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Abstract—Early diagnosis of Alzheimer’s Disease (AD) is
challenging due to its progressive nature. This study proposes
a comprehensive comparison of four classifiers combined with
different dimensionality reduction methods to discriminate nor-
mal controls (CN) from pre-mild cognitive impairment (pMCI)
and early MCI (EMCI) using multimodal datasets including
MRIs, PETs, SUVT, clinician amyloid visual reads, and subjects
demographics. The most robust classifier for CN vs. MCI is
the Mutual Information Best Percentile - Bagging Classifier
combination, with 73.91% accuracy and a 4.82% standard
deviation (SD). The best performance of 65.23% (11.84% SD)
accuracy for CN vs. EMCI was DTC with ANOVA. In comparing
CN with pMCI the best classification accuracy was ANOVA-DTC
51.06% (14.19% SD). An accuracy of 56.34% (10.67% SD) was
achieved by bagging with ANOVA for multiclass classification of
CN vs. pMCI vs. EMCI.
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I. INTRODUCTION

Alzheimer’s disease (AD) is the most common neurode-
generative disease among the elderly population. The most at-
risk population for Alzheimer’s dementia is the baby boomer
generation (1946-1964), where approximately 61% have al-
ready reached the age of 65. In 2019 it was estimated that
5.6 million Americans over the age of 65 live with AD and
that the number of affected individuals may reach a staggering
13.8 million by 2050 [1]. AD forecasts prompted a demand
for research on early disease diagnosis and the development
of more sophisticated methods, such as Atrtificial Intelligence
(AD) and Machine Learning (ML) applications [2]-[6].

Recent developments in the field of Al applications in AD
have demonstrated its ability to classify and predict different
stages of AD using large amounts of multimodal datasets [7].
Despite these advances and new insights, early detection of
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the disease remains one of the top challenges faced in AD
research.

Image processing techniques and related neuroimaging
modalities are used in many recent studies diagnostic protocols
such as sophisticated tumor and lesion detection algorithms to
yield a higher efficiency and accuracy. Therefore, when diag-
nosing AD, ML methods have been adapted to include neu-
roimaging data, such as magnetic resonance imaging (MRI)
and positron emission tomography (PET) [8]. However, one
of the challenges faced when using large scale multimodal
data for ML algorithms is feature optimization to maximize
the classifier’s efficiency.

Most AD studies consider only three groups (CN, MCI, and
AD), and some perform binary classification for the EMCI
and LMCI subcategories. S. Singh et. al. propose a classi-
fication model for Fluorodeoxyglucose (FDG)-PET through
a feed-forward deep neural network, which uses its analysis
probabilistic principal components analysis (PPCA) applied on
max-pooled FDG-PET data altogether with functional activity
questionnaire (FAQ), demographic information (age, gender,
APOE el, and e2 alleles). Using this deep neural network
with 10-fold cross-validation, they achieved an fl accuracy of
72% for CN vs. EMCI, with 77.42% precision and 67.29%
for recall. In the classification between CN and MCI, they
get an f1 score of 78.30%, precision of 82.14%, and recall of
74.79%. [9].

D. Yao, V.D. Calhoun, Z. Fu, Y. Du, and J. Sui et. al.
introduced a feature selection algorithm based on relative
importance with a hierarchical grouping process for classifying
four groups: CN, AD, MCI, and MCI converting to AD
(cMCI). The data used in this study is comprised of measure-
ments from MRI images (Freesurfer 5.3) and demographic and
clinical information. The performance of the selected model
reaches 54.38% for 4-class classification [10].

B. Jie, M. Liu, and D. Shen et. al. proposed a framework
where the most important temporal and spatial variability
features from dynamic connectivity networks (DCN) were ex-
tracted. A multi-kernel SVM classification was then performed
for the NC, EMCI, and LMCI groups. The features were
selected from volumetric measurements taken from resting-
state functional MRI (rs-fMRI), clinical, and demographic
information (MMSE, age, and gender). They acheived an
accuracy of 66%, with recall 71.4% for classifying NC and
EMCIT [11].

Based on the efforts and results from past research, this
study compares the use of different dimensionality reduction
(DR) methods for multimodal feature spaces with four (4)
classifiers trained for early AD detection.

The remainder of this article is divided into the following
sections: Section II describes the data, proposed framework,
and methods. Section III consists of the different approaches
for dimensionality reduction (DR) and their respective results.
Finally, Section IV provides concluding remarks and possible
future research directions.

1599

II. METHODS
A. Data

All data used in this work was acquired from participants
of the 1Florida Alzheimer’s Disease Research Center (1F-
ADRC) study. 1F-ADRC collects and maintains MRI, PET,
cerebrospinal fluid (CSF), and neuropsychological tests for
the diagnosis and prognosis of Alzheimer’s disease [12]-[15].
The 1F-ADRC neuroimaging data was processed and accessed
via the Neuroimaging Web Services Interface (NWSI) [16].
A total of 482 subjects between the ages of 49 and 106
were separated into different clinical cognitive diagnostic
groups: Cognitive Normal (CN), Pre Mild Cognitive Impair-
ment (pMCI) Clinical, Pre MCI Neuropsychological (pNP),
Early MCI (EMCI), Late MCI (LMCI), and AD.

The 1F-ADRC data was filtered to only include subjects
with both an MRI and a PET scan available. The PET scans
were registered with their respective MRI image using the
closest PET exam date within a 6 month period to ensure
congruity of the brain at both timepoints. Out of the 232
matched records, 44 used Florbetapir (Amyvid/AV45) radio-
tracers for PET imaging (10: CN; 9: pMCI; 1: pNP; 13: EMCI,
5: LMCI, 6: AD) and 188 used Florbetaben (Neuraceq/FBB)
radiopharmaceutical compound (29: CN; 16: pMCI; 14: pNP;
60: EMCI; 34: LMCI, 35: AD).

Since this study focuses on the classification of the early
stages of Alzheimer’s Disease, only the following groups were
considered: CN, PreMCI (as a combination of pMCI and pNP),
and EMCL

The classifications used in this study consists of three binary
classifiers and one multiclass classifier as follows: 1) CN vs.
EMCI (29/60); 2) CN vs. MCI, where MCI is combination of
PreMCI & EMCI (29/90) ; 3) CN vs. PreMCI (29/30); 4) CN
vs. PreMCI vs. EMCI (29/30/60).

1F-ADRC includes PET visual read, where clinicians an-
alyzed amyloid PET images and classified them as amyloid
positive (A5+) or negative (A3—) [17]. In the AV45 records,
43.18% (19/44) were classified as amyloid positive, 56.82%
(25/44) negative. Moreover, 62.23% (117/188) of the FBB
records were classified as positives, and 37.77% (71/188)
negatives.

Table I details the demographic and clinical data.

TABLE I
DEMOGRAPHIC AND CLINICAL DATA

Cognitive Diagnostic group
Data CN(n=29) [ EMCI(n=60) | PreMCI(n=30) | MCI(n=90)
Gender (FIM) 8121 28132 9121 37153
VR (+l-) 2127 23137 3127 26 | 64
Age? 73.17(5.49) 76.40(7.25) 74.87(7.00) 75.89(7.16)
Education® 16.59(2.98) 14.97(3.54) 16.20(2.83) 15.38(3.36)

2Values represented as mean(sd)

B. Proposed Network

Figure 1 shows the proposed framework for this study.
Once the image data (MRI and PET scans) are collected and

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 06,2023 at 03:40:33 UTC from IEEE Xplore. Restrictions apply.



processed, the volumetric (Vol) and cortical thickness (CoTh)
are extracted from the MRI, and the Standard Uptake Value
ratio (SUVr) is calculated from the PET scan. These mea-
surements are later combined with the demographic variables
and visual reads (VR) for amyloid plaque. Machine learning
classifiers are then used to discriminate early AD diagnoses
over a dimensionally reduced feature space.

PET scans MRI scans
L\ )

Volumetric &
Cortical
Thickness
measurements
(FreeSurfer
6.0.0)

Imaging data

N\

MRI -PET Registration
(FSL)

/Imaging Analysis\

y
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(Study Data)
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(Age, Gender,
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and
Visual Read

N

( Framework |

Dimensionality
Reduction &
Multiclass
Classification

Fig. 1. General classification flowchart of the proposed framework.

C. Image Processing

Image processing for this study consists of the following
stages: 1) pre-processing done during the capture of the
medical images, 2) post-processing done on the T1 sequenced
images by FreeSurfer (version 6.0) [18] to extract the volumet-
ric and cortical thickness measurements of the different brain
regions, 3) normalization of these values by the estimated Total
Intracranial Volume (ICV), 4) processing and co-registration
of the amyloid PET scans with their matched T1-weighted
MRI scans using the FMRIB Software Library (FSL) toolbox
[19], and 5) calculating the standardized uptake value ratio
(SUVr) from the co-registered PET and T1-MRI scans.

D. Dimensionality Reduction (DR) and Classifiers

1) Dimensionality Reduction: Several methods for feature
selection and feature extraction were implemented.

a) Original: original data sample with no DR method.

b) VarianceThresholdDR (Var): selects features with

training-set variance greater than threshold (0.001).

c) CorrelationFS (Corr): performs feature selection
based on Pearson correlation greater than 65%.
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d) MIKBest (MI-KB): Mutual information (MI) with
selection of the K (30) features with highest scores
based on univariate statistical tests.

e) MIBestPercentile (MI-BP): keeps features based on
given percentile (16%).
f) Featurelmportance (FI): executes the selection

based on the evaluation of the features importance,
in this framework the 30 first are selected.
g) ANOVA (Analysis of Variance): selects the top 30
features with highest scores based ANOVA F-value.
LassoFS (LASSO): selects the features that have
least absolute shrinkage and selection operator
(LASSO) different than 0 with o = 0.1.
i) PCA (PCA): feature extraction based on the Princi-
pal Component Analysis (PCA) with a cumulative
explained variance ratio of 95%.
SVDDR (SVD): linear DR technique which uses
truncated singular value decomposition (SVD).
k) LDADR (LDA): uses Bayes’ rule and Gaussian den-
sity to perform Linear Discriminant Analysis (LDA)
intending to get the most discriminative features.

h)

i)

2) Supervised Classifiers: four methods of classification

were investigated.

a) K-Nearest Neighbors Classifier (KNC): a non- para-
metric classifier where the voting system is based
on the distance of the data points to fit or not a
certain class.

Decision Tree Classifier (DTC): a non- parametric
supervised learned method. The voting process is
given by simple decision rules from the features.
Bagging Classifier (BAGC): fits one classifier per
class, One-vs-the-rest (OvR) or one-vs-all (OvA),
using bagging method which is performs DTC on
random subset of the given features and vote to form
final classification.

Linear Support Vector Classifier (LSVC): also fits
OvVR, however uses a SVC with a linear kernel. This
classifier is more flexible in choices of loss functions
than SVC.

b)

)

d)

E. Performance Metrics:

In this study, all performance metrics follow as shown in
the subsequent equations. The main metric used to evaluate
performance is accuracy, which is a comparison of true labels
with the predicted ones divided by the total number of labels
in the sample.

1) accuracy (acc): y is the true value, § is the predicted
value, and n is the number of samples.

Z?:_ol Ly =19)

acc(y, §) = ey

2) precision (prec): T'P is the number of true positives, and
F'P is the number of false positives.

TP

(TP + FP) @

prec =
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3) recall (rec): TP is the number of true positives, and F'IN
is the number of false negatives.

TP
"CT TP+ FN) ©
4) Fl:
2
1o 2 (prec x rec) @

(prec + rec)
The procedural flowchart of the proposed framework is
shown in Fig. 2. The following steps were performed for each
dataset of the framework: 1) implementation of stratified k-fold
(k = 5) cross-validation to separate the training and testing
samples; 2) dimensionality reduction; 3) classification; 4)
extraction of the performance metrics for each DR-Classifier
combination for each k-fold; and 5) averaging out of the
performance metrics from the k-folds.

Study Data
Stratified K Fold
Cross Validation

Dimensionality Reduction

Feature Selection &
Feature Extraction
(Variance, Correlation,
MI-KB, MI-BP,FI, ANOVA,
LASSO, PCA, SVD, LDA)

Classifiers
(K Neighbors,
Decision Tree,

Bagging, Linear

Support Vector)

Framework

Performance
metrics for each
combination of
Feature
Selection/Extraction’
with a Classifier

Average of K fold

for all performance
metrics (accuracy,
precision, recall, 1)

Fig. 2. Procedural flowchart of the proposed framework.

III. RESULTS

The results of this study use the following performance
metrics: accuracy, standard deviation, precision, recall, and f1
scores. Each performance metric is calculated using an average
(avg) of the five (5) fold cross-validation results.

A. CN vs. EMCI (Binary classification)

The best accuracy of 64.04% for CN vs. EMCI was achieved
with a combination of K-Nearest Neighbors as the classifier,
and FI as the dimensionality reduction method. For the Bag-
ging Classifier, the best accuracy was 65.16% when using
SVD for DR. Furthermore, LSVC with PCA achieved 64.12%.
Fig. 3 shows performance metrics for the different classifiers
and their combination with different DRs methods. Table II
consists of the accuracies and their standard deviation for each
DR-Classifier combination. It is worth noting that the highest
accuracy value of 65.23% with 11.84% of standard deviation
was achieved using the ANOVA-DTC combination.
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Fig. 3. Performance metrics of CN vs. EMCI
TABLE II
ACCURACY FOR CN vs. EMCI
DR Classifiers
methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original | 53.92(16.85) | 59.41(14.42) | 60.52(16.28) | 62.88(19.97)
Var_0.001 | 48.24(7.87) | 55.23(16.27) | 57.12(17.63) | 64.12(19.73)
Corr_0.65 | 49.54(12.57) | 62.94(8.28) | 63.99(6.71) | 50.52(10.84)
MI-KB 30 | 52.81(6.21) | 61.76(12.76) | 61.76(14.98) | 55.16(13.80)
MI-BP_16 | 57.19(19.02) | 61.90(9.55) | 59.48(17.06) | 60.78(18.61)
FI_30 64.05(10.45) | 63.01(22.28) | 61.90(16.62) | 60.52(18.08)
ANOVA 30 | 53.86(17.54) | 65.23(11.84) | 59.54(20.56) | 57.39(20.82)
LASSO_FS | 57.32(19.41) | 59.48(22.86) 56.21(23.62) | 61.83(17.20)
PCA 095 | 48.24(7.87) | 54.05(10.88) | 61.83(4.24) | 64.12(19.73)
SVD 59.74(12.22) | 62.88(6.61) | 65.16(6.06) | 62.88(17.05)
LDA 62.81(21.64) | 61.63(17.43) | 63.86(20.45) | 62.88(19.97)
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TABLE III
ACCURACY FOR CN vs. MCI

TABLE IV
ACCURACY FOR CN vs. PREMCI

DR Classifiers DR Classifiers

methods KNC(%) DTC(%) BAGC(%) LSVC(%) methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 64.71(11.22) | 63.04(13.56) | 66.38(12.17) | 61.27(9.01) Original 39.24(15.00) | 50.91(6.23) | 47.73(14.01) | 40.61(6.35)
Var_0.001 | 41.16(13.22) | 64.67(5.82) | 72.28(5.49) | 61.30(5.76) Var_0.001 | 35.30(10.23) | 42.27(12.76) | 45.91(16.71) | 33.94(10.30)
Corr_0.65 | 46.30(16.73) | 62.97(7.22) 68.88(5.79) | 62.93(11.98) Corr_0.65 37.12(8.83) | 49.09(10.41) | 43.79(18.47) | 38.94(14.95)
MI-KB_30 | 49.71(10.48) | 59.75(7.71) 64.78(6.59) 57.93(5.57) MI-KB_30 | 47.12(15.50) | 41.06(16.63) | 40.76(11.14) | 40.76(15.11)
MI-BP_16 46.27(6.99) 69.82(7.76) 73.91(4.82) 63.88(1.95) MI-BP_16 | 38.79(10.53) | 44.09(9.11) | 43.94(17.69) | 30.15(19.87)
FI_30 52.14(7.26) 66.49(6.83) 67.17(5.84) | 63.04(15.64) FI1_30 42.42(6.13) 47.27(8.48) | 49.09(11.96) | 45.76(12.50)
ANOVA 30 | 45.51(13.66) | 64.71(6.92) | 68.12(3.24) | 60.58(14.41) ANOVA 30 | 33.79(16.41) | 51.06(14.19) | 30.45(10.97) | 47.27(16.74)
LASSO_FS | 58.01(14.03) | 64.75(7.34) | 66.38(10.64) | 58.88(12.44) LASSO_FS | 38.94(3.89) | 37.73(16.05) | 37.27(4.20) 37.27(4.20)
PCA_0.95 | 41.16(13.22) | 68.04(3.94) 73.15(4.48) 61.30(5.76) PCA_0.95 38.79(6.44) | 47.42(12.37) | 35.61(3.63) | 35.45(13.31)
SVD 54.64(7.87) 59.60(7.99) 67.17(7.76) 62.10(8.86) SVD 36.97(12.04) | 49.09(10.41) | 34.09(11.08) | 25.30(11.53)
LDA 67.21(10.83) | 66.38(14.14) | 67.21(12.68) | 61.27(9.01) LDA 39.24(15.00) | 40.91(18.79) | 39.39(22.27) | 38.94(7.06)

B. CN vs. MCI (Binary classification)

Fig. 4 depicts the performance metrics for the analysis of
the comparison between CN and MCI (PreMCI and EMCI).
The classification using KNC results in the highest accuracy of
67.21% combined with LDA as the dimensionality reduction
method. The DTC reports an accuracy of 69.82% when using
MI-BP. For LSVC, the best accuracy is obtained using MI-BP
(63.88%). However, the best accuracy was achieved by the
MI-BP-BAGC combination yielding a score of 73.91% (SD =
4.82%) as shown in in Table III.

C. CN vs. PreMCI (Binary classification)

The best DR method for KNC was MI-KB, scoring 47.12%
accuracy as shown in Fig. 5. The Decision Tree Classifier
(DTC) achieved the best accuracy score from all the classifiers
with ANOVA feature selection with an accuracy of 51.06%
(14.19% SD), as shown in Table IV. Moreover, the FI- BAGC
reports an accuracy of 49.09% and ANOVA-LSVC a score of
47.27% accuracy.
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Fig. 5. Performance metrics of CN vs. PreMCI

D. CN vs. PreMCI vs. EMCI (Multiclass classification)

In the multiclass classification, the best accuracy score of all
classifiers was achieved by the combination of ANOVA and
BAGC with an Accuracy of 56.34% (SD = 10.67%), as shown
in Table V. Fig. 6 illustrates all the performance metrics for all
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classifiers. The best accuracy of 47.9% for KNC was achieved
with LDA dimensionality reduction. The combination of SVD
and DTC resulted in an accuracy of 47.07%. Lastly, LSVC
achieved its best scores when combined with LDA (45.50%).
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Fig. 6. Performance metrics of CN vs. PreMCI vs. EMCI

TABLE V
ACCURACY FOR CN vs. PREMCI vs. EMCI
DR Classifiers

methods KNC(%) DTC(%) BAGC(%) LSVC(%)
Original 41.23(7.83) 41.20(8.10) | 44.57(10.98) | 42.07(13.03)
Var_0.001 31.09(4.67) 39.57(9.06) | 50.36(15.08) | 37.86(10.00)
Corr_0.65 | 31.74(13.86) | 28.62(12.45) | 45.33(17.62) | 32.79(11.23)
MI-KB_30 | 38.70(8.24) | 42.90(11.74) | 41.96(12.96) | 36.96(5.25)
MI-BP_16 | 38.66(11.56) | 45.36(10.68) | 46.96(15.12) | 34.49(5.72)
FI_30 39.60(12.52) | 43.62(14.97) | 43.70(13.34) | 41.12(14.08)
ANOVA_30 | 42.14(9.23) 44.57(6.51) | 56.34(10.67) | 41.96(9.48)
LASSO_FS | 30.33(9.39) | 46.16(11.13) | 45.43(13.86) | 42.90(4.99)
PCA_0.95 31.09(4.67) | 38.70(13.76) | 41.12(10.95) | 37.86(10.00)
SVD 37.83(7.83) 47.07(3.48) 46.99(6.97) | 41.20(11.99)
LDA 47.90(12.33) | 43.70(12.33) | 47.07(14.55) | 45.40(16.03)

IV. DISCUSSION

The proposed framework showcases the results of com-
bining different binary/multiple classifications with different
feature selection or extraction methods. From the classifica-
tion’s performances, it can be noticed that most classifiers
achieve better results after performing at least some sort of
dimensionality reduction of their input feature space.
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In this study, most binary classifications have higher ac-
curacies (CN vs. EMCI: 65.23%, CN vs. MCI: 73.91%) than
the multiclass classifiers (56.34%). The binary comparison be-
tween CN vs. PreMCI obtained the lowest accuracy among all
the experiments (51.06%). As an early stage in the progression
of AD, PreMCI is challenging to delineate from CN. There is
an absence of differences in volumetric and cortical thickness
loss between these groups. The difficulty in differentiating
these groups is because there is no significant difference
between their demographic data, values in the measurement of
volume, cortical thickness [20] and SUVr, and also requires
good clinician judgment to identify a cognitive deterioration.

Future works should employ more sophisticated ML and/or
Deep Learning (DL) models to tackle the complex problem of
early diagnosis of Alzheimer’s disease. These classifications
results, especially when using the multiclass classification
scenario, show that with the accuracy obtained, the ML models
still contend with finding the most relevant neuroimaging
features that can correlate best with the neuropsychological
test scores, especially with those used for baseline diagnosis
like the Mini Mental State Exam (MMSE) and the Clinical
Dementia Rating (CDR). Clearly, the subtle changes expressed
through neuroimaging via cortical thickness or volumetric
measures of the different brain regions are not well revealed,
especially in the early stages of AD. Perhaps in the initial
stages, diagnosis should focus more on the disease prone areas
and see how such areas correlate with SUVr measurements
and the visual read for amyloid positivity, alongside with
the different neuropsychological scores expressed through
MMSE, CDR sum of boxes, the Montreal Cognitive Assess-
ment (MoCA), the Loewenstein-Acevedo Scale of Semantic
Interference and Learning (LASSI-L), the Rey Auditory Verbal
Learning Test (RAVLT), and the Alzheimer’s Disease Assess-
ment Scale (ADAS), and other neuropsychological assess-
ments. Determining the concordance between neuroimaging
and neuropsychological measures that define the different
disease states and to then capture what changes occur in its
transitory stages.
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