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We analyse the generation of kinetic instabilities and their effect on the energization of
ions in non-relativistic, oblique collisionless shocks using a 3D-3V (three spatial with
three velocity components) simulation by d ybridR, a hybrid particle-in-cell code. At
sufficiently high Mach number, quasi-perpendicular and oblique shocks can experience
rippling of the shock surface caused by kinetic instabilities arising from free energy in
the ion velocity distribution due to the combination of the incoming ion beam and the
population of ions reflected at the shock front. To understand the role of the ripple on
particle energization, we devise a new instability isolation method to identify the unstable
modes underlying the ripple and interpret the results in terms of the governing kinetic
instability. We generate velocity-space signatures using the field—particle correlation
technique to look at energy transfer in phase space from the isolated instability driving
the shock ripple, providing a viewpoint on the different dynamics of distinct populations
of ions in phase space. Together, the field—particle correlation technique and our new
instability isolation method provide a unique viewpoint on the different dynamics of
distinct populations of ions in phase space and allow us to completely characterize the
energetics of the collisionless shock under investigation.
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1. Introduction

Collisionless shocks above a critical Mach number must invoke energy dissipation
mechanisms other than resistivity to enable a steady-state structure in the transition region
(Leroy et al. 1981; Wu et al. 1984). Such supercritical shocks (Edmiston & Kennel 1984;
Kennel, Edmiston & Hada 1985) can form when a large obstacle is put into a plasma
flow that is travelling significantly faster than the fast magnetosonic velocity in the frame
of the obstructing object. This disturbance creates a plasma wave that steepens until
a shock forms, creating a transition from supersonic flow upstream to subsonic flow
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downstream. Collisionless shocks impact the dynamics and energetics of a plasma system
in several ways, such as the ability to accelerate particles to high energy (Caprioli, Zhang
& Spitkovsky 2018), and the partitioning of energy between electrons and ions (Savoini
& Lembege 2010), which is allowed due to the lack of particle collisions to drive ion and
electron temperatures to equilibrium.

For quasi-perpendicular and oblique shocks, a fraction of incoming ions are reflected
at the shock transition and travel back upstream a distance that is typically of order
one gyroradius, creating an unstable distribution of incoming and reflected ions that can
generate unstable electromagnetic fluctuations which mediate the dissipation of energy
and aid in forming the structure of the shock transition. This reflection plays a significant
role in creating the foot/ramp/overshoot structure seen in the transverse (to the shock
normal direction) magnetic field that is typical of collisionless shocks (Leroy et al.
1981, 1982; Balogh & Treumann 2013; Burgess & Scholer 2015). A gradual increase in
the transverse magnetic field occurs in the foot, with a more rapid increase in the ramp of
the shock. Beyond this, the overshoot increases the transverse component of the magnetic
field above its eventual downstream asymptotic value.

For shocks with a Mach number and shock normal angle in a particular regime, the
surface of the shock starts to ripple. This occurs as kinetic instabilities are driven by the
unstable distribution created by the combination of the incoming and reflected populations
of ions. This has been observed in simulation (Winske & Quest 1988; McKean, Omidi
& Krauss-Varban 1995; Lowe & Burgess 2003; Burgess et al. 2016) and in situ with
spacecraft (Johlander et al. 2016, 2018). Shock rippling has been studied previously using
two-dimensional (Winske & Quest 1988; McKean et al. 1995; Lowe & Burgess 2003) and
three-dimensional simulations (Burgess et al. 2016). Studies that simulate only two spatial
dimensions potentially risk suppressing some of the important degrees of freedom of the
system (Burgess & Scholer 2007; Zacharegkas et al. 2022). Here, we focus on the ion-scale
fluctuations caused by Alfvénic modes. The shock ripple may also impact other unstable
fluctuations arising in the shock transition, for example the rippling may interact with
whistler waves that propagate upstream and downstream (Gedalin & Ganushkina 2022).

Modelling this instability with the theory of linear waves in a homogeneous plasma
has been difficult, as the instability that best matches the observations depends on the
position relative to the shock transition. In the shock foot, the instability appears to be
driven by streaming instabilities as the reflected population has a significant component
of its velocity perpendicular to the velocity of the incoming stream, and this has been
proposed to be due to either the modified two stream instability (Winske & Quest 1988) or
the ion Weibel instability (Burgess et al. 2016). In the shock ramp, previous studies have
concluded that the instability corresponds to the Alfvén ion cyclotron instability (AIC), as
the waves generated locally tend to travel at the local Alfvén velocity and the plasma
meets the temperature anisotropy threshold, factors that are also required by the AIC
instability (Gary et al. 1976; Winske & Quest 1988; Lowe & Burgess 2003; Klein & Howes
2015). Agreement between linear theory with the AIC instability has been found (McKean
et al. 1995), but the analysis methods used make it difficult to isolate instabilities in a
restricted time or space domain. This difficulty is further enhanced in higher energy shocks
in which the instabilities excited can cause non-stationary, non-steady-state behaviour
such as shock reformation because of how rapidly these instabilities evolve in space and
time. Furthermore, modelling this instability is also complicated by the non-homogeneous
nature of the plasma through the shock transition.

Previous work has compared the linear theory of kinetic instabilities in homogeneous
plasmas with two-dimensional shock simulations (Winske & Quest 1988; McKean et al.
1995; Burgess & Scholer 2007). These studies tracked the shock as a function of time to
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measure the growth of any expected instabilities, or Fourier transformed a block of the
simulation in space and time, which loses the locality of the dynamics of the shock along
the shock normal direction and the locality of the plasma parameters. While these attempts
have been successful at examining the dynamics in the ramp, to our knowledge, no direct
comparisons between linear theory and the instabilities in the foot have been made. Only
quantitative similarities between properties of both the instabilities in the foot and linear
instabilities that are suspected to be present have been found (Burgess et al. 2016). This
motivates the need for development of a more versatile method for comparing simulations
with linear theory, as such a tool will have applications beyond analysis of the instabilities
causing shock ripple.

The purpose of this paper is to develop tools for analysing how kinetic instabilities
affect the dynamics and energetics of a collisionless shock and to demonstrate these tools
on the main instability causing the surface of the shock to ripple. We develop a method
that can locally identify the kinetic instability (or instabilities) present and characterize
its properties from simulation data by analysing the ‘fluctuating fields’, as defined in § 3.
We show that these fluctuations are consistent with the properties of wave modes from
the linear Vlasov—Maxwell dispersion relation based on the local plasma parameters at
that position, as shown in figure 7. Furthermore, we use this definition of the fluctuating
fields to compute the energization due to the fluctuations arising from kinetic instabilities
in the shock transition. Thus, we devise a means to separate the approximately steady-state
bulk shock energization of particles due to the shock transition from the energization
due to the instability-driven fluctuations, with the aim to quantify and explain how the
electromagnetic fluctuations arising from kinetic instabilities affect the energization of
particles through the shock transition.

In this paper, we will present a novel instability isolation method and apply it to a
simulation of an oblique collisionless shock. We use this method in conjunction with the
field—particle correlation technique to produce the velocity-space signatures of particle
energization in phase space due to an isolated instability. We use these methods to
investigate the kinetic instability responsible for the shock ripple and assess the impact
of the instability on the ion energization in the shock. These methods allow us to separate
the energization of particles due to the steady-state physics of the shock from that due
to the kinetic instabilities arising in the shock transition. In § 2, we describe the set-up
and details of the 3D-3V d ybridR simulation of an oblique collisionless shock. Section 3
presents the instability isolation method devised to analyse the properties of the modes
driven unstable by kinetic instabilities in the shock transition. We analyse the particle
energization in the ramp of this simulated shock, separating the energization due to the
bulk steady-state shock physics (a transverse-plane average of the fields through the shock)
from the energization due to the kinetic instabilities responsible for the shock ripple in § 4.
We conclude in § 5 by discussing new avenues of investigation made possible by these
techniques to understand the dynamics and energetics of other non-stationary shocks.

2. Simulation set-up

We present fully three-dimensional hybrid simulations using the massively parallel code
d ybridR (Gargaté et al. 2007; Haggerty & Caprioli 2019). We produce a shock by sending
a supersonic flow in the —Xx direction towards a reflecting wall at x = 0. The resulting
colliding flows generate a shock that propagates in the +X direction in the simulation
domain. We maintain periodic boundary conditions in the y and Z directions. We use
1000 particles per cell in the initial state of each cell and at the upstream boundary where
particles are continuously injected. We normalize the magnetic fields and number density
to their values in the upstream region, By and ny. Lengths are scaled to the upstream ion
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FIGURE 1. Two-dimensional slice of magnetic fields and fluid moments of a d ybridR
simulation with shock velocity of M4 = 7.88 (in the downstream rest frame) and 6, = 45°
shock at ; of = 20. At this time, the shock is at x/d; o =~ 40.

inertial length d; o = c¢/w,; 0, where w,; o = /4 nge?/m; is the ion plasma frequency using
the upstream density with ¢ as the speed of light, e as the elementary charge, and m; as
the ion mass. Time is scaled to the inverse ion gyrofrequency i._Ol = cm;/eBy based on
the upstream magnetic field. Velocity is normalized using to the upstream Alfvén velocity,
Vao = Bo/~/4 nom; =d,;o 0. Electric fields are normalized to Byva o/c. The ratio of the
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FIGURE 2. Average (over the transverse plane) magnetic fields (a) and electric fields (b) from
the hybrid simulation at ;o = 20. The black curve shows the transverse magnetic field jump
B;2/B; 1 = 3.66 predicted by the MHD Rankine—Hugoniot jump conditions for a collisionless
shock with My = 7.88, 0p, = 45°, and = 2.

Alfvén velocity to the speed of light is vs0/c = 1/125. The plane normal to the shock
propagation direction, the transverse plane, has an area of L, L. = 12d;, 12d;,. The
length of the simulation along the direction of the shock normal is L, = 98.75d; . The
simulation is divided into square cells with sides of length 0.25d; o. We set the initial state
of the inflowing plasma to have beta values 8; = B, = 1, where the species s plasma beta
is given by B, = 8 n,T, /B and temperatures are expressed in units of energy (absorbing
the Boltzmann constant into 7 o, the upstream ion temperature). The upstream ion thermal
velocity is defined by v, o = /2T 0/m,. We inject particles at the upstream boundary with
velocity U;,; = —6vy4 X in the frame of the simulation box and impose an initial magnetic
field with shock normal angle 65 = 45° with o = (1/+/2)Bok + (1/+/2)Bo?.

Figure 1 shows the magnetic field structure, ion density and bulk flow velocity at

ot = 20. The incoming flow in the shock-rest frame (as inferred from the simulation)
has an Alfvén Mach number M, = 7.88, and the shock does not experience any shock
reformation or significant ‘breathing’, i.e. the shock velocity is stable throughout the
simulation. We track the shock in the simulation frame as discussed in Appendix B,
and Lorentz transform the electromagnetic fields and ion velocity distributions to the
shock-rest frame. The electric and magnetic fields averaged across the transverse plane
(in the shock-rest frame) are shown in figure 2. At ;¢ = 20, the shock has reached
a position x/d;y >~ 40. The compressible component of the magnetic field, B,, has a
compression ratio of r & 3.5. This ratio is in approximate agreement with the predicted
compression ratio of r = 3.62 using MHD (magnetohydrodynamics) Rankine—Hugoniot
jump conditions (see Appendix B). In this parameter regime and at this time in the
simulation, MHD and kinetic shocks are in good agreement, but simulations of kinetic
shocks can deviate (Bret 2020; Caprioli, Haggerty & Blasi 2020; Haggerty & Caprioli
2020). We observe ions being reflected in the phase-space plot f;(x, v,), shown in figure 3,
creating the instability discussed in § 3. The distribution of ions evolves rapidly along the X
direction near the shock transition region, creating a small range in x where the distribution
is unstable, as discussed in § 4.3.
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FIGURE 3. lon distribution function f;(x, vy), integrated over vy and v,, in the shock-rest
frame. Ions are reflected back upstream a distance of order one d; .
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FIGURE 4. Two-dimensional slice of the total magnetic field, | (xo,y, 2)|, at xo/d; 0 = 39.875
(a) and the total electric field, |E(xo, y, z)| (b) over the transverse plane. There is rippling of
the shock with kyd; o = —0.52 and k,d; o = —1.05. Line slices of the compressible magnetic
field component, B, (x, y;, z0) (¢) and Ey(x, y;, z0) (d) as a function of x with a fixed value of
20/d;.0 = 0.125 for a set of discrete values of y;/d; o.

There is rippling in the shock at x/d; o = 39.875. This location corresponds to the most
upstream extent of the ramp. Figure 4 shows a two-dimensional slice of the rippling
over the transverse plane. We see a periodic rippling in the magnetic field, indicating the
presence of an instability launching a wave that is rippling the location of the shock front
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across the transverse direction. The width of the ripple is estimated to be Ax/d; o >~ 1 from
figure 4. There is no variation in the transverse plane in the upstream region, showing that
the unstable ion velocity distribution arising in the shock transition induces instabilities
which produce a variation of the fields in transverse directions.

3. Instability isolation method

To isolate the unstable fluctuations from the variation of the electromagnetic fields due
to the steady-state physics of the shock transition in our collisionless shock simulations, we
first separate the average of these fields over the transverse plane of the shock (i.e. along the
shock face) from the fluctuations across that plane, where the boundary conditions in the
plane are periodic. We define the transverse-plane-averaged fields (hereafter denoted the
averaged fields for brevity) by

_ 1 Ly L,
E(x) = / d / dzE(x, y, 2). 3.1)
LyLz 0 Y 0 Y

The fluctuating fields are then computed by
SE(x,y,2) = E(x,y,2) — E(v), (3.2)

where E(x, y, z) is the total electric field from the simulation in the shock-rest frame. The
motivation for this separation of the average and fluctuating fields is that the variation
of the fields and flows associated with compression through the shock transition, in
the absence of instabilities or other time variation in the shock-rest frame, is inherently
one-dimensional along the shock normal'. We denote this one-dimensional physics of
the averaged fields the steady-state shock physics, and the dynamics and energetics of
the unstable modes are the instability physics. Note that the one-dimensional steady-state
shock physics is only approximately steady state — for supercritical shocks, the structure
through the shock transition does undergo slight oscillations in time in the shock-rest frame
(sometimes denoted ‘breathing’ of the shock), oscillations which increase in amplitude as
the Mach number increases. Upon reaching or exceeding the second critical Mach number,
M, 4 =~ 15.1 (Krasnoselskikh et al. 2002; Oka et al. 2006), these oscillations lead to the
phenomenon of shock reformation, but as this simulation has a significantly lower Alfvén
Mach number than this second critical threshold, M, < M. 4, we expect no reformation
in this simulation.

It should be noted that despite our separation of the steady-state shock physics from
the instability physics using (3.1) and (3.2), these phenomena are causally related. That
is, the steady-state shock physics, which has no inherent variation in the transverse plane,
generates the unstable ion velocity distributions that give rise to the instabilities, so the
energetics of the steady-state shock physics is not decoupled from the instability physics,
but rather drives those instabilities.

The basic steps of the instability isolation method, using the electromagnetic fields in
the shock-rest frame, are:

(i) Compute the averaged electric field E®) using (3.1) and the fluctuating electric field
SE(x,y, z) using (3.2).

"Note that, in principle, an instability could lead to an unstable mode with a wavevector strictly along the normal
direction, so the variation due to that mode would be included in our determination of the averaged fields; however, if
one or both of the transverse directions are included in a shock simulation, it seems extremely unlikely that an instability
would arise with variation solely along the normal direction, so our separation of averaged and fluctuating fields is robust
as long as there is some non-zero transverse variation of the unstable modes.
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(ii) Fourier transform the fluctuating fields over the transverse plane (y, z) to obtain
SE(x, ky, k).
(iii)) Perform a wavelet transform along the shock normal direction to obtain the
wavelet-Fourier transform (WFT) SE (ky, ky, k5 x).
(iv) Use the same procedure as in (i)—(iii) above on the magnetic field to obtain the WFT
of the magnetic field, § ) (ky, ky, k.3 x).
(v) At the position x = x, along the normal direction, compute the local averaged total
magnetic field, (xp).
(vi) Generate a local magnetic field-aligned coordinate (FAC) system (e, €., ;) using
the normal direction 72 = X and  (xo).
(vii) Rotate the fluctuating WFT fields 8E(kx, ky, k;; xo) and & ) (ky, ky, k5 x0) into the
FAC system.

(viii) To estimate the frequency of an unstable (local) plane-wave mode given by
(ki1, kio, k5 xo) from the WFT transform, use Faraday’s law in the FAC coordinate
system.

(ix) Finally, compare the estimated frequency of the unstable mode from Faraday’s law to
the frequencies of the different wave modes from a linear dispersion relation solver.

3.1. Wavelet-Fourier transform

Since instabilities typically are dominated by one or a few of the most rapidly growing
unstable modes, our first task is to transform the fluctuating fields into local plane-wave
modes using a combined WFT. Since the boundary conditions in the transverse plane
(y, z) are periodic, the fluctuating electric field  E(x, y, z) and fluctuating magnetic field
8 (x,y, z) are Fourier transformed over these two directions to obtain the complex Fourier
coefficients as a function of (x, ky, k), yielding the transformed fields SE(x, k,, k;) and
5 (x, ky. k).

Next, since the steady-state shock physics leads to significant non-periodic variations in
the normal direction, we employ the wavelet transform (Torrence & Compo 1998) along
the shock normal, n = X,

SE(ky, ky, k3 x) = Wy {SE(x, ky, k)} = v/Iki f WYL [ — DBEW, ky, k), (3.3)
with the complex Morlet wavelet

. 2 k
w(ro (x) — elk.,()C e—(l/z)(xkx/cfo) 1/4 G_X’ (34)
0

where oy is a parameter that allows a trade off between resolution in position and
wavenumber (Najmi & Sadowsky 1997) and SE(x, k,, k;) is the Fourier transformed
fluctuating electric field. At higher oy, the wavenumber is better constrained at the cost of
spatial resolution. It should be noted that we normalize the result at each wavenumber in
order to maintain the relative energy of each mode, as suggested in Torrence & Compo
(1998). By combining the Fourier transform of the perturbed fields in the transverse
plane with the wavelet transform in the normal direction, we are able to determine the
approximate wavevector of unstable fluctuations locally at position x, enabling us to
explore the properties of the unstable modes as they vary in the normal direction through
the shock.
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FIGURE 5. (a) Wavelet transform of the magnetic field fluctuations, § ) , of an oblique shock
with a shock velocity of My ~ 7.88 and a shock normal of 0p, = 45° with fixed ky o = —0.52
andk; o = —1.05 (i.e. § ) (x; kx, ky,0, kz,0)) at time t = 20 ijOl . A vertical black line indicates the
position x/d; o = 39.875 at which we determine the dominant wave mode. We see larger values
for |6 : | in the ramp and overshoot of the shock. (b) Compressible magnetic field component, B,,
for reference.

The same WFT is applied to obtain the local wavevectors of the perturbed magnetic
field as a function of the position along the shock normal, § ) (ky, ky, k;; x). Figure 5 shows
that the unstable mode amplitudes peak in the shock transition region, rather than in
the upstream or downstream regions. In this figure, we plot the wavelet transform of the
dominant transverse Fourier mode (k,d;, k.d; o) = (—0.52, —1.05) at position xy/d; o =
39.875, as shown in figure 6(c). Here, |6 ) (xo = 39.875d; )| assumes a maximum
at (k.do, kyd; o, k.d; o) = (1.62, —0.52, —1.05). There exists non-zero amplitude of
|6 ) (xo = 39.875d, )| far upstream at low k,, although this may be due to the inability
of the wavelet transform to localize waves with small wavenumber. Most critically, we
note that the dominant transverse Fourier mode (k,d; o, k.d; o) = (—0.52, —1.05) matches
the observed ripple structure seen in figure 4. We will further motivate our selection of this
wave mode in § 3.2, explain how to measure frequency using WFT in § 3.3 and compare
our measured wave with dispersion relations from gyrotropic linear theory in § 3.4 to show
that we are able to isolate and identify the wave present in this simulation.

3.2. Magnetic FAC system

We construct a local magnetic FAC system at x,/d; o = 39.875, defined by the orthonormal
basis (¢, €12, €), Where

~ _(xo)

_ ) 3.5
Y G-

. (%) n T (x) X
_ _ , 3.6
“CT T Al ) A G0
. (3.7)

leir €|||
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FIGURE 6. Projections of |§ ) (ky, ky. k)| (a—c) and |6 B (k. k11, k12)| (d—f) in the shock ramp
at xo/d; o = 39.875 using hexagonal binning due to the non-uniformity of data in FACs. There
is a dominant wave mode in the FAC system with (k11d; 0, k12d; 0, kjdip) = (1.97,0.00, 0.34),
corresponding to (kd; 0, kyd; 0, kzd;0) = (1.62, —0.52, —1.05) in the simulation coordinates,
along with its conjugate mode due to the reality condition. There is little power off the k| 2 axis.
The “plus’ structure in panel (e) arises due to our projection of a grid in simulation coordinates
(x,y, z) onto our FAC system.

At xo, we measure the averaged magnetic field (xp)/By = (0.707, 0.698, 1.390), which
notably has a substantial non-zero component in the y direction.

Figure 6 shows a singular dominant WFT wave mode (with conjugate pair) around
(kd; o, kyd; o, k.d; o) = (1.61, —0.52, —1.05), which corresponds to (kyd; o,k 2d;o,
kyd; o) = (1.97,0.00, 0.34) in our FAC system. The localization of amplitude around
ki, = 0 suggests that our FAC system is a natural coordinate system for describing the
unstable mode underlying the shock ripple. Note that the transverse Fourier wavevector
of this dominant unstable mode (k,d; o, k.d;p) = (—0.52, —1.05) is consistent with the
dominant plane-wave structure seen in the total magnetic field seen in figure 4.

3.3. Frequency estimation using Faraday s law

Since the dominant wave mode in the FAC system has k,, = 0, we take the wavevector to
lie in the (e,;, ;) plane, such that k = k&, + k€. Assuming local plane-wave modes
that vary as exp(ik x — iwr), we Fourier transform Faraday’s law in time and space
to relate @ =k [E. We convert these equations into a dimensionless normalization
for the complex WFT coefficients using "= 8" /By, = w/ ;and E' = 8E/(v4By),
where By is the magnitude of the upstream magnetic field and we use a dimensionless
wavevector kd;, noting that d; = v,/ ; should be the local value of the ion inertial length
when comparing with linear wave modes. Thus, the components of Faraday’s law may be

https://doi.org/10.1017/50022377823000478 Published online by Cambridge University Press
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Ey, E, E B, B, B 038 039 o@l0)

Real 427 0.79 1.09 016 043 —-0.64 —0.97 0.69 —0.98
Imaginary —147 025 —0.31 018 041 —-1.1
Magnitude 451  0.83 .13 024 059 1.3

TaBLE 1. Dimensionless complex WFT coefficients for the fluctuating electric field E’ and
magnetic field ' for the local plane-wave mode (k) 1d; 0, k12d;.0, kyd;0) = (1.97,0.00, 0.34),
along with determinations of the real frequency w from each of (3.8), (3.9) and (3.10) normalized
to the upstream cyclotron frequency, ;.

expressed in this dimensionless normalization by

W'B' | = —kidiE',, (3.8)
W'B, = kdiE\ | — kuLdiE|, (3.9)
(D/B/H = kildiEl_z- (310)

The complex WFT coefficients for the dimensionless fluctuating electric field E" and
magnetic field ' from the simulation for the dominant wave mode are presented in
table 1. We can use (3.8), (3.9) and (3.10) to obtain three separate determinations of the
real frequency w, also presented in table 1. Note that, since the original fields E and
before the WFT transform are real, the complex WFT coefficients must satisfy the reality
conditions E (k) = E*(—k) and (k) = ) *(—k), so combining the coefficients for a given
k and its conjugate —k yields strictly real fields, and therefore we obtain a real value for w
from each equation.

3.4. Comparison with linear wave modes

To determine the linear wave mode associated with the dominant wave vector identified
through our WFT analysis at x/d;o = 39.875, we will compare the real frequency
computed from Faraday’s law with solutions for the frequency from the Vlasov—Maxwell
linear dispersion relation for that wave vector using the PLUME dispersion relation
solver (Klein & Howes 2015). To do so, we must employ the plasma conditions locally
at x/d; o = 39.875 in the frame of the plasma. Relative to the upstream values of
magnetic field, density and ion and electron temperatures, the local parameters have values
B/By =1.709, n;/ny = n,/ny = 2.045, T;/T;, = 3.510 and 7,/T,, = 1.611. Computing
the local dimensionless parameters yields g; = 2.240, T;/T, = 2.179, k;d"* = 0.2378
and k Mdi(loc) = 1.371, where the ratio of the local ion inertial length to its upstream value is
d™ /d; o = (no/n;)""* = 0.699. Similarly, the frequency from (3.9) must be converted to a
normalization relative to the local ion cyclotron frequency *”/ ;o = (B/By), yielding
a wave frequency w/ *° = 0.404.

The solutions from the PLUME solver for scans over k;d. " and k, ;d*” are presented
in figure 7. We compare these PLUME solutions with empirical dispersion relations from
Klein et al. (2012) and Howes, Klein & TenBarge (2014) for a kinetic Alfvén wave valid
in the limit kjd; < 1

i

o (kid))?
i kdi\/l T Tr 2B+ T 1D
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FIGURE 7. Comparisons between the measured frequency and wavelength of the ripple on the
surface of the shock using empirical dispersion relations (Klein e al. 2012; Howes et al. 2014)
(dotted lines), and dispersion relation for using PLUME, a Vlasov—Maxwell linear dispersion
relation solver (Klein & Howes 2015) (solid lines). Blue points are measured wavelength and
frequency of the dominant wave mode. The plotted dispersion relations are kinetic Alfvén wave
(black), fast magnetosonic wave (red, lowest frequency), first three ion Bernstein modes (red,
higher frequencies) and slow magnetosonic wave (green). Frequency is normalized to the local

ion cyclotron frequency l.(lo':) and wavelength is normalized to the local ion inertial length d}'oc).
(a) Dispersion relation as a function of k||d§l°°) at fixed deEIDC) = 1.371. (b) Dispersion relation
as a function of k1 d\° at fixed kyd*® = 0.2378.

and from the MHD dispersion relation for the fast and slow magnetosonic waves valid in
the limit kd; < 1

© _, 1+ Bi(1+T./T;) £ \/[1 + Bi(1 + T./T)P — 4Bi(1 + T./T)) (ki /k?)
=L —kd
i 2

(3.12)

where the upper (lower) sign corresponds to the fast (slow) magnetosonic wave.

In figure 7(a,b), we plot the PLUME solutions for the fast magnetosonic wave (lowest
frequency solid red curve) along with the three lowest ion Bernstein modes (the n = 1
through n = 3 modes are the successively higher frequency solid red lines). In panel (b),
the MHD fast wave dispersion relation (3.12) (dotted red) agrees well with the fast
magnetosonic wave for up to k Ldr.(]'x) =0.5 and w/ l.(]'x) = 1, at which point the fast
magnetosonic wave undergoes a mode conversion to the n = 1 ion Bernstein mode.
Note that, as kld,-(lm) increases, the fluid solution for the fast magnetosonic wave (3.12)
corresponds to the regions of increasingly higher n ion Bernstein modes where those
modes have a positive perpendicular group velocity dw/dk  , as has been found in previous
kinetic studies of the fast mode at nearly perpendicular propagation (Swanson 1989;
Stix 1992; Li & Habbal 2001; Howes 2009). We also plot the PLUME solutions for the
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FIGURE 8. Distribution of ions in the ramp (x/d; o = 39.875) of a M4 ~ 7.88 and 6p, = 45°
from a three-dimensional d ybridR simulation. The projection onto vy,v, (b) shows three distinct
populations of ions: the stream on the bottom, the population of having been reflected once in
the middle and the doubly reflected ions on top.

kinetic Alfven wave (solid black), which show good agreement with the empirical kinetic
Alfven wave solution (3.11) (dotted black), and we plot the MHD solution for the slow
magnetosonic wave (dotted green).

To identify the wave mode responsible for the rippling of the shock front, we plot on
figure 7 the wave frequency w/ i(k’c) = 0.404 calculated from (3.9) (blue point). It is clear
from this comparison that the Alfven mode agrees with our frequency computation from
the dominant unstable wave vector. We argue that this Alfvénic nature of the unstable
fluctuation identifies the instability responsible for the shock ripple as the AIC for four
reasons. First, the AIC instability launches waves on the Alfvén branch (Alfvén waves,
kinetic Alfvén waves, ion cyclotron waves) (Tajima, Mima & Dawson 1977), which we
have just shown are present in this simulation. Second, figure 8 shows that we have a
partial ring distribution, which matches the form of a perturbed distribution that was used
to derive the AIC instability in Otani (1988). Third, figure 8 also shows temperature
anisotropy 7, /T > 1 in the incoming beam (if a bi-Maxwellian distribution is fit to
the multiple populations present) that is required for the AIC instability. This result is
consistent with previous studies (Winske & Quest 1988; McKean et al. 1995; Burgess et al.
2016). Fourth, our measured temperature anisotropy, 7, /T, = 2.01, is above the marginal
stability threshold established in Hellinger et al. (2006), T /T > 1.67, for the AIC.

One should note, computing o with (3.8), (3.9) and (3.10) using measurements of E’
and ' at some fixed k will not necessarily give similar values of w. This can occur
as there may be multiple wave modes with different polarization may be superimposed.
Figure 9 shows the polarization of a kinetic Alfvén wave and kinetic fast magnetosonic
wave using the same parameters as those measured at x/d; o = 39.875 in the simulation.
For (ky;d", k.,d", kyd"*) = (1.37,0.00, 0.238), the amplitudes of E; and E,, are
very small relative to E,; for the kinetic Alfvén wave, suggesting that (3.9) will give
the best estimate of the wave frequency, while (3.8) and (3.10) are worse choices for
computing the frequency of an Alfvén wave with this wave vector. Thus, we choose
the frequency computed using (3.9), = 0.69 ,, as the frequency of the dominant wave
mode underlying the rippling of the shock surface.

We close with a brief discussion of the validity of using the Vlasov—Maxwell linear
dispersion relation, derived for spatially homogeneous plasma conditions with no bulk
plasma flow, to interpret the results of kinetic numerical simulations of a collisionless
shock in which the plasma is strongly spatially inhomogeneous with a rapid flow of
the plasma through the approximately steady-state structure of the shock transition. The
study of how kinetic instabilities arise and saturate in the presence of other dynamical
plasma processes — such as plasma turbulence, magnetic reconnection and collisionless
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FIGURE 9. Magnitude of the components of the eigenfunction response of a kinetic Alfven
wave (a,b) and kinetic fast magnetosonic wave for the electric and magnetic fields (¢,d) in a
homogeneous plasma computed using PLUME, normalized to |E | 1|, using local parameters at
x/d;o = 39.875, as discussed in § 3.4. The vertical black line corresponds to the perpendicular
wavenumber of the dominant wave mode discussed in § 3.4.

shocks — represents an important area of research at the frontier of plasma physics. For
example, a recent analysis of spacecraft measurements from the Solar Orbiter mission
(Miiller et al. 2020) argues that the complex interaction between turbulent fluctuations
and kinetic instabilities ultimately regulates the proton-scale energetics of the solar wind
(Opie et al. 2023). In the case of the collisionless shock investigated here, we identify the
wavevector of the dominant fluctuation in the shock-rest frame, and then use Faraday’s
law to calculate the frequency of the plasma response in that frame of reference. It is
important the emphasize that, in the shock-rest frame, the non-Maxwellian ion velocity
distributions shown in figure 8 are relatively steady in time, and therefore it seems
plausible that a sufficiently rapidly growing instability (with a growth rate of order the
ion cyclotron period) will be able to arise locally from the free energy in the unstable
ion velocity distribution. Even in the presence of gradients of the plasma density, plasma
temperature and magnetic field, we still expect the linear response of the plasma to give
rise to the wave-like fluctuations appropriate for the plasma parameters at that position.
An unanswered question, that is beyond the scope of this investigation, is how the
super-Alfvénic flow of the plasma through shock transition competes with the growth of a
kinetic instability, but the kinetic numerical simulation results presented here clearly show
that, for the shock parameters M, >~ 7.88 and 6, = 45°, a kinetic instability is indeed able
to give rise to shock rippling even in the presence of the bulk flow.

4. Particle energization

The field—particle correlation technique allows us to understand the energetics in the
3D-3V phase of a kinetic plasma by analysing the transfer of energy between fields and
particles (Klein & Howes 2016; Howes 2017; Howes, Klein & Li 2017; Klein, Howes &
TenBarge 2017). It has been used successfully to explore energization of particles in kinetic
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turbulence simulations (Klein et al. 2017; Howes, McCubbin & Klein 2018; Li et al. 2019;
Horvath, Howes & McCubbin 2020; Klein et al. 2020) and in situ with spacecraft (Chen,
Klein & Howes 2019; Afshari et al. 2021), as well as electron energization in simulations
of collisionless magnetic reconnection (McCubbin, Howes & TenBarge 2022), simulations
of 1D-2V (one spatial with two velocity components) perpendicular collisionless shocks
(Juno et al. 2021), and electron acceleration by Alfvén waves in laboratory plasmas
(Schroeder et al. 2021).

The rate of change of phase-space energy density of species s, wy(r, ,t) =
m,v*f,(r, ,1)/2,1in a collisionless plasma can be determined by multiplying the Vlasov
equation by m,v?/2, yielding

a A 2 a A s 2 a s

LN S O L
ot 2 0 c 2 ad
On the right-hand side of (4.1), only the middle term with the electric field leads to a net
change of energy of the particles (Klein & Howes 2016; Howes et al. 2017; Klein et al.
2017), so we define the field—particle correlation by

v? ofs(r, 1)
2 0

4.1)

Cg( ,0) = —gq; E(r, t)>, 4.2)

where the angled brackets denote that the correlation is computed using either an average
over a correlation interval in time or an integration over a volume in space. Note that
integration of the correlation over velocity space of (4.2) yields the rate of work done
on species s by the electric field, [d® Cg( ) = (j, E). Since we are interested in
determining the impact of each particular field component on the energization of particles,
we may split the equation by each directional component j

v} ofr, 1)

> 5, E;i(r, t)>, (4.3)

Cp( )= <—61

where the other contributions to v in (4.2) contribute zero net energization upon

integration over velocity space (Juno et al. 2021).

The field—particle correlation technique generates velocity-space signatures that contain
both quantitative and qualitative features used here to further understand particle
energization in collisionless shocks. The technique can be employed to probe the
interactions between the electric field and the different populations of particles, e.g. the
incoming beam of particles or the reflected particles at a supercritical shock. Previous
approaches to understanding particle energization in weakly collisional plasmas involve
either tracking individual particles in phase space (Caprioli & Spitkovsky 2014) or
reducing the fundamental ‘3D-3V’ behaviour of a kinetic plasma to the fluid quantity,
suchasj E (Gershman et al. 2017). These previous approaches have notable limitations in
developing a full understanding of the energy transport in phase space: by following either
only individual particles or velocity-space-integrated quantities, it is difficult to assess the
interactions between the fields and distinct populations of particles in velocity space. The
field—particle correlation technique is especially useful in supercritical shocks, where the
effect of the electric field on the small population reflected particles may comprise a
significant fraction of the particle energization at the shock.

To implement the field—particle correlation technique for use with simulation data from
particle-in-cell (PIC) codes, a straightforward approach would be to specify a small spatial

OCCuuCf0ul.uwCO0.C000000000000000000000 Dubliuful uulluu Ou Ouu Od0uu Ouluuwulfu Owouu



16 C.R. Brown and others

volume and bin all of the particles within that volume into velocity bins, generating a
velocity distribution function within that volume f( ). We would then be able to take the
velocity derivatives of that distribution function and correlate them with the components
of the electric field, as given by (4.3). However, in this approach, the electric field must be
averaged over the spatial integration volume, losing the spatial dependence of the electric
field within the volume. A solution to this issue is to use an alternative formulation of the
correlation at time 7y (Chen et al. 2019)

C;jl( ) = (qvjf(rv ) tO)Ej(rs [0)>7 (44)

where the electric field determined at the location of each particle and the brackets
indicate an integration over a spatial volume. For shock problems, we typically choose
a volume over a small range Ax in the direction normal to the shock and covering the full
transverse extent of the domain L,  L.. As presented in Chen et al. (2019), this alternative
correlation CjEj can then be used to compute the standard correlation Cg, through the
relation
c 0CL ()  Cp() 45
E() = 2 avj t— (4.5)
It is important that the correlation is computed this way to retain the variation of the
electric field within the integration volume. We elaborate on the full details of the
procedure of computing the field—particle correlation using data from PIC codes in
Appendix A.

To separate the contribution to the particle energization by the steady-state shock physics
from the energization due to the instability physics, we separate the transverse-plane
averaged contribution from the fluctuating contribution, as given by (3.1) and (3.2), for
both the electric field E(x,y, z) = E(x) + dE(x, y, z) and the ion velocity distribution
function f(r, ) =f(x, )+ 8f(r, ). Substituting these decompositions into (4.3), we

obtain
| var ( Cvafe )
Cg( )= [< 612 ) E( )> < Uy o, 8E,(r)>

95
+<—q2 fa(r E()> < 4~ fa(: (SE()H (4.6)
J

If the spatial average indicated by the angle brackets (also indicated by line over
variable) denotes integration over the full transverse extent of the domain in (y, z), with
periodic boundary conditions in that transverse plane, then the two middle terms on the
right-hand side of (4.6) contribute nothing since (§E;(r)) = 0 and (35f(r, )/dv;) =0 by
the definitions (3.1) and (3.2). Therefore, under the transverse-plane average, we obtain a
clean separation of the steady-state shock physics from the instability physics, defining the
steady-state shock energization through the averaged correlation, Cg,, given by

— 3
cEj<>=< 4 Ve g >> @7)

av;

7

and the instability energization through the fluctuating correlation, E‘Ej, given by

. 35
Ci ( )=< 4 fa(z SE;( )> 4.8)
J
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Furthermore, when we integrate over the full transverse extent of the domain, we may
simply use the full ion velocity distribution function f(#, ) in the derivative for both (4.7)
and (4.8), since the difference vanishes upon the spatial integration. Thus, the averaged
correlation Cg (f) captures the transfer of energy between the particles and the averaged

fields and the fluctuating correlation agj (f) captures the transfer of energy between the
particles and the fluctuating fields arising from instabilities.

4.1. Steady-state shock energization

We present our field—particle correlation analysis of the rate of ion energization due to the
steady-state shock dynamics using the averaged correlations Cg,( ) for each component

of the averaged electric field E in figure 10. The correlation is computed over an
integration volume with normal thickness Ax = 0.25d;, centred at xy/d;, = 39.875,
and area covering the full transverse extent of the domain L, L, = 12d;, 12d;,. We
separate the energization by each of the three components of the averaged electric field in
the simulation coordinates, (E,, E,, E.), and present three views of the three-dimensional
velocity space using integrations along each of the three velocity space dimensions, for a
total of nine panels. For example, the reduction along the v, dimension for the E, averaged
correlation is given by EE‘.(U,C, vy) = f deEEV(vx, vy, v,). In addition, we plot the same
three reduced views of the ion velocity distribution £;( ) in the top row, using a logarithmic
colour map to highlight the different small populations of reflected particles.

Note that the net energization by each of the three field components is most clearly
visualized along the reverse diagonal of the nine panel correlation plots, panels (f,4, j). The
dependence of the correlation (4.7) on df//dv;, combined with the fact that this derivative
must pass through zero along the v; axis, implies that the correlation with E consists of
positive and negative regions along the v; axis. Using the red—white—blue colour map, it
can be difficult to assess by eye the net rate of energization. But upon the integration over
the v; dimension — given by panels (f,4, /) on the reverse diagonal — the net energization
is easily observed. The quantitative value of the net rate of energization by the EJ over the
integration volume, ( jj,sE), is also plotted at the top of the reverse diagonal panels.

Furthermore, to assist in interpretation of the velocity-space signatures, we note that
when a bipolar signature is observed (consisting of adjacent blue and red regions), the
weighting by vj2 in the correlation means that the colour further from the origin (at
higher velocity magnitude |v;|) usually dominates. To standardize our terminology for
bipolar signatures, we will state the colour with the lower magnitude of velocity |v;| first.
Therefore, a blue—red bipolar signature generally denotes net particle energization, and a
red-blue bipolar signature typically indicates a net loss of particle energy. We can interpret
bipolar signatures as particles being accelerated/decelerated by the E; component of the
electric field from the ‘blue’ region to the ‘red’ region in a collisionless system.

The contribution from averaged cross-shock electric field E,, evaluated at xo/d; o =
39.875, to the rate of change of phase-space energy density due to the steady-state
shock energization is given by the velocity-space signatures in figure 10, panels (d—f).
Panels (d,e) show the deceleration of the incoming ion beam in the (v,, vy) and (v,, v;)
projections, with a red-blue bipolar signature indicating a net loss of energy by the
incoming beam population. This net loss of ion energy by E, is clearly shown in panel (f)
as the dark blue region at (v,, v,) 2= (0, 0). Also visible in panel (f) is the small population
of reflected ions heading back upstream (v, > 0) at v,/v,; 2 —5 that gain energy from the
cross-shock electric field, and a subsequent loss of energy by E, as those reflected particles
return downstream at v,/v; >~ —9 and 3 S v, /v,; S 7.

~
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FIGURE 10. (a—c) Total velocity distribution function of ions fi(x, ) at the transition from
the foot to the ramp of the shock at xo/d;o = 39.875. (d-I) Average energization from the
field—particle correlation Cg;(xp, ), where we integrate the three-dimensional velocity space
over the third velocity-space coordinate in each column. All quantities are computed in the
shock-rest frame and normalized to ng, the upstream particle density.

The primary mechanism of ion acceleration at quasi-perpendicular collisionless shocks
is mediated by the motional electric field, E,, with the three viewpoints of Cg, shown in
panels (g—i). In panel (g), the dominant velocity-space signature is the blue-red ‘crescent’
indicating acceleration of the reflected ion population by the motional electric field (Juno
et al. 2021, 2022), a mechanism known as shock-drift acceleration (Paschmann ef al. 1982;
Sckopke et al. 1983; Anagnostopoulos & Kaliabetsos 1994; Anagnostopoulos et al. 1998;
Ball & Melrose 2001; Anagnostopoulos, Tenentes & Vassiliadis 2009; Park er al. 2013).
The same blue—red crescent signature is visible from a different viewpoint in panel (i). The
net ion energization due to shock-drift acceleration by the motional electric field is most
easily viewed in panel (k), where the red diagonal feature is an additional velocity-space
signature of shock-drift acceleration (Juno er al. 2022) and is perpendicular local magnetic
field direction at this point x/d; o, = 39.875, where the shock transitions from the foot
to the ramp. Integration of ny over velocity space shows that the net rate of positive
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ion energization, (ijy), is dominated by the acceleration of the reflected ion population
by the averaged motional electric field. A key result of our field—particle correlation
analysis of the steady-state shock energization is the velocity-space signature of shock-drift
acceleration, shown in panels (g)—(7), together indicating the acceleration of the reflected
ion population by upstream the motional electric field for a 0, = 45° shock.

The steady-state shock energization due to the self-consistently generated E, is shown in
panels (j)—(/). In panel (k), we show the energization of three separate populations of ions:
(1) a loss of energy for the incoming ion beam at vz 2~ 0; (i1) a small population of ions that
have been reflected once in the range 2 < v,/v; < 12; and (iii) a smaller population of ions
that have been reflected a second time from the shock (and may be escaping upstream, as
discussed in Juno et al. 2022) at 12 < v./v,; < 18. The net loss of energy by the incoming
beam and net gain of energy by the two populations of reflected ions by Cy. is clearly seen
in panel (). Note, however, that the net rate of energization by E, is more than a factor of
30 smaller than that by E, and E

Using this analysis, we can analyse the energization of each population of particles
separately. With the field—particle correlation technique, we can clearly separate the net
loss of energy of the incoming ion beam from the energization of the reflected ion
population. A fluid description of particle energization providing only j; E, a quantity
integrated over velocity space, loses this clear separation of energization mechanisms
operating on distinct populations of ions in velocity space.

4.2. Instability energization

We present our field—particle correlation analysis of the rate of ion energization due to
the kinetic instabilities driven at the shock using the fluctuating correlations Cg, for each
component of the fluctuating electric field 6E; in figure 11. These results are presented
using the same format as used for the steady-state shock energization in figure 10, enabling
direct comparisons of features and amplitudes of the energization rates.

First, we note that the net rates of energization due to the three fluctuating electric field
components §E; is more than two orders of magnitude smaller than the rate of energization
by the steady-state physics of the shock transition. Second, the rate of energy transfer from
all three components of Cy, is positive, meaning that the instability-generated fluctuations
are being damped at this position, giving their energy to the particles. In the next section,
we will explore how the net rate of energization by instabilities varies as a function of the
normal distance through the shock.

The key new qualitative feature of interest in these fluctuations correlations C £, is the
appearance of a ‘tripolar’ signature, such as that arising from the fluctuating normal
component of the electric field §E, in panels (d,e). We do not observe any such tripolar
features due to the steady-state shock physics in figure 10. Such a tripolar feature is a
consequence on the non-uniformity of the electric field across the transverse domain, e.g.
shock ripple, as we explain below. This tripolar feature indicates increasing phase-space
energy at velocities flanking the average velocity of the incoming stream.

The tripolar feature in figure 10(d) can be explained by computing the correlation using
sub-regions across the transverse plane of the simulation. In the top panel of figure 12, we
plot the normal component of the fluctuating electric field §E, across the full transverse
plane (y, z) at x/d;o = 39.875. We then divide this plane up into 16 subregions of size
3d;o  3d;, (white lines) and compute the fluctuating correlation Cg, (vy, v,) in each of
these sub-regions, plotted in the lower panel. The second column of the lower panel
illustrates how the sum of each of these sub-regions combines to produce the tripolar
signature. Numbering the four elements of the second column from top to bottom, the
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FIGURE 11. (a—c) Total velocity distribution function of ions fj(x, ) at the transition from
the foot to the ramp of the shock at xo/d; o = 39.875. (d-I) Instability energization from the
fluctuating correlation EEJ. (xo0, ), where we integrate the three-dimensional velocity space over
the third velocity-space coordinate in each column. All quantities are computed in shock-rest
frame.

first and third elements have §E; > 0 and yield a blue—red bipolar (positive energization)
signature, while the second element has §E, < 0 and yields a red—blue bipolar (negative
energization) signature. The fourth element has a mixture of E; > 0 and §E, < 0 within
the sub-region, and yields a red—blue—red tripolar signature. Critically, the v, value of the
zero crossing of the bipolar signatures in the first three elements shifts slightly to right
in first and third elements and slightly to the left in the second element. (The vertical
dotted green line, at the average velocity of the incoming ion stream in the shock-rest
frame assists in visualization of this small shift.) Therefore, their sum would yield a
net positive (red) value at the lowest |v,| values, a net negative (blue) at intermediate
|v,| values and a positive (red) value at the highest |v,| values — their sum would
then be a red—blue—red tripolar signature, with a net positive rate of ion energization.
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FIGURE 12. (a) Fluctuating cross-shock electric field 6E, at xo/d; o = 39.875, plotted across
the transverse plane, with subregion boundaries indicated (white lines). (b) Fluctuating
correlation Cg, (vy, vy), generated using spatial subregions of size 3d; o 3d; in the (y,z)
plane, with the same range Ax = 0.25d; centred at xo/d; o = 39.875 as used in figures 10
and 11. The dotted green vertical line on each panel indicates the average velocity of the
incoming ion stream in the shock-rest frame.
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FIGURE 13. Comparison of energy transfer between the particles and transverse-plane averaged

fields(a) as well as between that particles and the fluctuating fields (b) and kinetic energy/thermal

energy of ions (c) near the shock transition region in the shock-rest frame. The vertical black line

indicates the position that the instability isolation method was applied in § 3. Quantities are

normalized as specified in § 2 and by ng, the upstream particle density.

Thus, the qualitative appearance of a tripolar signature indicates energization by the
fluctuating electric field (across the transverse plane) associated with an instability, and
the velocity-space-integrated rate of energization yields the net ion energization rate by
that instability.

Using our separation of the steady-state shock physics from the instability physics, we
find that the instability driving the rippling of the shock surface in the ramp accounts
for < 1 of the total ion energization. Despite this small amplitude of energy transfer,
we are able to isolate the dominant wave mode causing the shock ripple, distinguish
shock energization from instability energization using the velocity-space signatures and
quantitatively analyse the rate of energy transfer to the ions in velocity space using the
field—particle correlation technique. With these methods, we can analyse the potentially
different energization of distinct populations of particles, even for weak mechanisms.

4.3. Steady-state shock and instability energization through the shock

The profile of energization of ions throughout the shock due to the averaged fields and
the fluctuating fields is shown in figure 13, where the total rate of energization can be
computed from integrating the field—particle correlation over velocity space using

f d* Cg()=j E. (4.9)
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Thus, we can compute energization due to the steady-state shock physics and to the
instability physics separately by computing ['d®> Cg( ) and [ @ Cg( ), respectively.

The f &’ CEX (x)( ) term (top panel, red dotted) shows deceleration of the ions (loss
of energy) by the cross-shock electric field throughout the shock transition region,
44 x/d;»  38. We see net acceleration of ions (gain of energy) throughout the same
shock transition region by E in the f 4’ CE (x)( ) term (top panel, green dashed),
which accelerates the reﬂected ions through the shock-drift acceleration mechanism, as
demonstrated by our field—particle correlation analysis in figure 10(/). The work done by
the E, component of the electric field on the ions is generally negligible relative to that
due to the other components.

The relative rate of energization of the ions due to the instability-driven fluctuating fields
is small compared with the steady-state shock energization throughout the entirety of the
shock transition region, with amplitudes often much less than 10  of the steady-state
shock energization. The ion kinetic instabilities that generate the electromagnetic field
fluctuations observed in this simulation arise by tapping free energy in unstable ion
velocity distributions caused by the steady-state shock physics in the shock transition.
Therefore, the condition that the velocity-integrated total fluctuating correlation is
negative, f d® Cg( ) < 0, indicates clearly the regions where these instabilities arlse As
shown in figure 13(b), the ions drive these instabilities over the range 37 < x/d;o < 39.5,
which corresponds to the ramp and overshoot regions of the shock. These instability-driven
fluctuations appear to propagate a short distance upstream into the foot of the shock,
before they are fully damped out upon reaching x/d;o  42. Thus, at the position xy/d; o =
39.875 analysed in our field—particle correlation analysis, the unstable electromagnetic
fluctuations are being damped, leading to a small, but positive, net energization of the ions
at that position, as shown in ﬁgure 11. Unstable electromagnetic fluctuations may also
be swept downstream to x/d;o < 37 with the bulk plasma flow, appearing as turbulent
fluctuations downstream that we expect will eventually be damped and ultimately lead to
heating of the downstream plasma.

5. Conclusion

We present an in-depth analysis of the shock ripple produced by a kinetic instability in a
three-dimensional, hybrid PIC simulation of an oblique, supercritical shock. We introduce
a new approach — the instability isolation method — to separate the steady-state shock
physics from the physics of kinetic instabilities that may arise in the shock transition. An
extension of the field—particle correlation technique enables us to separate the impact of
the shock physics on ion energization from that due to the instabilities.

The instability isolation method divides the variation along the shock normal direction
due to steady-state shock physics from the variation transverse to the shock normal due to
kinetic instabilities. The electromagnetic fields are separated into the averaged fields and
the fluctuating fields. A WFT is used to identify the dominant local wave vectors arising
from the instability that lead to rippling of the shock front. We apply Faraday’s law using
this wave vector and its associated electric and magnetic field components to estimate the
real frequency of the unstable mode. Comparing this frequency with the eigenfrequencies
of the Vlasov—Maxwell linear dispersion relation demonstrates the Alfvénic nature of the
fluctuations causing the shock ripple, likely arising from the AIC instability driven by a
perpendicular ion temperature anisotropy caused by compression of the plasma through
the shock, in agreement with the findings of earlier studies (Winske & Quest 1988;
McKean et al. 1995; Burgess & Scholer 2007; Burgess et al. 2016).
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The field—particle correlation technique uses single-point measurements of the
electromagnetic fields and particle velocity distributions to obtain a velocity-space
signature characteristic of a given particle energization mechanism and to compute the rate
of energy transfer between the fields and the particles. We describe a specific procedure
for the implementation of this technique with data from PIC based kinetic simulation
codes. Further, we describe a new extension of the technique to use separately the
transverse-plane-averaged fields to compute the steady-state shock energization through
a newly defined averaged correlation (4.7) and the fluctuating fields to compute the
instability energization through a newly defined fluctuating correlation (4.8).

The results of the averaged field—particle correlation, applied to measurements at the
transition from the ramp to the foot of the shock, are presented in figure 10, with nine
panels that present the energization due to the three components of the averaged electric
field, each reduced along each of the three dimensions of velocity space. The correlation
with the averaged motional electric field Cg ( ), shown in panels (g)—(i), displays the
characteristic velocity-space signature of shock-drift acceleration of reflected ions at an
oblique shock, dominating the total ion energization in the shock foot.

Computation of the fluctuating correlation, shown in figure 11, shows that the
fluctuations causing the shock ripple — although they produce a measurable impact on
the surface of the shock as seen here in simulation and in in sifu observations (Johlander
et al. 2016, 2018) — have a negligible impact on the ion energization, with energization
rates more than two orders of magnitude smaller than the steady-state shock physics. But
the fluctuating correlation does produce a new, qualitatively distinct ‘tri-polar’ signature
of ion energization, as seen in panel (d). By decomposing the transverse plane into
sub-regions, we demonstrate that the tri-polar signature arises from variations of the
fluctuating electric field and fluctuating velocity distribution across the integration volume
used to compute the distribution. Therefore, the appearance of a tri-polar signature is
indicative of energization by the electric field arising from an instability, leading to a
qualitative means to identify particle energization by instabilities.

Integrating the averaged and fluctuating correlations over velocity space yields the net
ion energization at the spatial point of analysis. This enables us to produce a profile of the
energy transfer between the fields and the ions as a function of the normal distance through
the shock, presented in figure 13. This shows that the instability experiences net wave
growth in the ramp and overshoot regions of the shock, with a fraction of the wave energy
propagating a short distance upstream into the foot of the shock before being entirely
damped. The remaining instability-driven wave energy appears to propagate downstream
with the bulk plasma flow, generating the oft-observed turbulence in the downstream
plasma.

Here we have developed new tools to characterize more completely the energetics of
collisionless shocks in phase space and have shown their value for analysing instabilities
arising in shocks and the resulting impact of the instability-driven fluctuations on
particle energization. Our success comparing linear kinetic theory predictions to analyse
simulation results shows that the instability isolation method can be used quantitatively to
characterize the nature of instability-driven fluctuations, even for mechanisms that transfer
small amounts of energy in the system. Future work will apply this technique to shocks
with higher Mach number in which instabilities are believed to have a more significant
impact on the particle energization, in particular controlling the partitioning of upstream
kinetic energy between ions and electrons, e.g. instances of non-adiabatic electron heating
often observed in sufficiently high Mach number shocks.
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Appendix A. Field-particle correlation in PIC codes

The hybrid kinetic ion/fluid electron simulation code d ybridR (Haggerty & Caprioli
2019) represents the ion velocity distribution using the PIC method. Therefore, the ion
velocity distribution function at a given spatial position must be constructed by creating a
histogram in three-dimensional velocity space of all N particles within a finite binning
volume AV in configuration space. This procedure yields an ion velocity distribution
function with a noise level that scales as N~'/2. To minimize the noise, one may either
run a PIC simulation with a large number of particles per cell, which is computationally
costly, or choose a sufficiently large binning volume AV such that the number of particles
N within that volume is sufficiently large to yield a low level of noise. If the correlation
is computed by first binning the ions into a velocity distribution function f;(#, ) and then
combining with the electric field, the average of the electric field over the binning volume
must be used in the correlation. But for a sufficiently large binning volume needed to
obtain a low-noise velocity distribution, the volume-averaged electric field obviously does
not capture variations of the electric field within the binning volume, potentially leading
to inaccurate results.

Below is a general procedure for computing the standard field—particle correlation
Cg(r, , 1) using PIC code data with a total of N particles throughout the full simulation
domain volume V. This procedure is designed to retain the variations of the electric field
E(r, t) within the subvolume AV over which the distribution is computed.

(i) First, we divide the entire simulation domain into subvolumes AV, where each
subvolume is centred at position (x;, y;, zx) and the indices (7, j, k) indicate the spatial
position of the subvolume. The total number of particles in each subvolume is N7,
such that N =3, . N7

(ii) We create a uniform grid of velocity bins in three-dimensional velocity space with
linear velocity bin size Av. Each three-dimensional velocity bin A 4, is centred
at (Vy, Vym, V;,), Where the indices (/, m, n) indicate the velocity bin. Therefore,
the particles within a given velocity bin have a velocity with an x-component
within the range v,; — Av/2 < v, < v,; + Av/2, and equivalently for the v, and
v, components. The total number of particles in each velocity bin is Nfiﬁn, such
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that N* =35 N In practice, we construct a finite number of velocity bins,
covering from —uvy.x t0 vyax in each velocity dimension, although the value of vy«
can be changed based on the particular case of interest, e.g. higher Mach number
shocks will require a larger vy, to capture the significant features of the particle
velocity distributions.

(iii) For all of the particles « falling within a spatial subvolume r, € AV and within the
velocity bin , € A ,,, denoted by « € AVA where « is the particle index, we
compute the contribution for each particle to the work done by the pth component

of the electric field E,,, given by
C/EH,Ot = aggv,u,aEﬂ(ra). (Al)

Here, W, denotes the weight of each PIC ‘macroparticle’ «, and the electric field
is evaluated at the particle position, E(r,), computed using tri-linear interpolation
from the electromagnetic field grid.

(iv) The alternative field—particle correlation is computed at the subvolume centre 7
and velocity bin centre 4, by summing c}zwa over all N ,’{,fn paticles within the 3D-3V
phase-space volume

'/ 1 /
CEM (7 ijk s Imn) = m Z CE, a0 (A2)
aeAVA

where we must divide by the 3D-3V phase-space volume AVA . This procedure
is repeated for each velocity bin 4, to construct the full alternative field—particle
correlation at position 7y, given by Cy(rjx, ), where the correlation is known at the
discrete velocity bin centres .

(v) Finally, to obtain standard field-particle correlation Cg, (rj, ) at position ry for
electric field component E,,, we employ the velocity-space derivatives along velocity
coordinate v,, using (4.5)

v aCIE (rijk’ ) Cfg (rijks )
Cp (Fig, )= ———*~ ‘ ) A3
E,L(r]k ) D) a’UM + ) ( )

The velocity-space derivative is computed using a centred, second-order finite
difference, for example along the v, velocity dimension

/4 4 '/
dC;, (Fijes Vit Vyms V) Cp (Fiies Vxigets Uyms Vzin) — Cp, (ks Vi—15 Vyms Vzn)

oV, N Uy 141 — Uy,1—1
(A4)

For the velocity-space endpoints along each dimension at v, a first-order, finite
difference scheme is used to compute the velocity derivative.

(vi) This procedure is repeated for each component ;= x, y, z of the electric field E to
obtain the full standard field—particle correlation Cg (7, ) at position 7

Ce(rj, 1) =Y _ Cr, (ryx, ). (AS5)
yz

(vii) Note that when the correlation Cg(rj, , 1) is integrated over all velocity space, the
result is the integrated rate of change of spatial energy density by the electric field
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over the spatial subvolume AV

/d3 Ce(rjr, 1) =jru, 1) E(rg, ). (A6)

For the d ybridR simulation analysed here, the weighting for each PIC macroparticle
is simply W, =1, so that the number of macroparticles in a 3D-3V phase-space
volume AVA is simply N,’f,]:n. Since the most important spatial dimension in the study
of particle energization at shocks is the normal direction x through the shock, we
choose the spatial subvolume to construct our velocity distribution to span a normal
range Ax = d;/4 and the full transverse extent of the simulation domain Ay = L, and
Az=1L..

Appendix B. Computing the shock velocity

In the d ybridR (Haggerty & Caprioli 2019) shock simulation analysed here, the
upstream incoming flow in the —X direction impacts a reflecting wall at x = 0, generating
a shock that propagates in the +Xx direction in the simulation frame of reference, which
is the frame of reference in which the average downstream bulk plasma flow is zero (the
downstream rest frame). We choose to apply the field—particle correlation technique in
the shock-rest frame, so it is necessary to determine the velocity of the shock front in the
simulation frame. For a moderately supercritical (M, < 12) shock with 45° < 6, < 90°,
we find the hybrid simulations produce a predictable structure along the normal direction
in the average cross-shock electric field, E,(x). As illustrated by the red-dashed line in
the lower panel of figure 2, E,(x) rises from approximately zero far upstream to a local
maximum within the ramp of the shock, before crossing through zero at approximately
the same location along the normal as the peak of the magnetic field overshoot, seen in
B.(x) (blue dotted) in the upper panel. We define the position x, of this zero crossing
E.(x;) =0 to be the position of the shock for the purpose of computing the shock
propagation velocity. As illustrated in figure 14, we select a subset of snapshots in time
after the shock has formed, computing a linear fit to the position x,(f) to determine the
approximate velocity of the shock U, throughout the simulation. Our analysis returns
a shock velocity in the +Xx direction of magnitude U /v, = 1.88 +0.01, under the
assumption of residual normality. We then Lorentz transform the electromagnetic fields
and the velocity distribution functions to a new frame of reference moving at U. In the
resulting shock-rest frame of reference, the upstream plasma flow has an Alfvén Mach
number M, = 7.88.

We compare our determination of the Alfvén Mach number in the shock-rest frame,
M, = 7.88, with the value predicted by the MHD Rankine—Hugoniot jump conditions
(Burgess & Scholer 2015). The Alfvén Mach number in the shock-rest frame M, can
be related to the upstream inflow velocity in the simulation (downstream rest) frame
Uj/vs = 6 by the relation My = r(U|/va)/(r — 1), where the MHD Rankine-Hugoniot
jump conditions yield the shock compression ratio r = p,/p, = U,/U, = r(My, 0, B)
in terms of the upstream parameters My, 05 = 45°, and g = B; + B. = 2. We adjust
M, in the shock-rest frame iteratively until we find agreement, yielding a compression
ratio r = 3.62 and a Mach number M, = 8.29. Our measured value of M, = 7.88 is
approximately 5  lower than the MHD prediction, which is not unexpected for several
reasons: (i) particles that reflect at the shock and escape upstream lower the effective
incoming flow velocity; (ii) the MHD description does not capture the deviation between
ion and electron dynamics in the collisionless system; and (iii) the collisionless dynamics
can yield deviations of the effective adiabatic index from the strongly collisional MHD
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10 15 20 25 30 35 40

FIGURE 14. A timestack plot of the normal profiles of the average cross-shock electric field
E,(x) plotted every At ;o = 0.2, where the vertical displacement of each trace indicates the
time evolution. The blue points indicate the shock position x(#) at the zero crossing of E,(x). The
red line shows the linear fit used to compute the shock velocity Us, confirmation our procedure
returns an approximately constant shock velocity in the simulation frame.

value for a fully ionized, hydrogenic plasma of y = 5/3 (Caprioli et al. 2020; Haggerty &
Caprioli 2020).
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