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Figure 1: Embedding space visualization using PCA projection. Our method D-HYPR leads to the best class separation. Each dot
represents a node, and colors reflect the ground truth class labels of nodes, which are best appreciated when zooming in.

ABSTRACT

Digraph Representation Learning (DRL) aims to learn representa-
tions for directed homogeneous graphs (digraphs). Prior work in
DRL is largely constrained (e.g., limited to directed acyclic graphs),
or has poor generalizability across tasks (e.g., evaluated solely on
one task). Most Graph Neural Networks (GNNs) exhibit poor per-
formance on digraphs due to the neglect of modeling neighbor-
hoods and preserving asymmetry. In this paper, we address these
notable challenges by leveraging hyperbolic collaborative learning
from multi-ordered and partitioned neighborhoods, and regular-
izers inspired by socio-psychological factors. Our resulting formal-
ism, Digraph Hyperbolic Networks (D-HYPR) — albeit conceptually
simple — generalizes to digraphs where cycles and non-transitive
relations are common, and is applicable to multiple downstream
tasks including node classification, link presence prediction, and
link property prediction. In order to assess the effectiveness of
D-HYPR, extensive evaluations were performed across 8 real-world
digraph datasets involving 21 prior techniques. D-HYPR statistically
significantly outperforms the current state of the art. We release
our code at https://github.com/hongluzhou/dhypr
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1 INTRODUCTION

Directionality is a fundamental characteristic inherent in a multi-
tude of real-world graphs, including social networks, web page net-
works, and citation networks [36]. Digraph Representation Learn-
ing (DRL) aims to learn representations for directed homogeneous
graphs (digraphs) [48, 58]. Early DRL techniques include factorization-
based approaches such as HOPE [36] and ATP [44], and random
walk-based approaches such as APP [61] and NERD [19]. However,
these methods do not scale to large digraphs, or are sensitive to
outliers and noise. In recent years, Graph Neural Networks (GNNs)
have achieved immense success on a wide range of tasks [62]. How-
ever, GNNs primarily aim at representation learning for undirected
graphs. There are two notable challenges that hinder their effec-
tiveness on digraphs.
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Challenge 1: Neighborhood Modeling. The neighborhoods
of a node may possess unique semantics. For instance, in social
networks, in-neighbors are commonly known as followers, while
out-neighbors are accounts that the user follows. In citation net-
works, in-neighbors of a node can be existing works cited by a paper
by the time the camera-ready version of the paper is submitted,
whereas out-neighbor connections arise subsequent to the paper
coming out. Existing GNN techniques [8, 23, 51, 63] transform di-
graphs to undirected graphs to enable running experiments, which
simplifies the learning problem, or only consider the direct out-
neighbors in the graph convolution. Thus, they lose characteristics
of the original structure, resulting in misleading message passing
and ultimately subpar results on digraph-specific problems.

Challenge 2: Asymmetry Preservation. Due to the inherent
symmetry of popular measures, such as the inner product or dis-
tance in the embedding space, which produces the same scores
for the node pair (i, j) and (j, i), inner-product- or distance-based
learning objectives used by popular GNNs are unsuitable for cap-
turing the asymmetric connection probabilities for node pairs in
digraphs [40]. Applications based on link prediction or graph topol-
ogy learning are particularly affected when models fail to preserve
digraph structural asymmetry.

Recently, spectral-based DRL GNNs [31, 48, 49, 58] have been
proposed to address Challenge 1 with respect to modelling neigh-
borhoods for digraphs. However, the learned filters from these
methods depend on the Laplacian eigenbasis, which is tied to a
graph’s structure [47]. Models trained on a specific structure can-
not be directly applied to graphs with different structures [55].
Separately, to address Challenge 2, approaches such as viewing
directions of edges as a kind of edge feature [14], or parametrizing
the node pair likelihood function by a neural network [2, 42] have
been proposed, but these techniques fail to consider Challenge 1.
Moreover, prior DRL techniques are often constrained to directed
acyclic graphs (DAGs) [12, 45, 46], are transductive [12, 43, 45, 49],
or have poor generalizability across tasks. For example, some stud-
ies provide experimental evidence for a single task only - e.g., link
prediction as in [43] or node classification as in [31, 49].

We propose Digraph HYPERbolic Networks (D-HYPR) to fully
address these limitations. To overcome Challenge 1, D-HYPR uti-
lizes hyperbolic collaborative learning from multi-ordered and parti-
tioned neighborhoods. For Challenge 2, D-HYPR takes advantage of
self-supervised learning, using asymmetry-preserving regularizers
supported by well-established socio-psychological theories [32, 33].
Specifically:

(1) Neighborhood Modeling with Partitioned and Larger Receptive
Fields: by leveraging collaborative learning from multi-ordered
four canonical types of neighborhoods (Fig. 2 (a)), D-HYPR mod-
els the distinct node neighborhoods, and captures the local
directed graph characteristics.

Neighborhood Modeling with a non-Euclidean Space: D-HYPR
learns node representations of real-world digraphs (which ex-
hibit scale-free or hierarchical structures) in hyperbolic space
to avoid distortion of node neighborhoods.

Asymmetry Preservation with Regularizers: motivated by two
decomposed causes of link formation, homophily [32] and pref-
erential attachment [33], we employ two regularizers in training
D-HYPR, which are used in a self-supervised fashion to account
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for each of the two driving forces of link formation. These
regularizers lead to performance gains in downstream tasks.
Flexibility due to Message-passing-based GNN Formalism: D-HYPR
falls into the category of message-passing-based GNNs that
capture both graph structure and semantics. D-HYPR has the
capability to inductively learn representations for general di-
graphs that potentially contain cycles, non-transitive relations,
outliers, and noise.

“

=

Our contributions are three-fold: (1) We propose D-HYPR for DRL.
D-HYPR considers the unique node neighborhoods in digraphs with
multi-scale neighborhood collaboration in hyperbolic space. D-HYPR
respects asymmetric relationships of node-pairs, which is guided by
sociopsychology-inspired regularizers. (2) We perform extensive
benchmarking experiments across 8 real-world digraph datasets.
Our evaluation involves 4 tasks and 21 prior methods. Results
demonstrate the significant superiority of D-HYPR against the state
of the art. (3) D-HYPR generates meaningful embeddings in very
low dimensionalities. This added benefit is desirable for large-scale
real-world applications by efficiently saving space while preserving
effectiveness.

2 RELATED WORK

Graph Representation Learning (GRL). GRL methods have
evolved from matrix factorization [18], graph kernels [41], and ran-
dom walk-based transductive models [37], into GNNs [22], which
have greatly surpassed these prior methods in numerous exper-
iments. Interested readers may refer to comprehensive reviews
[5, 25, 55, 62] for further details. Current popular GRL approaches [3,
3, 8, 22, 51, 59, 63] have primarily considered undirected homo-
geneous GRL. Although certain recent GNNs can be applied to
digraphs, e.g., the Graphormer [57] with its Transformer-based
design [50], these techniques have been validated solely by experi-
ments on undirected graphs [58], and are computationally imprac-
tical for large-scale digraphs.

Directed Graph Embedding. There are comparatively few stud-
ies that address DRL. HOPE [36] captures asymmetric transitivity
but depends on a low rank assumption of the input, and fails to
generalize to a variety of tasks [19]. APP [61] captures asymmetry
by relying on random walks. ATP [44] removes cycles in digraphs
beforehand and then leverages factorization. NERD [19] extracts
a source and a target walk, and employs a shallow neural model.
DGCN [49], DiGCN [48] and MagNet [58] are recent GNNs that ex-
tend spectral-based GCNs [22] to digraphs, but are tied to a graph’s
Laplacian. DAGNN [46] is proposed for DAGs by injecting a DAG-
specific inductive bias—partial ordering—into the GNN design.
Hyperbolic Embedding Learning. Most non-Euclidean embed-
ding techniques [13, 16, 28, 34, 35, 43] only account for the graph
structure and do not leverage node features. In contrast, we consider
the general DRL setting of seeking to capture both digraph structure
and attributes, and propose a message-passing-based GNN with an
inductive learning capability.

HGCN [8] and HGNN [29] were proposed concurrently to gener-
alize GNNs to take advantage of the strength of hyperbolic geome-
tries. Other hyperbolic GNNs include Constant Curvature GCNs [1]
that provide a mathematically grounded generalization of GCNs,
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HAT [59] that studies hyperbolic GNN with an attention mecha-
nism, GIN [63] that draws on both Euclidean and hyperbolic geome-
tries, and so on [9, 10, 60]. Our work is built upon these prior efforts
on hyperbolic GNNs for undirected graphs, to address challenges
associated with digraphs.

3 PRELIMINARIES

Definition 1. Digraph Representation Learning [48, 58]. Let
G = (V, E) be a homogeneous graph with vertex set V and edge
set &. Each edge e € & is an ordered pair e = (i, j) between
vertices i and j. The adjacency matrix of G can be denoted as
A={0,1}1VIXIVI G is a digraph when 3(i, iAij # A

Nodes are described by a feature matrix X%E ¢ RIVI Xd, ie., each
node i € V has a d-dimensional Euclidean feature x?’E. The super-
script £ indicates that the vector lies in a Euclidean space, while
denotes a hyperbolic vector. 0 denotes the input layer.

DRL is an effective and efficient solution for digraph analytics.
The efficiency is achieved by converting the adjacency-matrix-based
data into low-dimensional embeddings. Thus, the goal of DRL is to
learn a mapping

f: (‘V, &, (x?’f)iev) 7 e RVIxd' @

that maps nodes to low-dimensional (d’ < |V|) embedding vectors.
These should capture both structural and semantic information and
be valuable for downstream tasks.

Definition 2. The Poincaré Ball Model.! The Poincaré ball model [13]

(D2, ¢°) is defined by the n-dimensional manifold D? = {x € R" :
c||x|| < 1} equipped with the Riemannian metric: g5 = A2¢%, where
Ax = m, gE = I, is the Euclidean metric tensor, and ¢ > 0 (we
refer to —c as the curvature). D? is the open ball of radius 1/+/c. The
connections between hyperbolic space and tangent space are estab-
lished by the exponential map exp, : 7xDi — D7 and logarithmic
map logg : D} — TxD}:

Az vl

c _ \
expy (V) = X &¢ (tanh (\E ) ) %ﬂ;’(”@) (2)
log(y) = o tanh ™ (Vellxeeyl) Sosn @)

where x,y € D?, v € 7xDZ, and &, denotes Mdbius addition, and

(12600 y) +ellyl?) x+ (1= ) y
1+2c(x,y) +c2 x| lyl?

(©

X®cy =

The Mobius scalar multiplication (Eq. 5) and Mobius matrix multi-
plication of x € D?\{0} (Eq. 6) are

X

7 ®c X = % tanh (rtanh_l(\/Ellxll)) Il (5)
M ®. x = (1/c) tanh(”MXII tanh_l(\/E||x||))£ (6)
lIxIl (I Vx|l

where r € R and M € R™*", The induced distance function on
(D2, ¢¢) is given by
dpp (x,y) = (2/Ve) tanh ™" (Ve || -x @c vl ™

For a longer introduction of hyperbolic or non-Euclidean geometry,
we refer readers to relevant previous work [4, 6, 8, 13, 39].

10ur method is compatible with other non-Euclidean embedding models.
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4 METHODOLOGY

Driven by the goal of addressing the challenge of Neighborhood
Modeling and Asymmetry Preservation in digraphs, we propose
D-HYPR (Fig. 2 (b)), which leverages hyperbolic collaborative learn-
ing from multi-ordered and partitioned neighborhoods, and self-
supervised learning via asymmetry-preserving regularizers.
Euclidean space does not provide the most powerful or meaning-
ful geometrical representations when input data exhibits a highly
complex non-Euclidean latent anatomy, as for instance for real-
world digraphs with a scale-free or hierarchical structure [4, 6].
As the volume of nodes grows exponentially with the distance
from a central node, non-Euclidean geometry is more suitable than
Euclidean for embedding such digraphs [28, 39, 43]. Hyperbolic em-
beddings can incur smaller data distortion for real-world digraphs,
which leads to a better representation of the nodes’ local neigh-
borhoods. This motivates our investigation of utilizing hyperbolic
GNNs over Euclidean counterparts as the backbone for DRL.

4.1 Hyperbolic Embedding Learning

To perform message passing in hyperbolic space, the general effi-

cient approach is to move basic operations of hyperbolic space to
the tangent space [59, 63]. Given G and x?’E, we first obtain x?’H
by applying exponential map expf)0 (+) to map the Euclidean input
feature X?’E into hyperbolic space with curvature —c® € R, where
¢ is learned in training. Hyperbolic message passing (Egs. 8 to 10)
is then performed by multiple layers (forming the Hyperbolic Graph
Embedding Layers in Fig. 2 (b)). The layer is indexed by ¢, ranging
from 1 to a pre-defined integer I.

(1) Hyperbolic Feature Transformation is performed by

LH _ st ¢-1,H
m;" =W -1 X; ®.e-1 b,

®

where W’ € RF'XF"™" i the weight matrix, and b € [DICE ,[71 denotes
the bias (both are learned). We employ a unique trainable curvature
at each layer to obtain a suitable hyperbolic space to account for
different depths of the neural network.

(2) Hyperbolic Neighbor Aggregation. We then leverage the bridging
between the hyperbolic space and the tangent space to perform

neighbor aggregation [59, 63], resulting in hf’H e DF ;71,
hf’H = expg(L1 Z ejj loggFl (mﬁ’H) . 9)
Je{iYUN(i)

N(@G) = {j : (i,j) € E} denotes the set of neighbors of i € V.
We apply out-degree normalization of A (adjacency matrix), i.e.,
D} (A+1), to obtain the aggregation weights for simplicity (while
ejj can be computed with different mechanisms such as attention
or leveraging edge attributes if present). Doyt is a diagonal matrix
such that element (i, i) is the sum of row i in A plus 1. We choose
the tangent space of the origin for efficiency [8].

t
H ¢ pF

(3) Non-Linear Activation with Trainable Curvatures. xf ot?

the output hyperbolic representation of node i in layer ¢ is set as

oH _

X; expg{ (0 (loggl_1 (th))) .

= (10)
To smoothly vary the curvature of each layer, in Eq. 10, we first map
hf’H to the tangent space with the logarithmic map. A point-wise
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Multi-Ordered Four Canonical Types of Partitioned Neighborhoods
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Figure 2: (a) Multi-ordered and partitioned neighborhoods. We define four types of k-order proximity matrix (shown in the
figure with k = 1, 2 with respect to node 1) to incorporate the pertinent subsets of neighbors and multi-scale information. (b)
Methodology overview. D-HYPR learns a node representation from each neighborhood in hyperbolic space with Hyperbolic
Graph Embedding Layers. Hyperbolic Neighborhood Aggregation further enables a closer collaboration of neighborhoods. D-HYPR
respects asymmetric relationships of nodes with the hyperbolic Fermi-Dirac and Gravity regularizers.

non-linearity o(-) (ReLU in our experiments) and an exponential
map are then used to bring the vector back to the hyperbolic space
with a new learnable curvature —c?

4.2 Neighborhood Collaborative Learning

Due to the semantics of directed edges, neighbors of a node can be
implicitly partitioned into non-disjoint groups. Consideration of
these neighborhoods is critical for learning a holistic node embed-
ding in a digraph. This is because each neighborhood can reflect a
distinct aspect pertaining to the node [30]. E.g., in a social network-
ing platform, a popular user’s in-neighbors and out-neighbors can
exhibit entirely different degrees of relationship cohesion to this
popular user. Furthermore, users who share common in-neighbors
with this user and those who share common out-neighbors can
reveal additional contexts.

Our method leverages this inductive bias exhibited in real-world
digraphs through collaborative learning among the aforementioned
four canonical types of neighborhoods in hyperbolic space. In addi-
tion, D-HYPR achieves larger receptive fields by taking account of
the impact of multi-ordered neighbors [49, 56]. D-HYPR generates
a representation for each type and order of neighborhoods, each
serving as one representation slice that eventually comprises the
final holistic node embedding by collaboratively learning in the
hyperbolic space. With the neighbor-aggregation-based formalism
(Eq. 9) learning from multi-ordered and partitioned neighborhoods,
D-HYPR is capable to model general digraphs that contain cycles or
non-transitive relations.

Neighbor Partition. Four types of k-order proximity matrix are
defined (Fig. 2 (a)). Formally, k-order proximity in terms of:
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(1) diffusion in Ak_ ,

Agyy, ) = 1( (11)

|

where A{lj_ = AT, - is the inner product and 1 is the indicator
mn

k=1, 1 .
P;’Adm (ip)- Al (b))

function. AZ» (i, j) = 1 if there is a directed path from node j to
node i of length exactly k.
(2) diffusion out Ak

out

Aléout (i’j) = l(p;VA’;;it (i’P) 'Atliout (p,])) (12)

where A; = A AZ (i, j) = 11if there is a directed path from
out out

node i to node j of length exactly k.

(3) common in AF

Cin’
Alyy (1) = n(pZ Ay D) - AG L, <p.j>) (13)
eV

where i # j # p. AIC‘M (i, j) = 1 if node i and node j have a common

in-neighbor k hops away.
(4) common out A’g

out’

Algout (i, j) = 1LZ Aflout (i,p) - Azin (P:j))
eV

wherei # j # p.AIccout(i, Jj) = lifnode i and node j have a common

out-neighbor k hops away.

(14)

Multi-Scale Neighborhood Learning. For a given non-zero integer K,
we compute the four types of k-order proximity matrix for k = 1
to K (as a preprocessing step). This enables capturing multi-scale
node proximity and the nodes’ local directed graph characteristics.
These k-order proximity matrices replace the original adjacency
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matrix A to provide a wider range of neighborhoods to Hyperbolic
Graph Embedding Layers (Fig. 2 (b)).

Neighborhood Aggregation. We then apply Hyperbolic Neighbor-
hood Aggregation to enable a joint assessment of the neighborhoods.
Here, we view the 4K output hyperbolic vectors from the Hyper-
bolic Graph Embedding Layers as representations of 4K neighbors
of the anchor node i. We consider zguse, which is the hyperbolic
average of these 4K vectors, as the initial representation of node i
before hyperbolic neighborhood collaboration. Subsequently, we
apply Eq. (9) with the learned curvature —c! from the last hyper-
bolic graph embedding layer [, and use equal aggregation weights
ﬁ (4K plus 1 because zfse

;%€ itself is included as a neighbor in
order to enforce a skip connection). The resulting output, zé’H ,is
the final hyperbolic embedding of node i. Hyperbolic Neighbor-
hood Aggregation can encourage a better utilization of neighbor-
hoods by synthesizing intermediate representations learned in a

neighborhood-level in hyperbolic space.

4.3 Self-Supervised Learning with
Asymmetry-Preserving Regularizers

Homophily and preferential attachment are two driving forces of link
formation according to sociopsychological theories. Homophily [32]
refers to the notable role of similarity, often summarized as “birds
of a feather flock together”, and preferential attachment [33] de-
scribes the role of prior connectivity: the link formation likelihood
is asymmetric and determined by individual connectivity. To model
these two decomposed causes of link formation, we invoke two
regularizers to predict directed edges when training D-HYPR, thus
allow it to respect asymmetry in digraph link formation by learning
it as a self-supervised task.

We first adopt the Fermi-Dirac decoder [26] as a regularizer to
reinforce the learning of an appropriate node-pair distance in the
hyperbolic embedding space (to well account for homophily). The
hyperbolic Fermi-Dirac decoder defines the likelihood of a node

pair (i, j) as P )y = 1

(dlDd’ (zé’H,zlj’H)Z—r)/t
! )

e c

(15)

+1

where r=2 and t=1 (default), and dy (-, -) is the hyperbolic distance
ol

(Eq. 7).

We further preserve the individual asymmetric node connectiv-
ity by learning an additional 1-dimensional mass for each node.
This design is elegantly derived from Newton’s theory of universal
gravitation: each particle in the universe attracts other particles
through gravity, which is proportional to their masses, and in-
versely proportional to their distance. The learnable node mass
is flexible, and it encompasses many centrality measures, includ-
ing Katz, Betweenness and Pagerank. It is also capable of provid-
ing explainable visualizations [40]. To incorporate this idea into
D-HYPR based in hyperbolic space instead of Euclidean, we map

LH . . . .
z; " to the tangent space of the origin with the logarithmic map

1
to learn m; € R (mass of node i). The likelihood of node pair (i, j)
is computed by

plij)g = y(m,» ~ Alog (dDd/ @, z§”>z)),
ol

(ie., zi’E = loggl (ZIH)) and then employ a Euclidean linear layer

(16)
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where y denotes the sigmoid function, and A € R is a hyper-
parameter that weights the relative importance of the symmetric
embedding distance to the asymmetric node relationships. p(i, j)g #
p(Jj. i)g. Eqs. (16) and (15) both serve as self-supervised regularizers
by minimizing the binary cross-entropy loss with negative sam-
pling to estimate the likelihood of each node pair. However, the
two are placed at different depths of D-HYPR. Specifically, Eq. (16) is
employed one layer after where Eq. (15) is used. Thus, even though
dlDdl' (-, -) also appears in Eq. (16), we find that Eq. (15) provides aux-

iliaLry guidance for the model to better construct the final hyperbolic
embedding space.

4.4 Time Complexity

The time complexity of the the Hyperbolic Graph Embedding Layer
is O(Knd‘~'d’ + Kmd’) where K denotes the maximal order of the
k-order proximity matrix. d’~! and df, respectively, denote the
dimensionality of input and output features of layer ¢. n and m are
the number of nodes and edges respectively. The time complexity
of Hyperbolic Neighborhood Aggregation is O(Knd'd'), where d'
denotes the dimensionality of output features of the final layer
1. Supposing d’~! and d’ are equal to d, an I-layer model has a
cost of O(IKnd? + IKmd). The time complexity is on par with other
GNN methods such as HAT and GCN that have a complexity of
O(Ind?+1md), because in practice K is a small non-negative integer
(e.g., the maximum K is 3 in our paper, and most of the time, setting
K to 2 would be sufficient).

5 EXPERIMENTAL SETUPS

Datasets. We use open access homogeneous digraph datasets of
varied size and domain (Table 1), and create numerous splits of each
dataset and task for more reliable results.

Tasks & Metrics. We use the following tasks and metrics.

e Link Prediction (LP). LP demonstrates a method’s capability in
modeling asymmetric node connectivity, as a binary classification
task of discriminating the missing edges from the fake ones.
Given a digraph G, we train models on its incomplete version G’
by randomly removing edges. Half of the removed edges form
the positive samples in the validation set, and the other half form
the positive samples in the test set. The negative samples are
randomly sampled from unconnected node pairs in G, drawing
the same number as there are positive samples. Metrics are AUC
(Area under the ROC Curve) and AP (Average Precision).
Semi-supervised Node Classification (NC) [48]. In NC, each dataset
contains only 20 labeled nodes for each node class, which requires
use of the graph structure for predicting the labels of remaining
nodes. The validation set consists of 500 random unlabeled nodes.
Unlabeled nodes not in the validation set make up the test set.
Link Sign (Property) Prediction (SP). Many real-world graphs are
signed networks, e.g., social networks that allow trust and distrust
user relationships. We use the Wiki dataset to evaluate the accu-
racy in predicting attributes of directed edges representing votes
{oppose, neutral, support} [20]. Given a digraph G, 5% of edges
are labeled for training, 5% for validation, and 90% for testing.
Embedding Visualization (EV). EV shows the expressiveness of
methods qualitatively. We visualize node representations in 2D
space projected via PCA [53]. Embedding vectors are obtained
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Table 1: Statistics of datasets. Reciprocity measures the like-
lihood of nodes to be mutually linked. Label rate is the ratio
of nodes labeled for training.

. . Degree
LpP Reciprocity # Nodes # Edges Nodes Edge Avg. Max
Air 15.68% 1,226 2,615 Airport Preferred Route 4 37
Blog 24.25% 1,224 19,025 Blog Hyperlink 31 467
Survey 38.77% 2,539 12,969 User Friendship 10 36
Cora 0.06% 2,708 5,429 Paper Citation 4 168
DBLP 0.43% 12,591 49,743 Paper Citation 8 710
NC # Nodes # Edges Node Edge Classes Features Label Rate
CiteSeer 3,312 4,715 Paper Citation 6 3,703 3.62%
Cora-ML 2,995 8,416 Paper Citation 7 2,879 4.67%
Wiki 7,115 103,689 User Vote 3 7,115 0.84%

from the NC task. Hyperbolic embeddings are mapped to the
Euclidean space before 2D projection.

In all tables, the best score is bolded, the second best is underlined,
and the third best is in italic. Relative gains are computed as (BEST—
SECOND)/SECOND. * indicates statistically superior performance of
the best to the second best at a significance level of 0.001 using a
standard paired t-test. Values after + are standard deviations.
Implementation Details. Hyperparameter tuning was performed
for each method per task and dataset (on the first split), which
substantially improved the results of ablations and baselines. We
searched initial learning rates {0.001,0.01, 0.1}, momentums {0.9,0.999},
weight decays {0,0.001}, and dropout rates {0,0.05,0.1}. Unique hy-
perparameters associated with each method were considered as
well. E.g., for GAT, we searched the number of attention heads
from {4,8} and « from {0.1,0.2}; for DiGCN, the teleport probabil-
ity from {0.05,0.1,0.15,0.2} and K from {1, 2} [48, 58]; for MagNet, ¢
in the magnetic Laplacian from {0, 0.05,0.1,0.15,0.2,0.25}and K from
{1,2,3} [58]; etc. For D-HYPR, we tuned A from {0.01,0.05, 1,5} and
K from {1,2,3}. For all GNNs, we used 2 layers for a fair com-
parison. Models were optimized with Adam [21] following prior
work [7, 8, 59], with early stopping based on the validation results.

6 RESULTS

Link Prediction. We list the LP results of D-HYPR in comparison
to 10 GNN techniques using 4 or 8 dimensional node embeddings
on Air and Cora in Table 2. One advantage of hyperbolic digraph
embedding is low data distortion even with a low-dimensional em-
bedding space. The superior performance of D-HYPR is evident—the
highest relative gain of D-HYPR is 21.43% on AP over the Cora
dataset. In addition, the difference from the mean to the best metric
value is considerably lower for D-HYPR than other methods. Given
a low budget of embedding dimensionality, methods that use hy-
perbolic space (D-HYPR, HAT and HGCN) are top performing, and
the latest DRL GNNs (D-HYPR, MagNet, DiGCN, and DGCN) overall
outperform traditional GNNs (GCN, VGAE, and GAT).

We report the LP performance of D-HYPR in Table 3 in compari-
son to 14 techniques by using a 32-dimensional embedding space
following the typical practice [48]. We can observe that techniques
relying on matrix decomposition (ATP) or random walks (NERD,
APP), are sensitive to outliers and lack effectiveness and robust-
ness. While standard deviations are omitted from the table due to
space constraints, we have found that methods with higher average
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metric values typically have smaller standard deviations. GNNs
obtain higher scores. Comparing Euclidean-based methods, DRL
techniques (marked with 1) can achieve better results than popular
GNNss (e.g., GCN). Still, methods that learn representations in hy-
perbolic space (marked with §) tend to be more competitive than
those in Euclidean space. With 32-dimensional embeddings, gravity-
augmented GCN and VGAE obtain better results than GCN and
VGAE, and are able to occasionally hold the second or third position
when ranking all 15 methods based on their performance. As the di-
mensionality increases, the gap from D-HYPR to the other methods
decreases, but D-HYPR remains the best-performing method across
all datasets and metrics.

Semi-supervised Node Classification. Table 4 reports the NC
results on CiteSeer and Cora-ML, and Table 5 provides the results
on Wiki. D-HYPR, which considers diverse neighborhoods with low
distortion and is trained with self-supervision to preserve asymme-
try, statistical significantly outperforms the state-of-the-art (SOTA)
methods. We increase the embedding dimensionality from 4 up to
256. The effectiveness of D-HYPR is remarkable in low dimension-
ality regimes, yet D-HYPR also remains the best method at a high
dimensionality. Unlike the LP task, DGCN and DiGCN often hold
the second or third rank. However, due to sensitivity to tuned hy-
perparameters, their performance is unstable across dataset splits
(i-e., occasionally extremely large standard deviations).

We further follow prior work [15] in reporting the results when
the number of nodes labeled for training is varied between 1%
and 10%. According to Fig. 3, D-HYPR consistently outperforms the
baselines, and tends to perform well at fairly low label rates.
Link Sign Prediction. Table 5 reports the results of SP. D-HYPR
is the most effective GNN model. Similar to LP and NC tasks, the
effectiveness of D-HYPR is the most striking using a 4 dimensional
embedding space. One interesting observation is that the relative
gains of D-HYPR on Wiki NC is much higher than Wiki SP, which
suggests that asymmetry preservation can greatly improve the NC
results (because unlike the NC task, while learning the asymmetric
link sign prediction task, the baselines are able to simultaneously
learn asymmetric node connectivity).

Embedding Visualization. In Fig. 1, we visualize 2D projections
of embeddings. Unlike the prior methods (e.g., DGCN, DiGCN,
etc.), in whose 2D projected embedding space nodes belonging
to different topic classes often severely overlap, D-HYPR leads to
the best class separation. This suggests that D-HYPR produces an
embedding space that better captures the semantics of the digraph.
Parameter Sensitivity. We first examine how A affects the per-
formance of D-HYPR by varying A from 0.25 to 10 (Table 6) while
keeping other hyperparameters fixed (32-Dim, the NC task). Larger
A place more value on a symmetric embedding distance (which mod-
els ‘homophily’ ), whereas a smaller A emphasizes the asymmetric
node connectivity (which characterizes ‘preferential attachment’).
The performance of D-HYPR first increases with A and then de-
creases. Using the A that produces the best result, we then vary K.
As shown in Table 7, better results are obtained when K is larger,
which means a wider receptive field and more scale information.
However, an overly large K can lead to feature dilution. It is worth
mentioning that D-HYPR still outperforms the SOTA methods by a
large margin when K=1, which suggests the superiority of D-HYPR
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Table 2: Results of Link Prediction on Digraphs with 4- or 8-dimensional node embeddings.

Air Cora
Model (4/8-Dim) 4-Dim 8-Dim 4-Dim 8-Dim
AUC AP AUC AP AUC AP AUC AP
GCN [22] 67.88 (61.73)  67.88 (60.51)  69.21 (64.05)  69.68 (63.48)  65.92 (61.00)  65.92(59.97)  70.89 (65.67)  71.26 (65.28)
VGAE [23] 69.77 (62.86)  70.73 (62.55)  73.49 (66.87)  74.04 (66.95)  63.86 (56.90)  63.86 (55.39)  66.60 (60.33)  66.60 (58.75)
GAT [51] 69.02 (63.48)  69.02 (62.86)  71.31(67.03)  71.31(67.01) 68.18 (64.73)  68.18 64.31)  72.70 (68.70)  73.93 (69.08)

Gravity GCN T [40]  65.20 (59.41)  67.73 (60.98)  74.00 (68.91)  75.43 (69.14) 7037 (65.80)  70.37 (64.65)  75.29 (71.85)  77.17 (72.50)
Gravity VGAE T [40] 62.24 (55.48)  62.24 (54.97)  68.00 (60.23)  68.00 (59.57)  66.74 (61.79)  66.74 (60.61)  71.04 (65.45)  71.04 (64.15)

DGCN ¥ [49] 7436 (65.75)  71.42(63.27)  77.23(70.60)  75.86(70.27) 7533 (71.88)  71.95(68.58)  79.01(75.30)  79.01 (74.28)
DiGCN T [48] 7259 (64.37)  70.01(61.66)  74.65(69.27)  75.40 (68.29)  70.61 (65.81)  67.11 (61.57)  74.63 (70.65)  74.88 (69.86)
MagNet T [58] 72.26 (58.44)  71.10(57.92)  76.64 (64.26)  78.62 (64.69)  77.45(55.93)  79.32(56.84)  77.46(66.82)  76.59 (63.96)
HAT § [59] 76.11(71.24)  73.72(69.35)  80.52(75.13)  79.73(74.05)  76.25(72.84)  74.38(70.27)  82.58(77.82)  82.05(77.39)
HGCN § [8] 80.90 (66.63)  80.90 (65.95)  84.67 (77.65)  85.97 (78.14)  80.02 (67.37)  82.16 (66.66)  85.05 (83.07)  88.04 (84.63)
D-HYPR (ours) *$ 85.79 (*81.69) 85.92 (*81.93) 88.46 (*84.26) 88.46 (*84.82) 86.08 (*83.99) 88.74 (*85.33) 88.88 (*86.31) 91.13 (*87.76)
Relative Gains (%) 6.04 (14.67)  6.21(18.14) 4.48 (8.51) 2.90 (8.55) 757 (1531)  8.01(21.43) 45 (3.9) 3.51 (3.7)

Note: T denotes the method was designed specifically for homogeneous digraphs (i.e., DRL), and § denotes the use of hyperbolic space. Results (in percentage
%) on each dataset of each method are from 100 repeated experiments (10 different train/test splits per dataset and 10 runs using different random seeds per
split). We list the best and the average results, and the average is shown in brackets.

Table 3: Results of Link Prediction on Digraphs with 32-dimensional node embeddings.

. Air Cora Blo Surve DBLP

Model (32-Dim) AUC AP AUC AP AUC . v AUC Y 7 AUC AP

MLP 8129 (76.52) 83.53 (78.18) 8447 (81.67) 87.70 (83.69) 93.31(92.48) 93.31(92.45) O1.21(89.98) 92.46(90.75) 51.22 (49.98) 51.22 (49.99)
NERD * [19] 60.62 (56.39) 67.37(60.19) 65.62 (62.02) 71.68 (65.66) 95.03 (94.00) 95.03 (93.47) 77.12(69.30) 79.60 (70.80) 95.78 (95.37) 95.93 (95.41)
ATP T [44] 68.99 (66.40) 68.99 (64.99) 88.47 (36.44) 88.47 (86.04) 85.05 (83.46) 85.05(79.30) 73.53 (71.47) 7353 (70.64) 60.43 (59.21) 60.43 (57.37)
APP T [61] 85.08 (82.72) 86.35 (84.58) 86.65 (85.50) 89.80 (87.22) 92.33 (91.65) 92.33 (90.55) 91.16(90.34) 9277 (91.14) 95.58 (95.33) 9573 (95.41)
GCN [22] 7671 (72.27) 80.95(75.13) 8077 (78.73) 85.67 (81.21) 91.87(90.18) 92.16 (90.54) 89.29 (87.98) 9178 (89.42) 92.98 (92.34) 94.37 (93.15)
VGAE [23] 7779 (73.75)  82.73(76.75) 80.80 (79.24) 85.47 (81.57) 92.25(91.39) 92.80 (91.85) 90.07 (88.78) 9239 (90.14) 93.36 (92.64) 94.85 (93.45)
GAT [51] 8421 (30.24) 84.79 (81.46) 85.40 (82.58) 8853 (84.60) 92.69 (89.95) 92.69 (89.83) 92.01(91.05) 93.09 (91.65) 95.94 (95.62) 96.28 (95.80)
Gravity GON T [40]  85.16 (82.22) 86.86 (83.50) 85.62 (83.87) 88.73 (85.62) 95.11 (94.46) 95.11(94.31) 91.63(90.86) 93.11(91.76) 96.89 (96.78)  97.46 (97.34)
Gravity VGAE T [40] 83.98 (80.06) 85.67 (81.61) 87.17(84.46) 8951 (86.22) 96.15(95.59) 96.15(9542) 9164 (90.96) 93.23(91.82) 9598 (95.57) 96.24 (95.81)
DGCN T [49] 77.83 (73.68) 80.79 (75.64) 8357 (81.34) 85.48 (83.00) 87.74 (86.74) 88.13(86.75) 90.47 (89.49) 91.27 (89.94) 92.26 (91.83) 90.16 (89.52)
DiGCN' [48] 7535 (71.27) 77.64 (73.97) 8180 (78.90) 83.03 (79.92) 91.98 (90.50) 89.34 (87.36) 89.85 (88.17) 89.80 (88.08) 89.99 (89.72) 89.93 (89.60)
MagNet T [58] 79.32 (75.58) 80.66 (76.34) 8277 (71.90) 81.63 (69.84) 91.83 (90.81) 90.46 (89.29) 86.65 (84.81) 87.76 (85.71) 81.89 (80.57) 81.68 (81.50)
HNN S [13] 88.42(85.79) 88.95(S6.40) 88.75(86.33)  90.81(87.81) 9580(9539) 95.80(95.16) 9207 (9139) 9340 (92.04) 97.43(97.14) 9743 (97.13)
HGCN'§ [8] 5526 (86.12) 5555 (86.6) 89.24 (87.68) 91.54(88.97) 95.64(95.23) 95.64(95.00) 92.15(9150) 95.38 (92.08) 97.54(9733) 97.62 (97.37)

D-HYPR (ours) T$ 89.07 (86.33) 89.21 (*86.86) 89.50 (*88.22) 91.62 (*89.47). 96.19 (95.62) 96.18 (*95.48) 92.56 (*91.96) 93.63 (*92.46) 97.66 (*97.38) 97.75 (*97.44)
Relative Gains (%) 0.74 (0.24)  0.29(0.25)  0.29(0.62) 0.09 (0.56)  0.04(0.03)  0.03(0.06)  0.44(0.50)  0.25(0.41) 0.12 (0.05) 0.13 (0.07)

Note: Every result is from 100 experiments (the same as in Table 2).

is not simply coming from the neighbor augmentation that con- much lower accuracies. Moreoever, self-supervision helps substan-
nects nodes to their k-order neighbors. Hyperbolic neighborhood tially. D-HYPR is aided by the Gravity regularizer more than the
collaboration and preserving asymmetry are important factors that Fermi-Dirac regularizer, as the former captures the asymmetric link
lead to the superiority of D-HYPR. connectivity. While the Fermi-Dirac regularizer provides auxiliary
Ablation Study. As shown in Table 8, removing any neighborhood benefits, the embedding distance term in the Fermi-Dirac regular-
that we defined harms the performance of D-HYPR. Compared with izer co-occurs in the Gravity regularizer, which also explains the
the approach that learns the proximity matrices (adjacency matrix stronger capability of the latter. All ablations have a lower accuracy
A + 3 learnable matrices) or approaches that use other forms of than our full model, suggesting that the ablated components work
multi-scale proximity matrices (e.g., MagNet, DiGCN and DGCN), together to increase the learning abilities of D-HYPR.

D-HYPR performs much better. The proximity matrices are proposed Discussion. D-HYPR has a statistically superior and more stable
in a way to leverage the inductive biases exhibited in real-world performance across datasets and tasks. This is because D-HYPR ben-
digraphs, thus facilitating the learning process and increasing the efits from the use of hyperbolic space, information collected from
accuracy. Replacing hyperbolic with the Euclidean space entails sub- the multi-ordered diverse neighborhoods and accounts for direc-
stantial performance drops. Still, this ablation yields better results tionality. By favoring non-Euclidean over Euclidean geometry for
than GCNs due to the other proposed components (e.g., collabo- DRL, D-HYPR incurs lower node neighborhoods distortion. In addi-
rative learning). Neighborhood collaboration is also crucial. The tion, the proposed 4 canonical types of k-order proximity matrix
ablation that removes the hyperbolic neighborhood aggregation are defined based on the semantics of directed edges in accordance
component has worse results than our full design, and the abla- with real-life observations. This allows D-HYPR to leverage induc-
tion that further replaces hyperbolic with the Euclidean space has tive biases exhibited in many real-world digraphs, facilitating the

learning and increasing the accuracy.
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Table 4: Results of Node Classification on Digraphs.

Model CiteSeer Cora-ML

MLP 37.68 +3.0 51.19+6.3

GCN [22] 32.82+7.9 60.56+9.8

GAT [51] 51.97+4.2 68.38+3.4

4-Dim DGCN [49] 38.67 £10.0 53.44 £ 11.1
DiGCN [48] 53.43+10.3 71.35+2.3

HNN [13] 47.44£2.9 52.76 £ 4.9

HGCN [8] 42.24 +3.6 52.17 £5.9

D-HYPR (ours) "65.72+2.9 "74.63+1.2

Relative Gains (%) 23.00 4.60

MLP 51.70 £ 2.6 60.48 + 1.8

GCN [22] 36.26 £ 6.5 67.62 £10.8

GAT [51] 50.81£3.9 74.87 £ 1.8

8-Dim DGCN [49] 57.27+2.4 77.16+4.4
DiGCN [48] 60.37+2.6 78.38+1.2

HNN [13] 50.73 £ 3.1 61.54 + 2.1

HGCN [8] 52.57 +2.3 73.44 £2.3

D-HYPR (ours) 67.96:1.6 "81.55+1.6

Relative Gains (%) 12.57 4.04

MLP 53.18 + 1.6 61.63 £1.8

GCN [22] 53.20 £3.1 69.51 +8.5

GAT [51] 63.03 £ 0.6 71.91+0.9

32-Dim DGCN [49] 64.17+2.4 81.29+1.6
DiGCN [48] 65.83+£1.8 78.08+1.9

HNN [13] 56.10 £ 2.2 62.49 + 2.6

HGCN [8] 59.02 £ 2.3 76.48 + 1.5

D-HYPR (ours) 770.66 + 1.2  "82.19+ 1.3

Relative Gains (%) 7.34 1.11

MLP 57.20 £ 1.9 65.43 + 2.9

GCN [22] 52.71 + 4.1 72.53 £2.0

GAT [51] 56.29 £2.5 75.50 £ 1.5

64-Dim DGCN [49] 64.45+1.6 80.93+1.8
DiGCN [48] 62.88+7.5 79.90+1.1

HNN [13] 55.80 £ 1.9 65.82 + 2.2

HGCN [8] 58.73 + 2.8 76.49 £1.3

D-HYPR (ours) 69.07:1.5 "81.20= 1.1

Relative Gains (%) 7.17 0.33

MLP 57.68 £ 1.8 66.29 + 2.2

GCN [22] 57.87+2.4 73.84 + 2.4

GAT [51] 56.48 + 2.1 74.82 £ 1.8

128-Dim DGCN [49] 66.25+1.5 81.50+1.6
DiGCN [48] 5650 = 14.1 79.83£1.2

HNN [13] 56.23 £ 2.4 65.12 + 1.7

HGCN [8] 57.65£3.2 76.92 + 1.6

D-HYPR (ours) 770.53+1.1 "81.77+1.3

Relative Gains (%) 6.46 0.33

MLP 57.26 £2.2 64.86 + 3.1

GCN [22] 55.82+3.2 75.20 £ 1.9

GAT [51] 57.66 + 2.4 74.19 £ 1.5

256-Dim DGCN [49] 65.90+1.5 81.29+ 1.4
DiGCN [48] 46.36 + 13.75 79.46+1.2

HNN [13] 54.64 + 2.4 66.09 + 2.0

HGCN [8] 58.23+ 2.3 76.91 £1.7

D-HYPR (ours) 71.10£1.2 _"81.80% 1.4

Relative Gains (%) 7.89 0.63

ChebNet [11] 56.46 + 1.4 64.02 + 1.5

SGC [54] 44.07 £3.5 51.14 £ 0.6

. . APPNP [24 65.39 £ 0.9 70.07 £ 1.1
Results in [49] (32-Dim) InfoMax[[S%] 60.51 = 1.7 58.00 + 2.4
GraphSage [17] 63.19 £ 0.7 72.06 + 0.9

SIGN [38] 60.69 £ 0.4 66.47 £0.9 s

Note: 20 random splits per dataset are used for this task.

Since D-HYPR addresses Neighborhood Modeling, we provide neigh-
borhood analyses of datasets in Fig. 4, where pie charts show the
ratio of the 4 canonical types of neighborhoods in each dataset
(K=1). Unlike the diffusion in/out neighborhood that traditional
GNN s typically use, common in/out neighborhood consists of more
neighbors, which suggests that neighborhood collaborative learn-
ing benefits from encoding additional context. Nevertheless, a larger
neighborhood size does not necessarily entail a greater importance
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Figure 3: Accuracy on the Semi-supervised Node Classification
task by varying the ratio of nodes labeled for training. The
embedding dimensionality is 32.

Table 5: Experimental results on Wiki.

Model Node Classification Link Sign Prediction
GCN [22] 17.01+£0.1 78.96+0.4
GAT [51] 40.75+10.7 79.38+0.2
4-Dim  HGCN [8] 36.07+5.3 7872 £ 0.0
D-HYPR (ours) "71.27+£0.79 779.83+0.0
Relative Gains (%) 74.90 0.57
GCN [22] 39.26 £9.5 78.76 £ 0.1
GAT [51] 46.78+ 10.5 79.41+0.2
8-Dim HGCN [8] 58.40+10.9 79.23+0.2
D-HAYPR (ours) "70.531.6 "79.47%0.3
Relative Gains (%) 20.77 0.08
GCN [22] 37.77 £ 6.7 79.39+ 0.1
GAT [51] 46.12+ 8.5 79.66+ 0.1
32-Dim  HGCN [8] 52.63+ 5.8 79.21+0.2
D-HYPR (ours) 71.65 + 1.0 79.73 + 0.2
Relative Gains (%) 36.14 0.09

Note: 10 random dataset splits are used for the SP task. The embedding
dimensionality is 32.

according to the ablation study (Table 8). For each neighborhood
type, we also plot a histogram showing the distribution of the num-
ber of neighbors a node has over the entire graph. We observe
asymptotical power-law node-degree distributions (i.e., scale-free)
for most neighborhoods in these digraph datasets.

Though in principle, MLP can serve as the node-pair score func-
tion to learn asymmetric node connectivity (e.g., used by MagNet,
DiGCN, etc., in the LP experiments), we resort to Fermi-Dirac and
Gravity decoders because the two neatly model the driving forces
of link formation, and provide the right level of inductive biases for
D-HYPR to more easily generalize well across cases. Fermi-Dirac is
particularly suitable for hyperbolic geometry because Fermi-Dirac
statistics provide a physical interpretation of hyperbolic distances as
energies of links [27], and the Gravity function is elegantly derived
from Newton’s theory of universal gravitation with the learnable
mass encompassing centrality measures. Overall, D-HYPR lever-
ages the inductive biases exhibited in real-world digraphs and thus
generalizes well across tasks; it utilizes multi-ordered partitioned-
neighborhoods with hyperbolic neighborhood collaboration to ad-
dress Neighborhood Modeling, and employs self-supervised learning
with sociopsychology-inspired regularizers for Asymmetry Preser-
vation.
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Table 6: Parameter sensitivity analysis in terms of A. The superiority of D-HYPR is not sensitive to the hyperparameter 1.

A | 025 050 075 100 125 150 175 200 225 250 275 3.00 325 350 375 400 425 450 475 500 10.0
CiteSeer 69.74 70.66 70.46 70.44 70.30 70.34 69.99 69.79 69.24 69.61 68.13 68.05 68.12 67.64 67.85 67.67 67.69 67.34 67.18 67.12 66.85
+1.6 +1.2 +13 +14 +1.1 +13 +14 16 1.6 =12 =+14 +13 +19 +1.8 +1.8 +1.9 +19 +23 +21 =+1.7 =15
Cora-ML 81.29 81.18 81.59 81.68 81.83 81.97 82.16 81.65 81.10 81.17 81.59 81.66 81.32 81.93 80.19 80.31 79.13 79.51 80.18 79.78 77.73
+1.3 +£1.2 #12 +14 +1.1 +1.0 1.3 1.2 1.0 =14 1.0 1.2 +11 =+£1.1 =+£1.5 =*13 +£23 =*1.7 =*19 =*14 =*2.0
Note: the task is Node Classification, and the embedding dimensionality is 32 (same for Table 7).
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Figure 4: Neighborhood analyses of datasets. The common

in/out neighborhood consists of more neighbors than diffusion

in/out neighborhood that traditional methods typically use. The 8 digraph datasets demonstrate a clear scale-free characteristic

for most neighborhoods.

Table 7: Parameter sensitivity analysis in terms of K. D-HYPR
consistently outperforms SOTA methods by a large margin.

K | 1 2 3
CiteSeer | 69.23+15 70.66=12 69.76 + 1.5
Cora-ML | 821613 8216+13 8219z 13

Table 8: Ablation study that demonstrates the individual
contribution of components in D-HYPR (32-Dim, the NC task).

Method CiteSeer Cora-ML

D-HYPR (Our Full Design) 70.66 + 1.2 82.19+1.3
No A% 68.72+12  8211%1.2
No A% 69.10£0.9  81.33+1.4
No Ak 69.98+1.0  81.86+1.6
No Ak 69.84+13  81.74%18
No Hyperbolic Neighborhood Collaboration 70.13+1.5  82.03+1.1
No Gravity 68.58 + 1.3 79.21+1.5
No Fermi-Dirac 70.03 £ 1.2 82.05+1.3
No Self-Supervision 67.85+1.9  78.15+ 2.1
Euclidean 61.86 + 5.4 73.38 + 6.7
Euclidean and No Neighborhood Collaboration ~ 51.01 +6.2  65.46 + 12.1
A + Three Learnable Matrices 60.97 +12.7 78.92+2.9

7 CONCLUSION

We propose D-HYPR: the Digraph HYPERDbolic Network, as a novel
GNN-based formalism for Digraph Representation Learning (DRL)

by addressing Neighborhood Modeling and Asymmetry Preserva-
tion. Through extensive and rigorous evaluation involving 21 prior
techniques, we empirically demonstrate the superiority of D-HYPR.
D-HYPR outperforms the current SOTA consistently and statisti-
cally significantly on 8 digraph datasets across 4 tasks. In addition,
D-HYPR retains effectiveness given a low budget of embedding di-
mensionality or labeled training samples, which is desirable for
real-world applications.

One limitation of D-HYPR is the increased number of parame-
ters, due to the use of multiple neighborhoods. As future work,
we would like to explore automatic and dynamic neighborhood
partitioning, as well as parameter-sharing mechanisms to improve
D-HYPR. Furthermore, theoretical analyses and novel large-scale
applications of D-HYPR are avenues worthy of exploration.
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