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Abstract—Early diagnosis of Alzheimer’s Disease (AD) is
challenging due to its progressive nature. This study proposes
a comprehensive comparison of four classifiers combined with
different dimensionality reduction methods to discriminate nor-
mal controls (CN) from pre-mild cognitive impairment (pMCI)
and early MCI (EMCI) using multimodal datasets including
MRIs, PETs, SUVr, clinician amyloid visual reads, and subjects
demographics. The most robust classifier for CN vs. MCI is
the Mutual Information Best Percentile - Bagging Classifier
combination, with 73.91% accuracy and a 4.82% standard
deviation (SD). The best performance of 65.23% (11.84% SD)
accuracy for CN vs. EMCI was DTC with ANOVA. In comparing
CN with pMCI the best classification accuracy was ANOVA-DTC
51.06% (14.19% SD). An accuracy of 56.34% (10.67% SD) was
achieved by bagging with ANOVA for multiclass classification of
CN vs. pMCI vs. EMCI.
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grants: CNS-1920182, CNS-2018611, and CNS-1551221, and by the National
Institute on Aging - National Institutes of Health (NIH) through 1R01
AG047649-01A1, 5R01AG061106-02, and P30AG066506 with the 1Florida
Alzheimer’s Disease Research Center (ADRC).
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I. INTRODUCTION

Alzheimer’s disease (AD) is the most common neurode-

generative disease among the elderly population. The most at-

risk population for Alzheimer’s dementia is the baby boomer

generation (1946-1964), where approximately 61% have al-

ready reached the age of 65. In 2019 it was estimated that

5.6 million Americans over the age of 65 live with AD and

that the number of affected individuals may reach a staggering

13.8 million by 2050 [1]. AD forecasts prompted a demand

for research on early disease diagnosis and the development

of more sophisticated methods, such as Artificial Intelligence

(AI) and Machine Learning (ML) applications [2]–[6].

Recent developments in the field of AI applications in AD

have demonstrated its ability to classify and predict different

stages of AD using large amounts of multimodal datasets [7].

Despite these advances and new insights, early detection of
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the disease remains one of the top challenges faced in AD

research.

Image processing techniques and related neuroimaging

modalities are used in many recent studies diagnostic protocols

such as sophisticated tumor and lesion detection algorithms to

yield a higher efficiency and accuracy. Therefore, when diag-

nosing AD, ML methods have been adapted to include neu-

roimaging data, such as magnetic resonance imaging (MRI)

and positron emission tomography (PET) [8]. However, one

of the challenges faced when using large scale multimodal

data for ML algorithms is feature optimization to maximize

the classifier’s efficiency.

Most AD studies consider only three groups (CN, MCI, and

AD), and some perform binary classification for the EMCI

and LMCI subcategories. S. Singh et. al. propose a classi-

fication model for Fluorodeoxyglucose (FDG)-PET through

a feed-forward deep neural network, which uses its analysis

probabilistic principal components analysis (PPCA) applied on

max-pooled FDG-PET data altogether with functional activity

questionnaire (FAQ), demographic information (age, gender,

APOE e1, and e2 alleles). Using this deep neural network

with 10-fold cross-validation, they achieved an f1 accuracy of

72% for CN vs. EMCI, with 77.42% precision and 67.29%

for recall. In the classification between CN and MCI, they

get an f1 score of 78.30%, precision of 82.14%, and recall of

74.79%. [9].

D. Yao, V.D. Calhoun, Z. Fu, Y. Du, and J. Sui et. al.
introduced a feature selection algorithm based on relative

importance with a hierarchical grouping process for classifying

four groups: CN, AD, MCI, and MCI converting to AD

(cMCI). The data used in this study is comprised of measure-

ments from MRI images (Freesurfer 5.3) and demographic and

clinical information. The performance of the selected model

reaches 54.38% for 4-class classification [10].

B. Jie, M. Liu, and D. Shen et. al. proposed a framework

where the most important temporal and spatial variability

features from dynamic connectivity networks (DCN) were ex-

tracted. A multi-kernel SVM classification was then performed

for the NC, EMCI, and LMCI groups. The features were

selected from volumetric measurements taken from resting-

state functional MRI (rs-fMRI), clinical, and demographic

information (MMSE, age, and gender). They acheived an

accuracy of 66%, with recall 71.4% for classifying NC and

EMCI [11].

Based on the efforts and results from past research, this

study compares the use of different dimensionality reduction

(DR) methods for multimodal feature spaces with four (4)

classifiers trained for early AD detection.

The remainder of this article is divided into the following

sections: Section II describes the data, proposed framework,

and methods. Section III consists of the different approaches

for dimensionality reduction (DR) and their respective results.

Finally, Section IV provides concluding remarks and possible

future research directions.

II. METHODS

A. Data

All data used in this work was acquired from participants

of the 1Florida Alzheimer’s Disease Research Center (1F-

ADRC) study. 1F-ADRC collects and maintains MRI, PET,

cerebrospinal fluid (CSF), and neuropsychological tests for

the diagnosis and prognosis of Alzheimer’s disease [12]–[15].

The 1F-ADRC neuroimaging data was processed and accessed

via the Neuroimaging Web Services Interface (NWSI) [16].

A total of 482 subjects between the ages of 49 and 106

were separated into different clinical cognitive diagnostic

groups: Cognitive Normal (CN), Pre Mild Cognitive Impair-

ment (pMCI) Clinical, Pre MCI Neuropsychological (pNP),

Early MCI (EMCI), Late MCI (LMCI), and AD.

The 1F-ADRC data was filtered to only include subjects

with both an MRI and a PET scan available. The PET scans

were registered with their respective MRI image using the

closest PET exam date within a 6 month period to ensure

congruity of the brain at both timepoints. Out of the 232

matched records, 44 used Florbetapir (Amyvid/AV45) radio-

tracers for PET imaging (10: CN; 9: pMCI; 1: pNP; 13: EMCI;

5: LMCI, 6: AD) and 188 used Florbetaben (Neuraceq/FBB)

radiopharmaceutical compound (29: CN; 16: pMCI; 14: pNP;

60: EMCI; 34: LMCI, 35: AD).

Since this study focuses on the classification of the early

stages of Alzheimer’s Disease, only the following groups were

considered: CN, PreMCI (as a combination of pMCI and pNP),

and EMCI.

The classifications used in this study consists of three binary

classifiers and one multiclass classifier as follows: 1) CN vs.

EMCI (29/60); 2) CN vs. MCI, where MCI is combination of

PreMCI & EMCI (29/90) ; 3) CN vs. PreMCI (29/30); 4) CN

vs. PreMCI vs. EMCI (29/30/60).

1F-ADRC includes PET visual read, where clinicians an-

alyzed amyloid PET images and classified them as amyloid

positive (Aβ+) or negative (Aβ−) [17]. In the AV45 records,

43.18% (19/44) were classified as amyloid positive, 56.82%

(25/44) negative. Moreover, 62.23% (117/188) of the FBB

records were classified as positives, and 37.77% (71/188)

negatives.

Table I details the demographic and clinical data.

TABLE I
DEMOGRAPHIC AND CLINICAL DATA

Cognitive Diagnostic group
Data CN(n=29) EMCI(n=60) PreMCI(n=30) MCI(n=90)

Gender (F|M) 8 | 21 28 | 32 9 | 21 37 | 53
VR (+|-) 2 | 27 23 | 37 3 | 27 26 | 64

Agea 73.17(5.49) 76.40(7.25) 74.87(7.00) 75.89(7.16)
Educationa 16.59(2.98) 14.97(3.54) 16.20(2.83) 15.38(3.36)

aValues represented as mean(sd) .

B. Proposed Network

Figure 1 shows the proposed framework for this study.

Once the image data (MRI and PET scans) are collected and
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processed, the volumetric (Vol) and cortical thickness (CoTh)

are extracted from the MRI, and the Standard Uptake Value

ratio (SUVr) is calculated from the PET scan. These mea-

surements are later combined with the demographic variables

and visual reads (VR) for amyloid plaque. Machine learning

classifiers are then used to discriminate early AD diagnoses

over a dimensionally reduced feature space.
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Fig. 1. General classification flowchart of the proposed framework.

C. Image Processing

Image processing for this study consists of the following

stages: 1) pre-processing done during the capture of the

medical images, 2) post-processing done on the T1 sequenced

images by FreeSurfer (version 6.0) [18] to extract the volumet-

ric and cortical thickness measurements of the different brain

regions, 3) normalization of these values by the estimated Total

Intracranial Volume (ICV), 4) processing and co-registration

of the amyloid PET scans with their matched T1-weighted

MRI scans using the FMRIB Software Library (FSL) toolbox

[19], and 5) calculating the standardized uptake value ratio

(SUVr) from the co-registered PET and T1-MRI scans.

D. Dimensionality Reduction (DR) and Classifiers

1) Dimensionality Reduction: Several methods for feature

selection and feature extraction were implemented.

a) Original: original data sample with no DR method.

b) VarianceThresholdDR (Var): selects features with

training-set variance greater than threshold (0.001).

c) CorrelationFS (Corr): performs feature selection

based on Pearson correlation greater than 65%.

d) MIKBest (MI-KB): Mutual information (MI) with

selection of the K (30) features with highest scores

based on univariate statistical tests.

e) MIBestPercentile (MI-BP): keeps features based on

given percentile (16%).

f) FeatureImportance (FI): executes the selection

based on the evaluation of the features importance,

in this framework the 30 first are selected.

g) ANOVA (Analysis of Variance): selects the top 30

features with highest scores based ANOVA F-value.

h) LassoFS (LASSO): selects the features that have

least absolute shrinkage and selection operator

(LASSO) different than 0 with α = 0.1.

i) PCA (PCA): feature extraction based on the Princi-

pal Component Analysis (PCA) with a cumulative

explained variance ratio of 95%.

j) SVDDR (SVD): linear DR technique which uses

truncated singular value decomposition (SVD).

k) LDADR (LDA): uses Bayes’ rule and Gaussian den-

sity to perform Linear Discriminant Analysis (LDA)

intending to get the most discriminative features.

2) Supervised Classifiers: four methods of classification

were investigated.

a) K-Nearest Neighbors Classifier (KNC): a non- para-

metric classifier where the voting system is based

on the distance of the data points to fit or not a

certain class.

b) Decision Tree Classifier (DTC): a non- parametric

supervised learned method. The voting process is

given by simple decision rules from the features.

c) Bagging Classifier (BAGC): fits one classifier per

class, One-vs-the-rest (OvR) or one-vs-all (OvA),

using bagging method which is performs DTC on

random subset of the given features and vote to form

final classification.

d) Linear Support Vector Classifier (LSVC): also fits

OvR, however uses a SVC with a linear kernel. This

classifier is more flexible in choices of loss functions

than SVC.

E. Performance Metrics:

In this study, all performance metrics follow as shown in

the subsequent equations. The main metric used to evaluate

performance is accuracy, which is a comparison of true labels

with the predicted ones divided by the total number of labels

in the sample.

1) accuracy (acc): y is the true value, ŷ is the predicted

value, and n is the number of samples.

acc(y, ŷ) =

∑n−1
i=0 1(y = ŷ)

n
(1)

2) precision (prec): TP is the number of true positives, and

FP is the number of false positives.

prec =
TP

(TP + FP )
(2)
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3) recall (rec): TP is the number of true positives, and FN
is the number of false negatives.

rec =
TP

(TP + FN)
(3)

4) F1:

F1 =
2× (prec× rec)

(prec+ rec)
(4)

The procedural flowchart of the proposed framework is

shown in Fig. 2. The following steps were performed for each

dataset of the framework: 1) implementation of stratified k-fold

(k = 5) cross-validation to separate the training and testing

samples; 2) dimensionality reduction; 3) classification; 4)

extraction of the performance metrics for each DR-Classifier

combination for each k-fold; and 5) averaging out of the

performance metrics from the k-folds.
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Fig. 2. Procedural flowchart of the proposed framework.

III. RESULTS

The results of this study use the following performance

metrics: accuracy, standard deviation, precision, recall, and f1

scores. Each performance metric is calculated using an average

(avg) of the five (5) fold cross-validation results.

A. CN vs. EMCI (Binary classification)
The best accuracy of 64.04% for CN vs. EMCI was achieved

with a combination of K-Nearest Neighbors as the classifier,

and FI as the dimensionality reduction method. For the Bag-

ging Classifier, the best accuracy was 65.16% when using

SVD for DR. Furthermore, LSVC with PCA achieved 64.12%.

Fig. 3 shows performance metrics for the different classifiers

and their combination with different DRs methods. Table II

consists of the accuracies and their standard deviation for each

DR-Classifier combination. It is worth noting that the highest

accuracy value of 65.23% with 11.84% of standard deviation

was achieved using the ANOVA-DTC combination.

Fig. 3. Performance metrics of CN vs. EMCI

TABLE II
ACCURACY FOR CN VS. EMCI

DR Classifiers
methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 53.92(16.85) 59.41(14.42) 60.52(16.28) 62.88(19.97)

Var_0.001 48.24(7.87) 55.23(16.27) 57.12(17.63) 64.12(19.73)
Corr_0.65 49.54(12.57) 62.94(8.28) 63.99(6.71) 50.52(10.84)
MI-KB_30 52.81(6.21) 61.76(12.76) 61.76(14.98) 55.16(13.80)
MI-BP_16 57.19(19.02) 61.90(9.55) 59.48(17.06) 60.78(18.61)

FI_30 64.05(19.45) 63.01(22.28) 61.90(16.62) 60.52(18.08)
ANOVA_30 53.86(17.54) 65.23(11.84) 59.54(20.56) 57.39(20.82)
LASSO_FS 57.32(19.41) 59.48(22.86) 56.21(23.62) 61.83(17.20)
PCA_0.95 48.24(7.87) 54.05(10.88) 61.83(4.24) 64.12(19.73)

SVD 59.74(12.22) 62.88(6.61) 65.16(6.06) 62.88(17.05)
LDA 62.81(21.64) 61.63(17.43) 63.86(20.45) 62.88(19.97)

Fig. 4. Performance metrics of CN vs. MCI
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TABLE III
ACCURACY FOR CN VS. MCI

DR Classifiers
methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 64.71(11.22) 63.04(13.56) 66.38(12.17) 61.27(9.01)

Var_0.001 41.16(13.22) 64.67(5.82) 72.28(5.49) 61.30(5.76)
Corr_0.65 46.30(16.73) 62.97(7.22) 68.88(5.79) 62.93(11.98)
MI-KB_30 49.71(10.48) 59.75(7.71) 64.78(6.59) 57.93(5.57)
MI-BP_16 46.27(6.99) 69.82(7.76) 73.91(4.82) 63.88(1.95)

FI_30 52.14(7.26) 66.49(6.83) 67.17(5.84) 63.04(15.64)
ANOVA_30 45.51(13.66) 64.71(6.92) 68.12(3.24) 60.58(14.41)
LASSO_FS 58.01(14.03) 64.75(7.34) 66.38(10.64) 58.88(12.44)
PCA_0.95 41.16(13.22) 68.04(3.94) 73.15(4.48) 61.30(5.76)

SVD 54.64(7.87) 59.60(7.99) 67.17(7.76) 62.10(8.86)
LDA 67.21(10.83) 66.38(14.14) 67.21(12.68) 61.27(9.01)

B. CN vs. MCI (Binary classification)

Fig. 4 depicts the performance metrics for the analysis of

the comparison between CN and MCI (PreMCI and EMCI).

The classification using KNC results in the highest accuracy of

67.21% combined with LDA as the dimensionality reduction

method. The DTC reports an accuracy of 69.82% when using

MI-BP. For LSVC, the best accuracy is obtained using MI-BP

(63.88%). However, the best accuracy was achieved by the

MI-BP-BAGC combination yielding a score of 73.91% (SD =

4.82%) as shown in in Table III.

C. CN vs. PreMCI (Binary classification)

The best DR method for KNC was MI-KB, scoring 47.12%

accuracy as shown in Fig. 5. The Decision Tree Classifier

(DTC) achieved the best accuracy score from all the classifiers

with ANOVA feature selection with an accuracy of 51.06%

(14.19% SD), as shown in Table IV. Moreover, the FI-BAGC

reports an accuracy of 49.09% and ANOVA-LSVC a score of

47.27% accuracy.

Fig. 5. Performance metrics of CN vs. PreMCI

D. CN vs. PreMCI vs. EMCI (Multiclass classification)

In the multiclass classification, the best accuracy score of all

classifiers was achieved by the combination of ANOVA and

BAGC with an Accuracy of 56.34% (SD = 10.67%), as shown

in Table V. Fig. 6 illustrates all the performance metrics for all

TABLE IV
ACCURACY FOR CN VS. PREMCI

DR Classifiers
methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 39.24(15.00) 50.91(6.23) 47.73(14.01) 40.61(6.35)

Var_0.001 35.30(10.23) 42.27(12.76) 45.91(16.71) 33.94(10.30)
Corr_0.65 37.12(8.83) 49.09(10.41) 43.79(18.47) 38.94(14.95)
MI-KB_30 47.12(15.50) 41.06(16.63) 40.76(11.14) 40.76(15.11)
MI-BP_16 38.79(10.53) 44.09(9.11) 43.94(17.69) 30.15(19.87)

FI_30 42.42(6.13) 47.27(8.48) 49.09(11.96) 45.76(12.50)
ANOVA_30 33.79(16.41) 51.06(14.19) 30.45(10.97) 47.27(16.74)
LASSO_FS 38.94(3.89) 37.73(16.05) 37.27(4.20) 37.27(4.20)
PCA_0.95 38.79(6.44) 47.42(12.37) 35.61(3.63) 35.45(13.31)

SVD 36.97(12.04) 49.09(10.41) 34.09(11.08) 25.30(11.53)
LDA 39.24(15.00) 40.91(18.79) 39.39(22.27) 38.94(7.06)

classifiers. The best accuracy of 47.9% for KNC was achieved

with LDA dimensionality reduction. The combination of SVD

and DTC resulted in an accuracy of 47.07%. Lastly, LSVC

achieved its best scores when combined with LDA (45.50%).

Fig. 6. Performance metrics of CN vs. PreMCI vs. EMCI

TABLE V
ACCURACY FOR CN VS. PREMCI VS. EMCI

DR Classifiers
methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 41.23(7.83) 41.20(8.10) 44.57(10.98) 42.07(13.03)

Var_0.001 31.09(4.67) 39.57(9.06) 50.36(15.08) 37.86(10.00)
Corr_0.65 31.74(13.86) 28.62(12.45) 45.33(17.62) 32.79(11.23)
MI-KB_30 38.70(8.24) 42.90(11.74) 41.96(12.96) 36.96(5.25)
MI-BP_16 38.66(11.56) 45.36(10.68) 46.96(15.12) 34.49(5.72)

FI_30 39.60(12.52) 43.62(14.97) 43.70(13.34) 41.12(14.08)
ANOVA_30 42.14(9.23) 44.57(6.51) 56.34(10.67) 41.96(9.48)
LASSO_FS 30.33(9.39) 46.16(11.13) 45.43(13.86) 42.90(4.99)
PCA_0.95 31.09(4.67) 38.70(13.76) 41.12(10.95) 37.86(10.00)

SVD 37.83(7.83) 47.07(3.48) 46.99(6.97) 41.20(11.99)
LDA 47.90(12.33) 43.70(12.33) 47.07(14.55) 45.40(16.03)

IV. DISCUSSION

The proposed framework showcases the results of com-

bining different binary/multiple classifications with different

feature selection or extraction methods. From the classifica-

tion’s performances, it can be noticed that most classifiers

achieve better results after performing at least some sort of

dimensionality reduction of their input feature space.
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In this study, most binary classifications have higher ac-

curacies (CN vs. EMCI: 65.23%, CN vs. MCI: 73.91%) than

the multiclass classifiers (56.34%). The binary comparison be-

tween CN vs. PreMCI obtained the lowest accuracy among all

the experiments (51.06%). As an early stage in the progression

of AD, PreMCI is challenging to delineate from CN. There is

an absence of differences in volumetric and cortical thickness

loss between these groups. The difficulty in differentiating

these groups is because there is no significant difference

between their demographic data, values in the measurement of

volume, cortical thickness [20] and SUVr, and also requires

good clinician judgment to identify a cognitive deterioration.

Future works should employ more sophisticated ML and/or

Deep Learning (DL) models to tackle the complex problem of

early diagnosis of Alzheimer’s disease. These classifications

results, especially when using the multiclass classification

scenario, show that with the accuracy obtained, the ML models

still contend with finding the most relevant neuroimaging

features that can correlate best with the neuropsychological

test scores, especially with those used for baseline diagnosis

like the Mini Mental State Exam (MMSE) and the Clinical

Dementia Rating (CDR). Clearly, the subtle changes expressed

through neuroimaging via cortical thickness or volumetric

measures of the different brain regions are not well revealed,

especially in the early stages of AD. Perhaps in the initial

stages, diagnosis should focus more on the disease prone areas

and see how such areas correlate with SUVr measurements

and the visual read for amyloid positivity, alongside with

the different neuropsychological scores expressed through

MMSE, CDR sum of boxes, the Montreal Cognitive Assess-

ment (MoCA), the Loewenstein-Acevedo Scale of Semantic

Interference and Learning (LASSI-L), the Rey Auditory Verbal

Learning Test (RAVLT), and the Alzheimer’s Disease Assess-

ment Scale (ADAS), and other neuropsychological assess-

ments. Determining the concordance between neuroimaging

and neuropsychological measures that define the different

disease states and to then capture what changes occur in its

transitory stages.
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