Artificial Intelligence In Medicine 140 (2023) 102543

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

o %

ELSEVIER journal homepage: www.elsevier.com/locate/artmed

Research paper ' :.)
A unique color-coded visualization system with multimodal information

fusion and deep learning in a longitudinal study of Alzheimer’s disease™

Mohammad Eslami >, Solale Tabarestani ”, Malek Adjouadib

@ Harvard Ophthalmology Al lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
Y Center for Advanced Technology and Education, Florida International University, Miami, FL, United States

ARTICLE INFO ABSTRACT

Keywords: Purpose: Automated diagnosis and prognosis of Alzheimer’s Disease remain a challenging problem that machine
Alzheimer’s disease learning (ML) techniques have attempted to resolve in the last decade. This study introduces a first-of-its-kind
Diagnosis

color-coded visualization mechanism driven by an integrated ML model to predict disease trajectory in a 2-
year longitudinal study. The main aim of this study is to help capture visually in 2D and 3D renderings the
diagnosis and prognosis of AD, therefore augmenting our understanding of the processes of multiclass classifi-
cation and regression analysis.

Method: The proposed method, Machine Learning for Visualizing AD (ML4VisAD), is designed to predict disease
progression through a visual output. This newly developed model takes baseline measurements as input to
generate a color-coded visual image that reflects disease progression at different time points. The architecture of
the network relies on convolutional neural networks. With 1123 subjects selected from the ADNI QT-PAD
dataset, we use a 10-fold cross-validation process to evaluate the method. Multimodal inputs* include neuro-
imaging data (MRI, PET), neuropsychological test scores (excluding MMSE, CDR-SB, and ADAS to avoid bias),
cerebrospinal fluid (CSF) biomarkers with measures of amyloid beta (ABETA), phosphorylated tau protein
(PTAU), total tau protein (TAU), and risk factors that include age, gender, years of education, and ApoE4 gene.
Findings/results: Based on subjective scores reached by three raters, the results showed an accuracy of 0.82 + 0.03
for a 3-way classification and 0.68 + 0.05 for a 5-way classification. The visual renderings were generated in
0.08 msec for a 23 x 23 output image and in 0.17 ms for a 45 x 45 output image. Through visualization, this
study (1) demonstrates that the ML visual output augments the prospects for a more accurate diagnosis and (2)
highlights why multiclass classification and regression analysis are incredibly challenging. An online survey was
conducted to gauge this visualization platform’s merits and obtain valuable feedback from users. All imple-
mentation codes are shared online on GitHub.

Conclusion: This approach makes it possible to visualize the many nuances that lead to a specific classification or
prediction in the disease trajectory, all in context to multimodal measurements taken at baseline. This ML model
can serve as a multiclass classification and prediction model while reinforcing the diagnosis and prognosis ca-
pabilities by including a visualization platform.

Prognosis
Deep learning
Trustfulness visualization

1. Introduction disease [1-5] and its early detection [6,7]. There is also wide-ranging
deliberation on the nature of cognitive reserve [8,9], potentially

The challenges of understanding AD and its prodromal stages are biasing the neuropsychological examinations and, ultimately, the diag-
associated with the meaningful interpretation of the interplay between nosis. Additionally, there is the issue of chronology in the manifestation
the different biomarkers for diagnosis, multiclass classification, and of amyloid-beta plaques and tau tangles [10-12] and their synergistic
regression analysis, especially as it relates to the pathogenesis of the effects on AD pathology. We also need to consider APOE genotypes

* The data used for this study can be found in the “QT-PAD Project Data” from the Alzheimer’s Disease Modelling Challenge [http://www.pi4cs.org/qt-pad-ch
allenge].
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[13-15] for their association with a cognitive reserve and cortical
thinning, as well as with its potential link to both amyloid-beta, tau
aggregation, and the cerebrospinal fluid (CSF) biomarkers [16,17]. The
central aim of all these studies is to identify the earliest manifestations of
AD to take preventive measures and provide early treatment/thera-
peutic interventions [18,19].

Implementing machine learning is an effective way to approach the
complex challenge of multimodal data [20-22]. However, ML models
are not always easily interpretable. Visualization of the ML results can
enhance our understanding of the inner workings of the algorithmic
process in context to what it has learned from the baseline measure-
ments. The assertation here is that visualization will enhance the means
to assess the importance of features and the interpretability of results
[23-25].

Using the “QT-PAD Project Data” from the Alzheimer’s Disease
Modelling Challenge [http://www.pi4cs.org/qt-pad-challenge], the
proposed machine learning, named Machine Learning for Visualizing
AD (ML4VisAD), construct aims to produce a color-coded visualization
scheme with a unique tensorization method to yield images that express
disease state and progression through the different time points in a
longitudinal study. Although the goals of high accuracy in multiclass
classification and prediction of disease trajectory using only baseline
features is essential, the information provided visually by the ML4VisAD
model brings forth subtle nuances of the machine learning decision-
making process, which is especially crucial when dealing with con-
verter cases. Ultimately, the proposed visualization method exemplifies
the challenges faced in multimodal and multiclass classification and the
decision-making process. Visualization may also shed some light on the
“black box” problem associated with machine learning. Moreover,
MLA4VisAD will also augment the deliberation process through a visual
opportunity to reassess ambiguous cases, like the converter cases, to
determine whether a misclassification happened or that the ML visual
outcome is the one projecting a correct classification, although different
from the target image. In such a case, clinicians could deliberate on the
visual output in context to the available measurements.

Along this line of research, the studies reported in [20,21] suggest
that most machine/deep learning methods rely more often on data-
related issues, proposed methodologies, and the different clinical as-
pects under study but ignore visualization. Similarly, most studies
emphasize the relevant clinical features and the computational methods,
which are more likely to produce high classification and prediction re-
sults [20,26,27]. Machine learning can also help develop medical im-
aging methods that address the challenging task of segmentation and
noise removal [28-30]. Also, in [31], efforts are made at data reduction
and using different data visualization techniques to embed complex
information in 2-D images to reflect gene expression and clinical data for
diagnosis.

Several other studies focused their classification and prediction al-
gorithms on visualizing data in a dimensionally reduced decisional
space. The dimensionality reduction methods typically involve the use
of principal component analysis (PCA), locally linear embedding (LLE),
latent profile analysis (LPA), 3D scattering transforms, and the concept
of histones [32-45]. Traditionally, standard methods used to aid in the
visualization and diagnosis of AD typically involve heat maps, brain
connectivity maps, and specific AD signatures, such as Standard Uptake
Value Ratios (SUVRs) of disease-prone brain regions [46-53]. All
methods that address the challenge of high-dimensional data also use
visualization methods that produce optimal decisional spaces helpful to
the classification process but not necessarily geared towards facilitating
a visual interpretation of a diagnosis and prognosis of the disease which
MLA4VisAD seeks to address.

The manuscript’s structure is as follows: Section 2 provides the de-
tails of the data used in this study and the methods implemented,
including the color-coding mechanism, the machine learning architec-
ture, and its computational capability. Section 3 reports the results of
varying disease states and disease progression cases. Section 4 provides
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a discussion reflecting on the different findings and merits of the pro-
posed ML4VisAD model. Finally, Section 5 concludes with a retrospec-
tive on the contributions made, highlighting the complexity faced when
using machine learning for multiclass classification and prediction in
AD.

2. Methods
2.1. Study design

Clinical data used in the preparation of this study is from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). Only subjects that have a baseline (T0) scan (in at least one
modality) and showed up for follow-up visits at T6 (6th month), T12
(12th month), and T24 (24th month) have been considered in this study,
leading to a total of 1123 subjects as shown in Table 1. ADNI categorizes
these subjects into the three classes of CN, MCI, and AD at baseline and
for each referral session.

The input features used for each modality and the number of ob-
servations made at the different time points are obtained from the “QT-
PAD Project Data” AD Modelling Challenge [http://www.pi4cs.org/qt-
pad-challenge] as given in Table 2. Hence, inputs to the ML model
contain features from the baseline, including MRI and PET sequences,
demographic information, and specific cognitive measurements. Auto-
matically generated outputs of the ML network are images containing
colorful strips expressing disease progression at different time points. It
is important to emphasize that in designing this color-coded visualiza-
tion scheme, and to avoid any bias, we exclude the Mini-Mental State
Examination (MMSE) and the Clinical Dementia Rating Sum of Boxes
(CDR-SB) scores from the input feature space in the training and testing
phases since both are used for the labeling of subjects. Furthermore, we
also remove from consideration the Alzheimer’s Disease Assessment
Scores (ADAS11, ADAS13) as they correlate well with MMSE and CDR-
SB. Each feature f of the input feature vector, e.g. FDG, is normalized by
mean normalization over all its non-missing values (set F) i.e.
f-normalized = ( f — mean(F) )/( max(F) — min(F)).

After normalization, we ensure the missing values do not affect
network training. It is worth mentioning that the QT dataset implicitly
reports values of some features as ABETA>1700, for example. For this
reason, during preprocessing of the data, ABETA of those samples higher
than 1700 or smaller than 200 have been replaced by 1700 and 200,
respectively. Similarly, PTAU values greater than 120 and smaller than 8
have been replaced by 120 and 8, respectively. Also, TAU values greater
than 1300 and less than 80 are replaced by 1300 and 80, respectively.

2.2. Color coding

The adage “a picture is worth a thousand words,” together with the
challenge imposed by both the variability and interrelatedness of the
multimodal features, served as an incentive to create the ML4VisAD
model. The (23x23x3) target images shown in Fig. 1 are color-coded
and include a region of uncertainty (RU) represented by the black bar
entry. We use the three (R, G, B) channels to represent the state of the
disease with different colors, AD as red, Mild Cognitive impairment-
MCI: as blue, and Cognitively Normal-CN as green. In this color-coded
scheme, subjects that are stable over time would display a single color
as in cases (a) through (c), and subjects who convert at specific time
points to other states would display two or more colors as in cases (d)
through (g).

Cognitive status through a 24-month timeline (including baseline TO
and three referral sessions T6 (6th month), T12 (12th month), and T24
(24th month) define trajectories of the disease state. To assess the degree
of uncertainty that the machine learning model may inject into the
process, we add a black bar after the bar representing the T24 time point.
This black bar could be situated anywhere in this display and is there
solely to estimate the degree of uncertainty the ML model injects into the
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Table 1
Study population and subgroups.
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Categories based on diagnosis

Number of samples # Total
CN AD MCI
Baseline 331 163 629 1123
6" month 331 195 597 1123
12" month | 332 243 548 1123
24" month | 334 342 447 1123

Categories based on conversion
# Description
CN 329 | Stable Normal
Others | 8 Others (e.g. MCI to CN)
- AD 163 Stable Dementia
2 MCI | 442 | Stable MCI
& [MCIc | 181 | MCI converter to AD
£ 786 | Total Impaired
1123 | Total

Table 2

ADNI (QT-pad challenge) dataset with the features extracted from each modality/source at baseline.

Number of subjects: 1123

Modality Feature Minimum Value Average Value Maximum Value Number of missed values at baseline
MRI Ventricular volume 5650.0 39,420.220 145,115.0 39
Hippocampus volume 3091.0 6798.67 10,769.0 158
Whole Brain volume 738,813.0 1,022,118.21 1,443,990.50 18
Entorhinal Cortical thickness 1426.0 3507.23 5896.0 160
Fusiform 8991.0 17,354.76 26,280.0 160
Middle temporal gyrus 9375.0 19,545.76 29,435.0 160
Intracranial volume (ICV) 1,116,279.11 1,536,383.48 2,072,473.30 8
PET ‘FDG’ 0.69 1.24 1.707168 321
Pittsburgh Compound-B (PIB) 1.18 1.53 1.89 1116
‘AV45’ 0.83 1.19 2.02 614
Cognitive Test RAVLT immediate 7.0 35.59 71.0 3
RAVLT learning -2.0 4.29 11.0 3
RAVLT forgetting -5 4.35 13.0 3
RAVLT percforgetting —100.0 57.37 100.0 4
Functional Activities Questionnaires (FAQ) 0.0 3.73 30.0 4
Montreal Cognitive Assessment (MoCA) 10.0 23.78 30.0 616
Everyday Cognition (Ecog): ‘EcogPtMem’ 1.0 212 4.0 613
Ecog: ‘EcogPtLang’ 1.0 1.73 4.0 612
Ecog: ‘EcogPtVisspat’ 1.0 1.37 4.0 614
Ecog: ‘EcogPtPlan’ 1.0 1.40 4.0 612
Ecog: ‘EcogPtOrgan’ 1.0 1.48 4.0 624
Ecog: ‘EcogPtDivatt’ 1.0 1.79 4.0 615
Ecog: ‘EcogPtTotal’ 1.0 1.67 3.82 612
Ecog: ‘EcogSPMem’ 1.0 2.01 4.0 615
Ecog: ‘EcogSPLang’ 1.0 1.56 4.0 614
Ecog: ‘EcogSPVisspat’ 1.0 1.38 4.0 622
Ecog: ‘EcogSPPlan’ 1.0 1.50 4.0 616
Ecog: ‘EcogSPOrgan’ 1.0 1.57 4.0 638
Ecog: ‘EcogSPDivatt’ 1.0 1.78 4.0 621
Ecog: ‘EcogSPTotal’ 1.0 3.89 614
CSF Amyloid Beta (ABETA) 200.0 984.94 1700.0* 335
phosphorylated tau protein (PTAU) 8 27.45 94.86 335
Total tau protein (TAU) 80 284.98 816.9 335
Risk factors Age 55.0 73.93 91.4 0
years of education 6.0 15.92 20 0
APOE4 0 0.56 2 0
Gender 0

visual output through its many inner computations. The assertion here is
that a perfect ML model should leave the black bar unchanged (i.e., zero
effect), meaning that the ML model is stable and has performed its task
reliably. The size 23 x 23 of the RGB image could have been of any NxN
dimension. In the discussion section, we explain that a target image with
a higher resolution (e.g., 45 x 45) would provide an output image that is
more detailed and with smoother transition phases. However, the ML
model will need more convolutional layers with a higher N; hence, the
need for more training/processing time, as explained in Section 2.4.

2.3. Machine learning architecture

In the machine learning architecture shown in Fig. 2, the overall
objective was to model a network estimator E in which Iigge =
E(x1,x2,x3,%4,x5) is a colorful image similar to those shown in Fig. 1,
and where the input space is the multimodal features of

{x1,x2,%3,x4,x5} in which each vector x, comprises the extracted
measurements from modality m at baseline. Features extracted from
MRI, PET, CSF, cognitive tasks, and the risk factors, as shown earlier in
Table 2, serve as input to the ML4VisAD model. The network is designed
to have two parts (p1,p2) such that the initial layers address the intra/
inter-modality feature extraction via fully connected layers (p1,) and
the second part involves tensorization, extra feature extraction and
image production (p2). Thus, Iregiced = P2( p1(x1,%2,%3,X4,%s) ) and the
difference between Iyrgicreq and Ligrger are optimized for each observation/
patient.

With the fully connected layers, the network converts the basic
features for each modality into a primary representation space. Layers
L0, L1, and L2 are to transform the features extracted from MRI, PET,
CSF, neurocognitive measurements, and risk factors into an initial
feature space representation specific to each modality. The size of the
input node in layer LO for each modality m is the length of the input
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Fig. 1. Designed target images showing: (a) stable CN, (b) stable MCI, (c) stable AD, (d) CN converting to MCI at T24 (24th month), e, f, and g are MCI that
progressed to AD at time points T6 (6th month), T12 (12th month), and T24 (24th month), respectively.
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Fig. 2. Designed architecture of the network with a color-coded visual output describing disease trajectory.

feature vector n,, = length(xn), which then goes through two more fully
connected layers, L1 and L2, with 2 x n, and n,, nodes, respectively,
followed by linear activation layers. The previous fully connected layers
of L2 are integrated into L3 by concatenating the outputs of the L2 layer
to initiate the inter-modality feature space and create a new modality
representation. We accomplish feature fusion and feature extraction in
the inter-modality phase using concatenation (L3) and a fully connected
layer (L4).

Layers L5 to L9 are for tensorization and two reasons were in mind:
(1) since the input data format to our network consists of vectors from
different modalities, and the target output is a colorful image, we needed
to reshape the vectors to matrices to generate colorful 2-D images. 2)
Layers LO to L4 were necessary to use information from the different
modalities and model progression of the disease. However, combining
the features from different modalities in a standard network may not

consider the heterogeneity of the data. Using a non-linear mapping
function to transform the feature space into a higher-dimensional
receptive field can help the network identify more significant
relationships.

Our network architecture utilizes reshaping and convolutional neu-
ral layers for tensorization and extracting higher-order features from
multimodal features. A tensor with dimensions of 10 x 10 x 30 is
generated using the following steps through layers L5, L6, and L7. Layer
L5 reshapes the 100-node output vector of layer L4 to create a 2D tensor
with dimensions of 10 x 10. Layer L6 conducts 2D transpose convolu-
tional filtering with three different dilation rates 1, 2, and 3. For each
dilation rate, we have ten kernels with 3 x 3 kernel size, the stride of 1,
and padding of type same. Layer L7 is a concatenation of the three output
tensors from layer L6. Layer L8 is also a 2D transpose convolution but
with 100 kernels of size 3 x 3 and a stride of 2. Lastly, the L9 produces
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the output image Iredicred by 2D transpose convolution with three kernels
of size 3 x 3 and a stride of 1. Padding in layers L8 and L9 are of type
valid, which does not include zero padding.

Drop-out and batch normalization are also applied in layers L6, L8,
and L9 to prevent overfitting. Design details and tensor dimensions for
the different layers are shown in Fig. 2 as well. The GitHub repository
(https://github.com/mohaEs/ML4VisAD) provides the implementation
codes.

2.4. Training and evaluation

The loss function is the Mean Absolute Error (MAE) between the
target image and the produced output (i.e., loss = MAE(Larger — Ipredicted))-
We use the 10-fold cross-validation over subjects, and in each training
session, we use 10 % of the training set as a validation set (i.e., ten times
of training data split to 81/9/10 % as train/validation/test). We use
4000 epochs with a batch size of 500 to train the network. To produce a
larger 45 x 45 image size is like the network shown in Fig. 2, but with
the L8 layer replicated. The network makes use of the Keras TensorFlow
deep learning frameworks. Using the GPU NVIDIA Geforce RTX 2080,
Table 3 provides the processing time it took from feeding the input to the
ML model to obtaining the visual outcome as a function of the image
size.

3. Results

To demonstrate the merits of the visualization platform, we consider
different scenarios, as shown in Fig. 3, that include stable subjects over
time and subjects that transition from one state to another at different
time points. All the results and supplementary materials are also avail-
able in the GitHub repository. These varied examples highlight the
practical merits this color-coded visualization could have in facilitating
diagnosis and prognosis. For each subject in the testing phase (not seen
in the training phase), color-coded patterns are generated based solely
on observed features at baseline.

Fig. 3 provides several examples that reflect different target images
and the respective visual outputs that the ML model produces in the test
phase. The target image is on the left, and the ML visual output is on the
right for each displayed case. To include different scenarios of all the
1123 subjects considered, we show 4 cases each for the stable cogni-
tively normal (CN) group with the green-colored target at all four-time
points in cases (a)-(d), stable mild cognitive impaired (MCI) with a
blue-colored target in cases (e)-(h), eight different transition cases that
include examples of subjects who transitioned from CN to MCI or from
MCI to AD with one case from MCI to CN at different time points as
illustrated in cases (i)-(p), followed by four examples of stable AD sub-
jects in cases (q)-(t), and lastly, we show few selected cases (all stable
cases) that the ML model misclassified as belonging to a different stable
disease state as shown in (u)-(w).

For a more meaningful assessment of disease trajectory, as we
consider all these different cases, context is provided in Fig. 3 for
augmented interpretability of the challenging cases. For this added
context, we provide MMSE, CDR-SB, and RAVLT scores for all four-time
points (TO, T6, T12, and T24), age, sex, years of education, the APOE,
AV45, FDG, TAU, ABETA, number of missing features at baseline, and
graphs of the SUVR measurements at TO (baseline) and T24 (24th

Table 3
Processing time of machine learning model.

Image size Trainable Train time (s) Test time per

(pixels) parameters subject (s)

23 x 23 36,143 4000 epochs: 0.008
275.67

45 x 45 126,443 4000 epochs: 0.017
987.94

Artificial Intelligence In Medicine 140 (2023) 102543

month), where the x-axis reflects the different brain regions for the
SUVRs as annotated in Table 5. The scores/values used for MMSE and
CDR-SB conform to the standards defined by ADNI. The APOE value of
0,1 or 2 specifies a carrier of zero, one, or two APOE e4 alleles. For all
these displayed cases, the intent here is to use such context to deliberate
on what may have led to the differences between target images and the
ML visual outcomes. The Discussion section provides more details.
Notice that the legend of Fig. 3 includes patients’ Record ID (RID) for
other researchers interested in validating these results or who would like
to perform further analysis given the nuances of the ML visual outputs
that differ from their target images.

Furthermore, to acquire feedback from the research community on
the practicality of this visualization platform, an online survey provided
in the Appendix was conducted using the Qualtrics platform and shared
via Facebook and LinkedIn. More than 100 persons participated in this
survey globally, confirming the importance of the proposed method in
its ease of use and in facilitating the decision-making process. This
survey shows that 83.49 % of participants agree that the visual repre-
sentation is easy to remember and interpret, with 79.55 % stating that
they would prefer to receive the results in a graphic format. With an
overwhelmingly favorable rating of 82.35 % in terms of ease of
memorizing/remembering the output through visualization and 73.79
% agreeing that the visualized form speeds up the decision-making
process. As for the level of uncertainty (i.e., trustfulness of the
output), 81.65 % stated that different levels of trustfulness are visible in
the visualized format. These are very encouraging results, and the
feedback received would allow us to continue improving the platform.

In addition to these survey results, three raters (M.E., S.T., and M.S.)
independently reviewed all ML-generated visual outcomes for both
types of classification: 3-way (C.N., impaired, others) and 5-way (CN,
MCI, MClIc, AD, others) using a developed MATLAB-based user interface
(demo: https://youtube/yQWFo033RYiQ). Each rater is to view each ML
visual output and classify it. “Others” include those that converted back
to CN from MCI or to MCI from AD. The results in Table 4 show that
when using a 3-way classification, the ML model was relatively accurate
with an 82 % £ 3 % accuracy, and for a 5-way classification, the accu-
racy dropped to 68 % + 5 %. The achieved accuracy is consistent with
state-of-the-art literature.

We observe that most stable cases were classified correctly and that
the misclassified cases often were those that experienced a transition
phase of the disease. From the examples shown in Fig. 3, cases (a), (b),
(k), (n), and (q) clearly show that the ML visual outcome agrees with the
target image. Even in cases like (c), (e), (0), and (r), although the ML
outcome is slightly different from the target, they are still mostly similar,
and the three raters had no problem classifying them correctly. How-
ever, for these last three cases, although the changes were minor, this
could still lead to a misclassification with a strict rater or when relying
solely on machine learning without the benefit of visual output. The
intent here is to initiate a conversation contrasting the visual outcome of
the ML model in context to all the quantitative measures known during
the different time points of this longitudinal study. Through these many
nuanced visual versions of the ML model in contrast to the target image,
we could appreciate the difficulties typically faced in reaching high
classification results, especially in multiclass classification and longitu-
dinal studies.

It is fascinating to note from the results shown in Fig. 3 that although
we exclude the neuropsychological test scores MMSE, CDR-SB, and
ADAS from the training and testing phases of the ML model, these
cognitive scores still show significant consistency with the outcome of
the machine learning. For example, in case (c), the stable CN is shown to
transition to MCI in T12 and T24 just as the CDRSB scores changed from
0 to 0.5, which indicates questionable impairment in the staging cate-
gory [59], even when the MMSE score is stable at 30, which is the
maximum score one can get. Case (h) is another interesting outcome of
the ML model, as it shows a transition to AD in T24 due perhaps to the
change of the CDR-SB score to 3 and 2.5, respectively, with a score of 3
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Fig. 3. Visualization of AD: The left and right images in each sub-figure are target and ML visual output for test subjects, respectively. (a) through (d) show 4
different cases of stable CN subjects; (e) through (h) 4 different cases of stable MCI subjects; cases (i) through (p) show subjects who have transitioned either from CN
to MCI or from MCI to AD at different time points; cases (q) through (t) show 4 different cases of stable AD subjects. Cases (u), (v) and (w) in the last row are

challenging stable cases where the ML outcome is completely different than the target.
* The patient/record (RIDs) of the shown cases of ADNI dataset are as follow: a) 4491, b) 4376, c) 4422, d) 4421, e) 4531, f) 2068, g) 4871, h) 4346, i) 4277, j) 4813,

k) 2047, 1) 4426, m) 4595, ) 4167, 0) 4542, p) 4189, q) 4252, r) 4338, 5) 4494, t) 4001, u) 4226, v) 4339, and w) 4676.

indicating very mild dementia in the staging category. Note also for this
case that the MMSE dropped from 30 to 27, with mild AD defined in the
21-26 range. Another case that is hard to explain is (j), which we define
as “other” in the classification categories. In this case, it seems that the

MCI patient reverted to CN at T24, yet the ML model determined that
this is a case of a stable CN. In such cases, where the MMSE scores, as
well as the CDR-SB, are ambiguous from the diagnosis standpoint at
baseline, such cases should be reviewed in context to all other inputs to
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Fig. 3. (continued).

the ML model to look into the neuroimaging data and other cognitive
scores to determine what led to this transition in the diagnosis at base-
line. Case (i) is also interesting, where a stable CDR-SB of 0 scores
(which means no impairment) and high MMSE scores from 28 to 30, the
ML model is attempting to render visually a stable CN instead of the
clear transition to MCI seen in the target image. The more complex cases
of (m) and (p) may reveal that the ML model does struggle at times when
the MMSE scores and CDR-SB scores vary in ways that are difficult to

decipher from one phase in time to another with the target image
reflecting the diagnosis at baseline may be the correct one. Cases (s) and
(t) are misclassified, especially given the low MMSE scores and the high
CDR-SB scores; note, however, the high number of missing values for
case (t). With these examples discussed, we highlight the merits of such a
visualization process where these types of contextual deliberations
would not otherwise be possible if we relied solely on the ML classifi-
cation algorithm without recourse to a visualized output.
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Fig. 3. (continued).

By having recourse to a visual outcome, we could reassess chal-
lenging cases to determine what could have led to such an ML outcome
and whether there is more reason to assert a misclassification or instead
accept the ML outcome as the more appropriate diagnosis. When
reviewing these challenging cases, as illustrated in Fig. 3, recall that the
target image is on the left, and the ML visual outcome is on the right.
Furthermore, when deliberating on which outcome could be more
telling or more convincing, review the providled MMSE and CDR-SB
scores as well as all other features provided in the figure as context.

Remember that MMSE, CDR-SB, and ADAS were excluded from
consideration in the training and testing phases when we designed this
ML model.

3.1. Comparison to other methods

Since the classification results of our proposed method rely on an
agreement reached between the three raters looking at the visual out-
comes of the machine learning independently, it is not straightforward
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Fig. 3. (continued).

to compare our results with other methods quantitively. But for a fair
comparison with the proposed method, we review below only the results
of other studies that relied on multiclass classification methods that
involved at least 200 subjects from the ADNI data set. Liu et al. (2018) in
[54] considered the baseline ADNI-1 dataset, which contained 181 AD
subjects, 226 control normal (CN), 165 progressive (or converter) MCI
(pMCI), and 225 stable MCI or non-converters (sMCI) subjects; and in
the baseline ADNI-2 dataset, there were 143 AD, 185 NC, 37 pMCI, and

234 sMCI subjects. By using a CNN model for joint regression and
classification tasks, they refer to as a deep multitask multichannel
learning (DM2L) framework; they reached an accuracy of 51.8 % in a
four-way (CN, sMCI, pMCI, AD) classification process (this 4-way clas-
sification is similar to our 5-way results due to they removed the others
cases). Another study by Zhu et al. (2016a) [55] considered 202 subjects
using baseline MRI and PET images, which included 51 AD subjects, 52
Normal Control (NC) subjects, and 99 MCI subjects. Of the 99 MCI, 43

Downloaded for Anonymous User (n/a) at Florida International University from ClinicalKey.com by Elsevier on August 04,
2023. For personal use only. No other uses without permission. Copyright ©2023. Elsevier Inc. All rights reserved.



M. Eslami et al.

Artificial Intelligence In Medicine 140 (2023) 102543

MMSE CDRSB . RAV!',T Edu AvV45 FDG TAU ABETA Missing Features
RID Gender | APOE W) AGE
T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 V) TO T24 T0 T24 TO T24 TO T24 TO
4252 22 19 18 15 5 8 11 7 19 20 18 18 F 1 16 86.5 1.48 1.47 1.07 1.06 303 - 556 - 1
3 Baseline CDR:5 MMSE:22 3 24th month  CDR:7 MMSE:15
o o
528 S 9o o ~00 22r SN o c o o
R 0. 9 o 0 Po T ] ) . P o PGP
| s oo g ool > IR @9 PO o S ap0c
= f >
3 ([ 3’ T
0 0
0 10 20 30 40 5 60 70 0 1 20 s 40 50 60 70
Region Index Region Index
MMSE CDRSB RAVL.T Edu AV45 FDG TAU ABETA Missing Features
RID Gender APOE W) AGE
T0 | T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 Y T0 T24 T0 T24 TO T24 T0 T24 T0
4338 21 19 24 18 6 6 7 11 14 21 17 20 M 0 14 80.5 0.94 0.95 1.02 0.90 321 311 1452 1366 9
3 Baseline CDR:6 MMSE:21 3 24th month  CDR:11 MMSE:18
o o
22 22
T T
> > o) o, o
. o) G (e fo}
-4 I O o PP 4 oy . £ @QQ”\ S o " o
S 1HTtg - n} 21 o
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Region Index Region Index
®)
RAVLT e
MMSE CDRSB - Edu AV45 FDG TAU ABETA Missing Features
RID Gender APOE ) AGE
T0 T6 T12 T24 TO T6 T12 T24 T0 T6 T12 T24 V! T0 T24 T0 T24 TO T24 T0 T24 TO
4494 25 23 24 21 5.5 4.5 4.5 8 25 21 19 16 M 2 12 711 1.26 139 1.18 1.06 440 510 308 300 1
3 Baseline CDR:5.5 MMSE:25 24th month CDR:8 MMSE:21
o o
5? 2 Dol oo o
> > PRP 9 @9 PP P Pof [oc
B Oom P 22*5‘563 Of ‘G N
£ gy %0 g ] il itz
351 o1
%) %]
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Region Index Region Index
(s)
MMSE CDRSB a RAVJL.T Edu Av4s5 FDG TAU ABETA Missing Features
RID Gender APOE ) AGE
T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 V! TO T24 T0 T24 TO T24 TO T24 TO
4001 20 19 14 16 5.5 10 10 14 - - - F 0 9 88.5 1.51 111 1.12 321 586 294 406 6
3 Baseline CDR:5.5 MMSE:20 Not Available
o
22 oo (?ég S0 Pom
- POTY o N e NALL
e L PPogl L1 vl ol (s
s h
@ 1
0
0 10 20 30 40 50 60 70
Region Index
®

Fig. 3. (continued).

were converters (MCI-C), and 56 were non-converters (MCI-NC). Their
4-way (CN, MCI-C, MCI-NC, AD) yielded just over 61 % accuracy.
Another study by Shi et al. (2018) [56] developed a method to perform
both tasks of binary and multiclass classification on the same 202 sub-
jects used in Zhu et al. (52 CN, 43 MCI-C, 56 MCI-NC, and 51 AD), where
they implement a two-stage stacked deep polynomial network, obtain-
ing an accuracy of 53.65 % in multiclass classification with higher ac-
curacies obtained as expected for binary classification. Lin et al. in [57]
performed a multiclass classification on 746 subjects (200 NC, 441 MCI,
and 105 AD subjects), with 110 of the 441 MCI subjects converting to AD

10

at future time points in the three-year longitudinal study. These subjects
of the 1800 subjects had all the measures the authors considered (MRI,
PET, cerebrospinal fluid (CSF), and some genetic features). Their mul-
ticlass results based on a linear discriminant analysis (LDA) scoring
method to fuse the multimodal data yielded an accuracy of 66.7 % for a
three-way (CN, MCI, and AD) classification and a lower 57.3 % for a
four-way classification with the MCI converters separated from the
stable MCIs. Moreover, in earlier studies by our research group, a study
by Fang et al. [58] considered 906 subjects (251 CN, 297 EMCI, 196 late
MCI (LMCI), and 162 AD) subjects from the ADNI dataset, using the
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Fig. 3. (continued).
used to display in 3D the RGB format without changing the contextual
Table 4 . X : e
. meaning of the outcomes reflected in the examples considered in Figs. 4
Classification outcomes as assessed by three raters. . . .
and 5. In this L-a-b format, L refers to lightness normalized from zero to
Classification type Cl"rre;ﬂ!}i’ Misclassified Inconclusive 1, and a and b reflect the colors from green to red for a and from blue to
classifies outcomes outcomes . . .
yellow for b. Fig. 4a and b show the target and ML output images, Fig. 4c
3-Way (CN, impaired, 0.82 £ 0.03 0.15 £ 0.004 0.023 + 0.002 and d illustrate the blue and red channels, respectively, and Fig. 4e
others) through h provide the 3D displays of (a) through (d). Note the gradual
5-way (CN, MCL, MCle, ~ 0.68 + 0.05 0.29 + 0.01 0.023 + 0.002 . :
AD, others) change in the ML-generated visual outcomes. Observe that at T24 (24th
s

neuroimaging modalities of MRI and PET. A 4-way (CN, EMCI, LMCI,
AD) multiclass classification, using a Gaussian discriminative compo-
nent analysis in a supervised dimensionality reduction algorithm,
resulted in an accuracy of 67.69 %. In another study by Tabarestani et al.
[26], 1117 subjects were considered (328CN, 441 MCI-NC, 191 MCI-C,
157 AD), using kernelized and tensorized multitask network (KTMnet)
for both prediction and multiclass classification. Combining features
from PET, MRI, CSF, cognitive scores, and other risk factors that
included age, gender, education, and the APOE gene, a 4-way (CN, MCI-
C, MCI-NC, AD) resulted in a classification accuracy of 66.85 %.

3.2. Extending the 2D visualization platform to 3D
The design of the proposed ML model can display all these results in

3D as well, as shown in Fig. 4. For 3D visualization, the L. component of
L-a-b format, a 3D variation of the CIE Chromaticity diagram, can be

11

month), the ML visual outcome in 4f stabilizes at the highest levels near
the normalized value of 1. Moreover, observe that as the blue channel
reflecting the MCI state declines rapidly between T12 and T24, the red
channel in 4 h reflecting the AD state increases between T12 through
T24 to stabilize at the maximum value of 1. Note how easy it is to
ascertain the effect of the ML model has on the region of uncertainty in
displays (f), (g), and (h). For the visual appreciation of this 3D display
model, we provide four different cases (a), (b), (h), and (u) of Fig. 3
displayed in 3D in Fig. 5.

4. Discussion

The results of ML4VisAD’s implementation show the need for deep
reflection when assessing multiclass classification or prediction results
using machine learning, especially when observing all the subtle nu-
ances of the visual outcome. There were a few cases where the ML4Vi-
sAD visual output seemed to make more sense than what the target
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Brain regions for the SUVRs shown in Fig. 3.
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SUVR regions considered

1) LH_CAUDALANTERIORCINGULATE 24) LH_PRECENTRAL 47) RH_LINGUAL
2) LH_CAUDALMIDDLEFRONTAL 25) LH_PRECUNEUS 48) RH_MEDIALORBITOFRONTAL
3) LH_CUNEUS 26) LH_ROSTRALANTERIORCINGULATE 49) RH_MIDDLETEMPORAL
4) LH_ENTORHINAL 27) LH_ROSTRALMIDDLEFRONTAL 50) RH_PARACENTRAL
5) LH_FRONTALPOLE 28) LH_SUPERIORFRONTAL 51) RH_PARAHIPPOCAMPAL
6) LH_FUSIFORM 29) LH_SUPERIORPARIETAL 52) RH_PARSOPERCULARIS
7) LH_INFERIORPARIETAL 30) LH_SUPERIORTEMPORAL 53) RH_PARSORBITALIS
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Fig. 4. 3D Display of the RGB channels of an MCI case that transitioned to AD at T24(24th month). Note the gradual change in the ML generated displays. Also note
how minimally the ML model affected the region of uncertainty (RU) in the 3D displays in f, g and h.

images portrayed, especially concerning the available measurements at
the different time points. Case (j) shows a subject that transitioned back
to normal control (CN) from an MCI diagnosis in the previous three time
points. The ML model did not see it the same way and had the subject as
stable CN through all four time points, and most measurements support
this classification. Another example is case (1), where the target shows a
transition from MCI to AD in T24, while the ML4VisAD visual output
displays a stable MCI through all time points. Here again, the mea-
surements are somewhat ambiguous but more in favor of the ML model
in that the MMSE did drop but only by one point in T24 compared to T6,
and the CDR-SB scores are otherwise consistent through T6 to T24 with
the SUVR also consistent in TO and T24. Another interesting case is (v),
where the target image shows a stable MCI, while the ML4VisAD visual
output places this subject as stable CN. In this case, from the high MMSE
score, the low SUVR values, and an APOE of 0, although the CDR is 0.5,
the ML visual outcome of a stable CN seems more reasonable. But other
cognitive tests (ADAS, RAVLT) may have influenced the diagnosis, and
these scores were not used in the ML4VisAD model to avoid bias. In
many of these cases, there may be some merits in generating a composite
score, as proposed in [46]. Moreover, for cases (u), (v), and (w), all
stable cases misclassified as another type of stable cases, there seems to
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be an influence of the APOE value on the ML4VisAD outcome (0 in-
fluences the CN state, 2 switched CN to MCI, and 1 reverted AD to MCI).
See also findings reported in [53].

These ML visual outcomes clearly show why clinicians face difficulty
each time they deliberate on a patient’s disease state. For example, it is
hard to understand why the subject in case (u) in Fig. 3 had an MMSE
score of 29 for TO, T12, and T24 but an MMSE score of 24 at time T6.
Also, for the same patient in (u) the CDR score was 1 at TO and reverted
to O for all subsequent time points. Although the diagnosis is that of a
stable CN for (u), the machine learning visual outcome places this sub-
ject as stable MCI when considering all other features. Recall that the
APOE for (u) is 2 at baseline and that the SUVRs are relatively high. Also,
the high number of years of education for this subject (17) may have led
to the high MMSE scores of 29 for TO, T12, and T24, although stumbling
in the test given at T6.

The subtle nuances encountered with the ML4VisAD visual outcomes
could reduce the misclassifications with added scrutiny on the visual
output in context to specific measurements clinicians may be interested
in. Consequently, the first point is that multiclass classification, whether
it is automated or made through a rating process, does not allow for a
more thorough deliberation process if these nuances and subtle
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differences cannot be visually observed and would be so hard to deci-
pher otherwise through tabulated data or decisional spaces showing
different overlapped regions among the considered classes. Therefore, it
is no revelation that the more classes considered in a multiclass classi-
fication algorithm, the less accurate will the classification results be.

4.1. Future work

The proposed visual outcome enhances the processes of multiclass
classification and disease projection with the ability to visualize the
inner workings of the machine learning and observe what the differ-
ences between the ML visual outcome and target image could mean. In
other words, the difference between them does not necessarily mean an
outright misclassification but emphasizes the nuances between them
and implies that a review is necessary of what may have led to such
change, especially if the region of uncertainty (RU) in the visual display
remains unaffected.

It is thus essential to recognize that the interrelatedness in features,
along with the many variations of such multimodal features, some being
temporal, others structural, functional, metabolic, genetic, de-
mographic, or cognitive are extremely difficult to disentangle, especially
when combined with subjective thresholds or ranges of scores such as
with SUVRs, MMSE, and CDR-SB. When considering ADNI data, there is
an overlap in MMSE scores between CN, MCI, and even AD groups, and
the CDR-SB values may resolve this overlap. Still, for an ML model, more
datasets are required to learn more of the interplay between such
cognitive features, especially when used for baseline diagnosis.

We contend that it is possible to define some objective criteria to
quantify the uncertainty of the machine’s estimation per case/patient,
which is one of the significant open problems for utilizing Al in medi-
cine. As a good first step, we included in our visual template a black bar
that evaluates the amount of uncertainty infused by the machine
learning model into the classification/prediction results. But we believe
further investigation is needed to better understand this effect. For
instance, we could investigate the checkerboard effects observed in
cases (b) and (j) to determine what led to their presence. Are these ef-
fects due to the convolutions and other calculations performed by the
ML model, or are they an indication of some subtle changes in the
feature space of that specific patient that were not seen in the training
phase?

As for the number of classes considered in the study, the proposed
method relied on the three primary RGB colors for the three groups (CN,
MCI, AD) available in the dataset. However, suppose additional classes
such as EMCI, LMCI, or aMCI are also available. In that case, we could
always augment the primary color with the secondary colors of yellow,
cyan, and magenta (Y, C, M) on the visual template.

As it stands, from the availability of data, there were nearly four
times more MCIs than AD and twice as many MCIs than CNs. Since the
input features fed into the ML model were those acquired at baseline, a
balance of samples between CN, MCI, and AD groups would be ideal in
future implementations. Moreover, although ML4VisAD utilized 1123
subjects, its efficacy could be enhanced by the availability of a much
larger and more balanced dataset if the ML model in the training phase is
to capture all the nuances that distinguish the different subgroups.
ADRC centers and ADNI, who continue to build a much larger popula-
tion of the various subgroups for research with balanced data regarding
ethnicity and disease state, are crucial to future experimentation.

5. Conclusion

The genesis of this study was to create a new approach for the
visualization-based estimation of disease trajectory to augment the
diagnosis and prognosis of AD. A new deep learning (DL) architecture
based on Convolutional Neural Networks generates a visual image that
portrays AD trajectory in a 2-year longitudinal study using baseline
features only. From these baseline features, to avoid bias, we remove all
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cognitive scores MMSE, CDR-SB, and ADAS from consideration in the
design of the ML model as the input features. Target images using
different colors define each stage of the disease at the four observation
time points (TO, T6, T12, and T24), with TO being the baseline time
point. A unique characteristic of this model is that it is trained with
known target images with color-coded diagnoses at all four time points
to generate a visual output that predicts disease trajectory based on
baseline features only. Since we use only baseline features as input, this
design is amenable to cross-sectional and longitudinal studies based on
similar datasets. This research could also lead to new insights as to the
gradual changes between transition phases as a function of the input
feature space considered.
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