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a b s t r a c t 

Extracellular amyloid plaques in gray matter are the earliest pathological marker for Alzheimer’s disease 

(AD), followed by abnormal tau protein accumulation. The link between diffusion changes in gray mat- 

ter, amyloid and tau pathology, and cognitive decline is not well understood. We first performed cross- 

sectional analyses on T1-weighted imaging, diffusion MRI , and amyloid and tau PETs from the ADNI 2/3 

database. We evaluated cortical volume, free-water, fractional anisotropy (FA), and amyloid and tau SUVRs 

in 171 cognitively normal, 103 MCI, and 44 AD individuals. When the 3 groups were combined, increas- 

ing amyloid burden was associated with reduced extracellular free-water in the entorhinal cortex and 

hippocampus in those with amyloid-negative status whereas increasing tau burden was associated with 

increased extracellular free-water regardless of amyloid status. Next, we found that for the MCI subjects, 

diffusion measures (free-water, FA) alone predicted MMSE score 2 years later with a high r-square value 

(87%), as compared to tau SUVRs (27%), T1 volume (36%), and amyloid SUVRs (75%). Diffusion measures 

represent a potent non-invasive marker for predicting cognitive decline. 

Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegen-

erative disease in the elderly population in developed countries

( Alzheimer’s Association, 2021 ). It is characterized by extracellu-

lar amyloid plaques and intraneuronal neurofibrillary tangles (NFT),

formed by tau protein hyperphosphorylation in the brain ( Braak &

Braak E., 1991 ; Thal et al., 2002 ), which lead to irreversible neu-
∗ Corresponding author at: University of Florida, 1864 Stadium Road, 100 FL-Gym, 

Gainesville, FL 32611-8205. 

E-mail address: vcourt@ufl.edu (D.E. Vaillancourt) . 
1 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

vestigators within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. 

A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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rologic deterioration and loss of cognitive function. In-vivo neu-

roimaging biomarkers derived from positron emission tomography

(PET) and magnetic resonance imaging (MRI) techniques have been

widely used in establishing an AD or mild cognitive impairment

(MCI) diagnosis and predicting disease progression ( Jack et al.,

2010 ; Tabarestani et al., 2020 ; Veitch et al., 2019 ; Bejanin et al.,

2017 ). Although amyloid PET and tau PET imaging have high

sensitivity for differentiating AD patients from healthy controls

Maass et al., 2017 , the cost of these scans is relatively high due

to the complexity of the procedure and necessary instrumentation.

For the past 2 decades, diffusion imaging ( d MRI) has gained signif-

icant traction in detecting tissue integrity in the prodromal stage

of AD when volumetric changes are not yet detectable. Specifi-

cally, alterations in limbic and commissural white matter tracts

were found to be an important biomarker for MCI ( Liu et al., 2011 ;

Lo Buono et al., 2020 ), while changes in diffusion properties in the

hippocampus and amygdala are robust findings in differentiating

AD from controls ( Billeci et al., 2020 ). However, evidence of dif-
University from ClinicalKey.com by Elsevier on September 
ssion. Copyright ©2023. Elsevier Inc. All rights reserved.
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fusion changes in relation to amyloid and tau pathology remains

limited, specifically in gray matter where AD pathology primarily

occurs ( Montal et al., 2018 ; Vemuri et al., 2017 ). 

Characterizing diffusion measures in gray matter is not triv-

ial. One of the challenges is that tissue voxels are contaminated

with cerebrospinal fluid, which alters the signal from the tissue.

This challenge is common in AD patients due to a higher degree

of brain atrophy ( Henf et al., 2018 ). A novel d MRI analysis tech-

nique, free-water mapping explicitly estimates extracellular diffus-

ing water from tissue using a 2-compartment model, which offers

a more specific measurement of diffusive properties of the brain

compared to conventional measures such as FA, which is suscepti-

ble to partial volume effects ( Pasternak, Sochen, Gur, Intrator, & As-

saf, 2009 ). Increases in free-water is often associated with myelin

alterations and neuroinflammation, which can occur during neu-

rodegeneration in AD (; Ofori et al., 2019 ;( Pasternak et al., 2009 )

. The goal of this study was to examine the relationship between

amyloid and tau deposition and diffusion changes in gray matter

across brain regions categorized by Thal and Braak staging in con-

trols, MCI, and AD. In addition, we utilized support vector machine

(SVM) learning regression to predict subjects’ cognitive function at

baseline and 2 years later based on imaging data. 

Due to the nature of high dimensional imaging data from mul-

tiple modalities, machine learning offers a powerful approach to

predict clinical outcomes Grueso and Viejo-Sobera, 2021 . In this

study, we further compare the predictive performance of the mod-

els using different imaging features. We systematically evaluated

the r-squared values and root-mean-square error of 4 types of neu-

roimaging features (structural, amyloid, tau and d MRI), both in-

dividually and in combination to predict subjects’ baseline MMSE

score and their MMSE score 2 years later. 

2. Materials and methods 

2.1. Participants 

Imaging data were obtained from the Alzheimer’s Neu-

roimaging Initiative (ADNI) databases Phase 2 and Phase 3

(adni.loni.usc.edu). The primary goal of ADNI is to develop clini-

cal, imaging, genetic, and biochemical biomarkers for the early de-

tection and tracking of AD. For up-to-date information, see www.

adni-info.org . This study included subjects with at least 1 T1/ d MRI

scan, 1 amyloid PET scan, and 1 tau PET scan. First, we chose the

subjects based on the availability of tau PET and then selected the

MRI and amyloid PET acquired closet to the time when the tau

PET scan was collected. Subject’s diagnosis was determined based

on the variable “DIAGNOSIS” from ADNI2 and ADNI3. All subjects

recruited were between ages 55–90. To characterize the study par-

ticipants, the Clinical Dementia Rating scale Sum of Boxes (CDR-

SB) score, the number of ApoE ε4 alleles, global amyloid SUVRs

(SUMMARYSUVR_WHOLECEREBNORM), and baseline and approxi-

mately 2-year follow-up Mini-Mental State Exam (MMSE) scores

were used. Baseline MMSE (T 0 ) scores were retrieved closest to the

acquisition day of their T1 MR scans. 

2.2. T1 acquisition and analyses 

The ADNI T1 scans were acquired with a sagittal 3D Accelerated

MPRAGE/IRSPG sequence using a 3T scanner and were collected

on the same day as the d MRI scans. T1 scan parameters were as

follows: repetition time (TR) = 6.96 ms, echo time (TE) = 2.83

ms, flip angle = 11 °, slice thickness = 1.2 mm, acquisition ma-

trix = 256 ×256 ×196 mm in the x-, y-, and z-dimensions with a

voxel size of 1.0 ×1.0 ×1.2 mm 
3 . 
Downloaded for Anonymous User (n/a) at Florida International Uni
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The T1 scans were processed using FreeSurfer version 7.1.0

( http://surfer.nmr.mgh.harvard.edu/ ). The FreeSurfer package pro-

vides automatic preprocessing steps for motion correction, inten-

sity normalization, skull stripping, subcortical segmentation, cor-

tical parcellation, and anatomical labelling ( http://surfer.nmr.mgh.

harvard.edu/fswiki/recon-all/ ). Volumetric T1 data were obtained

with FreeSurfer segmentation for all cortical and subcortical re-

gions using the Desikan-Killiany atlas ( Desikan et al., 2006 ). T1

volumetric data were then divided by subject’s estimated total in-

tracranial volume (eTIV) generated by FreeSurfer allowing us to

account for the variability of individual head size ( Buckner et al.,

2004 ). 

2.3. d MRI acquisition and analyses 

Axial diffusion weighted images were acquired on a 3T scanner

with a whole-brain echo planar sequence with the following pa-

rameters: diffusion directions = 64, b-value = 10 0 0 s/mm 
2 , num-

ber of b0 images = 5, TR = 130 0 0 ms, TE = 68.3 ms, in-plane res-

olution = 2 ×2 mm, slice thickness = 2.7 mm (no gap), acquisition

matrix = 256 ×256 in-plane, number of slices = 59. 

Diffusion MRI scans were processed using image processing

tools from the FMRIB Software Library ( Smith et al., 2004 ) and

custom UNIX shell scripts. The diffusion MRI processing was con-

sistent with our previous work ( Archer et al., 2019b ). Eddy correc-

tions using affine transforms were used to correct for head mo-

tion and eddy-current distortions ( http://www.fmrib.ox.ac.uk/fsl ).

Gradient directions were subsequently rotated to reflect these cor-

rections ( Leemans & Jones, 2009 ). A skull-stripping algorithm was

used (BET) to remove non-brain tissue from the image, and a diffu-

sion tensor model was fit at each voxel to determine voxel-wise FA

and MD. Free-water maps were calculated using a custom MATLAB

script consistent with prior work ( Archer et al., 2019a ; Ofori et al.,

2019 ); Pasternak et al., 2009 ). To generate a standardized ROI la-

bel corresponding to subjects’ T1 anatomical boundaries, individ-

ual FA, MD, and free-water images were registered to each sub-

ject’s corresponding T1 image and segmented mask in native space

using a FLIRT affine transformation ( Smith et al., 2004 ). Regional

FA, MD, and free-water values for each ROI were extracted based

on each subject’s cortical parcellation and subcortical segmenta-

tion files generated by the FreeSurfer analysis. To harmonize dif-

fusion scans collected from different scanners, we adjusted the

diffusion measures using the ComBat batch-effect correction tool

( Johnson et al., 2007 ) as it has shown effectiveness in preserving

biological variability and removing unwanted variation introduced

by site for diffusion tensor imaging data ( Fortin et al., 2017 ). 

2.4. Amyloid/tau PET acquisition and analyses 

Amyloid SUVR data were downloaded from the UC Berkeley

Florbetapir (AV45) datasets on the ADNI website ( https://adni.loni.

usc.edu ). The processing of amyloid PET and the calculation of SU-

VRs were described in previous work and are also reported on

the website ( Jagust et al., 2009 ; Mormino et al., 2009 ). The re-

gional amyloid SUVR for each ROI was normalized by dividing by

the whole cerebellum value (WHOLECEREBELLUM_SUVR). To deter-

mine a positive amyloid scan, a cutoff of 1.11 SUVR of the global

amyloid level was used (S. M. Landau et al., 2012; S. Landau, Mur-

phy, Lee, Ward, & Jagust, 2021). 

Tau SUVR data were downloaded from the UC Berkeley Flor-

taucipir (AV1451) partial volume-corrected datasets from the ADNI

website. The processing of tau PET, calculation of SUVRs and sub-

sequent corrections have been described in previous work and are

reported on the website ( Baker, Lockhart, et al., 2017 ; Baker, Maass,

et al., 2017 ). The regional tau SUVR was normalized by dividing
versity from ClinicalKey.com by Elsevier on September 
n. Copyright ©2023. Elsevier Inc. All rights reserved.

http://www.adni-info.org
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Fig. 1. Timeline of the acquisition of neuroimaging scans and cognitive assessments. (A) Intervals of the T1, diffusion MR (DTI), and amyloid/tau PET scans. Baseline MMSE 

(T 0 ) was assessed at week 0. 2–3 weeks after T 0 , structure MRI, diffusion MRI, and amyloid PET scans were collected. A median of a 12-day interval between the collection 

of MRIs and amyloid PETs was observed. 3–5 weeks after T 0 , tau PETs were collected. Follow-up MMSE scores (T 1 ) were obtained approximately 2 years after the baseline 

(mean = 821 days, SD = 200). Significant differences in the baseline MMSE scores and 2-year follow up MMSE scores were found among the 3 groups ∗∗∗ (AD < MCI < CN). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the inferior cerebellar gray matter reference region value (INFE-

RIOR_CEREBGM_SUVR) ( Baker, Lockhart, et al., 2017 ; Baker, Maass,

et al., 2017 ). Due to the contamination issue with the tau SUVRs in

the left and right hippocampus reported by ADNI, we removed the

hippocampal tau SUVRs from all our analyses. 

2.5. Timeline of imaging acquisition and cognitive measurements 

Fig. 1 A shows the timeline of the acquisition of neuroimag-

ing modalities and cognitive assessments. Baseline MMSE (T 0 ) oc-

curred at week 0. Two to 3 weeks after the baseline (T 0 ), MRI

scans (T1 & d MRI) and amyloid PETs were collected. The me-

dian interval between the collection of MRI scans and amyloid

PETs was 12-days. 3–5 weeks after T 0 , tau PETs were collected.

MMSE scores (T 1 ) were obtained approximately 2 years after the

T 0 (mean = 821days, SD = 200). 

2.6. Region of interest analyses 

T1 volumetric measures, diffusion measures (free-water, FA,

MD), amyloid SUVRs and tau SUVRs for each brain region were

originally obtained separately from the left and right hemispheres.

To reduce the number of comparisons, we averaged data from the

2 hemispheres of each subject. There are a total of 36 ROIs used

for the volumetric and diffusion measures (see the full list of ROIs

in Table 2 ), 43 ROIs for the amyloid SUVRs based on the Thal stag-

ing (Supplementary Table 4) ( Thal et al., 2002 ), and 27 ROIs for

tau SUVRs based on the Braak staging (Supplementary Table 5).

The choice of the ROIs for PET SUVRs were based on the data

availability in the ANDI database and previous literature ( Braak &

Braak E., 1991 ; Thal et al., 2002 ). For T1 and diffusion measures,

the ROIs were selected based on the segmentation maps generated

by FreeSurfer, and based on Braak staging. 

2.7. Statistical methods 

Demographic and clinical data were compared between the CN,

MCI, and AD groups using the Chi-square test for categorical vari-

ables and one-way ANOVA for continuous. Non-parametric permu-

tation ANOVA was performed when the assumptions of normality

and equal variance were violated. To characterize differences in T1

volumetric data, diffusion measures (free-water, FA, MD), amyloid

SUVRs and tau SUVRs among the 3 groups, one-way ANCOVA anal-

yses were conducted for each ROI, with group as the independent

variable (CN, MCI, AD), imaging data as the dependent variable,
Downloaded for Anonymous User (n/a) at Florida International 
06, 2023. For personal use only. No other uses without permi
and age, sex, education, and total number of APOE ε4 alleles as
the covariates. 

To delineate the relationship between diffusion measures and

amyloid and tau deposition for each ROI, partial correlation analy-

ses were conducted using Spearman’s non-parametric partial cor-

relation coefficient adjusting for age, sex, education, and total

number of APOE ε4 alleles for all 3 groups combined and for

each diagnostic group separately. Furthermore, to examine the ef-

fect of amyloid status on the relationship of diffusion measures

and SUVRs, we split the groups into amyloid-negative and amyloid-

positive subgroups. All p -values from the analyses were corrected

using false discovery rate (FDR) to control for multiple compar-

isons based on the number of ROIs ( Benjamini & Hochberg, 1995 ). 

To predict subjects’ MMSE scores, support vector machine

(SVM) regression analyses were performed using different combi-

nations of imaging modalities as input features (MRI volume, free-

water, FA, amyloid SUVRs, tau SUVRs). The output variables were

either MMSE scores at baseline (T 0 ) or MMSE scores approximately

2 years later (T 1 ). Subjects’ demographics including age and sex

were included as covariates in addition to the imaging modalities

across all 15 models. Note that when predicting subjects’ MMSE

scores 2 years later, age, sex, the follow-up time between base-

line and follow-up MMSE was included in each imaging model

as covariates. As MCI participants were likely to experience cog-

nitive decline over 2 years, the models were built based on the

data from the MCI group only. Radial basis function (RFB) ker-

nel were used. The analyses were performed using the scikit-learn

package in Python 3.6. The input features included T1 volumet-

ric measures, diffusion measures (free-water, FA), amyloid SUVRs,

and tau SUVRs from the 10 selected ROIs across the 6 Braak stages

(Braak I: entorhinal cortex, Braak II: hippocampus (parahippocam-

pal gyrus for tau SUVRs), Braak III: amygdala, lingual gyrus, Braak

IV: middle temporal gyrus, temporal pole, Braak V: precuneus, su-

perior frontal gyrus, Braak VI: cuneus gyrus, paracentral gyrus).

These ROIs were selected based on the top 2 regions with the

highest counts of significant correlations between diffusion mea-

sures (free-water, FA) and amyloid SUVRs and tau SUVRs for each

Braak stage before FDR correction. In addition, a predictive model

using subject’s demographic data only (sex, age) as input features

were built as a reference model. Data were randomly split into

a training and validation dataset, which consisted of 80% of total

data, and a test dataset, which consisted of 20% of the remain-

ing data. To ensure that the group proportions in the training and

validation and test dataset was similar to the group proportions

in the entire data, stratified sampling based on subject’s diagnosis

was applied. Data normalization was then performed. Specifically,
University from ClinicalKey.com by Elsevier on September 
ssion. Copyright ©2023. Elsevier Inc. All rights reserved.
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Table 1 

Demographics and clinical data. 

CN (n = 171) MCI (n = 103) AD (n = 44) Statistics Post-hoc comparison 

Age 74.2 ± 7.0 75.6 ± 7.2 77.1 ± 7.9 F = 3.3, p = 0.04 A-C 

Sex (M/F) 63/108 62/41 25/19 χ 2 = 16.0, p < 0.01 

Education (y) 16.4 ± 2.5 16.7 ± 2.7 15.7 ± 2.4 p = 0.09 

CDR-SB score 0.16 ± 0.4 1.4 ± 1.2 5.57 ± 3.64 p < 0.01 M-C / A-C / A-M 

Number of APOE ε4 alleles χ 2 = 19.0, p < 0.01 

0 110 61 20 

1 52 23 16 

2 4 15 6 

NA 5 4 2 

Global amyloid SUVRs 1.14 ± 0.2 1.23 ± 0.3 1.37 ± 0.2 p < 0.01 M-C / A-C / A-M 

Amyloid positivity (-/ + ) 102/69 50/53 7/37 χ 2 = 27.0, p < 0.01 

Baseline MMSE (T 0 ) 29.0 ± 1.3 27.9 ± 2.1 21.2 ± 5.2 p < 0.01 M-C / A-C / A-M 

MMSE 2 y after (T 1 ) 
a 28.9 ± 1.4 26.8 ± 3.3 20.0 ± 6.2 p < 0.01 M-C / A-C / A-M 

Data are either count or mean ± SD. 

Key: CN, control; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; MMSE, Mini-Mental State Examination. 

Key: A–C, significant difference between AD and CN; A–M, significant difference between AD and MCI; M–C, significant difference between MCI and CN. 
a Data from the 2-year follow up (105 controls, 58 MCI, and 12 AD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the mean and the variance of the training and validation dataset

were used to normalize the training and validation dataset, and

the test dataset. Based on the training and validation dataset, for

each model, hyperparameters were tuned using a 5-fold cross val-

idation grid search for optimal prediction. Predictive performance

(r-squared) from the SVM regression was then evaluated on the

test dataset for each model. 

3. Results 

3.1. Demographics and clinical data 

Data used in this study were from 171 CN (mean age; 74.2 ±
7.0), 103 MCI (mean age: 75.6 ± 7.2), and 44 AD (mean age: 77.1 ±
7.9) subjects who had at least 1 scan for all 4 imaging modalities,

i.e. T1, d MRI, amyloid PET, and tau PET ( Table 1 , Fig. 1 A). The AD

subjects were slightly older than the controls ( p = 0.04). No differ-

ences were found in education ( p = 0.09). A significant difference

between the 3 groups was found in sex ( p < 0.01), CDR-SB ( p <

0.01), number of APOE ε4 alleles ( p < 0.01), global amyloid SUVRs

( p < 0.01), and amyloid positivity count ( p < 0.01). There were

more females in the CN group and more males in the MCI and AD

groups. Significant group differences in the MMSE scores both at

baseline (T 0 , p < 0.01) and at the 2-year follow up (T 1, p < 0.01)

were found. The post-hoc analyses showed that significant differ-

ences in MMSE among the 3 groups (AD < MCI < CN) (multiple p

values from post-hoc, p s < 0.01). 

3.2. Regional cortical volume, diffusion measures, regional amyloid 

SUVRs, and tau SUVRs 

The mean cortical volume, diffusion measures (FW, FA, and

MD), amyloid SUVRs, and tau SUVRs were computed for regional

gray matter ROIs in the CN, MCI, and the AD group. Fig. 2

shows the between-group results from 10 selected gray matter

ROIs across Braak stages/ Thal phases for each imaging measure;

note that bar graphs from top to bottom represent the same ROI.

(MRI volume: Fig. 2 A, Supplementary Table 1; free-water: Fig. 2 B,

Table 2 ; FA: Fig. 2 C, Supplementary Table 2; MD: Supplementary

Table 3; Amyloid: Fig. 2E , Supplementary Table 7; Tau: Fig. 2 D,

Supplementary Table 8). After adjusting for age, sex, education, and

total number of APOE ε4 alleles, significant main effects of group

on cortical volume and diffusion measures were found among all

3 groups in widespread ROIs across Braak stages I-VI, with sig-

nificant cortical atrophy, higher free-water values/MD, and lower
Downloaded for Anonymous User (n/a) at Florida International Uni
06, 2023. For personal use only. No other uses without permissio
FA for the AD group. For regional amyloid SUVRs, significant dif-

ferences among all 3 groups (AD > MCI > CN) were found in all the

neocortex ROIs in the Phase 1 Thal stage and in numerous limbic,

subcortical, and brain stem ROIs in Phase 2–4 Thal stages. While a

general pattern of increasing amyloid SUVRs from CN to AD sub-

jects was shown across multiple ROIs, amyloid SUVR in the hip-

pocampus was found to be significantly lower in the AD group

compared to the MCI and CN groups. For regional tau SUVRs, sig-

nificant differences among all 3 groups (AD > MCI > CN) in numer-

ous gray matter ROIs across Braak stages were found. To examine

the effect of different types of scanners on the diffusion data, Sup-

plementary Tables 4-6 show the between-group result using ad-

justed diffusion measures for free-water, FA, and MD. Changes in

significance before and after applying the harmonization tool are

marked by gray shading. Overall, the effect was minimal, although

FA measures were more susceptible to different scanners. 

3.3. Partial correlation analyses between diffusion measures and 

amyloid/tau SUVRs 

We performed partial correlation analyses between free-water

values and amyloid SUVRs ( Table 3 ), and between free-water val-

ues and tau SUVRs across ROIs ( Table 4 ) for all 3 groups combined,

and for each diagnostic group separately. The p -values from the

subgroup analysis split by amyloid positivity were also reported

(a-: amyloid negative; a + : amyloid positive). In Table 3 , when all

3 groups were combined, we observed significant negative correla-

tions across multiple ROIs in the amyloid-negative subgroup. Fur-

thermore, for the MCI group, we found significant correlations in

the entorhinal cortex ( r part = -0.52, p adj < 0.01) and hippocampus

( r part = -0.56, p adj < 0.01) in those who had amyloid negative sta-

tus ( Figs. 3 C and 3 D). No correlations were found in the amyloid

positive subgroup in the MCI group nor in the AD group ( Figs. 3E

and 3F ). 

For tau SUVRs ( Table 4 ), when all 3 groups combined, signifi-

cant positive correlations were found across multiple ROIs across

Braak stages. The significance in multiple ROIs continued to be ob-

served in both amyloid-negative and amyloid-positive subgroups.

For each diagnosis group, significant correlations between free-

water and tau SUVRs were found in the MCI group and AD

group in the ROIs in the early Braak stages, including entorhi-

nal cortex ( Fig. 4 A), amygdala, and parahippocampus ( Fig. 4 B). For

the entorhinal cortex, significant positive correlations continued

to be shown in the amyloid-positive subgroup in the MCI group

( r part = 0.40, p adj = 0.04), and the AD groups ( r part = 0.46, p = 0.01
versity from ClinicalKey.com by Elsevier on September 
n. Copyright ©2023. Elsevier Inc. All rights reserved.
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Fig. 2. Mean cortical volume, diffusion measures (free-water & FA), and regional SUVRs (amyloid & tau) in the selected ROIs in the control, MCI, and AD groups. The ROIs 

in the (A–D) are in the order of Braak stages while the amyloid ROIs are in the order of Thal phases. Due to the contamination issue with tau SUVR in the hippocampal 

region, tau SUVRs in the parahippocampal gyrus was shown instead. ∗∗∗ Significant differences between the AD vs. CN, MCI vs. CN, and MCI vs. AD. ∗∗ Significant differences 

between the AD vs. CN, and MCI vs. AD. ‡ ‡ Significant differences between the AD vs. CN, and MCI vs. CN. ∗ Significant difference between the AD vs. CN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

before FDR correction, p adj = 0.07) ( Fig. 4E ). For the parahippocam-

pus, a significant positive correlation was found in the amyloid-

positive subgroup in the AD group ( r part = 0.56, p adj = 0.02,

Fig. 4F ). 

For the FA measure, the direction between free-water and amy-

loid SUVRs was reversed (Supplementary Table 9). We observed

significant positive correlations between FA and amyloid SUVRs in

the hippocampus when all 3 groups were combined ( r part = 0.31,

p adj < 0.01) and in the MCI group ( r part = 0.32, p adj = 0.03). 

For the relationship between FA and tau SUVRs (Supplementary

Table 11), significant negative correlations in all 3 groups com-

bined were found in multiple ROIs across Braak stages, including

entorhinal cortex ( r part = -0.27, p adj < 0.01) and parahippocampus

( r part = -0.19, p adj < 0.01). In addition, when splitting the group

based on amyloid status, significant negative correlations remained

in the entorhinal cortex and parahippocampus for both subgroups.

For the MD measure, when all 3 groups were combined, we ob-

served significant negative correlations between MD and amyloid

SUVRs in only those with amyloid-negative status (Supplementary

Table 10). For the relationship between MD and tau SUVRs, when

all 3 groups were combined, significant positive correlations were

found in multiple ROIs and also in those with amyloid-positive sta-

tus (Supplementary Table 12). 
Downloaded for Anonymous User (n/a) at Florida International 
06, 2023. For personal use only. No other uses without permi
3.4. Prediction of MMSE using different imaging modalities 

Fig. 5 shows the r-squared values and the root-mean-square er-

ror (RMSE) of the SVM regression models using different combina-

tions of imaging modalities with age and sex to predict subjects’

MMSE score at baseline (T0) and 2 years later (T1) in the MCI

group. When predicting follow-up MMSE scores ( Fig. 5 C–5 D), age,

sex, and follow-up time in addition to imaging modalities were in-

cluded across all 15 models. There are 103 MCI subjects included

in the prediction of the baseline MMSE scores (T 0 ) and 58 MCI

subjects included in the prediction of the 2-year follow-up MMSE

scores (T 1 ). When predicting the baseline MMSE, diffusion mea-

sures alone (free-water & FA, R 2 DTI = 96%, RMSE DTI = 0.15, model

3, Fig. 5 A–5 B), and combining MRI volume and diffusion mea-

sures achieved the highest r-square value (R 2 MRIvolume + DTI = 96%,

RMSE MRI volume + DTI = 0.13, model 10). MRI volume alone explained

the lowest proportion of variance in the baseline MMSE scores

(R 2 MRI volume = 4%, RMSE MRI volume = 0.69, Model 2). 

When predicting MMSE scores 2 years later (T 1 ), combining

tau PET and diffusion measures achieved the highest r-square

(R 2 tau + DTI = 97%, RMSE tau + DTI = 0.19, Model 9, Fig. 5 C–5 D). Dif-

fusion measures alone explained the second highest proportion of

variance (R 2 DTI = 87%, RMSE DTI = 0.37, Model 3). When comparing
University from ClinicalKey.com by Elsevier on September 
ssion. Copyright ©2023. Elsevier Inc. All rights reserved.
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Table 2 

Mean free-water values in 36 gray matter regions for the CN, MCI, and the AD group, and the statistical results from the ANCOVA analyses in comparing between the 3 

groups. Abbreviations: A–C, significant difference between AD and CN, A–M, significant difference between AD and MCI, M–C, significant difference between MCI and CN. 

ROIs CN MCI AD Corrected p -value Post-hoc comparison 

Mean SE Mean SE Mean SE 

Braak I 

Entorhinal cortex 0.336 0.004 0.368 0.007 0.464 0.016 < 0.01 M–C / A–C / A–M 

Braak II 

Hippocampus 0.404 0.004 0.456 0.008 0.553 0.015 < 0.01 M–C / A–C / A–M 

Braak III 

Amygdala 0.271 0.002 0.302 0.005 0.390 0.015 < 0.01 M–C / A–C / A–M 

Lingual gyrus 0.321 0.003 0.354 0.006 0.421 0.013 < 0.01 M–C / A–C / A–M 

Parahippocampal gyrus 0.310 0.003 0.337 0.005 0.408 0.011 < 0.01 M–C / A–C / A–M 

Fusiform gyrus 0.245 0.002 0.276 0.004 0.341 0.010 < 0.01 M–C / A–C / A–M 

Braak IV 

Middle temporal gyrus 0.305 0.004 0.344 0.006 0.399 0.009 < 0.01 M–C / A–C / A–M 

Temporal pole 0.472 0.008 0.504 0.012 0.585 0.018 < 0.01 M–C / A–C / A–M 

Caudal anterior cingulate 0.376 0.005 0.412 0.007 0.458 0.013 < 0.01 M–C / A–C / A–M 

Rostral anterior cingulate cortex 0.359 0.004 0.387 0.005 0.428 0.010 < 0.01 M–C / A–C / A–M 

Posterior cingulate cortex 0.358 0.006 0.396 0.008 0.441 0.013 < 0.01 M–C / A–C / A–M 

Isthmus of cingulate gyrus 0.275 0.003 0.304 0.005 0.365 0.011 < 0.01 M–C / A–C / A–M 

Insula 0.298 0.004 0.325 0.006 0.370 0.010 < 0.01 M–C / A–C / A–M 

Inferior temporal gyrus 0.235 0.002 0.266 0.005 0.315 0.009 < 0.01 M–C / A–C / A–M 

Braak V 

Precuneus 0.319 0.004 0.348 0.005 0.376 0.008 < 0.01 M–C / A–C / A–M 

Superior frontal gyrus 0.417 0.006 0.435 0.007 0.460 0.011 0.03 

Lateral orbitofrontal cortex 0.248 0.002 0.275 0.004 0.293 0.006 < 0.01 M–C / A–C / A–M 

Medial orbitofrontal cortex 0.340 0.004 0.371 0.005 0.405 0.007 < 0.01 M–C / A–C / A–M 

Frontal pole 0.341 0.007 0.391 0.011 0.432 0.022 < 0.01 M–C / A–C / A–M 

Caudal middle frontal 0.404 0.007 0.430 0.008 0.471 0.015 < 0.01 A–C 

Rostral middle frontal gyrus 0.389 0.006 0.422 0.007 0.457 0.014 < 0.01 M–C / A–C 

Pars opercularis 0.327 0.004 0.357 0.005 0.413 0.012 < 0.01 M–C / A–C / A–M 

Pars orbitalis 0.283 0.003 0.316 0.006 0.343 0.010 < 0.01 M–C / A–C 

Pars triangularis 0.321 0.004 0.362 0.007 0.403 0.011 < 0.01 M–C / A–C / A–M 

Lateral occipital gyrus 0.267 0.003 0.308 0.005 0.378 0.012 < 0.01 M–C / A–C / A–M 

Supramarginal gyrus 0.337 0.004 0.372 0.005 0.410 0.010 < 0.01 M–C / A–C / A–M 

Inferior parietal lobule 0.323 0.005 0.355 0.006 0.403 0.009 < 0.01 M–C / A–C / A–M 

Superior temporal gyrus 0.412 0.005 0.437 0.006 0.498 0.011 < 0.01 A–C / A–M 

Superior parietal lobule 0.385 0.007 0.425 0.009 0.450 0.014 < 0.01 M–C / A–C 

Superior temporal sulcus 0.242 0.003 0.275 0.005 0.331 0.009 < 0.01 M–C / A–C / A–M 

Transverse temporal gyrus 0.548 0.007 0.577 0.009 0.651 0.016 < 0.01 A–C / A–M 

Braak VI 

Cuneus 0.397 0.006 0.441 0.007 0.488 0.012 < 0.01 M–C / A–C / A–M 

Paracentral gyrus 0.323 0.004 0.342 0.006 0.360 0.010 < 0.01 A–C 

Pericalcarine cortex 0.306 0.004 0.331 0.006 0.395 0.013 < 0.01 M–C / A–C / A–M 

Postcentral gyrus 0.407 0.005 0.434 0.007 0.466 0.011 < 0.01 M–C / A–C 

Precentral gyrus 0.385 0.006 0.410 0.008 0.443 0.013 < 0.01 A–C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each individual modality (model 1–4), diffusion measure only

showed the highest r-square in predicting both baseline MMSE

and the 2-year follow-up. In addition, we built a model based

on subject’s demographic data only (age, sex). For predicting

baseline MMSE, the demographic model showed 7% r-squared

values. For predicting follow-up MMSE, age, sex, baseline MMSE,

and follow-up time were able to achieve 89% r-square value. 

4. Discussion 

We report 3 key findings. First, significant increases in free-

water and decreases in FA were evident in gray matter in multi-

ple brain regions across Braak stages in the MCI and AD groups

compared to the CN group. Second, when the 3 groups were com-

bined, significant negative correlations were found between free-

water and amyloid SUVRs in those with amyloid negative status,

while positive correlations were found between free-water and

tau SUVRs regardless of amyloid status. Third, diffusion measures

alone from the selected gray matter ROIs revealed high r-squared

values in predicting MCI subjects’ MMSE scores at baseline (96%

R 2 ) and 2 years later (87% R 2 ). Our findings revealed associa-

tions between microstructural changes in gray matter, extracellular

amyloid plaques, and intracellular tau proteins, providing insights
Downloaded for Anonymous User (n/a) at Florida International Uni
06, 2023. For personal use only. No other uses without permissio
into the possible underlying cellular processes associated with AD

pathology. Diffusion changes in gray matter regions provide valu-

able information for predicting cognitive decline after 2 years in

MCI subjects. 

The significantly elevated free-water and reduced FA in the MCI

and AD groups map to the established anatomical regions of the

histopathological staging of AD. The result extends and confirms

previous d MRI studies, which consistently showed aberrant diffu-

sion changes, such as FA and MD in these regions in MCI and AD

( Choo et al., 2010 ; Jacobs et al., 2013 ; Lee et al., 2020 ; Scola et al.,

2010 ; Weston et al., 2015 ). We have now extended these find-

ings to free-water measures and characterization of amyloid and

tau accumulation derived from the same gray matter regions in a

larger cohort. We used the automated segmentation provided by

FreeSurfer to eliminate partial volume effects and generate more

accurate ROIs ( Henf et al., 2018 ). We found a greater number of

significant differences in free-water among all 3 groups in the

ROIs across all Braak stages, while between-group differences in

FA (AD vs. CN & AD vs. MCI) were observed more consistently

in the early Braak stages. Free-water estimates the volume of the

extracellular space, and increases in free-water can occur during

neuroinflammation ( Pasternak et al., 2018a ), which is often associ-

ated with the neurodegenerative processes in AD. Loss of neuron
versity from ClinicalKey.com by Elsevier on September 
n. Copyright ©2023. Elsevier Inc. All rights reserved.
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Table 3 

Partial correlation analyses of free-water values with regional amyloid SUVRs in 43 gray matter ROIs for all 3 groups combined (All), and individual groups (CN, MCI, and AD). p -values resulted from the subgroup-analysis 

based on the amyloid positivity are reported (a-:amyloid negative; a + :amyloid positive) ∗p adj < 0.05 after FDR correction. r part : Spearman’s partial correlation coefficient adjusting for age, gender, education, and total number 

of APOE alleles. 

ROIs FW 

Amyloid SUVR 

All CN MCI AD 

R p p (a-) p (a + ) r p p (a-) p (a + ) r p p (a-) p (a + ) r p p (a-) p (a + ) 

Phase I 

Frontal lobe 

Superior frontal gyrus -0.12 0.21 < 0.01 0.64 -0.17 0.12 0.11 0.93 -0.22 0.42 0.81 0.93 -0.29 0.25 0.71 0.28 

Lateral orbitofrontal cortex 0.00 0.99 0.03 0.32 -0.11 0.30 0.21 0.86 -0.14 0.61 0.81 0.64 -0.26 0.29 0.91 0.36 

Medial orbitofrontal cortex 0.04 0.77 0.03 0.07 -0.10 0.30 0.15 0.47 -0.06 0.87 0.81 0.87 -0.35 0.18 0.71 0.28 

Frontal pole 0.01 0.91 0.53 0.10 -0.08 0.49 0.58 0.66 -0.07 0.84 0.98 0.87 0.26 0.29 0.91 0.28 

Caudal middle frontal -0.03 0.77 < 0.01 0.16 -0.12 0.25 0.06 0.80 -0.12 0.61 0.81 0.64 -0.17 0.52 0.91 0.28 

Rostral middle frontal gyrus -0.02 0.87 0.41 0.06 -0.19 0.09 0.93 0.80 -0.13 0.61 0.81 0.89 0.06 0.75 0.96 0.89 

Pars opercularis 0.03 0.77 0.01 0.10 -0.20 0.09 0.04 0.86 0.04 0.89 0.98 0.93 -0.08 0.68 0.91 0.67 

Pars orbitalis -0.04 0.77 0.02 0.10 -0.17 0.12 0.16 0.93 -0.22 0.42 0.84 0.64 0.03 0.87 0.91 0.67 

Pars triangularis 0.04 0.77 0.31 0.10 -0.12 0.25 0.61 0.93 -0.07 0.84 0.86 0.89 -0.11 0.61 0.91 0.67 

Paracentral gyrus -0.08 0.50 0.11 0.38 -0.15 0.17 0.12 0.33 -0.10 0.68 0.81 0.89 -0.36 0.18 0.91 0.28 

Precentral gyrus -0.09 0.43 < 0.01 0.73 -0.18 0.09 0.02 0.97 -0.12 0.61 0.81 0.89 -0.24 0.35 0.91 0.28 

Temporal lobe 

Superior temporal gyrus -0.02 0.81 0.70 0.73 -0.19 0.09 0.93 0.16 -0.11 0.64 0.81 0.87 -0.27 0.29 0.91 0.28 

Superior temporal sulcus 0.12 0.19 0.17 0.13 -0.02 0.85 0.61 0.93 0.00 1.00 0.99 0.64 -0.29 0.25 0.91 0.32 

Middle temporal gyrus 0.07 0.55 0.17 0.06 -0.13 0.22 0.93 0.60 -0.03 0.89 0.81 0.89 -0.41 0.17 0.91 0.28 

Inferior temporal gyrus 0.11 0.27 0.13 0.06 -0.15 0.17 0.61 0.40 0.03 0.89 0.98 0.87 -0.28 0.25 0.99 0.33 

Fusiform gyrus 0.17 0.04 0.18 0.06 -0.03 0.80 0.28 0.68 0.05 0.87 0.98 0.87 -0.06 0.75 0.91 0.86 

Temporal pole 0.01 0.94 0.43 0.51 -0.07 0.55 0.93 0.93 -0.03 0.89 0.81 0.89 -0.33 0.21 0.91 0.32 

Transverse temporal gyrus -0.03 0.81 0.47 0.73 -0.06 0.62 0.94 0.66 -0.13 0.61 0.99 0.64 -0.19 0.47 0.91 0.62 

Parietal lobe 

Precuneus 0.07 0.55 < 0.01 0.23 -0.07 0.50 0.02 0.33 0.03 0.89 0.81 0.87 -0.29 0.25 0.91 0.32 

Supramarginal gyrus 0.03 0.77 0.17 0.65 -0.13 0.22 0.36 0.16 -0.02 0.90 0.86 0.91 -0.14 0.54 0.91 0.49 

Superior parietal lobule -0.08 0.50 < 0.01 0.54 -0.20 0.09 0.02 0.02 -0.14 0.61 0.81 0.66 -0.22 0.41 0.91 0.28 

Inferior parietal lobule 0.06 0.55 0.04 0.75 -0.07 0.50 0.28 0.22 -0.03 0.89 0.81 0.89 -0.18 0.50 0.91 0.33 

Postcentral gyrus -0.08 0.50 0.01 0.73 -0.17 0.12 0.06 0.26 -0.11 0.63 0.81 0.91 -0.34 0.20 0.91 0.28 

Occipital lobe 

Cuneus -0.08 0.50 < 0.01 0.54 -0.23 0.06 0.02 0.33 -0.14 0.61 0.51 0.91 -0.14 0.54 0.91 0.69 

Lingual gyrus 0.02 0.87 0.03 0.32 -0.14 0.21 0.07 0.93 -0.04 0.89 0.81 0.87 -0.10 0.64 0.91 0.66 

Pericalcarine cortex -0.05 0.74 0.01 0.55 -0.27 0.02 0.02 0.30 0.00 1.00 0.84 0.89 -0.15 0.54 0.91 0.58 

Lateral occipital gyrus 0.14 0.10 0.83 0.07 -0.01 0.95 0.93 0.93 0.00 1.00 0.98 0.77 -0.10 0.65 0.91 0.86 

Phase 2 

Entorhinal cortex -0.05 0.74 0.03 0.70 -0.02 0.85 0.95 0.93 -0.10 0.68 < 0.01 0.87 -0.39 0.17 0.91 0.28 

Hippocampus -0.36 < 0.01 < 0.01 < 0.01 -0.15 0.17 0.28 0.30 -0.44 < 0.01 < 0.01 0.11 -0.38 0.17 0.91 0.28 

Insula 0.00 0.96 0.45 0.32 -0.13 0.23 0.93 0.84 -0.12 0.61 0.98 0.64 -0.08 0.68 0.97 0.89 

Amygdala 0.01 0.94 0.41 0.45 0.00 0.98 0.61 0.35 -0.13 0.61 0.81 0.64 -0.16 0.54 0.91 0.49 

Parahippocampal gyrus 0.06 0.60 0.22 0.73 -0.03 0.80 0.93 0.33 -0.04 0.89 0.98 0.89 -0.23 0.35 0.91 0.45 

Caudal anterior cingulate -0.03 0.81 < 0.01 0.38 -0.12 0.24 0.02 0.35 -0.18 0.61 0.81 0.87 -0.12 0.58 0.91 0.42 

Rostral anterior cingulate cortex -0.02 0.81 < 0.01 0.12 -0.21 0.08 0.06 0.93 -0.05 0.87 0.81 0.93 -0.14 0.54 0.91 0.65 

Posterior cingulate cortex -0.04 0.77 < 0.01 0.73 -0.12 0.25 0.03 0.80 -0.15 0.61 0.81 0.87 -0.45 0.14 0.71 0.21 

Isthmus of cingulate gyrus 0.15 0.09 0.07 < 0.01 -0.03 0.80 0.44 0.33 0.08 0.82 0.81 0.89 -0.17 0.52 0.71 0.54 

Phase 3 

Thalamus_Proper -0.07 0.55 0.45 0.32 -0.04 0.80 0.61 0.26 -0.06 0.84 0.84 0.91 -0.31 0.25 0.91 0.33 

Caudate -0.12 0.19 0.02 0.19 -0.13 0.22 0.61 0.25 -0.16 0.61 0.81 0.93 -0.21 0.42 0.91 0.33 

Putamen 0.03 0.81 0.54 0.73 0.05 0.66 0.19 0.80 -0.12 0.61 0.84 0.64 -0.15 0.54 0.91 0.28 

Pallidum -0.03 0.77 0.45 0.38 0.02 0.83 0.51 0.93 -0.02 0.92 0.81 0.89 -0.10 0.64 0.91 0.89 

Accumbens area 0.10 0.27 0.24 0.10 -0.10 0.30 0.86 0.93 0.18 0.61 0.98 0.87 -0.19 0.47 0.91 0.44 

Phase 4 

Brain stem -0.11 0.22 0.60 0.02 -0.03 0.83 0.61 0.40 -0.07 0.84 0.81 0.64 0.05 0.75 0.91 0.86 

Cerebellum Cortex 0.16 0.07 0.21 0.19 0.10 0.30 0.86 0.26 0.17 0.61 0.81 0.87 -0.14 0.54 0.91 0.38 
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Table 4 

Partial correlation analyses of free-water values with regional tau SUVRs in 28 gray matter ROIs for all 3 groups combined (All), and individual groups (CN, MCI, and AD). P-values resulted from the subgroup-analysis based on 

the amyloid positivity are reported (a-:amyloid negative; a + :amyloid positive) ∗ p adj < .05 after FDR correction. r part : Spearman’s partial correlation coefficient adjusting for age, gender, education, and total number of APOE 

alleles. 

ROIs FW 

Tau SUVR 

All CN MCI AD 

r p p (a-) p (a + ) r p p (a-) p (a + ) r p p (a-) p (a + ) r p p (a-) p (a + ) 

Braak I 

Entorhinal cortex 0.39 < 0.01 < 0.01 < 0.01 0.06 0.60 0.23 0.95 0.38 < 0.01 0.34 0.04 0.46 0.03 0.41 0.07 

Braak II < 0.01 < 0.01 < 0.01 

Hippocampus 0.33 < 0.01 < 0.01 < 0.01 0.11 0.36 0.23 0.95 0.14 0.25 0.34 0.98 0.32 0.22 0.63 0.81 

Braak III < 0.01 < 0.01 < 0.01 

Amygdala 0.44 < 0.01 0.01 < 0.01 -0.01 0.92 0.86 0.95 0.42 < 0.01 0.01 0.04 0.44 0.03 0.41 0.04 

Lingual gyrus 0.26 < 0.01 0.10 < 0.01 -0.01 0.91 0.85 0.98 0.28 0.02 0.25 0.46 0.02 0.96 0.41 0.74 

Parahippocampal gyrus 0.43 < 0.01 0.00 < 0.01 0.11 0.36 0.15 0.94 0.29 0.02 0.02 0.32 0.45 0.03 0.83 0.02 

Fusiform gyrus 0.47 < 0.01 0.00 < 0.01 0.21 0.07 0.21 0.71 0.27 0.02 0.25 0.33 0.14 0.75 0.83 0.44 

Braak IV < 0.01 < 0.01 

Middle temporal gyrus 0.31 < 0.01 0.23 < 0.01 -0.02 0.87 0.73 0.88 0.24 0.04 0.84 0.04 0.12 0.75 0.67 0.36 

Temporal pole 0.12 0.04 0.91 0.04 -0.16 0.12 0.32 0.71 0.22 0.06 0.34 0.57 0.35 0.16 0.67 0.09 

Caudal anterior cingulate 0.02 0.75 0.19 0.17 -0.08 0.47 0.32 0.98 0.06 0.61 0.77 0.50 0.00 1.00 0.73 0.81 

Rostral anterior cingulate cortex 0.09 0.12 0.83 0.23 -0.03 0.83 0.85 0.71 0.15 0.22 0.84 0.28 0.15 0.75 0.83 0.50 

Posterior cingulate cortex 0.22 < 0.01 0.24 < 0.01 -0.01 0.91 0.85 0.95 0.25 0.03 0.67 0.06 -0.12 0.75 0.41 0.98 

Isthmus of cingulate gyrus 0.25 < 0.01 0.55 < 0.01 -0.08 0.50 0.91 0.71 0.08 0.52 0.84 0.92 0.21 0.75 0.41 0.35 

Insula 0.21 < 0.01 0.23 < 0.01 -0.04 0.73 0.73 0.95 0.17 0.16 0.34 0.46 0.17 0.75 0.92 0.68 

Inferior temporal gyrus 0.40 < 0.01 0.01 < 0.01 0.09 0.46 0.30 0.98 0.27 0.02 0.36 0.07 -0.07 0.96 0.43 0.96 

Braak V 

Precuneus gyrus 0.34 < 0.01 0.01 < 0.01 0.06 0.60 0.69 0.97 0.29 0.02 0.34 0.10 0.02 0.96 0.79 0.74 

Superior frontal gyrus -0.07 0.22 0.05 0.96 -0.23 0.07 0.25 0.30 -0.03 0.73 0.34 0.46 -0.02 0.96 0.73 0.90 

Lateral orbitofrontal cortex 0.34 < 0.01 < 0.01 < 0.01 0.19 0.07 0.15 0.95 0.16 0.18 0.34 0.57 -0.09 0.90 0.73 1.00 

Supramarginal gyrus 0.21 < 0.01 0.39 < 0.01 -0.01 0.91 0.73 0.95 0.06 0.61 0.89 0.57 0.12 0.75 0.61 0.90 

Inferior parietal lobule 0.32 < 0.01 0.04 < 0.01 0.11 0.36 0.48 0.71 0.17 0.18 0.36 0.92 0.16 0.75 0.92 0.74 

Superior temporal gyrus 0.17 < 0.01 0.83 < 0.01 -0.06 0.60 0.81 0.95 0.10 0.41 0.70 0.50 0.20 0.75 0.83 0.48 

Superior parietal lobule 0.06 0.35 0.79 0.44 -0.09 0.46 0.86 0.46 -0.06 0.61 0.62 0.98 0.05 0.96 0.92 0.98 

Superior temporal sulcus 0.38 < 0.01 0.01 < 0.01 0.09 0.46 0.34 0.97 0.27 0.02 0.40 0.06 0.13 0.75 0.58 0.74 

Transverse temporal gyrus 0.16 0.01 0.13 0.13 0.19 0.07 0.23 0.85 0.08 0.51 0.73 0.98 -0.14 0.75 0.61 0.95 

Braak VI 

Cuneus 0.29 < 0.01 0.01 < 0.01 0.19 0.07 0.23 0.35 0.22 0.06 0.70 0.28 -0.04 0.96 0.58 0.98 

Paracentral gyrus 0.00 1.00 0.79 0.67 -0.11 0.37 0.65 0.71 0.12 0.37 0.62 0.58 -0.01 0.96 0.41 1.00 

Pericalcarine cortex 0.25 < 0.01 0.01 < 0.01 0.17 0.11 0.65 0.14 0.31 0.01 0.05 0.46 -0.02 0.96 0.58 0.98 

Postcentral gyrus -0.05 0.38 0.69 0.53 -0.15 0.14 0.50 0.46 -0.04 0.71 0.67 0.98 -0.16 0.75 0.79 0.90 

Precentral gyrus -0.09 0.12 0.44 0.44 -0.20 0.07 0.65 0.30 -0.10 0.41 0.34 0.98 -0.03 0.96 0.61 0.98 
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Fig. 3. Partial correlation analyses of free-water values with regional amyloid SUVRs in the entorhinal cortex ( A,C,E ) and the hippocampus ( B,D,E ) for the CN, MCI, and the 

AD group. Figure C and D (second row) highlight the data from the MCI and the AD subjects who had amyloid-negative status. Figure D and F highlight the data from the 

MCI and the AD who had amyloid-positive status. ∗ p < 0.05 after FDR correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cell bodies, synapses, and dendrites can also contribute to an in-

crease in extracellular space free-water. Reductions in FA in MCI

and AD in white matter, e.g., fornix, corpus callosum and cingu-

lum fibers ( Chao et al., 2013 ; Choo et al., 2010 ; Pievani et al., 2010 ;

Scola et al., 2010 ), have been shown. However, interpreting FA re-

sults can be challenging because the changes in FA can result from

changes of diffusion either parallel or perpendicular to the prin-

ciple direction of the tensor ( Pievani et al., 2010 ). Characterizing

diffusion changes in gray matter is important because pathology

in gray matter usually predates that in white matter among MCI

and AD. In short, increases in free-water and decreases in FA in

gray matter are demonstrable beyond hippocampus and entorhinal

cortex, and are associated with MCI and AD. 

In the present study, higher amyloid SUVRs were associated

with lower free-water in those with amyloid-negative status, while

higher tau SUVRs were associated with higher free-water in those

with amyloid-positive status. For amyloid, the results may corre-

spond with the notion that amyloid deposits accumulate signifi-

cantly in the initial progression of AD and eventually saturated at

the later stage ( Jack et al., 2010 , 2013 ). The correlations were likely

to be observed in the amyloid-negative subgroup where amyloid

level continues to increase. However, readers must keep in mind

that this finding is likely to be confounded with non-specific bind-

ing properties of amyloid PET imaging ( Suppiah, Didier, & Vinja-

muri, 2019 ) and sampling bias due to significant atrophy of the

hippocampal region. Previous studies have shown close associ-
Downloaded for Anonymous User (n/a) at Florida International 
06, 2023. For personal use only. No other uses without permi
ations between white matter microstructural changes and amy-

loid accumulation in cognitively unimpaired and impaired subjects

( Chao et al., 2013 ; Dong et al., 2020 ; Lee et al., 2020 ; Racine et al.,

2014 ; Wen et al., 2021 ). These studies have reported that for MCI

and AD subjects with a low level of amyloid burden (amyloid SUVR

< 1.2-1.5), greater amyloid SUVRs were associated with more re-

stricted diffusion in white matter. Conversely, for subjects who

are in the later stages of AD or have a high global amyloid bur-

den (amyloid SUVR > 1.5), greater amyloid SUVRs were associated

with less restricted diffusion as reflected by increased MD and de-

creased FA ( Collij et al., 2021 ; Dong et al., 2020 ; Racine et al.,

2014 ; Wolf et al., 2015 ). The findings point to a nonlinear rela-

tionship between diffusion changes and amyloid deposition across

different staging of AD. Our findings are in line with the previ-

ous evidence that increasing amyloid accumulation is associated

with more restricted diffusion in those with lower global amyloid

level (amyloid negative subgroup). Note that previous studies used

global amyloid SUVRs to quantify amyloid burden, whereas in this

paper regional SUVRs and diffusion measures were extracted from

the same ROIs for each subject, offering a more direct regional ex-

amination of the relationship between the 2 measures. It is likely

that higher extracellular amyloid plaques create hindrance and re-

striction of water movement, resulting in more restricted diffusion,

which corresponds to lower free-water. Restrictions in extracellular

water movement can also be caused by glial proliferation and acti-

vation of microglia and astrocytes, also prominent in AD pathology
University from ClinicalKey.com by Elsevier on September 
ssion. Copyright ©2023. Elsevier Inc. All rights reserved.
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Fig. 4. Partial correlation analyses of free-water values with regional tau SUVRs in the entorhinal cortex ( A,C,E ) and the parahippocampus ( B,D,E ) for the CN, MCI, and the 

AD group. Figure C and D (second row) highlight the data from the MCI and the AD subjects who had amyloid-negative status. Figure D and F highlight the data from the 

MCI and the AD who had amyloid-positive status. ∗ p < 0.05 after FDR correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Ahmad et al., 2019 ; Heneka et al., 2015 ; Kaur et al., 2019 ;

Mueggler et al., 2004 ; Rodriguez-Vieitez et al., 2016 ). In addition,

we also observed a paradoxical finding that for the hippocampus

ROI, the amyloid SUVRs were significantly lower in the AD and

MCI groups compared to the control group. This result may have

been due to the significant hippocampal atrophy in the MCI and

AD groups. The lost neurons were likely to result from a higher

level of amyloid deposits between neurons that with their absence,

a smaller anatomical regions was sampled, which may bias the re-

sult ( Hsu et al., 2015 ; Kadowaki et al., 2005 ). For tau deposition,

an increasing in tau SUVRs was associated with increasing free-

water regardless of amyloid status. Tau deposition has been associ-

ated with greater MD and lower FA in white matter regions includ-

ing the hippocampal cingulum tract, and the posterior cingulum in

preclinical AD ( Pereira et al., 2019 ), MCI ( Wen et al., 2021 ) and AD

( Binette et al., 2021 ). Here, we replicate prior studies by showing

a similar relationship between free-water and tau SUVRs and ex-

tend the result to gray matter brain regions. Intracellular tau pro-

tein deposition, which are thought to be responsible for neuronal

loss ( Gomez-Isla et al., 1997 ; Giannakopoulos et al., 2003 ) and ax-

onal degeneration ( de Calignon et al., 2012 ), are closely associated

with macrostructural atrophy ( Deture & Dickson, 2019 ). Cellular at-

rophy results in the breakdown of microstructural barriers such as

myelin cell membranes and intracellular organelles that would nor-
Downloaded for Anonymous User (n/a) at Florida International Uni
06, 2023. For personal use only. No other uses without permissio
mally restrict water molecule motion, leading to greater free-water

diffusion ( Montal et al., 2018 ; Weston et al., 2015 ). 

Interpretation of diffusion measure change can be complicated

as it interacts with multiple tissue changes and dynamic courses

of inflammation, axonal swelling, and myelin loss, each with

different cellular responses associated with distinct or overlap-

ping diffusivity profiles ( Winklewski et al., 2018 ). Nevertheless, a

growing number of diffusion studies across the spectrum of AD

severity have shown converging results of nonlinear patterns of

diffusion changes in cognitively normal but amyloid positive indi-

viduals ( Collij et al., 2021 ; Montal et al., 2018 ). These studies have

suggested that in an early stage of the disease, acute glial swelling

and glial activation lead to more diffusion barriers whereas in

later AD stage, cellular barrier breakdown associated with axonal

degeneration is likely to increase MD and free-water. Delineating

microstructural alterations accompanying cellular pathology in AD

improves our understanding of disease progression and the ability

to better assess treatment efficacy. Future longitudinal studies are

warranted to validate these relationships. 

We found that when predicting subjects’ MMSE scores 2 years

later, the model including diffusion measures (FW & FA) and

follow-up time achieved the highest r-squared predictive perfor-

mance. Previous studies using diffusion measures have shown

high classification accuracy ( > 80%) in separating AD from normal
versity from ClinicalKey.com by Elsevier on September 
n. Copyright ©2023. Elsevier Inc. All rights reserved.
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Fig. 5. The r-squared values and the root-mean-square error (RMSE) of different combinations of imaging modalities in predicting MMSE scores for the MCI subjects at 

(A, B) baseline (T 0 ) and (C,D) 2 years later (T 1 ) using SVM regression. In the prediction of baseline MMSE, age and sex were included as covariates in addition to imaging 

modalities, while in the prediction of follow-up MMSE, age, sex, and the time interval between baseline MMSE and MMSE 2 years later were included as covariates across 

all 15 models. Diffusion measures showed high predictive performances in predicting baseline MMSE (R 2 DTI = 96%, RMSE DTI = 0.15) and MMSE 2 years later (R 2 DTI = 87%, 

RMSE DTI = 0.37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

controls ( Billeci et al., 2020 ). The use of the free-water model is

more sensitive than a single-tensor model, and thus the current

results could be due to the use of the more advanced and sen-

sitive 2-compartment model ( Ofori et al., 2017 ; Pasternak et al.,

2018b ). Moreover, we systematically evaluated the predictive per-

formances of 4 types of brain imaging features individually and in

their possible combinations on subjects’ MMSE scores. Our novel

finding is that when comparing each individual modality, the diffu-

sion measure model showed the highest r squared value than any

other imaging modality alone at each time point. Our data provide

new evidence that diffusion changes in wide-spread gray matter

regions are useful in predicting subjects’ cognitive decline 2 years

later. Advantages of diffusion MRI include lower costs compared

to PET scans, no tracer required, close relationship with pathology,

and a sensitive marker for early detection and improved diagno-

sis in early disease-state before conventional volumetric changes

take place ( Jack et al., 2010 ; Lee et al., 2020 ; Ofori et al., 2019 ;

Weston et al., 2015 ). The use of diffusion markers also adds conve-

nience, as most patients undergo an MRI scan, and the sequences

can be added to a standard clinical procedure. Microstructural

changes in gray matter regions offer useful information in predict-

ing cognitive decline and hold potential value for monitoring the

progression of AD in MCI populations. 

We next offer considerations on methodology and interpreta-

tion of the current findings. First, for a typical diffusion imag-

ing acquisition, water molecules in the brain are expected to

have a mean displacement on the order of 5–10 micrometers

( Pasternak et al., 2009 ), whereas the collected diffusion images are

typically at a resolution of 1–1.5 mm (10 0 0–150 0 micrometers).

 

Downloaded for Anonymous User (n/a) at Florida International 
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Resolution of PET images is even lower ( ∼2mm), and the average

size of a cell body ranges from 4 to 100 micrometers in diame-

ter. Therefore, readers should interpret the findings across different

imaging modalities with caution, especially when inferring conclu-

sions at the cellular level. Second, not all of our MCI and AD cohort

were amyloid-positive therefore we cannot exclude the possibilities

that other proteinopathies may have confounded the result. Third,

due to the unavailability of partial-volume-corrected amyloid SUVR

on the ADNI website, additional sensitivity analyses were con-

ducted using amyloid SUVRs normalized by the whole cerebellum,

brainstem/pons, and eroded subcortical white matter, which mit-

igates the influence of partial volume effects ( Wang et al., 2021 ).

Significant associations between FW and amyloid SUVRs in the en-

torhinal cortex and hippocampus remain unchanged (Supplemen-

tary Fig. 1). One of the weaknesses of this work is that we did not

use a composite cognitive score as our outcome measures such as

ADNI-MEM and ADNI-EF ( Crane et al., 2012 ). The study has shown

these scores are more sensitive to cognitive decline and are better

at predicting conversion from MCI to AD. Future studies, especially

with longitudinal design should include these standardized com-

posite scores. 

5. Conclusions 

Disruption of diffusion in the gray matter characterized by in-

creased free-water and decreased FA across Braak stages was ev-

ident in individuals with MCI and AD. Increasing regional amy-

loid burden was associated with restricted diffusion when global

amyloid level was low, while increasing regional tau burden was
University from ClinicalKey.com by Elsevier on September 
ssion. Copyright ©2023. Elsevier Inc. All rights reserved.
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associated with less restriction regardless of amyloid status. Diffu-

sion measures from widespread brain regions was able to predict

subjects’ cognitive function at baseline and 2 years later with high

predictive performances as compared to using T1, amyloid PET, or

tau PET alone. Diffusion measures should be considered for pre-

dicting cognitive decline when amyloid/tau PET is not available or

is too expensive. 
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