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Challenge 1: Neighborhood Modeling. The neighborhoods

of a node may possess unique semantics. For instance, in social

networks, in-neighbors are commonly known as followers, while

out-neighbors are accounts that the user follows. In citation net-

works, in-neighbors of a node can be existing works cited by a paper

by the time the camera-ready version of the paper is submitted,

whereas out-neighbor connections arise subsequent to the paper

coming out. Existing GNN techniques [8, 23, 51, 63] transform di-

graphs to undirected graphs to enable running experiments, which

simplifies the learning problem, or only consider the direct out-

neighbors in the graph convolution. Thus, they lose characteristics

of the original structure, resulting in misleading message passing

and ultimately subpar results on digraph-specific problems.

Challenge 2: Asymmetry Preservation. Due to the inherent

symmetry of popular measures, such as the inner product or dis-

tance in the embedding space, which produces the same scores

for the node pair (𝑖, 𝑗) and ( 𝑗, 𝑖), inner-product- or distance-based
learning objectives used by popular GNNs are unsuitable for cap-

turing the asymmetric connection probabilities for node pairs in

digraphs [40]. Applications based on link prediction or graph topol-

ogy learning are particularly affected when models fail to preserve

digraph structural asymmetry.

Recently, spectral-based DRL GNNs [31, 48, 49, 58] have been

proposed to address Challenge 1 with respect to modelling neigh-

borhoods for digraphs. However, the learned filters from these

methods depend on the Laplacian eigenbasis, which is tied to a

graph’s structure [47]. Models trained on a specific structure can-

not be directly applied to graphs with different structures [55].

Separately, to address Challenge 2, approaches such as viewing

directions of edges as a kind of edge feature [14], or parametrizing

the node pair likelihood function by a neural network [2, 42] have

been proposed, but these techniques fail to consider Challenge 1.

Moreover, prior DRL techniques are often constrained to directed

acyclic graphs (DAGs) [12, 45, 46], are transductive [12, 43, 45, 49],

or have poor generalizability across tasks. For example, some stud-

ies provide experimental evidence for a single task only ś e.g., link

prediction as in [43] or node classification as in [31, 49].

We propose DigraphHYPERbolic Networks (D-HYPR) to fully

address these limitations. To overcome Challenge 1, D-HYPR uti-

lizes hyperbolic collaborative learning from multi-ordered and parti-

tioned neighborhoods. For Challenge 2, D-HYPR takes advantage of

self-supervised learning, using asymmetry-preserving regularizers

supported by well-established socio-psychological theories [32, 33].

Specifically:

(1) Neighborhood Modeling with Partitioned and Larger Receptive

Fields: by leveraging collaborative learning from multi-ordered

four canonical types of neighborhoods (Fig. 2 (a)), D-HYPR mod-

els the distinct node neighborhoods, and captures the local

directed graph characteristics.

(2) Neighborhood Modeling with a non-Euclidean Space: D-HYPR

learns node representations of real-world digraphs (which ex-

hibit scale-free or hierarchical structures) in hyperbolic space

to avoid distortion of node neighborhoods.

(3) Asymmetry Preservation with Regularizers: motivated by two

decomposed causes of link formation, homophily [32] and pref-

erential attachment [33], we employ two regularizers in training

D-HYPR, which are used in a self-supervised fashion to account

for each of the two driving forces of link formation. These

regularizers lead to performance gains in downstream tasks.

(4) Flexibility due toMessage-passing-basedGNNFormalism: D-HYPR

falls into the category of message-passing-based GNNs that

capture both graph structure and semantics. D-HYPR has the

capability to inductively learn representations for general di-

graphs that potentially contain cycles, non-transitive relations,

outliers, and noise.

Our contributions are three-fold: (1)We propose D-HYPR for DRL.

D-HYPR considers the unique node neighborhoods in digraphs with

multi-scale neighborhood collaboration in hyperbolic space. D-HYPR

respects asymmetric relationships of node-pairs, which is guided by

sociopsychology-inspired regularizers. (2)We perform extensive

benchmarking experiments across 8 real-world digraph datasets.

Our evaluation involves 4 tasks and 21 prior methods. Results

demonstrate the significant superiority of D-HYPR against the state

of the art. (3) D-HYPR generates meaningful embeddings in very

low dimensionalities. This added benefit is desirable for large-scale

real-world applications by efficiently saving space while preserving

effectiveness.

2 RELATEDWORK

Graph Representation Learning (GRL). GRL methods have

evolved from matrix factorization [18], graph kernels [41], and ran-

dom walk-based transductive models [37], into GNNs [22], which

have greatly surpassed these prior methods in numerous exper-

iments. Interested readers may refer to comprehensive reviews

[5, 25, 55, 62] for further details. Current popular GRL approaches [3,

3, 8, 22, 51, 59, 63] have primarily considered undirected homo-

geneous GRL. Although certain recent GNNs can be applied to

digraphs, e.g., the Graphormer [57] with its Transformer-based

design [50], these techniques have been validated solely by experi-

ments on undirected graphs [58], and are computationally imprac-

tical for large-scale digraphs.

Directed Graph Embedding. There are comparatively few stud-

ies that address DRL. HOPE [36] captures asymmetric transitivity

but depends on a low rank assumption of the input, and fails to

generalize to a variety of tasks [19]. APP [61] captures asymmetry

by relying on random walks. ATP [44] removes cycles in digraphs

beforehand and then leverages factorization. NERD [19] extracts

a source and a target walk, and employs a shallow neural model.

DGCN [49], DiGCN [48] and MagNet [58] are recent GNNs that ex-

tend spectral-based GCNs [22] to digraphs, but are tied to a graph’s

Laplacian. DAGNN [46] is proposed for DAGs by injecting a DAG-

specific inductive biasÐpartial orderingÐinto the GNN design.

Hyperbolic Embedding Learning.Most non-Euclidean embed-

ding techniques [13, 16, 28, 34, 35, 43] only account for the graph

structure and do not leverage node features. In contrast, we consider

the general DRL setting of seeking to capture both digraph structure

and attributes, and propose a message-passing-based GNN with an

inductive learning capability.

HGCN [8] and HGNN [29] were proposed concurrently to gener-

alize GNNs to take advantage of the strength of hyperbolic geome-

tries. Other hyperbolic GNNs include Constant Curvature GCNs [1]

that provide a mathematically grounded generalization of GCNs,
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HAT [59] that studies hyperbolic GNN with an attention mecha-

nism, GIN [63] that draws on both Euclidean and hyperbolic geome-

tries, and so on [9, 10, 60]. Our work is built upon these prior efforts

on hyperbolic GNNs for undirected graphs, to address challenges

associated with digraphs.

3 PRELIMINARIES

Definition 1. Digraph Representation Learning [48, 58]. Let

G = (V, E) be a homogeneous graph with vertex setV and edge

set E. Each edge 𝑒 ∈ E is an ordered pair 𝑒 = (𝑖, 𝑗) between
vertices 𝑖 and 𝑗 . The adjacency matrix of G can be denoted as

𝐴 = {0, 1} |V |× |V | . G is a digraph when ∃(𝑖, 𝑗), 𝐴𝑖, 𝑗 ≠ 𝐴 𝑗,𝑖 .
Nodes are described by a feature matrix 𝑋 0,𝐸 ∈ R

|V |×𝑑 , i.e., each
node 𝑖 ∈ V has a 𝑑-dimensional Euclidean feature x0,𝐸𝑖 . The super-

script 𝐸 indicates that the vector lies in a Euclidean space, while 𝐻

denotes a hyperbolic vector. 0 denotes the input layer.

DRL is an effective and efficient solution for digraph analytics.

The efficiency is achieved by converting the adjacency-matrix-based

data into low-dimensional embeddings. Thus, the goal of DRL is to

learn a mapping

𝑓 :
(
V, E,

(
x0,𝐸𝑖

)
𝑖∈V

)
→ 𝑍 ∈ R

|V|×𝑑 ′
(1)

that maps nodes to low-dimensional (𝑑′ ≪ |V|) embedding vectors.

These should capture both structural and semantic information and

be valuable for downstream tasks.

Definition 2. The Poincaré BallModel.1 The Poincaré ball model [13](
D
𝑛
𝑐 , 𝑔

𝑐
)
is defined by the 𝑛-dimensional manifold D

𝑛
𝑐 = {𝑥 ∈ R

𝑛 :

𝑐 ∥x∥ < 1} equipped with the Riemannian metric:𝑔𝑐x = 𝜆2x𝑔
𝐸 , where

𝜆x := 2
1−𝑐 ∥x∥2 , 𝑔

𝐸
= I𝑛 is the Euclidean metric tensor, and 𝑐 > 0 (we

refer to −𝑐 as the curvature). D𝑛𝑐 is the open ball of radius 1/
√
𝑐 . The

connections between hyperbolic space and tangent space are estab-

lished by the exponential map exp𝑐x : TxD𝑛𝑐 → D
𝑛
𝑐 and logarithmic

map log𝑐x : D𝑛𝑐 → TxD𝑛𝑐 :

exp𝑐x (v) = x ⊕𝑐
(
tanh

(√
𝑐
𝜆𝑐x ∥v∥

2

)
v

√
𝑐 ∥v∥

)
(2)

log𝑐x (y) =
2

√
𝑐𝜆𝑐x

tanh−1
(√
𝑐 ∥−x ⊕𝑐 y∥

) −x ⊕𝑐 y

∥−x ⊕𝑐 y∥ (3)

where x, y ∈ D
𝑛
𝑐 , v ∈ TxD𝑛𝑐 , and ⊕𝑐 denotes Möbius addition, and

x ⊕𝑐 y :=

(
1 + 2𝑐 ⟨x, y⟩ + 𝑐 ∥y∥2

)
x +

(
1 − 𝑐 ∥x∥2

)
y

1 + 2𝑐 ⟨x, y⟩ + 𝑐2 ∥x∥2 ∥y∥2
. (4)

The Möbius scalar multiplication (Eq. 5) and Möbius matrix multi-

plication of x ∈ D
𝑛
𝑐 \{0} (Eq. 6) are

𝑟 ⊗𝑐 x :=
1
√
𝑐
tanh

(
𝑟 tanh−1 (

√
𝑐 ∥x∥ )

) x

∥x∥ (5)

𝑀 ⊗𝑐 x := (1/
√
𝑐 ) tanh

(
∥𝑀x∥
∥x∥ tanh−1 (

√
𝑐 ∥x∥ )

)
𝑀x

∥𝑀x∥ (6)

where 𝑟 ∈ R and 𝑀 ∈ R
𝑚×𝑛 . The induced distance function on(

D
𝑛
𝑐 , 𝑔

𝑐
)
is given by

𝑑D
𝑛
𝑐
(x, y) = (2/

√
𝑐 ) tanh−1

(√
𝑐 ∥−x ⊕𝑐 y∥

)
(7)

For a longer introduction of hyperbolic or non-Euclidean geometry,

we refer readers to relevant previous work [4, 6, 8, 13, 39].

1Our method is compatible with other non-Euclidean embedding models.

4 METHODOLOGY

Driven by the goal of addressing the challenge of Neighborhood

Modeling and Asymmetry Preservation in digraphs, we propose

D-HYPR (Fig. 2 (b)), which leverages hyperbolic collaborative learn-

ing from multi-ordered and partitioned neighborhoods, and self-

supervised learning via asymmetry-preserving regularizers.

Euclidean space does not provide the most powerful or meaning-

ful geometrical representations when input data exhibits a highly

complex non-Euclidean latent anatomy, as for instance for real-

world digraphs with a scale-free or hierarchical structure [4, 6].

As the volume of nodes grows exponentially with the distance

from a central node, non-Euclidean geometry is more suitable than

Euclidean for embedding such digraphs [28, 39, 43]. Hyperbolic em-

beddings can incur smaller data distortion for real-world digraphs,

which leads to a better representation of the nodes’ local neigh-

borhoods. This motivates our investigation of utilizing hyperbolic

GNNs over Euclidean counterparts as the backbone for DRL.

4.1 Hyperbolic Embedding Learning

To perform message passing in hyperbolic space, the general effi-

cient approach is to move basic operations of hyperbolic space to

the tangent space [59, 63]. Given G and x0,𝐸𝑖 , we first obtain x0,𝐻𝑖
by applying exponential map exp𝑐

0

0 (·) to map the Euclidean input

feature x0,𝐸𝑖 into hyperbolic space with curvature −𝑐0 ∈ R, where

𝑐0 is learned in training. Hyperbolic message passing (Eqs. 8 to 10)

is then performed by multiple layers (forming the Hyperbolic Graph

Embedding Layers in Fig. 2 (b)). The layer is indexed by ℓ , ranging

from 1 to a pre-defined integer 𝑙 .

(1) Hyperbolic Feature Transformation is performed by

mℓ,𝐻
𝑖 =𝑊 ℓ ⊗𝑐ℓ−1 x

ℓ−1,𝐻
𝑖 ⊕𝑐ℓ−1 b, (8)

where𝑊 ℓ ∈ R
𝐹 ℓ×𝐹 ℓ−1 is the weight matrix, and b ∈ D

𝐹 ℓ

𝑐ℓ−1
denotes

the bias (both are learned). We employ a unique trainable curvature

at each layer to obtain a suitable hyperbolic space to account for

different depths of the neural network.

(2) Hyperbolic Neighbor Aggregation.We then leverage the bridging

between the hyperbolic space and the tangent space to perform

neighbor aggregation [59, 63], resulting in hℓ,𝐻𝑖 ∈ D
𝐹 ℓ

𝑐ℓ−1
,

hℓ,𝐻𝑖 = exp𝑐
ℓ−1

0
©­
«

∑︁
𝑗 ∈{𝑖}∪N(𝑖 )

𝑒𝑖 𝑗 log
𝑐ℓ−1
0

(
mℓ,𝐻

𝑗

)ª®
¬
. (9)

N(𝑖) = { 𝑗 : (𝑖, 𝑗) ∈ E} denotes the set of neighbors of 𝑖 ∈ V .

We apply out-degree normalization of 𝐴 (adjacency matrix), i.e.,

𝐷−1
out (𝐴+ 𝐼 ), to obtain the aggregation weights for simplicity (while

𝑒𝑖 𝑗 can be computed with different mechanisms such as attention

or leveraging edge attributes if present). 𝐷out is a diagonal matrix

such that element (𝑖, 𝑖) is the sum of row 𝑖 in 𝐴 plus 1. We choose

the tangent space of the origin for efficiency [8].

(3) Non-Linear Activation with Trainable Curvatures. xℓ,𝐻𝑖 ∈ D
𝐹 ℓ

𝑐ℓ
,

the output hyperbolic representation of node 𝑖 in layer ℓ is set as

xℓ,𝐻𝑖 = exp𝑐
ℓ

0

(
𝜎

(
log𝑐

ℓ−1
0

(
hℓ,𝐻𝑖

)))
. (10)

To smoothly vary the curvature of each layer, in Eq. 10, we first map

hℓ,𝐻𝑖 to the tangent space with the logarithmic map. A point-wise
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matrix 𝐴 to provide a wider range of neighborhoods to Hyperbolic

Graph Embedding Layers (Fig. 2 (b)).

Neighborhood Aggregation.We then apply Hyperbolic Neighbor-

hood Aggregation to enable a joint assessment of the neighborhoods.

Here, we view the 4𝐾 output hyperbolic vectors from the Hyper-

bolic Graph Embedding Layers as representations of 4𝐾 neighbors

of the anchor node 𝑖 . We consider zfuse𝑖 , which is the hyperbolic

average of these 4𝐾 vectors, as the initial representation of node 𝑖

before hyperbolic neighborhood collaboration. Subsequently, we

apply Eq. (9) with the learned curvature −𝑐𝑙 from the last hyper-

bolic graph embedding layer 𝑙 , and use equal aggregation weights
1

4𝐾+1 (4𝐾 plus 1 because zfuse𝑖 itself is included as a neighbor in

order to enforce a skip connection). The resulting output, z𝑙,𝐻𝑖 , is

the final hyperbolic embedding of node 𝑖 . Hyperbolic Neighbor-

hood Aggregation can encourage a better utilization of neighbor-

hoods by synthesizing intermediate representations learned in a

neighborhood-level in hyperbolic space.

4.3 Self-Supervised Learning with
Asymmetry-Preserving Regularizers

Homophily and preferential attachment are two driving forces of link

formation according to sociopsychological theories. Homophily [32]

refers to the notable role of similarity, often summarized as łbirds

of a feather flock togetherž, and preferential attachment [33] de-

scribes the role of prior connectivity: the link formation likelihood

is asymmetric and determined by individual connectivity. To model

these two decomposed causes of link formation, we invoke two

regularizers to predict directed edges when training D-HYPR, thus

allow it to respect asymmetry in digraph link formation by learning

it as a self-supervised task.

We first adopt the Fermi-Dirac decoder [26] as a regularizer to

reinforce the learning of an appropriate node-pair distance in the

hyperbolic embedding space (to well account for homophily). The

hyperbolic Fermi-Dirac decoder defines the likelihood of a node

pair (𝑖, 𝑗) as 𝑝 (𝑖, 𝑗 )𝑓 =
1

𝑒

©­«
𝑑
D
𝑑′
𝑐𝑙

(
z
𝑙,𝐻
𝑖

,z
𝑙,𝐻
𝑗

)2
−𝑟ª®¬

/𝑡
+ 1

, (15)

where 𝑟=2 and 𝑡=1 (default), and 𝑑
D
𝑑′
𝑐𝑙
(·, ·) is the hyperbolic distance

(Eq. 7).

We further preserve the individual asymmetric node connectiv-

ity by learning an additional 1-dimensional mass for each node.

This design is elegantly derived from Newton’s theory of universal

gravitation: each particle in the universe attracts other particles

through gravity, which is proportional to their masses, and in-

versely proportional to their distance. The learnable node mass

is flexible, and it encompasses many centrality measures, includ-

ing Katz, Betweenness and Pagerank. It is also capable of provid-

ing explainable visualizations [40]. To incorporate this idea into

D-HYPR based in hyperbolic space instead of Euclidean, we map

z𝑙,𝐻𝑖 to the tangent space of the origin with the logarithmic map

(i.e., z𝑙,𝐸𝑖 = log𝑐
𝑙

0

(
z𝑙,𝐻𝑖

)
), and then employ a Euclidean linear layer

to learn𝑚𝑖 ∈ R (mass of node 𝑖). The likelihood of node pair (𝑖, 𝑗)
is computed by

𝑝 (𝑖, 𝑗 )𝑔 = 𝛾

(
𝑚 𝑗 − 𝜆 log

(
𝑑
D
𝑑′
𝑐𝑙

(z𝑙,𝐻𝑖 , z𝑙,𝐻𝑗 )2
))
, (16)

where 𝛾 denotes the sigmoid function, and 𝜆 ∈ R is a hyper-

parameter that weights the relative importance of the symmetric

embedding distance to the asymmetric node relationships. 𝑝 (𝑖, 𝑗)𝑔 ≠
𝑝 ( 𝑗, 𝑖)𝑔 . Eqs. (16) and (15) both serve as self-supervised regularizers

by minimizing the binary cross-entropy loss with negative sam-

pling to estimate the likelihood of each node pair. However, the

two are placed at different depths of D-HYPR. Specifically, Eq. (16) is

employed one layer after where Eq. (15) is used. Thus, even though

𝑑
D
𝑑′
𝑐𝑙
(·, ·) also appears in Eq. (16), we find that Eq. (15) provides aux-

iliary guidance for the model to better construct the final hyperbolic

embedding space.

4.4 Time Complexity

The time complexity of the the Hyperbolic Graph Embedding Layer

is 𝑂 (𝐾𝑛𝑑ℓ−1𝑑ℓ +𝐾𝑚𝑑ℓ ) where 𝐾 denotes the maximal order of the

𝑘-order proximity matrix. 𝑑ℓ−1 and 𝑑ℓ , respectively, denote the

dimensionality of input and output features of layer ℓ . 𝑛 and𝑚 are

the number of nodes and edges respectively. The time complexity

of Hyperbolic Neighborhood Aggregation is 𝑂 (𝐾𝑛𝑑𝑙𝑑𝑙 ) , where 𝑑𝑙
denotes the dimensionality of output features of the final layer

𝑙 . Supposing 𝑑ℓ−1 and 𝑑ℓ are equal to 𝑑 , an 𝑙-layer model has a

cost of 𝑂 (𝑙𝐾𝑛𝑑2 + 𝑙𝐾𝑚𝑑 ) . The time complexity is on par with other

GNN methods such as HAT and GCN that have a complexity of

𝑂 (𝑙𝑛𝑑2 +𝑙𝑚𝑑 ) , because in practice 𝐾 is a small non-negative integer

(e.g., the maximum 𝐾 is 3 in our paper, and most of the time, setting

𝐾 to 2 would be sufficient).

5 EXPERIMENTAL SETUPS

Datasets. We use open access homogeneous digraph datasets of

varied size and domain (Table 1), and create numerous splits of each

dataset and task for more reliable results.

Tasks & Metrics. We use the following tasks and metrics.

• Link Prediction (LP). LP demonstrates a method’s capability in

modeling asymmetric node connectivity, as a binary classification

task of discriminating the missing edges from the fake ones.

Given a digraph G, we train models on its incomplete version G′

by randomly removing edges. Half of the removed edges form

the positive samples in the validation set, and the other half form

the positive samples in the test set. The negative samples are

randomly sampled from unconnected node pairs in G, drawing
the same number as there are positive samples. Metrics are AUC

(Area under the ROC Curve) and AP (Average Precision).

• Semi-supervised Node Classification (NC) [48]. In NC, each dataset

contains only 20 labeled nodes for each node class, which requires

use of the graph structure for predicting the labels of remaining

nodes. The validation set consists of 500 random unlabeled nodes.

Unlabeled nodes not in the validation set make up the test set.

• Link Sign (Property) Prediction (SP).Many real-world graphs are

signed networks, e.g., social networks that allow trust and distrust

user relationships. We use the Wiki dataset to evaluate the accu-

racy in predicting attributes of directed edges representing votes

{oppose, neutral, support} [20]. Given a digraph G, 5% of edges

are labeled for training, 5% for validation, and 90% for testing.

• Embedding Visualization (EV). EV shows the expressiveness of

methods qualitatively. We visualize node representations in 2D

space projected via PCA [53]. Embedding vectors are obtained
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Table 1: Statistics of datasets. Reciprocity measures the like-

lihood of nodes to be mutually linked. Label rate is the ratio

of nodes labeled for training.

LP Reciprocity # Nodes # Edges Nodes Edge
Degree
Avg. Max

Air 15.68% 1, 226 2, 615 Airport Preferred Route 4 37
Blog 24.25% 1, 224 19, 025 Blog Hyperlink 31 467
Survey 38.77% 2, 539 12, 969 User Friendship 10 36
Cora 0.06% 2, 708 5, 429 Paper Citation 4 168
DBLP 0.43% 12, 591 49, 743 Paper Citation 8 710

NC # Nodes # Edges Node Edge Classes Features Label Rate

CiteSeer 3, 312 4, 715 Paper Citation 6 3, 703 3.62%
Cora-ML 2, 995 8, 416 Paper Citation 7 2, 879 4.67%
Wiki 7, 115 103, 689 User Vote 3 7, 115 0.84%

from the NC task. Hyperbolic embeddings are mapped to the

Euclidean space before 2D projection.

In all tables, the best score is bolded, the second best is underlined,

and the third best is in italic. Relative gains are computed as (Best−
Second)/Second. ∗ indicates statistically superior performance of

the best to the second best at a significance level of 0.001 using a

standard paired t-test. Values after ± are standard deviations.

Implementation Details. Hyperparameter tuning was performed

for each method per task and dataset (on the first split), which

substantially improved the results of ablations and baselines. We

searched initial learning rates {0.001, 0.01, 0.1}, momentums {0.9, 0.999},
weight decays {0, 0.001}, and dropout rates {0, 0.05, 0.1}. Unique hy-
perparameters associated with each method were considered as

well. E.g., for GAT, we searched the number of attention heads

from {4, 8} and 𝛼 from {0.1, 0.2}; for DiGCN, the teleport probabil-
ity from {0.05, 0.1, 0.15, 0.2} and 𝐾 from {1, 2} [48, 58]; for MagNet, 𝑞

in the magnetic Laplacian from {0, 0.05, 0.1, 0.15, 0.2, 0.25}and 𝐾 from

{1, 2, 3} [58]; etc. For D-HYPR, we tuned 𝜆 from {0.01, 0.05, 1, 5} and
𝐾 from {1, 2, 3}. For all GNNs, we used 2 layers for a fair com-

parison. Models were optimized with Adam [21] following prior

work [7, 8, 59], with early stopping based on the validation results.

6 RESULTS

Link Prediction.We list the LP results of D-HYPR in comparison

to 10 GNN techniques using 4 or 8 dimensional node embeddings

on Air and Cora in Table 2. One advantage of hyperbolic digraph

embedding is low data distortion even with a low-dimensional em-

bedding space. The superior performance of D-HYPR is evidentÐthe

highest relative gain of D-HYPR is 21.43% on AP over the Cora

dataset. In addition, the difference from the mean to the best metric

value is considerably lower for D-HYPR than other methods. Given

a low budget of embedding dimensionality, methods that use hy-

perbolic space (D-HYPR, HAT and HGCN) are top performing, and

the latest DRL GNNs (D-HYPR, MagNet, DiGCN, and DGCN) overall

outperform traditional GNNs (GCN, VGAE, and GAT).

We report the LP performance of D-HYPR in Table 3 in compari-

son to 14 techniques by using a 32-dimensional embedding space

following the typical practice [48]. We can observe that techniques

relying on matrix decomposition (ATP) or random walks (NERD,

APP), are sensitive to outliers and lack effectiveness and robust-

ness. While standard deviations are omitted from the table due to

space constraints, we have found that methods with higher average

metric values typically have smaller standard deviations. GNNs

obtain higher scores. Comparing Euclidean-based methods, DRL

techniques (marked with 2) can achieve better results than popular

GNNs (e.g., GCN). Still, methods that learn representations in hy-

perbolic space (marked with ğ) tend to be more competitive than

those in Euclidean space.With 32-dimensional embeddings, gravity-

augmented GCN and VGAE obtain better results than GCN and

VGAE, and are able to occasionally hold the second or third position

when ranking all 15methods based on their performance. As the di-

mensionality increases, the gap from D-HYPR to the other methods

decreases, but D-HYPR remains the best-performing method across

all datasets and metrics.

Semi-supervised Node Classification. Table 4 reports the NC

results on CiteSeer and Cora-ML, and Table 5 provides the results

on Wiki. D-HYPR, which considers diverse neighborhoods with low

distortion and is trained with self-supervision to preserve asymme-

try, statistical significantly outperforms the state-of-the-art (SOTA)

methods. We increase the embedding dimensionality from 4 up to

256. The effectiveness of D-HYPR is remarkable in low dimension-

ality regimes, yet D-HYPR also remains the best method at a high

dimensionality. Unlike the LP task, DGCN and DiGCN often hold

the second or third rank. However, due to sensitivity to tuned hy-

perparameters, their performance is unstable across dataset splits

(i.e., occasionally extremely large standard deviations).

We further follow prior work [15] in reporting the results when

the number of nodes labeled for training is varied between 1%

and 10%. According to Fig. 3, D-HYPR consistently outperforms the

baselines, and tends to perform well at fairly low label rates.

Link Sign Prediction. Table 5 reports the results of SP. D-HYPR

is the most effective GNN model. Similar to LP and NC tasks, the

effectiveness of D-HYPR is the most striking using a 4 dimensional

embedding space. One interesting observation is that the relative

gains of D-HYPR on Wiki NC is much higher than Wiki SP, which

suggests that asymmetry preservation can greatly improve the NC

results (because unlike the NC task, while learning the asymmetric

link sign prediction task, the baselines are able to simultaneously

learn asymmetric node connectivity).

Embedding Visualization. In Fig. 1, we visualize 2D projections

of embeddings. Unlike the prior methods (e.g., DGCN, DiGCN,

etc.), in whose 2D projected embedding space nodes belonging

to different topic classes often severely overlap, D-HYPR leads to

the best class separation. This suggests that D-HYPR produces an

embedding space that better captures the semantics of the digraph.

Parameter Sensitivity. We first examine how 𝜆 affects the per-

formance of D-HYPR by varying 𝜆 from 0.25 to 10 (Table 6) while

keeping other hyperparameters fixed (32-Dim, the NC task). Larger

𝜆 place more value on a symmetric embedding distance (which mod-

els ‘homophily’ ), whereas a smaller 𝜆 emphasizes the asymmetric

node connectivity (which characterizes ‘preferential attachment’).

The performance of D-HYPR first increases with 𝜆 and then de-

creases. Using the 𝜆 that produces the best result, we then vary 𝐾 .

As shown in Table 7, better results are obtained when 𝐾 is larger,

which means a wider receptive field and more scale information.

However, an overly large 𝐾 can lead to feature dilution. It is worth

mentioning that D-HYPR still outperforms the SOTA methods by a

large margin when 𝐾=1, which suggests the superiority of D-HYPR
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Table 2: Results of Link Prediction on Digraphs with 4- or 8-dimensional node embeddings.

Model (4/8-Dim)
Air Cora

4-Dim 8-Dim 4-Dim 8-Dim
AUC AP AUC AP AUC AP AUC AP

GCN [22] 67.88 (61.73) 67.88 (60.51) 69.21 (64.05) 69.68 (63.48) 65.92 (61.00) 65.92 (59.97) 70.89 (65.67) 71.26 (65.28)
VGAE [23] 69.77 (62.86) 70.73 (62.55) 73.49 (66.87) 74.04 (66.95) 63.86 (56.90) 63.86 (55.39) 66.60 (60.33) 66.60 (58.75)
GAT [51] 69.02 (63.48) 69.02 (62.86) 71.31 (67.03) 71.31 (67.01) 68.18 (64.73) 68.18 64.31) 72.70 (68.70) 73.93 (69.08)
Gravity GCN 2 [40] 65.20 (59.41) 67.73 (60.98) 74.00 (68.91) 75.43 (69.14) 70.37 (65.80) 70.37 (64.65) 75.29 (71.85) 77.17 (72.50)
Gravity VGAE 2 [40] 62.24 (55.48) 62.24 (54.97) 68.00 (60.23) 68.00 (59.57) 66.74 (61.79) 66.74 (60.61) 71.04 (65.45) 71.04 (64.15)
DGCN 2 [49] 74.36 (65.75) 71.42 (63.27) 77.23 (70.60) 75.86 (70.27) 75.33 (71.88) 71.95 (68.58) 79.01 (75.30) 79.01 (74.28)
DiGCN 2 [48] 72.59 (64.37) 70.01 (61.66) 74.65 (69.27) 75.40 (68.29) 70.61 (65.81) 67.11 (61.57) 74.63 (70.65) 74.88 (69.86)
MagNet 2 [58] 72.26 (58.44) 71.10 (57.92) 76.64 (64.26) 78.62 (64.69) 77.45 (55.93) 79.32 (56.84) 77.46 (66.82) 76.59 (63.96)
HAT ğ [59] 76.11 (71.24) 73.72 (69.35) 80.52 (75.13) 79.73 (74.05) 76.25 (72.84) 74.38 (70.27) 82.58 (77.82) 82.05 (77.39)
HGCN ğ [8] 80.90 (66.63) 80.90 (65.95) 84.67 (77.65) 85.97 (78.14) 80.02 (67.37) 82.16 (66.66) 85.05 (83.07) 88.04 (84.63)

D-HYPR (ours) 2ğ 85.79 (∗81.69) 85.92 (∗81.93) 88.46 (∗84.26) 88.46 (∗84.82) 86.08 (∗83.99) 88.74 (∗85.33) 88.88 (∗86.31) 91.13 (∗87.76)

Relative Gains (%) 6.04 (14.67) 6.21 (18.14) 4.48 (8.51) 2.90 (8.55) 7.57 (15.31) 8.01 (21.43) 4.5 (3.9) 3.51 (3.7)

Note: 2 denotes the method was designed specifically for homogeneous digraphs (i.e., DRL), and ğ denotes the use of hyperbolic space. Results (in percentage

%) on each dataset of each method are from 100 repeated experiments (10 different train/test splits per dataset and 10 runs using different random seeds per

split). We list the best and the average results, and the average is shown in brackets.

Table 3: Results of Link Prediction on Digraphs with 32-dimensional node embeddings.

Model (32-Dim)
Air Cora Blog Survey DBLP

AUC AP AUC AP AUC AP AUC AP AUC AP

MLP 81.29 (76.52) 83.53 (78.18) 84.47 (81.67) 87.70 (83.69) 93.31 (92.48) 93.31 (92.45) 91.21 (89.98) 92.46 (90.75) 51.22 (49.98) 51.22 (49.99)
NERD 2 [19] 60.62 (56.39) 67.37 (60.19) 65.62 (62.02) 71.68 (65.66) 95.03 (94.00) 95.03 (93.47) 77.12 (69.30) 79.60 (70.80) 95.78 (95.37) 95.93 (95.41)
ATP 2 [44] 68.99 (66.40) 68.99 (64.99) 88.47 (86.44) 88.47 (86.04) 85.05 (83.46) 85.05 (79.30) 73.53 (71.47) 73.53 (70.64) 60.43 (59.21) 60.43 (57.37)
APP 2 [61] 85.08 (82.72) 86.35 (84.58) 86.65 (85.50) 89.80 (87.22) 92.33 (91.65) 92.33 (90.55) 91.16 (90.34) 92.77 (91.14) 95.58 (95.33) 9573 (95.41)
GCN [22] 76.71 (72.27) 80.95 (75.13) 80.77 (78.73) 85.67 (81.21) 91.87 (90.18) 92.16 (90.54) 89.29 (87.98) 91.78 (89.42) 92.98 (92.34) 94.37 (93.15)
VGAE [23] 77.79 (73.75) 82.73 (76.75) 80.80 (79.24) 85.47 (81.57) 92.25 (91.39) 92.80 (91.85) 90.07 (88.78) 92.39 (90.14) 93.36 (92.64) 94.85 (93.45)
GAT [51] 84.21 (80.24) 84.79 (81.46) 85.40 (82.58) 88.53 (84.60) 92.69 (89.95) 92.69 (89.83) 92.01 (91.05 ) 93.09 (91.65) 95.94 (95.62) 96.28 (95.80)
Gravity GCN 2 [40] 85.16 (82.22) 86.86 (83.50) 85.62 (83.87) 88.73 (85.62) 95.11 (94.46) 95.11 (94.31) 91.63 (90.86) 93.11 (91.76) 96.89 (96.78) 97.46 (97.34)
Gravity VGAE 2 [40] 83.98 (80.06) 85.67 (81.61) 87.17 (84.46) 89.51 (86.22) 96.15 (95.59) 96.15 (95.42) 91.64 (90.96) 93.23 (91.82) 95.98 (95.57) 96.24 (95.81)
DGCN 2 [49] 77.83 (73.68) 80.79 (75.64) 83.57 (81.34) 85.48 (83.00) 87.74 (86.74) 88.13 (86.75) 90.47 (89.49) 91.27 (89.94) 92.26 (91.83) 90.16 (89.52)
DiGCN2 [48] 75.35 (71.27) 77.64 (73.97) 81.80 (78.90) 83.03 (79.92) 91.98 (90.50) 89.34 (87.36) 89.85 (88.17) 89.80 (88.08) 89.99 (89.72) 89.93 (89.60)
MagNet 2 [58] 79.32 (75.58) 80.66 (76.34) 82.77 (71.90) 81.63 (69.84) 91.83 (90.81) 90.46 (89.29) 86.65 (84.81) 87.76 (85.71) 81.89 (80.57) 81.68 (81.50)
HNN ğ [13] 88.42 (85.79) 88.95 (86.40) 88.75 (86.33) 90.81 (87.81) 95.80 (95.39) 95.80 (95.16) 92.07 (91.39) 93.40 (92.04) 97.43 (97.14) 97.43 (97.13)
HGCN ğ [8] 88.26 (86.12) 88.88 (86.64) 89.24 (87.68) 91.54 (88.97 ) 95.64 (95.23) 95.64 (95.00) 92.15 (91.50) 93.38 (92.08) 97.54 (97.33) 97.62 (97.37)

D-HYPR (ours) 2ğ 89.07 (86.33) 89.21 (∗86.86) 89.50 (∗88.22) 91.62 (∗89.47). 96.19 (95.62) 96.18 (∗95.48) 92.56 (∗91.96) 93.63 (∗92.46) 97.66 (∗97.38) 97.75 (∗97.44)

Relative Gains (%) 0.74 (0.24) 0.29 (0.25) 0.29 (0.62) 0.09 (0.56) 0.04 (0.03) 0.03 (0.06) 0.44 (0.50) 0.25 (0.41) 0.12 (0.05) 0.13 (0.07)

Note: Every result is from 100 experiments (the same as in Table 2).

is not simply coming from the neighbor augmentation that con-

nects nodes to their k-order neighbors. Hyperbolic neighborhood

collaboration and preserving asymmetry are important factors that

lead to the superiority of D-HYPR.

Ablation Study. As shown in Table 8, removing any neighborhood

that we defined harms the performance of D-HYPR. Compared with

the approach that learns the proximity matrices (adjacency matrix

𝐴 + 3 learnable matrices) or approaches that use other forms of

multi-scale proximity matrices (e.g., MagNet, DiGCN and DGCN),

D-HYPR performs much better. The proximity matrices are proposed

in a way to leverage the inductive biases exhibited in real-world

digraphs, thus facilitating the learning process and increasing the

accuracy. Replacing hyperbolic with the Euclidean space entails sub-

stantial performance drops. Still, this ablation yields better results

than GCNs due to the other proposed components (e.g., collabo-

rative learning). Neighborhood collaboration is also crucial. The

ablation that removes the hyperbolic neighborhood aggregation

component has worse results than our full design, and the abla-

tion that further replaces hyperbolic with the Euclidean space has

much lower accuracies. Moreoever, self-supervision helps substan-

tially. D-HYPR is aided by the Gravity regularizer more than the

Fermi-Dirac regularizer, as the former captures the asymmetric link

connectivity. While the Fermi-Dirac regularizer provides auxiliary

benefits, the embedding distance term in the Fermi-Dirac regular-

izer co-occurs in the Gravity regularizer, which also explains the

stronger capability of the latter. All ablations have a lower accuracy

than our full model, suggesting that the ablated components work

together to increase the learning abilities of D-HYPR.

Discussion. D-HYPR has a statistically superior and more stable

performance across datasets and tasks. This is because D-HYPR ben-

efits from the use of hyperbolic space, information collected from

the multi-ordered diverse neighborhoods and accounts for direc-

tionality. By favoring non-Euclidean over Euclidean geometry for

DRL, D-HYPR incurs lower node neighborhoods distortion. In addi-

tion, the proposed 4 canonical types of 𝑘-order proximity matrix

are defined based on the semantics of directed edges in accordance

with real-life observations. This allows D-HYPR to leverage induc-

tive biases exhibited in many real-world digraphs, facilitating the

learning and increasing the accuracy.
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