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Particles traveling through inertial microfluidic devices migrate to focusing streamlines. 
We present a numerical method that calculates migration velocities of particles in inertial 
microfluidic channels of arbitrary cross section by representing particles by singularities. 
Refinements to asymptotic analysis are given that improve the regularity of the singularity 
approximation, making finite element approximations of flow and pressure fields more 
effective. Sample results demonstrate that the method is computationally efficient and able 
to capture bifurcations in particle focusing positions due to changes in channel shape and 
Reynolds number.

 2022 Published by Elsevier Inc.

1. Introduction

The micron-scale channels of microfluidic devices allow for manipulation of nano-liter volumes of fluid and small par-
ticles, including cells. At high enough fluid velocities, corresponding to Reynolds numbers between 1 and 100, interactions 
between particles and flow cause particles to move across streamlines, a phenomenon known as inertial focusing [1]. In-
ertial focusing is finding increasingly wide use in biotechnology: differential focusing of differently-sized particles can be 
used to separate (large) cancer cells from (small) blood cells [2–4]. Meanwhile, additional hydrodynamic interactions be-
tween inertially-focused particles cause them to organize into regularly spaced trains, aiding with their encapsulation or 
analysis [5,6]. Numerical simulation of inertial microfluidic devices requires solving for the 3D motion of suspended in a 
fluid flow occurring in a 3D geometry that is changing due to the movement of the particles. Moreover, the phenomenon 
of interest, particle migration, and in particular particle focusing occur at non-negligible Reynolds number, so cannot be 
modeled by numerical methods that are designed for small Reynolds number particle-flows such as Stokesian dynamics [7]
or boundary integral methods [8].

The time evolving geometry of migrating particles, and need to include nonlinear terms, favors numerical methods such 
as immersed boundary [9,10] or immersed interface [11] that embed moving boundaries within a fixed computational 
grid on which the Navier-Stokes equations are solved. Relative easy parallelization has boosted the popularity of Lattice-
Boltzmann methods (LBM) for approximating the Navier-Stokes equations [12]. Moving boundary LBM-based simulations 
have been used to study the dependences of focusing upon channel aspect ratio [13], particle size and Reynolds number [14], 
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Fig. 1. Schematic showing sphere of radius a, freely flowing in a straight channel of uniform cross-section shape. Propelled by inertial migration forces, the 
particle converges to one of several focusing streamlines, shown in the cross-section view.

as well as to incorporate additional physics due to deformable particles [15], or interactions between multiple particles [16,
17]. Yet, although existing numerical simulations have illuminated the physics of inertial focusing, the high computational 
cost of nonlinear 3D simulations has meant that predictive simulations are not currently used to design or optimize inertial 
microfluidic devices.

Here we present a numerical method based on the singular asymptotic expansions associated with flows where the ratio 
of particle size to domain size is small [18]. When a suspended particle is small compared to the size of the domain, the 
fluid-filled domain may be divided into near- and far-field regions. Flow fields can be computed analytically within the 
near-field region, while in the far-field region the Navier-Stokes Equations are linearized and then solved numerically. By 
extending the asymptotic expansion of the near field solution to include higher order terms, we increase the regularity of 
the numerical far-field solution from discontinuous to continuous, which allows for second order convergence of a poly-
nomial based finite element solution of the far field equations. Thus, the far-field solution is solved rapidly and accurately 
using polynomial finite elements. Although the method is generalizable to multiple particles and to fully three dimensional 
domains, we limit our attention here to predicting all particle focusing positions and focusing trajectories within channels 
of arbitrary cross-sections, a problem for which existing experimental and simulation data allows for testing of predictions. 
An implementation of the numerical method in Matlab may be downloaded from GitHub, and can be run on computers 
with as little as 8 GB of memory.

An existing method that also combines asymptotic and numerical techniques is the PHYSALIS resolved-particle simulation 
code [19]. The PHYSALIS simulation is based on a model that assumes in the rest frame of a rigid particle the velocity of the 
fluid close to the particle surface is close to zero. Leading order fluid acceleration terms can be absorbed into pressure, so 
in the near particle region, the fluid flow equations obey approximately the Stokes equations. The PHYSALIS code uses exact 
Stokes solutions to model fluid flow near particles and numerically couples the near field solutions to fully nonlinear fluid 
flow away from the particles. It can solve, in principle, for any particle shape where exact Stokes solutions are available, 
including for multiple spherical particles or 2D elliptical particles [19,20]. However the code still requires a fully resolved 3D 
Navier-Stokes simulation to solve for the flow away from particle neighborhoods. Rigorous analysis of the effects of where 
and how matching between Stokes and Navier-Stokes solutions remains an ongoing challenge. It is highly likely that the 
existing PHYSALIS code base could be used to model particle focusing in rectangular channels. The principal gains from the 
method described in this paper are that linear approximation in the outer region allows the outer field to be calculated 
using a single fast linear solve, and our use of finite element methods allows a diverse range of channel shapes to be 
modeled.

2. Derivation of approximate equations of motion

The problem considered in this paper is the prediction of particle trajectories in a straight microfluidic channel, with 
arbitrary cross-section. Due to inertial focusing forces, spherical particles introduced within the channel migrate across 
streamlines, arriving ultimately at one of a small number of inertial focusing locations (Fig. 1). We present a numerical 
method for predicting the focusing trajectory of particles, as well as the number of possible final focusing position and their 
basins of attraction.

Two Reynolds numbers can be defined for the flow: the channel Reynolds number Rec =
ρUmaxL

μ , constructed from the 
fluid viscosity, μ, density ρ , maximum velocity Umax and a channel length-scale (e.g. diameter), L. In typical microfluidic 
devices Rec values are in the tens or hundreds. The particle Reynolds number Rep = α2Rec , describes the velocity distur-
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bances created by the particle, and involves an additional factor α ≡ a
L
which is often much less than 1, so that Rep is O (1)

or smaller.

We decompose fluid velocities within the microfluidic channel into two components: the flow without the particle (also 
called the background flow), ū, and the disturbance velocity created by the particle: u′ . The total fluid velocity is u = ū+u′ . 
Furthermore, we introduce dimensionless variables u∗ = u′L

aUmax
, x∗ = x

a
, t∗ = tUmax

L
, p∗ = Lp

μUmax
, and we change the frame 

of reference so that xp , the center of our moving particle is now the origin. The equations for the dimensionless disturbance 
velocity are:

�u∗ − ∇p∗ = Rep

(

∂u∗

∂t∗
+

(

U∗
p(t

∗) + ū(xp) + u∗
)

· ∇u∗ + u∗ · ∇ū′ + ū′ · ∇u∗

)

∇ · u∗ = 0

u∗ = 0 on the channel walls

u∗ = U∗
p(t

∗) + �p(t
∗) × x on |x| = 1 (1)

where ū′(x) = ū(x) − ū(xp) is the background flow in frame of reference with the particle. The particle velocity and rotation, 
U∗

p and �∗
p evolve over time to satisfy the force and torque free condition. The x and y components of U∗

p constitute the 
particle’s migration velocity. Henceforth we drop the asterisks distinguishing dimensionless from dimensional quantities.

The asymptotic approximations incorporated into our numerical method are derived from the system of equations (1) in 
the limit α → 0 and Rep → 0. In these limits, flow field separates into an inner region, where the effects of the particle 

dominate but where inertial terms can be neglected at leading order, and we can expand the velocity field: u ∼ αRe0pu
(0)
1 +

αRepu
(1)
1 + . . . and an outer region where the inertia of the outer region interacts with the disturbance coming from the 

inner region to create a disturbance velocity: u ∼ αRepU
(1)
1 + . . . [21–23,18]. We similarly expand the particle’s translational 

velocity as Up = αRe0pU
(0)
p,0 + αRe1pU

(1)
p,1 . . . and the rotation speed as �p = αRe0p�

(0)
p,1 + αRe1p�

(1)
p,1 + . . ..

2.1. Inner region expansion of the equations of motion

In the inner region we scale lengths by a, the particle radius, and extract the order O (αRe0p) terms in Eqn. (1) to describe 
the disturbance velocity near the particle [18]:

�u
(0)
1 − ∇p

(0)
1 = 0

u = −γ · xe3 + �
(0)
p,1 × x on |x| = 1 (2)

u → 0 as |x| → ∞.

Where γ describes the local velocity gradient, also known as the shear rate, of the background flow at the location of the 
particle. The rotation component is there to satisfy the torque free condition. This equation can be solved analytically to 
obtain u(0)

1 ∼ ustr + O  
(

1/r4
)

as r ≡ |x| → ∞ [24]; the stresslet flow field, defined by

ustr = −
1

r2

(

γx
5xzx

2r3
+ γy

5yzx

2r3

)

, (3)

represents the slowest decaying component of the disturbance velocity far away from the particle. Importantly, u(0)
1 depends 

only on the shear rate γ and there is no migration velocity generated at this order [25].

2.2. Outer region expansion of the equations of motion

The presence of the particle disturbs the background flow locally and an investigation of how this disturbance interacts 
with the background flow throughout the channel leads to the construction of equations for fluid motion in the outer re-

gion. Far from the particle, the rapidly decaying viscous stress term (�ustr = O  
(

1
r4

)

) will decrease until it reaches equal 

magnitude with the more slowly decaying inertial term (Rep
(

ū′ · ∇ustr

)

= O  
(

Rep

r2

)

), at a distance r = O (Re
−1/2
p ). Accord-

ingly we define coordinates X = Re
1/2
p x. Generalizing the result of Schönberg and Hinch [18] for the O (αRep) leading order 

disturbance velocity to 2D channel shapes, we obtain:

�U
(1)
1 − ∇ P

(1)
1 −U

(1)
1 · ∇Ū′ − Ū′ · ∇U

(1)
1 = −

⎡

⎣

γx
∂

∂ Z

γy
∂

∂ Z

γx
∂

∂ X
+ γy

∂
∂Y

⎤

⎦ δ(X) (4)

∇ ·U
(1)
1 = 0
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Fig. 2. The velocity U(1)
1 −Ustr is discontinuous, even once the stresslet contribution is subtracted. Left panel: the Y -component of the partially regularized 

velocity, (U(1)
1 − Ustr)Y along the line segment X = Z = 0 is discontinuous at Y = 0. Right panel: We accelerate particle focusing simulations by solving for 

the continuous velocity field V = U
(1)
1 − Ustr − UD using Eqn. (7). Velocity fields agree at Y = 0 (red dot), to give the particle migration velocity. Channel 

geometry is 4×1×10 rectangular channel with Rec = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

U
(1)
1 = 0 on channel walls

Matching of the outer region flows to the slowest decaying component of the inner region solution requires that U(1)
1 ∼ ustr

as X → 0. In Eqn. (4), this matching is accomplished by adding derivatives of the Dirac delta function, δ(X), as forcing 
terms [18]. Once the stresslet has been subtracted, the limiting value of U(1)

1 as X → 0 can be used to compute the particle 
migration velocity at O (Rep). This PDE is much easier to solve numerically than the original system (Eqn. (1)) because it is 
linear and because there is no need to explicitly representing the moving particle boundary.

2.3. Reformulating the problem for a continuous solution

The solution of Eqn. (4) is singular at X = 0. The singularity can be removed by subtracting off the stresslet velocity 
and pressure fields (Eqn. (3)) from U(1)

1 (see Fig. 2). However, the resulting non-singular solution remains discontinuous, 
and the polynomial finite element basis is a computationally inefficient representation for the solution’s remaining three 
dimensional discontinuity, limiting the method to first order convergence. By removing the discontinuity we can construct a 
finite element solver that achieves second order convergence. We find the discontinuity analytically by examining u(1)

1 , the 
inner solution at O (αRep), which satisfies:

�u
(1)
1 − ∇p

(1)
1 = (γ ·xe3) · ∇u

(0)
1 + u

(0)
1 · ∇(γ ·xe3) (5)

∇ · u
(1)
1 = 0 , (6)

with appropriate velocity boundary conditions to maintain a force and torque free particle. Howecwe, these boundary con-
ditions do not affect the non-decaying component of the velocity solution. We are only interested in the non-decaying 
component of this solution which is not affected by the boundary condition. There is no migration or rotation generated 
from the inner region due to this solution [26,27], but components of u(1)

1 do not decay as r → ∞ and therefore affect 
the leading order solution in the outer region. We solved for the nondecaying components of Eqn. (5) analytically using 
spherical harmonics and the projection method (see Appendix A).

In order to take advantage of a priori knowledge of the discontinuity, we decompose U(1)
1 and P (1)

1 into regular and 

irregular (singular + discontinuous) components: U(1)
1 = V +Ustr +UD and P (1)

1 = Q + Pstr + PD , where (Ustr, Prmstr ) is the 
stresslet solution from Eqn (3) and (UD , PD ) are the discontinuous velocity fields given in Eqn. (A.9), rewritten in terms of 
the outer variable X . Rewritten in terms of (V, Q ), Eqn. (4) becomes:

�V− ∇Q − V · ∇Ū + Ū · ∇V = Ustr · ∇(Ū−γ · xe3) +Ustr · ∇(Ū−γ · xe3)

+UD · ∇Ū+ Ū · ∇UD

∇ · V = 0 (7)

V = −Ustr −UD on walls of the channel

This reformulation increases numerical accuracy not just because the unknown velocity and pressure fields are made con-
tinuous at X = 0, but because the order of the singularity in the right hand side of the first subequation in Eqn. (7) is 
reduced from O (R−2) to O (R−1).
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2.4. Alternative regularization methods

Singular forcing terms are commonly encountered in computational models of fluid-body interactions, and there are 
existing methods that can be used to regularize a system of equations such as Eqn. (4). We compare the regularization 
from Section 2.3, with 1. a direct solve of Eqn. (4) with a regularized Dirac delta function and 2. velocity and pressure 
decomposition, in which a regularized form of the stresslet is subtracted from U(1)

1 .

To regularize the Dirac delta forcing term in Eqn. (4) directly, we replace δ(X) by normalized Gaussian of ε-variance, 

δε(x) = 1

(2πε)
3
2

exp
(

− ||x||2

2ε2

)

:

�U
(1)
1 − ∇ P

(1)
1 −U

(1)
1 · ∇Ū′ − Ū′ · ∇U

(1)
1 = −

10π

3

⎡

⎣

γx
∂
∂z

γy
∂
∂z

γx
∂
∂x

+ γy
∂
∂ y

⎤

⎦ δε(x) (8)

∇ ·U
(1)
1 = 0

A second regularization method is modeled on the regularized Stokeslet method for blunting point force singularities in 
zero-Re flows [28]. Specifically, we isolate the singular part of the velocity field; U(1)

0 = Ustr +Vns where Ustr is the stresslet 
written in terms of the outer coordinates. We present a regularized version of Ustr that is spread over nearby grid points, 
Uε
str , by solving Stokes’s equations with delta function forcing by a blob with length scale ε [28]:

�Uε
str − ∇ P ε

str = −

⎡

⎣

γx
∂
∂z

γy
∂
∂z

γx
∂
∂x

+ γy
∂
∂ y

⎤

⎦

15ε4

8π
(

r2 + ε2
)
7
2

∇ ·Uε
str = 0

from which we derive (see Appendix B):

Uε
str = −

5

4(ε2 + r2)5/2

⎡

⎣

2xz(γxx+ γy y) + ε2γxz

2yz(γxx+ γy y) + ε2γyz

2z2(γxx+ γy y) + ε2(γxx+ γy y)

⎤

⎦ (9)

After regularizing the Dirac delta function, Eqn. (4) is recast in terms of Vns = U
(1)
0 −Uε

str and Pns = P
(1)
0 − P ε

str:

�Vns−∇ Pns−Vns·∇Ū′−Ū′·∇Vns = Ū′ · ∇Uε
str+Uε

str·∇Ū′ (10)

∇·Vns = 0

Vns = −Uε
str on channel walls .

3. Numerical method

Equations (7), (8), (10) are derived from different regularizations of Eqn. (4). To prevent the scaling of our compu-

tational domain from depending on particle Reynolds numbers, we introduce new dimensionless variables with lengths 
non-dimensionalized by the channel length scale: x = x∗∗L, pressures as: p = μUmax

L
p∗∗ , and velocities as V = UmaxV

∗∗ . All 
three equations then take a common form:

Rec
(

Ū′ ∗∗ · ∇V∗∗ + V∗∗ · ∇Ū′ ∗∗
)

− �V∗∗ + ∇Q ∗∗ = G (11)

∇ · V∗∗ = 0

in which the body force, G, depends on the type of regularization chosen and the field Q ∗∗ stands in for −PD , −P
(1)
0 , 

or −Pns respectively. In all three systems, V satisfies Dirichlet boundary conditions on the channel walls. Scaling lengths 
by L means that channel geometries no longer depend on particle size and speed, at the cost of reintroducing Rec as a 
parameter in the PDE. In all formulations we must first solve for the background flow: Ū∗∗ ≡ (0, 0, Ū∗∗(x, y)). Because the 
flow is rectilinear, Ū∗∗ satisfies a 2D Poisson equation, which can be solved one time, for all particle locations and values of 
Rec .

Returning to Eqn. (11), we simplify our solution geometry by taking a Fourier transform z → k, at the same time omitting 
the double asterisks that denote dimensionless variables:

5
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Rec(−ikŪ ′ V̂ x) −
∂2 V̂ x

∂x2
−

∂2 V̂ x

∂ y2
+ k2 V̂ x +

∂ Q̂

∂x
= Ĝx

Rec(−ikŪ ′ V̂ y) −
∂2 V̂ y

∂x2
−

∂2 V̂ y

∂ y2
+ k2 V̂ y +

∂ Q̂

∂ y
= Ĝ y (12)

Rec(
∂ Ū ′

∂x
V̂ x +

∂ Ū ′

∂ y
V̂ y) −

∂2 V̂ z

∂x2
−

∂2 V̂ z

∂ y2
+ k2 V̂ z − ikQ̂ = Ĝ z

∂ V̂ x

∂x
+

∂ V̂ y

∂ y
− ikV̂ z = 0

thereby reducing our equations to set of uncoupled 2D-PDEs for each of the Fourier modes. The 2D-PDEs for different 
wavenumbers can be solved in parallel.

We discretize our equations in x and y using the Taylor-Hood P2+P1 finite element method, in which the velocity is 
approximated using piecewise quadratic functions, φ j , and the pressure is approximated using piecewise linear functions, 
ψ j [29]:

V̂ i =
∑

j

U i jφ j Q̂ =
∑

j

P jψ j (13)

and then we integrate both sides of Eqn. (12) against test functions φ for the momentum equations and ψ for the 
divergence-free condition to obtain the discrete approximation of Eqn. (12):

[

F BT

B C

][

U

P

]

=

[

G

0

]

(14)

where F is our discrete integral of the momentum equations and B is the discrete integral approximation of −1 times 
the divergence operator. Strictly, C = 0. However, the resulting system has a non-trivial kernel containing all solutions with 
V = 0 everywhere, and Q = constant. To remove this degeneracy, we define C = 0 for k 	= 0 and for k = 0 define C = c1, with 
c chosen so as not to change the spectra of the matrix: λmin(F) < c < λmax(F). Each wavenumber, k, produces a different 
matrix on the left-hand side of Eqn. (14); however the matrix equations are decoupled and can be solved in parallel.

Once all coefficients U and P are solved for, we reconstitute V and evaluate it at the particle location to obtain the inertial 
focusing velocity. To identify focusing positions we need to find inertial focusing velocities for many candidate particle 
positions, which is equivalent to solving Eqn. (14) with different forcing vectors G on the right-hand side but the matrices 
on the left-hand side that differ only by a Galilean transformation based on the particle’s velocity. This transformation is 
small enough that the same preconditioner is effective regardless of particle velocity.

3.1. Preconditioning

Eqn. (14) is a large and sparse system of equations which, with an appropriately chosen preconditioner, can be solved 
using an iterative preconditioned Krylov subspace method (GMRES) that is more efficient and has less of a memory footprint 
than a direct method of solution based upon matrix factorization techniques, e.g. LU or QR factorization. An ideal right 
preconditioner for our matrix is

[

F BT

0 −S

]−1

(15)

where S = C − BF−1BT is the Schur complement. We call this preconditioner “ideal” because it will converge in just two 
iterations for all values of G. To reduce the cost of applying this preconditioner, we can factor it as:

[

F BT

0 −S

]−1

=

[

F−1 0

0 I

][

I −BT

0 I

][

I 0

0 −S−1

]

. (16)

However the cost of applying this preconditioner is more expensive than solving Eqn. (14) by a direct method, since it 
entails finding F−1 and S−1 . We therefore construct an approximation of Eqn. (15) from good approximations for S and F
that are easy to invert. An approximation of S is based on the idea that if we replace our discrete operators, which do not 
commute, with continuous ones, which do, we can perform algebraic manipulations that will simplify the construction of 
the preconditioner [30]. We approximate F ≈ F̃ = −� and:

S = C− BF−1BT

≈ C− ∇ · (F̃)−1∇

= C− (−�)−1� (17)

= C+ I. (18)

6
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Fig. 3. Migration velocities are sampled at a grid of particle locations, and natural neighbor interpolation is used to evaluate velocities across the entire 
channel cross-section. All views show only the x− and y− components of the migration velocity. A: Migration velocities are sampled on a grid spaced by 
0.03 in x and y. B: The sampled migration velocities are then interpolated to reconstruct particle trajectories by solving Eqn. (22) using ode45, and stable 
focusing positions are found as the limit points of trajectories (black dots).

Represented in the FE basis this operator becomes:

S i j ≈ S̃ i j = C+

∫




ψiψ j dx. (19)

Hence our approximate preconditioner is
[

F BT

0 −S

]

≈

[

F̃ BT

0 −S̃

]

(20)

where F̃ = −� and S̃ is as defined in Eqn. (19). We factor the application of this preconditioner as

[

F̃ BT

0 −S̃

]−1

=

[

F̃−1 0

0 I

][

I −BT

0 I

][

I 0

0 −S̃−1

]

. (21)

This makes the cost of preconditioning one application of F̃−1 , one application of S̃−1 , and one application of BT .

Calculating particle focusing positions for one channel involves tens of thousands of solves of Eqn. (14) for different 
wavenumbers and particle locations (Fig. 3). As each solve is independent, we parallelize over wavenumbers and assign 
each worker solving Eqn. (14) a single wavenumber but for all sampled particle locations. The worker constructs the pre-
conditioner for this wavenumber along with its column- and row- pivoted LU factorization, and uses these to solve the 
matrix equation for every particle location. Column- and row- pivoting accelerates the LU factorization, and reduces the 
number of nonzero elements that need to be stored, thereby speeding up preconditioning. In our tests, GMRES converged 
with a relative residual of 10−4 in between 4 and 15 iterations for all values of k for Rec = 1 and between 20 and 100 
iterations for Rec = 100.

3.2. Integration of the right hand side

V can be accurately approximated on a coarse finite element mesh because it is continuous, however the right hand side 
of Eqn. (14) diverges like O (r−1) at the location of the particle, meaning that integrals of the right hand side are seldom 
accurate when approximated on the same coarse grid. To improve the accuracy, the integrals over the element containing 
the singularity and its D nearest neighboring elements were obtained by combining the integrals over a 4n congruent sub-
triangulation of the elements. The integrals over all triangles and sub-triangles were obtained using second order Gauss 
quadrature. Our experiments showed D = 1 and n = 2 were sufficient to accurately integrate the right-hand side and were 
used for all further calculations.

3.3. Calculating a particle trajectory

To calculate the trajectory of a particle across the channel cross-section, we must solve the ordinary differential equation:

d

dt
(xp) = V(xp;xp) (22)

7
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Fig. 4. Testing convergence of the inertial migration velocity with respect to mesh density at Rc = 1, 50 (A&B), sampling point density (C), and Fourier 
modes (D). A&B: Relative error of migration velocity at Rc = 1(A) and Rc = 50(B) of the 3 different methods of solution Eqn. (7) in yellow, Eqn. (8) in blue, 
and Eqn. (10) in red. C: Relative error of migration velocity versus number of Fourier modes included for Rc = 1 (blue) and Rc = 50 (red). D: Convergence 
of focusing positions (sec. 4.2) as we increase sampling point density with Rc = 50 and a channel cross section of scalene triangle with side lengths 1, 1.28, 
1.02. A scalene triangle was chosen so that symmetry does affect convergence.

where V(xp; xp) denotes evaluating the solution of Eqn. (4) at xp with the singularity located at position xp . Because the 
singularity must be at xp , the RHS of Eqn. (4) is different for every particle location, meaning one PDE solve is required for 
each time step.

Our goal is to calculate trajectories with initial conditions covering the channel, therefore it is more efficient to pre-
calculate the migration velocity on a grid of sample positions (Fig. 3A) and interpolate between them to calculate V(xp; xp)

in order to advance the particle trajectory. Once velocities are sampled across the entire channel cross-section, we advect 
the particles by solving Eqn (22) using the fourth order Runge-Kutta solver, ode45 in MATLAB (Mathworks, Natick, MA). We 
calculate the trajectories of many particles, identify stable focusing positions by considering the limiting behaviors of the 
particles (Fig. 3B).

In order to handle arbitrary channel shapes, we use natural neighbor interpolation [31] to interpolate velocities between 
arbitrarily spaced sampling points. This interpolation is once differentiable everywhere except the sampling points and 
yields quadratic convergence upon refinement.

4. Results

4.1. Numerical convergence

In this section we demonstrate the accuracy and efficiency of the migration velocity calculation and validate its second 
order convergence. To test our regularization method from Eqn. (7), we perform a self-convergence test on the calculated 
migration velocity for a particle in a 1 × 1 × 10 square channel, with one particle located at xp = [−0.1, 0.2] and Rec =

1, 50. We also compare results and convergence rates the regularization method of Eqn. (7) with the existing regularization 
methods given by Eqns. (8) and (10) (Fig. 4A&B).

Mesh convergence for different regularization methods. We measure the rate of convergence for our migration velocity cal-
culation as we decrease the 2D mesh size in a 0.1x0.1 box around the particle. Convergence is measured by comparing to 
computations done with half the grid size of the smallest grid size plotted. Relative error decreases proportional to O (h2)

as the local grid-size around the discontinuity/singularity is reduced (Fig. 4A&B), which is the theoretical optimal rate of 
convergence for the P2 + P1 scheme.

We compare our new regularization method with two existing techniques, which were described in section 2.4. Both 
existing methods regularize the particle-singularity by blunting either the Dirac delta function (Eqn. (8)) or the stresslet 
velocity (Eqn. (10)), and introduce a blunting length-scale, ε . Our goal is to choose this length scale so as not to lose the 
physics induced by the singularity, while still representing it with our finite element basis. Empirically, we find minimum 
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Fig. 5. Predicted focusing positions from our fast simulation method agree well with experimental data from [32]. From left to right: particle focusing 
positions in channels with semicircle, 2x1 isosceles triangle, and equilateral triangle cross section. Reynolds numbers were matched with those from 
experiment.

values for ε: ε = gridsize/2 for Eqn. (8) and ε = gridsize/4 for Eqn. (10). The existing methods had almost identical accu-
racy and O (h) rates of convergence (Fig. 4A), and at the smallest mesh-sizes considered, produced errors that were around 
16-fold larger than Eqn. (7). The slower convergence of the alternate methods is inevitable, since each makes an O (ε) ap-

proximation of the particle singularity. Indeed, even after the singularity is removed the velocity field remains discontinuous 
at the particle location. The remainder of the computational results presented utilize the method based upon Eqn. (7)

Convergence in number of velocity sampling points Rather than evaluating the migration velocity in Eqn. (22) directly, we 
pre-evaluate velocities on a grid of sampling points, and use interpolation to compute velocities at intermediate points. Our 
velocity interpolation method gives second order convergence as the spacing of sampling points is reduced [31] and the 
results from Fig. 4C shows this achieved for focusing position convergence. Fairly coarse sampling meshes can be used over 
much of the channel cross-section, however reconstructing the slow focusing manifold and the boundaries between the 
basins of attraction requires locally fine sampling meshes. Since the locations of these curves are not known a priori, we 
default to using a sampling mesh of 0.04.

Convergence in Fourier modes. The number of Fourier modes used to represent the solution is another parameter that 
influences the accuracy of the method. In Fig. 4D the convergence behavior is shown as an increasing number of Fourier 
modes are used to resolve the z-dependence of the particle disturbance flow. Errors in migration velocity decay like O (N−1), 
where N is the number of Fourier modes. Convergence in Fourier modes is not spectral, likely because continuity of the 
velocity fields we are solving for fails at the level of the first derivative. Convergence is unaffected when changing Rc from 
1 to 50.

4.2. Calculating focusing positions in channels of arbitrary cross section

Inertial migration causes particles to eventually collect at equilibrium streamlines, known as focusing positions (Fig. 3). 
We find stable focusing positions by integrating Eqn. (22) until particle velocities decrease below 10−5 . We identify all 
focusing positions by seeding the channel cross-section evenly with thousands of particles. We color code the seeding 
location according to which focusing position the particle converges to. This process partitions the cross section into basins 
of attraction (Fig. 5).

In a square channel, in common with previous studies [26], we find four symmetrically arranged focusing positions, one 
at each mid-face (Fig. 3B). The slow focusing manifold symmetrically links all four stable focusing positions. Although not 
shown explicitly, we infer that there must be four symmetrically arranged unstable focusing positions – that is streamlines 
that particles may remain on, but can not converge to – where the slow focusing manifold passes through the four diagonals 
of the square. Omitting these four unstable positions and the unstable center, the basins of attraction divide the channel 
into four triangular quadrants. We further validate predictions about focusing positions by comparing our computations with 
real experiments [32] using microfluidic channels with three different, non-rectangular cross-section shapes: two triangles 
of different base-height ratios and a semi-circle. We match Rec to the parameters in [32]. Although no experimental data 
was presented on the trajectories of particles, we found close agreement between predicted and experimentally measured 
final focusing positions. In particular we see the same number of focusing positions (2 in a semicircular channel, and 3 in a 
triangular channel), as well as narrowing of the space between focusing positions in the larger base-height ratio triangle.
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Fig. 6. Particles quickly migrate away from the center of the channel towards the slow focusing manifold, where they slowly migrate to the focusing 
positions. A: Particle trajectories are plotted with color denoting migration speed at a point. The black dots represent the focusing positions, the streamlines 
all particles will eventually gather upon. B: Computed migration velocities converge as O (h2) both on the slow manifold (red squares) and away from the 
slow manifold (blue circles). However, relative error is much larger on the slow manifold because velocities are ten-fold smaller. Tests were done in a 
square channel with Rc = 1 at xp = (−0.2, −0.1) (far from the slow manifold) and xp = (−0.1, −0.355) (close to the slow manifold).

4.3. Convergence along fast and slow manifolds

Inertial focusing occurs in two phases (Fig. 6) [33]: first particles move rapidly from their starting streamline toward 
a heteroclinic orbit within the channel cross-section (i.e. a manifold of streamlines when the stream-wise dimension is 
considered). Particles then move much more slowly along this manifold. Indeed, experimental evidence suggests that in 
real inertial microfluidic devices particles perform much of their fast focusing in the device inlet, leaving only the slow 
focusing parts of trajectories to be resolved within the channel [33]. Resolving the fast and slow dynamics is very important 
to understanding the speed at which particles migrate towards their focusing positions, as well as the size of the region of 
attraction.

Accurately calculating the migration velocity is more difficult along the slow manifold than elsewhere in the channel. 
This is because the magnitude of the error is similar but the migration velocity is ∼ 10 fold smaller, thus the relative error 
is much higher (Fig. 6B). For example, we compare self convergence of the migration velocity in a square channel with 
Rc = 1, between a particle located at (xp, yp) = (−0.2, −0.1), far from the slow focusing manifold, with a particle located 
at (xp, yp) = (−0.1, −0.355), which lies on the slow focusing manifold. Although both velocities converge asymptotically as 
O (h2), relative errors remain 10-fold larger close to the slow focusing manifold.

As will be shown in Section 4.4, the location of the slow focusing manifold is sensitive to the physical parameters of 
the model; including channel shape and Reynolds number. The manifold shape also depends upon numerical parameters 
such as mesh size. Since whether a particle is placed on or off the slow manifold has a drastic effect upon the size of its 
inertial migration velocity, mesh size constraints are especially restrictive close to the slow manifold, since any perturbation 
of the manifold away from the particle will add a fast focusing velocity. For example, we compare self convergence of the 
migration velocity in a square channel with Rc = 1, between a particle located at (xp, yp) = (−0.2, −0.1), far from the slow 
focusing manifold, with (xp, yp) = (−0.1, −0.355), which lies on the slow focusing manifold. Although both velocities con-
verge asymptotically as O (h2), relative errors remain 10-fold larger close to the slow focusing manifold. Although variation 
in relative errors across the cross-section means that we need to be cautious in evaluating the convergence of our algo-
rithm, we found that a mesh-size of .02 could be used to reliably distinguish trajectories associated with different Reynolds 
numbers and channel shapes. However, resolving dynamics on the slow manifold, such as bifurcations affecting the number 
of stable focusing positions (Section 4.4) is particularly challenging numerically. Close to the critical shapes or Rec -values 
that produce these bifurcations, focusing becomes extremely slow, potentially leading to the appearance of supernumerary 
stable focusing positions [14].

4.4. Varying channel shape and Reynolds number

Our algorithm is fast enough to test many channel geometries and particle Reynolds numbers, allowing for rapid explo-
ration of the effect of channel shape and flow Reynolds number upon the number and location of focusing positions; an 
area in which there are still many unanswered questions.

As an example of the computational ability, we the effects of increasing Reynolds number in several geometries. Our 
calculations in square channels support previous studies that show that the slow focusing manifold and focusing positions 
move toward the channel walls as Rec is increased (Fig. 7B). Di Carlo et al. [34] hypothesize that focusing positions arise 
from a balance of (shear) forces pushing the particle away from the channel center and (wall) forces that push particles 
away from channel walls, and that the shear forces increase more rapidly with Rec . However, our modeling casts some 
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Fig. 7. Increasing channel Reynolds number changes the position and number of focusing streamlines. A-B, Rec = 1 (red) and Rec = 100 trajectories in an 
equilateral triangle and a square. In the square, increasing Rec displaces focusing positions further from the center of the channel, but there is no effect in 
the triangle. C, Focusing positions bifurcate as Rec is increased in a semi-elliptical channel with aspect ratio 1.2.

doubt on this mechanism, because we find no such shift in focusing positions as Rec is increased for an equilateral triangle-
shaped channel. In the equilateral triangle channel, focusing positions are symmetrically arranged near the middle of each 
channel wall, and maintain the same distance from the wall even as Rec is increased 100-fold (Fig. 7A).

Emerging methods for microfabrication now allow microfluidic channels to be built with ever more complex shapes, 
including channels with curved walls [32]. Our computations show that the number of focusing positions undergoes a 
finite-Rec bifurcation in some curved channels. Inspired by [32], we simulated a semi-elliptical channel with major:minor 
axis aspect ratio 1.2. Migration velocity sampling points were taken on a square mesh with density 0.03. We found that for 
this channel there is an apparent supercritical pitchfork bifurcation at Rec ≈ 40 in which a single stable fixed point in the 
mid-point of the channel curved face splits into two stable fixed points, separated by an unstable fixed point (Fig. 7C). The 
emergence of the fixed point by a pitchfork bifurcation stands in contrast to square channels, where, at Rec ≈ 250, new 
focusing positions emerge near the channel diagonals via saddle point bifurcations [35]. Close to the bifurcation, migration 
velocities along the slow manifold become extremely slow (‘critical slowing down’ [36]), which increases the challenge of 
resolving the precise number of stable fixed points by studying the long time convergence of particles. Moreover, our model 
for inertial migration is only exact in the limit as α → 0 and Rep → 0; we hypothesize that perturbations associated with 
modeling finite-size particles could create the imperfect bifurcations [36] seen in [35].

We also explore how number and location of stable focusing positions varies over the space of channel shapes. Because of 
the limitations of photo-lithographic methods, inertial microfluidic devices typically have rectangular channels. Experimental 
data seems to suggest that in contrast to square channels which have at least four stable focusing positions, channels with 
sufficiently high aspect (width to height) ratios, may have only two stable focusing positions, centered at the two larger 
edges of the channel [1,37,5]. We simulated inertial focusing in 4 rectangular channels whose aspect ratios ranged from 1 
to 4. Migration velocities were sampled on a rectangular mesh of points with spacing chosen to be a fraction 0.04 of the 
channel size in each dimension, e.g. for 4×1 rectangle the spacing was 0.16 in x and 0.04 in y.

We observe for low aspect ratio channels and consistent with experiments [1], that channels have four stable focusing 
positions, each centered on one of the channel’s four sides. However, even for the most ‘slot’-like channel geometries, our 
simulations showed particles continuing to converge to any of four stable focusing positions even in the high aspect ratio 
channels (Fig. 8, left panels), consistent with [33]. We studied the basins of attraction of the short-side focusing positions. 
We found that, rather than disappearing, the basins of attraction as the aspect ratio of the channel is increased, the basins 
of attraction for these short-side focusing positions approach a limiting shape as channel aspect ratio increases (the basins 
of attraction are shown for Rec = 1 in Fig. 8, right panels). While an isthmus between the two major basins of attraction 
must exist, it quickly becomes too slender to resolve in our simulations. Since our method leverages a very different set 
of assumptions about channel Reynolds numbers to those of [26], our simulations again support the conclusion reached by 
[33], that the disappearance of short-side focusing positions in experiments is an artifact of the prefocusing that occurs in 
the inlets that feed particles into real inertial microfluidic channels.
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Fig. 8. A sweep over a range of parameters shows that short-side focusing positions persist even in high aspect ratio channels. The basins of attraction of 
these focusing positions approach a limiting shape as aspect ratio is increased. Left: Basins of attraction for channels of aspect ratio 1, 1.5, and 2. Right: 
Basins of attraction along the minor axis for rectangles of different aspect ratios. The blue dashed line represents AR=1, while the red circles, green triangles, 
and solid black line represent AR = 1.5, 2, and 4. For all simulations Rec = 1. While the channels had different velocity sampling points (see main text), the 
basins of attraction created via interpolation were unaffected by sample spacing.

5. Conclusion

By representing particles submerged in fluids by singularities Schönberg and Hinch [18] were able to accurately calculate 
particle behavior without solving the nonlinear Navier-Stokes equations or explicitly meshing the 3D and time-varying fluid 
domain between particles and channel walls. We have taken the asymptotic approximations created in [18] and extended 
them to create a fast, efficient numerical method for calculating particle migration velocities in straight channels of uniform 
but arbitrary cross section. A proper accounting for singular and discontinuous terms that must be matched between inner 
and outer expansions allowed us to reduce the computation to one of finding only continuous components of the velocity 
field, improving the order of accuracy of the method and allowing for fast, stable calculations using a uniform mesh, includ-
ing at the location of the particle itself. Numerical tests reveal that at moderate mesh sizes this method of regularizing the 
solution produces 10-fold higher accuracy than existing methods of blunting singularities, namely regularized stresslets and 
blob function approximations.

The method can be extended to particles of other shapes. Singularity modeling of the particle needs only the stresslet 
strength associated with the Stokes solution around the particle. This stresslet strength is already known for ellipsoids in 
shear flow [38] and for other particles can be found by solving for the motion of the particle in Stokes flow, for which 
there are many approximate or numerical methods [27,24]. However, a fully accelerated computation also requires that the 
discontinuous components of the velocity, UD , be found from the O (αR) inhomogeneous Stokes equation. For spherical par-
ticles we were able to isolate and find these terms analytically but for more complex particle geometries, this regularization 
could be given to a specialized solver designed to solve the inhomogeneous Stokes equations.

We note that subtracting the discontinuity leaves a velocity field that is continuous but that still has discontinuous 
derivatives. Higher order discontinuities can, in principle, be computed analytically by continuing the inner expansion to 
high order, that is, we can compute the discontinuities in the first derivative of V by continuing our expansion of the 
velocity field to u(1)

2 , but numerical experiments in COMSOL Multiphysics (COMSOL Inc, Los Angeles, results not shown) 
showed that subtracting higher order discontinuities did not allow any reduction in the number of elements. Moreover, we 
found that the solver produces sufficiently accurate velocities at mesh sizes that are large enough to be applied uniformly 
across the entire of the channel cross-section, so discontinuity regularization alone is enough to achieve our goal of avoiding 
remeshing for different particle positions. However, the full potential of the Fourier basis used to represent the z-dependence 
of the solution remains unrealized.

Further expansions in terms of particle size and Reynolds number are possible, and would add either higher order 
forcing terms within our Oseen equation, or would require that we impose additional matching conditions to model the 
particle. Such an extension could be useful for predicting differential focusing of different particles within the same channel. 
Currently, although our simulations provide quick and accurate tools for predicting how particle focusing positions are 
affected by channel shape and channel Reynolds number, they can not reveal the effects of size upon focusing positions. In 
straight channels the effects of size are often mild [32], but particles of different sizes can follow very different focusing 
trajectories in non-straight channels, allowing particles of different sizes to be separated [39,40], and extending models to 
incorporate explicit dependence on particle size, offers a first step toward modeling the complex 3D geometries of a wide 
range of inertial microfluidic channels. Hood et al. [26] incorporated size-dependent focusing effects by calculating the next 
order term in α: u(0)

2 . Although our model relies on different asymptotic limits, it could be similarly extended, though the 
calculation would require generating new solutions in both inner and outer regions, but still of the form Eqn (11), and thus 
we expect that the extension would not require any great increase of compute times.
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Fig. 9. Memory costs and time for individual velocity solves are quite small (∼200MB and ∼20 seconds on 1 core when averaged over simultaneous solves), 
allowing particle focusing velocities to be computed on a laptop computer. However, for complex channel geometries hundreds of particle positions are 
required for accurate interpolation of the migration velocity field (Fig. 3), and inference of focusing positions. Symmetry can be exploited to reduce the 
number of computations. Channel simulations in panels A-B took 200-250 particle locations and about 1 hour to be solved. However, simulations in panel 
D took only ∼15 minutes on a laptop computer when taking advantage of 2 reflection symmetries, so that only one quarter of migration velocities needed 
to be computed, while panel C took ∼30 minutes when taking advantage of 1 dimension of symmetry, so that only one half of migration velocities were 
computed.

We have implemented the algorithm described in this paper in Matlab (Mathworks, Natick, MA), and the resulting 
package (called INFOCUS) is freely downloadable from the first author’s website. INFOCUS is intended to be usable by builders 
of inertial microfluidic devices, can be run on a laptop computer, and needs minimal programming experience. It is designed 
for building quick predictions of where and how fast particles will focus inside straight microfluidic channels with arbitrary 
cross-section shapes. Users need only need define channel shape by specifying vertices for polygonal-shaped channels or a 
level-set function for curved boundaries, and specify their channel Reynolds number based on the maximum flow velocity, 
or on the flow rate. INFOCUS can then calculate particle focusing positions, particle trajectories, and basins of attraction. The 
tool is capable of calculating the focusing positions of channels with simple geometries on a laptop computer with 8 GB of 
RAM in under an hour, while the most complex channel geometries that have assayed can be run on a desktop computer 
with 64 GB of RAM in 1-2 hours (Fig. 9). The implementation of our algorithm is able to handle arbitrary shapes and its 
speed makes parameter sweeps or shape optimization feasible.
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Appendix A. Discontinuity solution

We wish to solve Eqn (5) analytically by transforming the problem into 3 separate inhomogeneous Laplace equations 
and solving those using Spherical Harmonics, denoted Y j

i
, which have the property that
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�
(

rnY i
j(θ,φ)

)

= (n(n − 1) − j( j + 1)) rn−2Y i
j(θ,φ) (A.1)

making them pseudo-eigenvectors of the Laplacian [41]. All code is in Mathematica (Wolfram Research, Urbana Champaign, 
IL) and is based on code from [42]. We make the Helmholtz decomposition:

(γ ·xe3) · ∇u
(0)
1 + u

(0)
1 · ∇(γ ·xe3) = ∇� + ∇ × A (A.2)

Our goal is not to calculate u(1)
1 completely, but only to isolate the terms that are O (r0) as r → ∞. Throughout our calcula-

tion, we will isolate only terms that contribute at this order.
We take the divergence of both sides of Eqn. (5), noting that since u(1)

1 is divergence-free:

�p
(1)
1 = �� = ∇ ·

(

(γ ·xe3) · ∇u
(0)
1 + u

(0)
1 · ∇(γ ·xe3)

)

= ∇ · ((γ ·xe3) · ∇ustr + ustr · ∇(γ ·xe3)) + o(r−3) . (A.3)

Using the fact that spherical harmonics make a perpendicular basis, we rewrite the first term of Eqn. (A.3) as a sum of 
spherical harmonics. 

∑∞
j=0

∑ j

i=− j
ai jr

−3Y i
j
, where:

ai j =

π
∫

0

2π
∫

0

∇ · ((γ ·xe3) · ∇ustr + ustr · ∇(γ ·xe3)) Y
i
j sin θ dφ dθ

We find a particular integral for this equation using the fact that spherical harmonics diagonalize the Laplace operator and 
lead to simple inversion

p� =

∞
∑

j=0

j
∑

i=− j

r−1n�
i j Y

j

i
where n�

i j =
ai j

2− j( j + 1)
. (A.4)

Our first step toward calculating a leading order expression for u(1)
1 is to find a velocity field, u� associated with p� , and 

satisfying the equation:

�u� = (γ ·xe3) · ∇u
(0)
1 + u

(0)
1 · ∇(γ ·xe3) + ∇p� (A.5)

We decompose each Cartesian component of the right hand side of (A.5) into spherical harmonics:
∑3

k=1

∑∞
j=1

∑ j

i=− j
bi jkY

i
j
ek where:
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π
∫

0

2π
∫

0

(
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(0)
1 + u

(0)
1 · ∇(γ ·xe3) + ∇p�

)

· ekY
i
j sin θ dφ dθ (A.6)

We can then invert the Laplacian algebraically: u� =
∑3

k=1

∑∞
j=0

∑ j

i=− j
α�
i jk

Y
j

i
ek where α�

i jk
= −

bi jk
j( j+1)

.

u� is not the solution at O(1) in the inner region because it has non zero divergence and doesn’t satisfy the boundary 
conditions, this makes sense as p� is not the full pressure. To remedy this we simply add a potential to the pressure 
that would remove this divergence p = p� + ∇ · u� and get a new RHS for a Laplace equation to represent with spherical 
harmonics

�u
(1)
1 − ∇(p� + ∇ · uφ) =

(

(γ ·xe3) · ∇u
(0)
1 + u

(0)
1 · ∇(γ ·xe3)
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(A.7)
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We can then perform one Laplace inverse for each of our 3 coordinate components:

=⇒
(

u
(1)
1

)

k
=

∑∑

αi jkY
j

i ek (A.8)

where αi jk = −
ci jk

j( j + 1)

Converting back to Cartesian coordinates we have our answer
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Appendix B. Regularizing the stresslet

Formally the stresslet solves a Re = 0 form of the Navier-Stokes equations:

μ∇2ustr − ∇pstr + fstr = 0 , ∇ · ustr = 0 , (B.1)

for

fstr = −
10πμγx

3

(

∂δ(x)

∂z
,0,

∂δ(x)

∂x

)T

−
10πμγy

3

(

0,
∂δ(x)

∂z
,
∂δ(x)

∂ y

)T

, (B.2)

where δ(x) is the Dirac delta function and (γx, γy) are the components of the shear vector. We follow [28] in deriving a 
non-singular approximation of ustr in which δ(x) is replaced by a function, φε ;

φε(r) =
15ε4

8π(r2 + ε2)7/2
(B.3)

for which an exact solution of Eqn (B.1) is possible. For this choice of φε , we may define auxiliary functions:

∇2G = φε ∇2B = G (B.4)

H1(r) = r−1B ′ − G H2(r) = r−3(rB ′′ − B ′)

where (·) = d(·)
dr

, from which we can construct the components of the regularized stresslet:

uε
str i =

H ′
2

r
xix jxk Z jk +

(

H2 +
H ′

1

r

)

xk Z ik , (B.5)

where

Z =
10a3π

3

⎛

⎝

0 0 γx

0 0 γy

γx γy 0

⎞

⎠ . (B.6)

We solve the system Eqn (B.4) using Maple (Maplesoft, Waterloo, Canada), obtaining:

uε
str =

−5a3

4(ε2 + r2)5/2

⎛

⎝

2xz(γxx+ γy y) + ε2γxz

2yz(γxx+ γy y) + ε2γyz

2z2(γxx+ γy y) + ε2(γxx+ γy y)

⎞

⎠ . (B.7)
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