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Abstract—Prodromal detection of Alzheimer’s Disease(AD) is
a substantial challenge in the research community. Among the
tools used in AD diagnosis, cognitive exams are standard in most
procedures. However, the barrage of cognitive examinations is
both time and resource consuming. With the use of Machine
Learning, Feature Elimination (FE) can be combined with
classification algorithms to determine which cognitive exams are
best suited for diagnosis. Using the results of FE, it can be
determined if subsections of different composite scores can be
combined to create a new enhanced and exhaustive exam. This
paper implements a Recursive Feature Elimination with Cross
Validation (RFECV) machine learning algorithm to determine
which cognitive exams perform best for AD classification tasks.
Out of 119 features, an average of 16 features were selected as
optimal. These optimal features average 75% Accuracy, 70%
Precision, and 75% Recall and an F1 Weighted score of 71% in
classification.

Index Terms—Alzheimer’s Disease, Machine Learning, Recur-
sive Feature Elimination, Feature Elimination, Decision Tree,
Random Forest

This research is supported by the National Science Foundation under grants:
CNS-1920182, CNS-2018611, and CNS-1551221, and with the National
Institutes of Health through the P30AG066506 with the 1Florida Alzheimer’s
Disease Research Center (ADRC).

979-8-3503-3556-9/23/$31.00 ©2023 IEEE

Robin Perry Mayrand
Electrical & Computer Engineering
Florida International University
Miami FL, USA
rmayr002 @fiu.edu

Rosie E. Curiel Cid
Department of Neuropsychology
University of Miami
Miami FL, USA
rcuriel2 @med.miami.edu

Ranjan Duara
Wien Center for AD & MD
Mt Sinai Medical Center
Miami FL, USA
ranjan.duara@msmc.com

Luana Okino Sawada
Computing & Information Sciences
Florida International University
Miami FL, USA
lokin001 @fiu.edu

Shanna Burke
Public Health and Social Work
Florida International University
Miami, United States
sburke @fiu.edu

Malek Adjouadi
Electrical & Computer Engineering
Florida International University
Miami, United States
adjouadi @fiu.edu

I. INTRODUCTION

Alzheimer’s Disease is a progressive neurodegenerative dis-
ease that currently affects millions of Americans, accounting
for over half of all cases of dementia, with roughly 50 million
people affected worldwide [1]. For the year of 2020, the cost
of Alzheimer’s Disease treatment was estimated to be $305
billion and expected to increase to over $1 trillion [2].

Currently, the only definitive way to confirm Alzheimer’s
is via post mortem examination of brain tissue [3]. Without
an autopsy, Alzheimer’s diagnosis is a complex issue, but
alternatives do exist. Alzheimer’s diagnostics can be performed
using a multitude of other procedures such as neuroimaging,
biomarkers, or clinical assessments [4]. Neuroimaging, such
as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), and Computed Tomography (CT) scans
also show potential for AD diagnosis [5]. However, even
with these modalities, there is variability to what results
represents a diagnosis of Alzheimer’s Disease. For example,
the thresholds agreed upon as signs of Alzheimer’s pathology
vary depending on the lab or center performing the evaluation
[6]. Additionally, a subject might not be exhibiting signs
of dementia but presents pathology in neuroimaging, which
brings up concerns of whether or not such a patient should be
diagnosed with AD. Due to these discrepancies, AD diagnosis
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performed without autopsy are estimations of disease status
based on a clinicians evaluation. Additionally, AD databases
face an issue of incompleteness due to an increased attrition
rate as some subjects may lack the time or resources to
complete every kind of assessment.

Out of all available modalities for AD diagnosis, clinical
evaluations are some of the most standard procedures. A
clinical evaluation is accomplished by reviewing medical and
familial history in addition to making behavioral observations
of a subject. It is common for neuropsychological tests such
as the Mini-Mental State Exam (MMSE) and the Montreal
Cognitive Assessment (MoCA) to be included in clinical
evaluations for Alzheimer’s Disease. Although a standard,
cognitive examinations can potentially be biased, whether it’s
the format or language the exam is written in, and many
of these exams require more sensitivity to the prodromal
stages of Alzheimer’s Disease [7]-[9] . Therefore, a need
exists for more comprehensive exams to precisely capture the
earlier stages of Alzheimer’s Disease. Considering all these
challenges, developing a standardized exam that consumes
fewer resources and is flexible in its diagnostic capabilities
would be highly beneficial to AD research.

The current landscape of AD research incorporates various
machine learning (ML) applications that show potential as
tools to aid in the classification and diagnosis of AD [10],
[11]. Machine learning performance, as with all computing
techniques, will be dependent on the quality of its source data.
In short, introducing substandard input data to ML algorithms
generates substandard results. Medical data is inherently ex-
tensive and has a natural tendency to be highly dimensional
which can become burdensome to the processing ability of
many ML algorithms. In order to alleviate the computational
stress of both the dimensionality and quality of input data,
researchers employ feature optimization to include only the
most pertinent information [12], [13].

One form of feature optimization is feature elimination (FE),
where the weakest features given to a learning model are
removed. Recursive Feature Elimination (RFE) is a popular
FE algorithm due to it’s simplicity, speed, and compatibility
with all supervised learning estimators. RFE is a wrapper-
style method that assigns importance scores to features using
an iterative process. This ranking style allows for enhanced
interpretability not only in the final rankings of the selected
features, but of the selection process itself. RFE can be
combined with cross-validation (CV) using stratified k-fold
techniques to address overfitting and data incompleteness
issues to simulate an independent dataset.

Machine learning research in AD faces the challenge of
highly dimensional datasets burdening predictors. This re-
source burden could potentially be solved by implementing
RFE to determine an optimal feature space. This paper incor-
porates feature reduction via a Recursive Feature Elimination
with Cross Validation (RFECV) machine learning classifica-
tion algorithm with cognitive examinations to identify the
most relevant exams for AD diagnosis in order to develop a
reduced and efficient feature set. Overall, RFECV was able to

generate an optimal feature space of 16 features for cognitive
status classification. The rest of this document is structured
as follows: Section II describes the data collection method,
Section III describes the method implemented and how
results were evaluated Section IV concludes the paper and
discusses limitations and future works.

II. DATA

TABLE I
SUBJECT DEMOGRAPHIC DATA

Diagnosis Avg Age Sex (F/M) Total
NC 72.2 11/5 16
eMCI 72.5 48/41 89
AD 72.7 13/5 18
Late MCI 73.0 10/12 22
PreMCI Clinical 75.0 714 11
PreMCI NP 71.2 18/4 22
Total 72.8 107/71 178

All data used was gathered by the 1Florida Alzheimer’s
Disease Research Center (IFADRC) study [14]. 1FADRC
collects clinical data, multiple neuroimaging modalities, and
neuropsychological test scores for medical and research ap-
plications. 499 subjects between the ages of 52 and 93 were
made available via the 1IFADRC(Table I). Subjects enrolled
in the 1FADRC may not have a full cognitive examination
battery completed due to limited resources or time constraints,
so filtering was used to include exams that include the
largest majority of patients . After filtering, the final data set
contained 178 unique subjects with each having 14 different
completed neuropsychological examinations [15]. The new
data set subjects were categorized into different cognitive
diagnosis groups: Cognitively Normal (CN), PreMild Cogni-
tive Impairment (pMCI) Clinical, PreMCI Neuropsychological
(pNP), Early MCI (EMCI), Late MCI (LMCI), and AD.

The 14 neuropsychological exams included after filtering
are, in alphabetical order:

1) Benson Complex Figure: Assesses a subject’s visciocon-
structional and visual memory functions.

2) Clinical Dementia Rating (CDR): A composite rating
scale used to quantify cognitive impairment by analyzing
functional performance of a subject in different areas such
as memory, orientation, and judgement.

3) Controlled Oral Word Association Test (COWA): Verbal
fluency test that measures executive function via spontaneous
word association.

4) Category Fluency: Evaluation of semantic memory
where a subject is instructed to name different items of a given
category.

5) Craft Story Recall: Assessment of a subject’s ability to
recall a short story after a certain amount of time.
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6) Hopkins Verbal Learning Test: A list learning exam used
to determine cognitive status.

7) Loewenstein-Acevedo Scales for Semantic Interference
and Learning (LASSI): Cognitive stress test designed to
identify early cognitive fluctuations linked to cognitive im-
pairments.

8) Mini Mental State Exam (MMSE): Questionnaire used
in clinical and research settings to assess cognitive status.

9) Montreal Cognitive Assessment (MoCA): A screening
assessment used in the detection of cognitive status composed
of various evaluations of cognitive functions.

10) Multilingual Naming Test (MINT): A object naming
test containing items with similar levels of usage and famil-
iarity in English, Spanish, Hebrew, and Mandarin.

11) Number Span Test: : Examination that utilizes numbers
to assess working memory by having a subject count forwards
and backwards.

12) Trail Making Test: An assessment of a subject’s pro-
cessing speed and executive function judged in terms of time.

13) Stroop Test: Exam used to assess cognitive interference
via the stroop color word test.

14) Wechsler Memory Scale: A neuropsychological test
composed of five distinct index scores used to measure cog-
nitive functions of a subject.

Each exam uses unique scoring metrics and are composite
scores of several subsections. All subsections’ scores are
made available to the RFECV algorithm. After accounting for
section totals and subtotals there are 119 total input features.

@

Stratified K-Fold Cross Validation

III. METHOD

Return Optima’
Amount
Features

Reached Last
Feature?

Record Average Score
Training Fold &
e
Remove Weakest
Test Fold Feature

Fig. 1. Flowchart of RFECV Process

Recursive Feature Elimination with Cross Validation
(RFECV) for multi-class classification was implemented via
the sci-kit learn Python library [16]. The RFECV algorithm
is composed of three major components: (1) stratified cross-
validation (CV), (2) classifiers, and (3) Recursive Feature
Elimination (RFE). After implementing RFECYV, the perfor-
mance of both classifiers and features is evaluated.

A. Stratified Cross Validation

Due to the highly imbalanced nature of the input data a
stratified k-fold of n = 5 splits was used. RFECV functions

by first performing cross-validation on the input data dividing
it into testing and training sets prior to introducing it to
a classifier. The stratified k-fold process ensures that each
training and testing sets are balanced.

B. Classifiers

Two tree classifiers were implemented in the RFECV
algorithm: Decision Tree (DT) and Random Forest (RF).
Both classifiers were trained using cross-validation and no
maximum tree depth.

1) Decision Tree: Decision trees are supervised learning
algorithms used in both classification and regression analysis.
Tree models predict the values of target variables via the use
of discrete values called classification trees.

2) Random Forest: An ensemble learning method used for
classification which is made up of multiple randomly assem-
bled decision trees. Random Forest models for classification
return the class that is selected by the most trees.

C. Recursive Feature Elimination and Classifier Training Pa-
rameters

Recursive Feature Elimination functions by executing a
classifier with a target metric, such as accuracy or precision,
and then removing the feature with the lowest gini impurity
score (Figure 1). After removing the lowest performing fea-
ture, the classifier is refitted with the newly reduced set of
features and run again. Reiterations are executed until a set
minimum amount of features is achieved, in this implemen-
tation the minimum number of features is defined as n = 1.
After generating feature rankings based on the RFE method, an
optimal amount of features is determined. The optimal feature
range is calculated using the confidence interval across all
k-folds, meaning selecting a feature range with the lowest
standard deviation and the highest metric score. When a
feature makes it into the optimal feature range, it is considered
a supportive feature.

IV. RESULTS

A. RFECV Classifier Performance Evaluation

For both classifiers, the calculated amount of optimal fea-
tures for each metric was recorded across all runs and their
averages recorded. The performance of each RFECV classifier
was calculated using four metrics: Accuracy, Precision, Recall,
and F1 weighted score. These scores are calculated using the
number of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). All scoring metrics
are the calculated averages across all 5 folds.

1) Accuracy: In order to compute observational error, accu-
racy was selected as a metric. Accuracy evaluates how a model
performs across all classes and is calculated as follows:

y B TP + TN 0
Y = P p I TN + FP+ FN
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2) Precision: Precision determines how efficient a model
is at predicting each individual category and is calculated as:

TP+TN
P 1S10N = ————— 2
recision TP+ FP 2)

3) Recall: Also known as sensitivity, recall is the probabil-
ity of a model providing a correct prediction and is calculated
as:

TP+TN
= —— 3
Recall TP+ 3)

4) F1 Weighted: An F1 score is the mean of precision and
recall. An F1 weighted score provides the weighted mean of
F1 measured in relation to class probability. An F1 Score is
calculated via:

. Precision * Recall
Precision + Recall (@)

FlScore =2

The F1 Weighted score is calculated for an N-class dataset
as:

N
Flyeighted = Z w; * F'1Score; 5

i=1
Where,

Number of samples in class i
w; =

(6)

Total number of samples

B. RFECV Feature Performance Evaluation

Each time a feature is flagged as a support feature, it is
recorded and stored. The combined total of every instance
a feature was listed as supportive is then calculated as a
percentage across all runs and aggregated into a single table.

C. RFECV Optimization Figures

Visualizations of the RFECV Optimization process were
generated for all 4 metrics across all runs. Figures 2 and 3
are examples using two samplings of the iterations used in
RFECV.

D. Classifier Performance

Out of both classifiers, Random Forest outperformed De-
cision Tree across all metrics except precision (Table II).
Combined, the algorithms averaged 73.37% accuracy, 70.63%
precision, 73.37% recall, and 71.01% F1 weighted score.
Across all metrics, the average amount of optimal features
for both classifiers was 16 (Table III). The largest amount of
selected features was 30 for the F1 Weighted metric in DT
and the smallest amount was 6 in both accuracy and recall for
DT.
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Fig. 2. Visualization of RFECV Optimization for the Decision Tree Classifier
of a) Accuracy, b) F1 Weighted Score, c) Precision, and d) Recall
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Fig. 3. Visualization of RFECV Optimization for the Random Free Classifier
of a) Accuracy, b) F1 Weighted Score, c) Precision, and d) Recall

E. Feature Performance

CDRSUM, a derived score using CDR, made it into the
optimal feature range in 100% of the RFECYV iterations across
all metrics(Table IV). The next closest overall support percent-
age was HVLT_DR, a subsection of HVLT, with a support
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TABLE 11
REFCV METRIC AVERAGES

Classifier Overall Accuracy Precision Recall F1 Weighted

Random Forest | 73.39% 75.69%  70.42% 75.69% 71.78%

Decision Tree | 70.80% 71.06%  70.84% 71.06% 70.23%
Combined 72.10% 73.37%  70.63% 73.37%  71.01%

Combined represents the average across both classifiers for a given metric.
Best model for each metric in bold.

TABLE III
REFCV OPTIMAL FEATURE RANGE AVERAGES

Classifier Overall Accuracy Precision Recall F1 Weighted

Random Forest 15 17 12 17 14

Decision Tree 17 6 24 6 30
Combined 16 12 18 12 22

Combined represents the average across both classifiers for a given metric.
Best model for each metric in bold.

percentile of 65.38%. Out of the top 30 supportive features,
only 7 were selected at least 50% of the time. Although top
supportive feature, FL_COWA_A, a subsection of the COWA
exam, only made it into 5% of the time into the accuracy and
recall metrics across all runs, the lowest percentile score of
any top feature.

V. DISCUSSION

Overall, for both classifiers, RFECV was able to reduce the
feature space from 119 features to an average of 16 optimal
features across all runs and metrics. In comparing classifiers,
RF outperformed DT on average across most categories ex-
cept feature optimization in the accuracy and recall metrics.
Additionally, many of the top 30 features are subsections of
their respective composite totals. The prevalence of feature
subsections indicates a potential for the construction of an
enhanced exam that only utilizes these scores. With a perfor-
mance average of 73% across all metrics, feature optimization
using RFECV has potential viability as a solution to the
resource issues faced in AD research.

A. Limitations

An important consideration for classification with this
RFECV implementation is that some features introduced are
part of the algorithmic diagnosis used to generate the class
label. The algorithmic diagnosis is a formula used to deter-
mine to which cognitive diagnosis class a subject belongs to
[17]. Therefore, some features are intrinsically correlated with
the diagnosis which could introduce bias to the classifiers’
predictions. Additionally, even though all features used in
the algorithmic diagnosis were utilized, RFECV could only
achieve a maximum performance of 73% across all metrics.
This gap in predictive ability could be due to the sensitivity of
the exams or the necessity for a more extensive and balanced
data set.

TABLE IV
RFECV FEATURE SUPPORT PERCENTILES

Feature Overall Accuracy Recall F1 Weighted Precision
CDRSUM 100.00% 100.00% 100.00%  100.00%  100.00%
HVLT_DR 65.38% 52.50% 52.50% 82.00% 74.50%
HVLT_IR 64.88% 54.00% 54.00% 77.50% 74.00%
MCDR_MN_MN  63.88% 54.00% 54.00% 75.00% 72.50%
CDRGLOB 5825% 52.50% 52.50% 66.00% 62.00%
MCDR_SM_MN  58.13% 52.00% 52.00% 66.00% 62.50%
FL_WMS_LM_DR 56.00% 52.00% 52.00% 63.50% 56.50%
MEMORY 48.00% 49.00% 49.00%  48.00% 46.00%
LASSI_B_CR2 44.63% 43.50% 43.50%  48.50% 43.00%
LASSI_B_IR1 37.00% 31.50% 31.50%  47.00% 38.00%
FL_WAIS_DIGISYM 33.88% 34.00% 34.00% 38.50% 29.00%
FL_TRLS_B 28.13% 27.00% 27.00% 32.50% 26.00%
FL_TRLS_A 28.00% 25.50% 25.50% 34.00% 27.00%
TRAILB 27.88% 28.00% 28.00% 31.00% 24.50%
TRAILA 26.75% 26.50% 26.50% 30.00% 24.00%
COMMUN 26.13% 32.00% 32.00% 23.50% 17.00%
LASSI_A_IR1 25.38% 22.00% 22.00% 33.00% 24.50%
STRP_CW 24.75% 22.00% 22.00% 31.00% 24.00%
HOMEHOBB 24.25% 31.00% 31.00% 22.00% 13.00%
HVLT_RET 2325% 22.50% 22.50% 29.00% 19.00%
STRP_W 22.63% 24.00% 24.00% 25.50% 17.00%
UDSVERLC 18.50% 6.50%  6.50% 32.00% 29.00%
LASSI_A_CR1 18.00% 5.50%  5.50% 30.50% 30.50%
FL_COWA_A 17.25% 5.00%  5.00% 28.50% 30.50%
FL_WMS_LM_IR 16.75% 14.00% 14.00% 23.50% 15.50%
MCDR_1_MN 14.25% 15.50% 15.50% 16.00% 10.00%
STRP_INT 14.13% 7.00%  7.00% 23.50% 19.00%
JUDGMENT 13.88% 18.50% 18.50% 12.00% 6.50%
STRP_C 13.25% 9.50%  9.50% 19.50% 14.50%
FL_COWA_F 11.63% 7.00%  7.00% 19.00% 13.50%

Feature input labels are defined by IFADRC Data Element Dictionaries [15].

B. Future Work

In future feature reduction implementations, a larger and
a more balanced data set should be considered as more data
is collected via the 1Florida Alzheimer’s Disease Research
Center. Moreover, additional classification algorithms could
include more supervised learning such as support vector ma-
chines or gradient boosting [18]. These classifiers can also be
paired with filtering methods like principal component analysis
(PCA) or independent component analysis (ICA) beforehand
to aid in reducing highly correlated or noisy features. A
more balanced data set should include more normal controls,
more overall subjects, and more completed cognitive exams.
Longitudinal analysis using optimal features should also be
considered to determine whether or not the optimal feature
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sets are sensitive to cognitive changes over time [19]. Another
interesting application would be to determine whether or not
these optimal feature sets are sensitive to the various etiologies
of Alzheimer’s Disease.
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