wax composition and quantities are affected by
plant species, plant developmental stage, and environmental conditions (Yeats and
Rose 2013). It has been shown that epicuticular waxes affect bacterial and fungal plant
colonization in a species-dependent manner (Beattie and Marcell 2002; Tsuba et al.
2002). Also, wax accumulation and composition directly impact the phyllosphere
microbial community diversity (Reisberg et al. 2013). A study in Arabidopsis thaliana
reported that Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant
phyla associated with wax on leaves (Reisberg et al. 2013).

Plants also secrete an abundance of polysaccharide-rich mucilage on aerial roots
and the above ground portion of brace roots. Brace roots support plant anchorage as
well as water and nutrient uptake (Stamp and Kiel 1992; Ku et al. 2012; Reneau et al.
2020). In 2018, van Deynze et al. 2018 reported that the mucilage of aerial roots of a
maize landrace harbored diazotrophic microbiota that provided almost 80% of the
nitrogen needed by the host. The bacterial genera Acinetobacter, Agrobacterium,
Enterobacter, Klebsiella, Lactococcus, Pantoea, Pseudomonas, Rahnella, Raoultella,

Stenotrophomonas, and others have been found in association with the mucilage of
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maize. These bacteria were capable of biological nitrogen fixation (BNF), synthesizing
indole-3-Acetic Acid (IAA), utilizing 1-amino-1-cyclopropanecarboxylic acid (ACC), and
solubilizing phosphates. The unique polysaccharide composition of the mucilage may
modulate its associated microbiota (van Deynze et al. 2018; Higdon et al. 2020b). The
maize mucilage is enriched in a mixture of monosaccharides including fucose (28%),
galactose (22%), arabinose (15%), glucuronic acid (11%), xylose (11%), mannose (8%),
glucose (1%) and galacturonic acid (1%) (van Deynze et al. 2018; Amicucci et al. 2019).
The polysaccharide composition of root mucilage may vary among maize genotypes
and with changing environmental conditions (Nazari et al. 2020).

Bioenergy sorghum (Sorghum bicolor L. Moench) is a heat and drought-tolerant
annual crop being developed for production of biomass, biofuels and bioproducts
(Mullet et al. 2014; Varoquaux et al. 2019). Bioenergy sorghum confers 75%-90%
greenhouse gas mitigation when used for ethanol production or biopower generation
respectively (Olson et al. 2012), but excess nitrogen fertilizer is required to grow i,
resulting in the release of nitrous oxide and relatively lower carbon benefit than other
biofuel feedstocks that do not have high fertilizer demands (Kent et al. 2020; Scully et
al. 2021). In the 1980s, it was hypothesized that the mucilage secreted by sorghum
aerial roots harbors diazotroph bacteria, as has been more recently shown in the a
maize landrace (Bennett et al. 2020), but this has not yet been experimentally
confirmed. Although the polysaccharide composition of the sorghum aerial root
mucilage is uncharacterized, it is expected that the sorghum mucilage is similar in

composition to maize (van Deynze et al. 2018; Amicucci et al. 2019). Taken together, it
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is expected that understanding microbiome interactions on the sorghum mucilage may
provide insights into microbiome-enabled solutions to optimize diazotrophic nitrogen for
the host and, in parallel, reduce nitrogen fertilizer needs for bioenergy sorghum.

Like other plants, bioenergy sorghum accumulates high levels of epicuticular wax
on stems and leaves over its development, and some functions of the wax are to
exclude pathogens and prevent water loss. Sorghum epicuticular wax chemistry and
structure have been extensively studied. The accumulation, and composition of
sorghum epicuticular wax are affected by several factors, including plant age, genotype,
water availability, and environmental stresses (Bianchi et al. 1978; Avato et al. 1984;
Jordan et al. 1984; Steinmiller and Tevini 1985; Shepherd et al. 1995; Jenks et al.
1996; Bondada et al. 1996; Shepherd and Wynne Griffiths 2006; Xue et al. 2017).
However, the influence of sorghum wax chemistry on bacteria colonization and
community structure is unknown.

In the present study, we investigated the microbiome associated with bioenergy
sorghum epicuticular wax and aerial root mucilage. Given the functions of these
exudates for the host, these communities may be of interest to examine microbiome
traits that support host drought tolerance and nutrient uptake. To begin to explore the
microbial communities inhabiting these specialized phyllosphere exudates, the
microbiome composition and structure of wax and mucilage was analyzed from field
conditions that included management treatments expected to influence plant water and
nitrogen status. Specifically, we assessed the bacterial microbiome associated with the

epicuticular wax from sorghum plants at two different developmental stages that also
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received different amounts of water, and the bacterial and fungal microbiomes
additionally associated with the aerial root mucilage from nitrogen (N)-fertilized and non-
fertilized sorghum plants. In addition, we curated a bacterial isolate collection from each
phyllosphere exudate. We integrate data from both cultivation-independent and -
dependent approaches to gain deeper insights into the microbiome diversity and
dynamics of sorghum epicuticular wax and aerial root mucilage.

We hypothesized that: 1) wax and mucilage harbor different bacterial
microbiomes due to their different exudate chemistries, host functions, and
compartments; 2) plant developmental stage and watering status has highest
explanatory value for the wax bacterial microbiota due to the known role of wax in
supporting plant drought tolerance; 3) fertilization status has highest explanatory value
for the mucilage bacterial microbiota due to changes in exogenous nutrient availability
that are expected to result in changes in mucilage polysaccharide composition; and 4)
that the bacterial and fungal members of the mucilage microbiome exhibit similar

dynamics due to expected similar host and environmental drivers.

METHODS

Collection of sorghum stems and recovery of epicuticular wax. We collected
samples from the bioenergy sorghum (Sorghum bicolor) hybrid TX08001 grown at the
Texas A&M University Research Farm in College Station, Texas (30°55°5.55" N,

96°.43'64.6" W). Sorghum plants were grown in 5 replicate 32 rows by 30 m plots at
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standard planting density and fertilization (Olson et al., 2012). We sampled replicate
plots 1-5 at 60 (08/03/2020) and 90 (09/02/2020) days after plant emergence (DAE).
While sorghum plants at 60 DAE were irrigated to maintain non-limiting water status,
plants at 90 DAE were grown without irrigation to induce water-limiting conditions until
harvesting. Thus, the developmental age of the plants and their watering status are
colinear and their effects cannot be separated in our study. We collected stem sections
that were covered in epicuticular wax, using razor blades to destructively sample the
fifth and sixth fully elongated stem node-internodes below the growing zone into sterile
whirl-pak bags. In total, we collected 50 stem samples during the growing season of
2020. All samples were kept on ice for transport, shipped on dry ice to Michigan State
University, and then stored at -80 °C. We used sterile razor blades to carefully remove
and collect the epicuticular wax from stems in sterile 1.5 ml Eppendorf tubes.

Epicuticular wax samples were stored at -80 °C until processing.

Collection of sorghum aerial roots and removal of the mucilage. We collected
samples from the bioenergy sorghum cultivar TAM 17651 grown at the Great Lakes
Bioenergy Research Center (GLBRC), as part of the Biofuel Cropping System
Experiment (BCSE) in Hickory Corners, Michigan (42°23’41.6” N, 85°22°23.1” W).
Sorghum plants were grown in 5 replicate 30x40 m plots arrayed in a randomized
complete block design. Within each plot, nitrogen fertilizer-free subplots were
maintained either in the western or eastern -most 3m of each plot. We sampled

replicate plots 1-4 in both the main and nitrogen-fertilizer free subplots at 60 and 90
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DAE. We used sterile razor blades to carefully collect between 3 to 5 aerial nodal roots
per plant that were covered with visible mucilage into sterile 50 ml Eppendorf tubes. In
total, we collected 180 aerial root samples during the growing seasons of 2020 and
2021. All samples were kept on ice for transport, and then stored at -80 °C. In the
laboratory, we added 15 ml of sterile distilled water and kept the roots for 5 min at room
temperature to fully hydrate the aerial root mucilage. We collected 1 ml of mucilage into
sterile 1.5 ml Eppendorf tubes per sample. Mucilage samples were stored at -80 °C until

processing.

Culturing the epicuticular wax and mucilage microbiomes. For bacterial isolation,
we pooled the epicuticular wax collected from different plants, as described above, and
resuspended 100 mg of wax in 1 ml of sterile distilled water. We also pooled the
mucilage collected from different plants, as described above. To capture a diversity of
bacteria from the wax and mucilage, we used a variety of cultivation media (Table 1).
First, we used standard culture media with a relatively high concentration of nutrients,
including Tryptic Soy Agar (TSA: casein peptone 15 gl', soy peptone 5 gl-!, sodium
chloride 5 gI'', agar 15 glI'!, pH 7.3) and 50TSA (1/2 dilution of TSA). We also used
media with relatively lower concentrations of nutrients, including Reasoner’s 2A (R2A:
yeast extract 0.5 gl', proteose peptone N°3 0.5 gl', casamino acids 0.5 gl', glucose
0.5 gl", soluble starch 0.5 gI-*, sodium pyruvate 0.3 glI', K2HPO4 0.3 gl', MgSO4 x 7H20
0.05 gl", agar 15 gI'"), 50R2A (1/2 dilution of R2A), and M9 minimal media (NazHPO4

12.8 g, KH2PO4 3.0 gI', NaCl 0.5 gI', NH4Cl 1.0 gI, glucose 20 glI'', 1M MgSQa4
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solution 20 ml, 1M CaClz solution 0.1 ml, thiamine 0.5% w/v solution 0.1 ml, agar 15 gl
). To enrich for bacteria with putative plant beneficial traits, we used selective media
types, including Jensen’s medium (sucrose 20 glI-!, KaHPO4 1 glI', MgSOa4 0.5 glI-', NaCl
0.5gl", FeS040.1 gI'', Na2MoO4 0.005 gI', CaCOs 2 gI'!, agar 1 gI'') and modified
nitrogen-free M9 minimal media with and without 1% (w/v) D-arabinose, galactose or
xylose at pH 5, 5.8 or 7 (Na=2HPO4 12.8 gI'', KH2P0O4 3.0 gI'', NaCl 0.5 gI'!, 1M MgSOa4
solution 20 ml, 1M CaClz solution 0.1 ml, agar 15 gI'") for detection of putative nitrogen
fixing bacteria, Pirovskaya’s agar (yeast extract 0.5 gl-!, dextrose 10 gl-', Cas(PO4)2 5 gI-
1 (NH4)2804 0.5 gI'", KCI1 0.2 gI', MgSO4 0.1 gI'!, MnSO4 0.0001 gI', FeSO40.0001 gl
agar 15 gl") for detection of phosphate solubilizing bacteria, Gauze’s synthetic medium
N°1 (soluble starch 20 gl'', KNOz 1 gl'', NaCl 0.5 gI'', MgSOa4 x 7H20 0.5 gI-', K2HPO4
0.5gl", FeSO4 x 7 H20 10 mgl!, agar 15 gI'") for isolation of Actinobacteria, King’s
medium B (proteose peptone 20 gl-', Kz2HPO41.5gl", MgSO4 x 7H20 1.5gl, glycerol
10 ml) for isolation of fluorescent pseudomonas, and methanol mineral salts medium
((NH4)2S042.0gl"", NH4Cl 2.0 gl", (NH4)2HPO4 2.0 gl', KH2PO4 1.0 gl!, K2HPO4 1.0 gl T,
MgSOa4 x 7H20 0.5gl", Fe2S0O4 x 7H20 0.01 gl*,CaCl2 x 2H20 0.01 gI!, yeast extract
2.0 gl', agar 20 gI'") for isolation of methanol-utilizing bacteria.

All plates were incubated for up to 14 days. To select for anaerobic bacteria, agar
plates were placed in anaerobic jars (Mitsubishi AnaeroPack 7.0L rectangular jar)
containing three bags of anaerobic gas generator (Thermo Scientific AnaeroPack
Anaerobic Gas generator). To enrich for bacteria resistant to desiccation, one hundred

microliters of dilution 10-1 from the wax and mucilage were inoculated on 20 ml of 50%

10
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TSB liquid culture supplemented with different concentrations of 6000 polyethylene-
glycol, including —0.49 MPa (210 gl'' PEG w/iv), -0.73 MPa (260 gI'' PEG w/v) and —1.2
MPa (326 glI'' PEG w/v). To enrich for bacteria that can grow in the presence of
terpenoids, 100 ml of dilution 10! from the wax and mucilage were inoculated on 20 ml
of 50% TSB liquid culture supplemented with 1% (v/v) of either linalool or -
caryophyllene. Liquid cultures were incubated at 28°C for 24 h, and dilutions 10-'to 104
were plated in duplicate on R2A agar plates for 24 h. Well isolated individual colonies
were picked with a sterile toothpick and transferred to a new R2A plate. To confirm
bacterial purity, individual bacterial colonies were transferred three times on new R2A

agar plates. Glycerol stock (25% v/v) of pure bacteria isolates were stored at -80°C.

Metagenomic DNA extraction and amplicon sequencing. Microbial DNA was
extracted from 0.5 ml of mucilage and 100 mg of epicuticular wax using a DNeasy
PowerSoil kit (Qiagen, Maryland, USA) according to the manufacturer’s instructions. To
confirm successful DNA extraction, the metagenomic DNA was quantified using a qubit
2.0 fluorometer (Invitrogen, Carlsbad, CA, USA), and visualized in a 1% agarose gel.
Then, the PCR amplifications and sequencing of the V4 region of the 16S rRNA
bacterial or archaeal gene from the epicuticular wax and mucilage samples and the
ITS1 region of the fungal rRNA gene from the mucilage samples only were performed.
DNA concentrations were normalized to approximately 1 yg/ul between all samples
before PCR amplification and sequencing. The V4 hypervariable region of the 16S

rRNA gene was amplified using the universal primers 515F (5'-

11
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GTGCCAGCMGCCGCGGTAA- 3’) and 806R (5'-GGACTACHVGGGTWTCTAAT-3’)
(Caporaso et al. 2011) under the following conditions: 95°C for 3 min, followed by 30
cycles of 95°C for 45 s, 50°C for 60 s, and 72°C for 90 s, with a final extension at 72°C
for 10 min. The metagenomic DNA of each sample was submitted to the Genomics
Core of the Research Technology Support Facility at Michigan State University for
library preparation and sequencing using the lllumina MiSeq platform v2 Standard flow

cell in a 2x250bp paired-end format, using their standard operating protocol.

The ITS1 region was amplified using primers ITS1f (5'-
CTTGGTCATTTAGAGGAAGTAA-3") and ITS2 (5'-GCTGCGTTCTTCATCGATGC-

3’) (Smith and Peay 2014) with the addition of index adapters CS1-TS-F: 5" —
ACACTGACGACATGGTTCTACA —[TS-For] -3’ and

CS2-TS-R: 5 — TACGGTAGCAGAGACTTGGTCT — [TS-Rev] — 3’ as requested by the
Genomics Sequencing Core under the following PCR conditions: 94°C for 3 min,
followed by 35 cycles of 94°C for 30 s, 52°C for 30 s, and 68°C for 30 s, with a final
extension at 68°C for 10 min. The amplification was performed with GoTag Green
Master Mix (Promega). The PCR products were purified with ExoSAP-IT reagent, and
sample sequencing was completed by the Genomics Core of the Research Technology
Support Facility at Michigan State University using the lllumina MiSeq platform v2
Standard flow cell in a 2x250bp paired-end format. For quality control purposes, positive
and negative controls were included throughout the DNA extraction, PCR amplification,

and sequencing processes. A 75 pl aliquot of the ZymoBIOMICS Microbial Community

12
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Standard (Zymo Research, Irvine, CA, U.S.A) and 75 pl aliquot of an in-house
Community Standard were included as positive controls. Sterile DEPC-treated water

was included as negative control.

Bacterial genomic DNA extraction. Bacteria colonies that were first streaked and
isolated for purity were grown on 2 ml of 50% TSB liquid culture at 28°C for 24 h.
Bacteria culture was centrifuged at 5,000 rpm for 10 min. Genomic DNA of each isolate
was extracted by using the Zymo — Quick DNA Fungal/Bacterial 96 kit following the
manufacturer’s protocol. Total genomic DNA was quantified using a qubit 2.0
fluorometer and visualized in a 1% agarose gel. The PCR amplification of the full-length
16S rRNA gene with universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3’) and
1492R (5'-TACGGTTACCTTGTTACGACTT-3") (Miller et al. 2013) was performed by
using the Pfu Turbo DNA polymerase (Agilent) under the following conditions: 95°C for
2 min, followed by 24 cycles of 95°C for 30 s, 48°C for 30 s, and 72°C for 3 min, with a
final extension at 72°C for 10 min. PCR products were purified with ExoSAP-IT reagent
and submitted for Sanger sequencing at the Genomics Core of the Research

Technology Support Facility at Michigan State University, MI, USA.

Bacterial and fungal amplicon sequencing analysis. Paired-end sequencing data
from each sequencing experiment were processed with QIIME2 (Bolyen et al. 2019)
version 2021.8.0. In brief, sequences were imported using the

PairedEndFastgManifestPhred33V2 format. Sequence quality control, denoising, and

13
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generation of feature tables containing counts for the Amplicon Sequencing Variants
(ASVs) were performed with the g2-dada2 plugin version 2021.8.0 (Callahan et al.
2016). Trimming parameters for the DADAZ2 plugin were selected with FIGARO version
1.1.2 (Weinstein et al. 2019). ASVs tables and representative sequences from each
sequencing experiment were merged with the g2-feature-table plugin. ASV taxonomy
(of merged ASVs) was assigned with the g2-feature-classifier plugin using the SILVA
version 1.38 database (Quast et al. 2013) for bacteria and UNITE version 8.3 database
(Nilsson et al. 2019) for fungi.

The ASV table, taxonomy table, and sample metadata files were imported into R
version 4.1.3 for data visualization and statistical analysis. Diversity and statistical
analyses were performed using the phyloseq (McMurdie and Holmes 2013) and vegan
(Dixon 2003) packages. Treatments compared were: exudate (wax, mucilage) for
bacterial microbiomes; fertilization status (fertilized, unfertilized), year of sample
collection (2020, 2021), and developmental stage (60 DAE, 90 DAE) for mucilage
bacterial and fungal microbiomes; and developmental stage/water availability (60 DAE,
90 DAE) for wax bacterial microbiomes. A Wilcoxon rank sum test with continuity
correction was used to test for differences in alpha diversity across treatments.
Permuted analysis of variance (PERMANQOVA) and permuted analysis of beta-
dispersion (PERMDISP) were used to assess differences in beta diversity structure
across treatments by centroid and dispersion. Differential abundance analysis was
performed with the DESeq2 package (Love et al. 2014). Each dataset (bacterial/fungal,

wax/mucilage) was subsampled independently to ensure maximum coverage for

14
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comparisons over time and across field treatments. The exception was when testing
hypothesis 1 (differences in wax and mucilage bacterial microbiome), and in this case
both datasets were subsampled to an even 2,500 sequences per sample for

comparison.

Full-length 16S rRNA gene Sanger sequencing analysis: Culturing phyllosphere
exudate microbiota. To generate a consensus sequence of the full-length 16S rRNA
gene from each bacterial isolate, sequences were imported into Geneious version
2021.2.2 (https://lwww.aeneious.eom/f. High-quality forward and reverse sequences
were aligned and trimmed to generate a consensus sequence. Then, the consensus
sequence was searched with BLAST for taxonomic classification. CD-HIT version 4.8.1
(Li and Godzik 2006) was used to remove redundant 16S rRNA sequences. To identify
bacterial isolates that match 100% to the identified ASVs from the culture-independent
approach, a local BLAST search was performed. In summary, a local BLAST database
was created with all non-redundant 16S rRNA sequences from our bacterial collection
using the makeblastdb command and the -dbtype nucloption. A BLAST search was
carried out to identify related sequences in the representative sequences (ASVs dna-
sequences.fasta) file generated from the DADAZ2 denoising step with the blastn
command, and the flowing options: "6 gseqid sseqid pident length mismatch gapopen

gstart gend sstart send evalue bitscore".

15
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Comparison with publicly available plant-associated bacterial genomes. We
retrieved 637 plant-associated (PA) bacterial genomes that were classified as non-root
associated from the (Levy et al. 2017) study. High-quality bacterial genomes were
annotated with Prokka (Seemann 2014) using an in-house python script and annotated
16S rRNA gene copies were identified (available on GituHub, see Data availability
statement). For bacteria with multiple 16S rRNA copies, CD-HIT version 4.8.1 (Li and
Godzik 2006) was used to remove redundant sequences (99% similarity) and one 16S
rRNA sequence was conserved, totaling 433 unique PA sequences. All 16S rRNA
sequences from the PA bacterial genome dataset were concatenated in a single fasta
file with the cat command. CD-HIT was used to remove redundant sequences (100 %
similarity) from the 16S rRNA concatenated file. All non-redundant 16S rRNA
sequences from both the sorghum bacterial collections and the publicly available PA
bacteria were merged in a single fasta file. Sequence alignment was performed with
MAFFT v7.407 (Katoh et al. 2002). Alignment trimming was performed with trimAl
(Capella-Gutiérrez et al. 2009). A maximume-likelihood (ML)-based phylogenetic tree
was built with IQ-TREE 2.2.0-beta version (Minh et al. 2020). ModelFinder version (-m
TEST option) (Kalyaanamoorthy et al. 2017) was used to select the best model for the
phylogenetic tree construction. Branch support was assessed using 1,000 ultrafast
boostrap approximations (-bb 1000 option) (Hoang et al. 2018). Phylogenetic diversities
were calculated as the total tree length, that represents the expected number of
substitutions per site. Phylogenetic tree was edited with iTOLs version 6.5.8 (Letunic

and Bork 2021).
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Data and code availability. The data analysis workflows for sequence processing and
ecological statistics are available on GitHub
(https://github.com/ShadelLab/Sorghum_phyllosphere_microbiome_MechanLlontop_202
2.git). Raw sequencing data has been deposited in the Sequence Read Archive NCBI
database under BioProject accession number PRJNA844896 (including 16S rRNA and
ITS amplicons). Full-length 16S rRNA sequence data has been deposited in the

GenBank with accession numbers ON973084-ON973283.

RESULTS

Sequencing summary. In total, we sequenced the bacterial 16S rRNA V4 region from
48 epicuticular wax samples from the 2020 growing season, as well as the bacterial 16S
rRNA V4 region from 179 mucilage samples and the fungal ITS region from 173
mucilage samples that were collected across two growing seasons in 2020 and 2021.
We obtained 8,648,839 bacterial sequences from the wax, and 20,606,039 bacterial
and 20,181,404 fungal sequences from the mucilage. After quality control, removal of
chimeras, and denoising, 7,930,768 quality bacterial reads were obtained from the wax
samples, and 19,880,634 bacterial and 12,157,819 fungal sequences were obtained
from mucilage (Table 2). For wax, the total number of sequences per sample after the
denoising process with DADA2 into Amplicon Sequence Variants (ASVs) ranged from
1,722 10 272,108. After the removal of nonbacterial and unassigned sequences, a total

of 2,386,033 sequences remained, with sequencing reads per wax sample ranging from

17



372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

Page 18 of 42 Marco E. Mechan-Llontop
Phytobiomes Journal

138 to 206,128. We removed wax samples with fewer than 1000 sequences, and the
remaining 42 epicuticular wax samples were rarefied to 1,303 sequences for further
analysis (Figure 1A). Given the observed richness (12 to 93 ASVs per sample) by
these cultivation-independent methods, Figure 1A shows that the wax bacterial
microbiome was covered with the given sequencing effort.

For root mucilage, the number of bacterial sequences per sample after the
denoising ranged from 222 to 330,853. After the removal of nonbacterial and
unassigned sequences, a total of 12,956,774 sequences remained, with sequencing
reads per sample ranging from 110 to 235,069. We removed samples with fewer than
20,000 sequences, and the remaining 158 samples were rarefied to 20,519 sequences
for comparative analysis (Figure 1B). Given the observed richness (49 to 555 ASVs per
sample) by these cultivation-independent methods, Figure 1B shows that the mucilage
bacterial microbiome was covered with the given sequencing effort. The number of
fungal sequences per mucilage sample after the denoising ranged from 78 to 119,207.
After the removal of non-fungal and unassigned sequences, a total of 12,297,453
sequences remained, with sequencing reads per sample ranging from 32 to 119,207.
We filtered mucilage samples with fewer than 30,000 ITS sequences, and the remaining
171 samples were rarefied to 33,975 sequences for comparative analysis (Figure 1C).
Similarly, given the observed richness by these cultivation-independent methods (47 to
237 ASVs per sample), Figure 1C shows that the mucilage fungal microbiome was

covered with the given sequencing effort.
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Hypothesis 1: Wax and mucilage harbor different bacterial microbiomes
Compositional differences in the bacterial microbiomes of the epicuticular wax and
mucilage were apparent at the family level of taxonomic resolution (Figure 2A and B)
as well as at the genus level (Supplementary Figure S1A and B). Wax and mucilage
bacterial microbiomes had different richness (observed taxa Wilcoxon rank p<0.001,
Supplementary Table 1) and different structures (PERMANOVA R-squared= 0.14,
p=0.001). Thus, Hypothesis 1 was supported. However, there were no differences
detected in the dispersions of wax and mucilage bacterial microbiome structures

(PERMDISP F=0.69, p=0.43).

Hypothesis 2: Plant developmental stage/watering status has highest explanatory
value for the wax bacterial microbiota
Altogether, we identified 534 bacterial ASVs in epicuticular wax. Wax bacterial
microbiome samples collected from sorghum plants at 60 DAE and 90 DAE had
different richness (observed taxa Wilcoxon rank p= 0.03) (Supplementary Table 1).
There was higher variation in the community structure in the epicuticular wax on plants
at 90 DAE compared with plants at 60 DAE (PERMDISP F=17.92, p=0.001). There was
a small but significant influence of sorghum developmental stage on the epicuticular
wax community structure (PERMANOVA R-squared=0.06, p= 0.003, Figure 3A, Table
3).

The sorghum epicuticular wax microbiome was dominated by the Proteobacteria

(84% mean relative abundance) and Bacteroidetes (11%) bacteria phyla. The bacterial
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classes Alphaproteobacteria (54%), Gammaproteobacteria (30%), and Bacteroidia
(11%) were in highest abundance. Sphingomonadaceae (25%), Rhizobiaceae (21%),
and Xanthomonadaceae (7%) were the major bacterial families in sorghum epicuticular
wax (Figure 2A). At the genus level, Sphingomonas (28%), Rhizobium (12%),
Aureimonas (10%), and Acinetobacter (5%) were the dominant taxa in wax
(Supplementary Figure 1). Differential abundance analysis showed that only one ASV
(ASV ID #5438e75153393c2dda98fe3d99c26dai) from the Microbacteriacea family was
more abundant on the wax of plants at 60 DAE (by 3.08-fold, DeSeq p = 0.01), and that
one ASV (ASV ID #8f820a46¢fecd19477f4485d1¢c436764) assigned to
Pseudoxanthomonas genera was more abundant on the wax of plants at 90 DAE (by

4 .49-fold, DESeq p = 0.01). Taking these results together, Hypothesis 2 was weakly
supported with a small, significant difference in wax bacterial microbiome by plant stage

and two taxa that were distinguishing between the stages.

Hypothesis 3: Fertilization status has highest explanatory value for the bacterial
mucilage microbiota

Altogether, 12,047 bacterial ASVs were identified in aerial root mucilage. There was no
difference in richness between mucilage samples collected from sorghum plants at 60
DAE and 90 DAE (observed species Wilcoxon rank p= 0.82, Supplementary Table 1),
and also no difference between mucilage samples from nitrogen-fertilized plants as
compared with unfertilized plants. (observed species Wilcoxon rank p=0.15,

Supplementary Table 1). There was different beta dispersion in community structure
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by plant developmental stage (PERMDISP F=19.56, p=0.001) but not by fertilization
status (PERMDISP F=1.83, p=0.187). The mucilage bacterial microbiome structure was
better explained by developmental stage than fertilization status (PERMANOVA R-
squared= 0.14 and 0.03, respectively, both p= 0.001) (Figure 3B).

The aerial root mucilage bacterial microbiome was dominated by the
Proteobacteria (61% mean relative abundance) and Bacteroidota (36%) bacteria phyla.
The bacterial class Gammaproteobacteria (40%), Bacteroidia (34%), and
Alphaproteobacterial (21%) were the most abundant. Erwiniaceae (23%), Rhizobiaceae
(14%), Flavobacteriaceae (12%), Pseudomonadaceae (9%), and Sphingomonadaceae
(6%) were the major bacterial families in mucilage (Figure 2B). A differential abundance
analysis identified 25 ASVs enriched in the mucilage at 60 DAE and 72 ASVs
significantly enriched in plants at 90 DAE (Figure 4, DESeq p = 0.01). Taking these
results together, Hypothesis 3 was not supported, and the bacterial microbiome of the
mucilage was not highly sensitive in structure or dispersion to fertilization given this
study’s field conditions, nor were there notable distinguishing taxa by plant fertilization

status.

Hypothesis 4: The bacterial and fungal members of the mucilage microbiome
exhibit similar dynamics.

Altogether, 5,641 fungal ASVs were identified in aerial root mucilage. There were
differences in richness between mucilage samples collected from sorghum plants during

the 2020 and 2021 growing seasons (observed species Wilcoxon rank p= 0.008), and
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460  also between mucilage samples from nitrogen-fertilized plants compared with

461  unfertilized plants (observed species Wilcoxon rank p< 0.01). However, no difference
462  was observed between mucilage samples from plants at 60 DAE vs. 90 DAE

463  (Supplementary Table 1). The mucilage fungal microbiome structure was strongly

464  influenced by year of collection (PERMANOVA R-squared= 0.51, p < 0.001). Fungal
465 community structure was weakly influenced by developmental stage (PERMANOVA R-
466  squared= 0.02, p < 0.05), but not by fertilization status (PERMANOVA, p > 0.05)

467  (Figure 2C).

468 The mucilage fungal microbiome was dominated by the Ascomycota (76%) and
469  Basidiomycota (23.7%) phyla. The Dothideomycetes (50%), Sordariomycetes (24%),
470  and Tremellomycetes (14%) fungal classes were the most abundant. Cladosporium

471  (22%), Nectriaceae (17%), Didymellaceae (14%), Bulleribasidiaceae (9 %),

472  Pleosporaceae (8%) were the dominant fungal families in the mucilage. The genera

473  Cladosporium exhibited higher abundance in the 2020 growing season (34%) compared
474 with 2021 (14%). In contrast, we found an enrichment of the genera Epicoccum in 2021
475  (18%) compared with the 2020 growing season (0.02%) (Supplementary Figure 1).
476  Taking these results together, Hypothesis 4 was not supported because the bacterial
477  microbiome of mucilage was more sensitive to plant development and consistent across
478  sampling years than the fungal, while the fungal microbiome also exhibited greater

479  variability between years.

480
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Cultivation-dependent bacterial taxonomic and phenotypic diversity of sorghum
phyllosphere wax and mucilage.
Bacterial culture collections from the epicuticular wax and aerial root mucilage were
constructed by enriching bacteria with putative plant-beneficial traits (Table 1). In total,
500 bacteria from the wax and 800 bacteria from the mucilage were isolated, and then a
subset of 200 isolates from both the wax and mucilage were taxonomically identified by
sequencing the full-length 16S rRNA gene (Supplementary Table 2). These isolates
were chosen to represent the range of different cultivation conditions employed and,
additionally, to maximize distinguishing phenotypes (morphology, color, etc) to avoid
redundancy in the collection (Figure 5). The wax bacterial collection was dominated by
the Proteobacteria, followed by Actinobacteria, and Bacteroidetes phyla, and the
mucilage bacterial collection was dominated by the Proteobacteria, followed by
Actinobacteria, Firmicutes, and Bacteroidetes phyla (Supplementary Table 2).

Forty-eight ASVs matched with 100% sequence identity to strains in the isolate
collections (Supplementary Table 2). Most of the bacterial families found in the
sorghum wax and mucilage had representatives among the isolate collection (Figure 6).
Families such as Beijerincklaceae, Chitinophagaceae, Oxalobacteraceae were not
captured by our wax bacterial cultivation efforts. Families observed using cultivation-
independent techniques but that were not captured by our mucilage cultivation efforts
included Cytophagaceae and Oxalobacteraceae.

To understand potential novelty and redundancy represented by the diversity of

our wax and mucilage bacterial collections, we compared the full-length 16S rRNA
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genes with those extracted from the bacterial genomes of previously described non-
root-associated, plant-associated (PA) bacteria (Levy et al. 2017), assigned as non-
root-associated. 637 bacterial genomes were retrieved from a publicly available
database (see Methods) to provide a reference of context for our 200 sorghum
phyllosphere isolates. The final data set contained 527 non-redundant full-length 16S
rRNA sequences: 94 new 16S rRNA genes from our sorghum wax and mucilage
collections, and 433 rRNA genes from the published plant-associated bacterial

genomes (Figure 7).

DISCUSSION

We investigated the microbiota associated with bioenergy sorghum phyllosphere
exudates, specifically from epicuticular wax on stems and leaves and from mucilage on
aerial roots.

The chemistry of epicuticular wax that covers sorghum stems has been
extensively characterized (Bianchi et al. 1978; Jordan et al. 1984; Jenks et al. 2000;
Farber et al. 2019a, 2019b), but there is still much to learn about its microbial residents
and their colonization dynamics. Thus, we decided to characterize the wax microbiota
from stems of field-grown bioenergy sorghum plants at 60 DAE and 90 DAE. We chose
these two-time points because they represent different developmental stages, and, in
our field conditions, they also had different water availability. During the vegetative
stage, sorghum plants at 60 DAE have all leaves developed and fully expanded. At 90

DAE in the upper mid-west, plants have transitioned to the reproductive stage, seed
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development is in progress and nutrients are being relocated to the kernel. In the
southwestern U.S., sorghum plants are in extended vegetative growth stage, with floral
initiation expected at 120 DAE. The major lineages we detected in the epicuticular stem
wax, including Proteobacteria, Bacteroidetes, and Actinobacteria, agree generally with
reports from Arabidopsis thaliana and Sorghum bicolor epicuticular leaf wax (Reisberg
et al. 2013; Sun et al. 2021). Furthermore, we also observed changes in the relative
abundances of several taxa at 60 DAE compared with plants at 90 DAE, which could be
associated with changes in the composition of the epicuticular wax as the plant grows
(Avato et al. 1984; Jenks et al. 1996), though more work is needed to characterize
changes in the chemical composition of the wax alongside the structural changes in the
microbiome to understand their relationship more fully. It has been suggested that
microbes in wax may be able to metabolize wax components and use them as a carbon
source (Ueda et al. 2015). Our study enriched several bacterial isolates that were able
to grow with linalool and beta-caryophyllene, two of the terpenes found in sorghum wax.
To gain further insight into epicuticular wax microbiome assembly and dynamics, next
steps could expand this research not only by including samples from different growing
seasons, but also by including sorghum genotypes that are mutants in wax production
(Jenks et al. 1994, 2000; Peters et al. 2009; Punnuri et al. 2017).

For decades it has been suggested that the sorghum aerial root mucilage
harbors diazotroph bacteria (Wani 1986; Bennett et al. 2020). We hypothesized that
fertilization would strongly influence the phyllosphere mucilage microbiota due to

changes in exogenous nutrient availability and changes in mucilage polysaccharide

25



547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

Page 26 of 42 Marco E. Mechan-Llontop
Phytobiomes Journal

composition. However, our cultivation-independent data (16S rRNA amplicons) suggest
that that differences in nitrogen fertilization had no notable influence on the microbiome
structure for both bacterial and fungal communities. In contrast, plant developmental
stage strongly affected the mucilage bacterial microbiome structure. Similar evidence of
microbiome seasonality has been found in other studies of different surfaces of the
phyllosphere microbiome (Copeland et al. 2015; Grady et al. 2019; Xiong et al. 2021,
Smets et al. 2022). We also observed several putative diazotroph bacteria in the
sorghum mucilage that were isolated anaerobically and on nitrogen-free media,
including Curtobacterium, Pantoea, Pseudomonas, Strenotrophomonas, which were
reported as lineages that could colonize the maize mucilage (van Deynze et al. 2018;
Higdon et al. 2020b, 2020a).

Regarding the fungal microbiome in the mucilage, we found that the year of
collection had the highest explanatory value. With two years of field data, there is not
enough information to understand if the fungal community is responsive to other
covariates (e.g., weather) or more stochastically assembled every year. Fungal
community members likely have different responses than bacterial members to
changing environmental conditions, including temperature, moisture, solar radiation,
and precipitation (Jackson and Denney 2011; Copeland et al. 2015; Wagner et al. 2016;
Gomes et al. 2018). We can deduce that the bacterial and fungal communities did not
have strong relationships or co-dependencies based on their structures, and likely have

different dominating drivers. However, the possibility of redundant functional
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relationships between different bacterial and fungal mucilage members cannot be
eliminated.

We combined both culture-independent and dependent approaches to improve
our understanding of the microbiome diversity in phyllosphere exudates. Due to the
chemical composition, plant DNA contamination, and low bacterial biomass associated
with the wax and mucilage, a metagenomic sequencing approach would have been
challenging to pursue with the sorghum phyllosphere (Sharpton 2014; van Deynze et al.
2018). Sequencing the V4 16S rRNA and the ITS1 regions allowed us to deeply
characterize bacterial and fungal communities in sorghum phyllosphere exudates, albeit
with limited taxonomic resolution that can be provided by the amplicons (to
approximately the genus level Poretsky et al. 2014) as well as limited functional insight
(Langille et al. 2013; Turner et al. 2013). Thus, we decided to culture wax and mucilage
bacteria by using a variety of isolation media and growing conditions that we expected
to enrich for plant-beneficial bacterial phenotypes. In the end, we were able to capture
representatives of most of the bacterial families and genera that we observed in our
culture-independent approach. These isolates can now be used to test directly for plant
beneficial properties and microbe-plant interactions in the laboratory.

In summary, we report a characterization of microbiome structure of energy
sorghum phyllosphere exudates, epicuticular wax and aerial root mucilage under
multiple field conditions and across two seasons for mucilage. We found that the wax
and mucilage harbor distinct bacterial communities, suggesting niche specialization in

the sorghum phyllosphere, and captured several key bacterial lineages in a parallel
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cultivation effort. Additionally, we found that fungal communities and bacterial
communities in the mucilage are responsive to different drivers, with bacterial
communities most distinctive by developmental stage and fungal communities most
distinctive by year of sample collection. Next steps are to use the ecological dynamics
from the cultivation-independent sequencing and apparent phenotypes of the bacterial
isolates to understand the roles of these exudate microbiome members for plant

performance.
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Table 1. Solid media and their enrichment objectives (target phenotypes) used in this

study to culture bacteria from the sorghum wax and mucilage. Dilutions from 10" to 10"

were plated for each condition, for each exudate.

Media

Reasoner’s 2A agar (R2A)
50% R2A

Tryptic Soy Agar (TSA)
50% TSA

M9 minimal medium
King’s B medium

Nitrogen-free Jensen'’s
medium

M9 minimal medium
nitrogen-free, 1% xylose
M9 minimal medium
nitrogen-free, 1% galactose
M9 minimal medium
nitrogen-free, 1% arabinose
M9 minimal medium
nitrogen-carbon free
Pirovskaya’s agar

50% Tryptic Soy Broth, 1%
linalool*

50% Tryptic Soy Broth,

1% (3-caryophyllene*

50% Tryptic Soy Broth,
6000 Polyethylene Glycol*
Gauze’s synthetic medium
N-1

Target phenotype
General diversity

General diversity

General diversity

General diversity

General diversity
Pseudomonas species
Nitrogen fixation

Nitrogen fixation

Nitrogen fixation

Nitrogen fixation

Nitrogen fixation
Phosphate solubilization
Resistance to/utilization of
terpenoids

Resistance to/utilization of
terpenoids

Osmotic tolerance

Actinobacteria species

Temperature Oxygen
(°C) condition
25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

25, 37 Aerobic,
anaerobic

28 Aerobic
28 Aerobic
28 Aerobic
25 Aerobic
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Methanol Mineral Salts Methylotrophs 25 Aerobic
Medium
900  *After initial enrichment in liquid media, turbid cultures were diluted and plated onto R2A
901  to isolate colonies.
902
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903
904 Table 2. Sequencing summary of sorghum epicuticular wax and aerial root mucilage

905  microbial communities characterized in this study.

Mucilage
Wax Mucilage (16S Mucilage  Mucilage
(16SrRNA)  (16S rRNA) rRNA) (ITS1) (ITST)
2020 2020 2021 2020 2021
Number of
samples 48 99 80 92 81
Raw Read 10,403,118 9,778,22
Pairs 8,648,839 12,783,054 10,034,885 4 0
5,957,24
QC reads 7,930,768 10,809,135 9,071,499 6,200,571 8
%
Chloroplast/
Mitochondria/ 70% 24% 48% 0% 0%
unassigned
of QC reads
906
907
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909 Table 3. Permuted multivariate analysis of variance (PERMANOVA) to test for

910  microbiome differences in beta diversity.

Phytobiomes Journal

Degree R-
Datase Exudate Variable tested sof Pseudo square p-value
t freedo F d
m
Bacteri | Mucilage Exudate ] 35 51 014 <0.00
a , wax 1
Mucilage Development 1 25.22 0.14 <O'O?
Mucilage Fertilization 1 4.26 0.03 <O'O?
Mucilage Year 1 336 0.2 <°'°?
Mucilage Ef”"'za“on Developme 1 178 001 005
Mucilage Development*Year 1 2.78 0.01 <0.01
Mucilage Fertilization*Year 1 1.64 0.01 0.06
Wax Development 1 2.75 0.06 <0.01
Fungi | Mucilage Development 1 3.25 0.02 <0.05
Mucilage Fertilization 1 2.20 0.01 0.07
Mucilage Year 1 176.38 0.51 <O'O?
Mucilage Ef”'“za“on Developme 1 057 000 068
Mucilage Development*Year 1 5.03 0.01 <0.01
Mucilage Fertilization*Year 1 4.29 0.01 <0.05
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Figure Legends

Figure 1. Sequencing effort and alpha diversity for sorghum epicuticular wax and aerial
root mucilage. Amplicon sequencing variants (ASVs) were defined at 100% identity of
16S rRNA gene or ITS1 gene for bacterial and fungal datasets, respectively.
Subsampled read depth is indicated by the red, vertical, dashed line. Top panel:
Rarefaction curves of quality-controlled sequences. Bottom panels: Observed taxa (No.
ASVs, a.k.a. richness) and phylogenetic diversity (PD) metrics. A) Epicuticular wax
bacterial samples were rarefied to 1,303 reads per sample. B) Aerial root mucilage
bacterial samples were rarefied to 20,519 reads per sample. C) Aerial root mucilage

fungal samples were rarefied to 33,975 reads per sample.

Figure 2. Relative abundances of bacterial families in sorghum epicuticular wax (A) and
aerial root mucilage (B) at 60 and 90 days after plant emergence; and relative
abundances of fungal families in mucilage (C) from samples collected in 2020 and

2021. Only families with relative abundances >0.03 are shown.

Figure 3. Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarities for
bacterial microbiome from sorghum epicuticular wax (A), bacterial microbiome from
aerial root mucilage (B) and fungal microbiome from mucilage (C). DAE is days after

plant emergence.
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Figure 4. Differential abundance analysis for amplicon sequencing variants (ASVs)
defined at 100% sequence identity. Differentially enriched bacterial ASVs in the aerial
root mucilage of plants at 60 and 90 DAE are shown. The fold change is shown on the
x-axis and bacterial genera are listed on the y-axis. Each colored dot represents a

separate ASV annotated within a bacterial Class.

Figure 5. Taxonomic diversity of the subset of bacteria cultivated from sorghum
epicuticular wax and aerial root mucilage that were selected for 16S rRNA gene
sequence analysis based on representation of different cultivation conditions and colony
phenotypes. A) Bacterial isolates cultured at 25°C under aerobic conditions, B) Bacterial
isolates cultured at 37°C under aerobic conditions, C) Bacterial isolates cultured at 25°C
under anaerobic conditions, and D) Bacterial isolates cultured at 37°C under anaerobic

conditions.

Figure 6. Overlap in bacterial diversity found in the sorghum epicuticular wax and aerial
root mucilage based on culture-independent and culture-dependent approaches.

Relative abundance at the family level > 0.01 are shown.

Figure 7. Phylogenetic diversity in the sorghum epicuticular wax and aerial root
mucilage. Maximum Likelihood phylogenetic tree (IQTREE, under UNREST+FO+I+G4
model) is based on the 16S rRNA gene alignment from nonredundant sorghum bacterial

isolates and Levy et al. 2017 genomes.
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Supplementary Information

Supplementary Figure S1. Relative abundances of bacterial genera in sorghum
epicuticular wax (A) and aerial root mucilage (B) at 60 and 90 days after plant
emergence; and relative abundances of fungal families in mucilage (C) from samples

collected in 2020 and 2021. Only genera with relative abundances >0.03 are shown.

Supplementary Table S1. Excel file. Tests for differences in bacterial and fungal alpha
diversity (richness, a.k.a. number of observed taxa) between exudates (mucilage, wax)
and, within each exudate, between categories of development (60 v. 90 DAE),
fertilization (nitrogen-fertilized, unfertilized), and year (2020, 2021) using the Wilcoxon

rank sum test with continuity correction.

Supplementary Table S2. Excel file. Bacterial isolates from wax and mucilage and
their taxonomy based on full-length 16S rRNA gene Sanger sequencing. The isolates
that shared 100% sequence identity to short-read bacterial ASVs (Amplicon Sequencing

Variants) are indicated and mapped to the ASV ID.
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