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0. Introduction

The present work studies, from the perspective of KK-theory, the index theory of a

class of Dirac-type operators on non-compact manifolds. A Dirac operator D on a non-

compact manifold always determines a K-homology class [D], but extracting a ‘numerical

index’ (in a possibly generalized sense) often requires additional ingredients, which can
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be either boundary conditions at infinity, or appropriate devices playing the role of
compactness, relevant choices being dictated by the geometric situation at hand. In
some cases, such a device can be a suitable perturbation of D.

A standard example on R™ is the operator d + d* + ext(z) + int(x) acting on
L*(R™, AT*R™), where ext(-), int(-) denote exterior and interior multiplication respec-
tively. Its square is a harmonic oscillator so that the operator has index one. On the
KK-theoretic side, it is well-known that this operator represents the KK-product of the
Bott/dual-Dirac and the Dirac elements, which is then the identity. Extensive generaliza-
tions of this calculation (in various forms) laid the foundations of important techniques
used to prove KK-theoretic Poincaré duality results in index theory, or more broadly in
much of the work done on the Baum-Connes conjecture.

Another source of interesting examples is operators of Callias-type, introduced in [9].
The perturbation here is a suitable ‘potential’ ®, and the operator D + ® is Fredholm.
KK-product interpretations of the Fredholm index have been provided in [8], in [11] via
unbounded KK-theory with recent improvements in [10]. Loosely speaking, the potential
defines a K-theory class [®] on the manifold, and the index of D + ® arises as the KK-
product [®]&@c, (ar)[D]-

In this article, we shall focus on a class of operators that we will call deformed Dirac
operators. Their study originates partly from [27] and has been systematized by Braver-
man in [7]. These operators have found interesting applications, notably in the resolution
of a conjecture of Vergne on the quantization commutes with reduction problem [20],
and subsequent extensions of this work (e.g. [14]).

Let M be a complete Riemannian manifold equipped with an isometric action p of a
compact Lie group G, let E be a G-equivariant Clifford module bundle over M and let
D be a Dirac operator acting on sections of E. In our setting the additional geometric
data used to obtain a well-defined index is a G-equivariant map v: M — g = Lie(G)
such that the vector field v: m € M — p,(v(m)) has a compact vanishing locus;
Braverman [7] referred to such a map as a taming map. Deformed Dirac operators are
then operators of the form Dy, = D+1 fc(v), where f € C°°(M) is a function satisfying
a growth condition at infinity (see Section 2), and c(v) is Clifford multiplication. A
deformed Dirac operator has a well-defined equivariant index, similar to transversally
elliptic operators (in the sense of Atiyah [1]). We will come back to this analogy shortly.

An important technical consideration in studying Dy, lies in the calculation of the
commutator of D with the perturbation. Whereas this commutator is a bounded operator
in the two first examples, it is a differential operator of order one (in the orbit directions)
in the case of deformed Dirac operators, which makes the KK-product factorization of
their index much less straightforward.

One of the aims of this paper is to provide such a KK-product interpretation. Heuristi-
cally, the idea is rather natural, and involves viewing the perturbation as a dual-Dirac-like
element [v] in the orbit directions. This requires an ‘orbital Clifford algebra’ Clp(M) in-
troduced recently by Kasparov [17]. A simple but key observation is that the operator D
determines a class in the K-homology of the crossed product algebra G x Clp(M) (see
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the Key Lemma in Section 1); the difficulty with the commutator mentioned above then
disappears.

The rest of the paper explores some consequences by revisiting the index theorem,
excision and cobordism invariance properties obtained by Braverman in [7]. From the
perspective developed, the last two points become almost automatic and follow mostly
from functorial arguments. Braverman’s index theorem states that the analytic index of
a deformed Dirac operator is equal to the topological index of a transversally elliptic
symbol, obtained by deforming the symbol of D by the vector field v. We show how this
result can be deduced from the KK-product factorization and Kasparov’s index theo-
rem for transversally elliptic operators [17, Theorem 8.18]. This makes the relationship
between the indices of deformed Dirac operators and of transversally elliptic operators
more transparent. It is also possible, as shown in [20], to relate such an index to an
Atiyah-Patodi-Singer-type index, but this will not be discussed here.

A final note on quantization commutes with reduction in the case of a Hamiltonian G-
space with proper moment map: many obvious similarities between the analytic approach
relying on the properties of the deformed Dirac operator [27,20,14], and the topological
one based on K-theory classes of transversally elliptic symbols [22,24,23] may be spotted.
In view of our last observation, it seems plausible that both approaches become essentially
the same (up to Poincaré duality). It would be desirable to develop a synthesis of these
methods in the framework of KK-theory, hopefully offering a unifying perspective on
these works, and optimistically leading to conceptual simplifications. This is partly the
motivation of the present paper, and will be the topic of future work. Some steps in this
direction have been initiated in [25].

The contents of the paper are as follows:

e Section [ reviews some material from [17], and in particular the notion of orbital
Clifford algebra, which is used to build a transverse index class from the Dirac operator.

e Section 2 contains the main result, explaining how the equivariant index of deformed
Dirac operators can be seen in terms of a KK-product. Preparatory material on deformed
Dirac operators is included.

e Section 3 revisits the excision and cobordism invariance of the index of deformed
Dirac operators obtained in [7], from the point of view developed in Section 2.

e Section j reviews further material from [17], and derives Braverman’s index theorem.
The level of knowledge of Kasparov theory expected of the reader is somewhat higher
in this section. Although the context and the C*-algebras involved may be less familiar,
the KK-theoretic techniques deployed are fairly standard.

o Appendices. Certain arguments in the main body are streamlined if one has the
flexibility to work on non-complete manifolds, and Appendix A explains how to deal
with this case. Evident extensions of classical results stated in Section 1 have their
proofs relegated to Appendices B and C.

Notation. Throughout the article G denotes a compact Lie group with Lie algebra
g. We denote i = /—1. Our convention for Clifford algebras is c(v)? = —|v|?. The
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notation (v) := (1 + [v|?)¥/2. Given a Hermitian or Euclidean vector bundle V — M
on a Riemannian manifold and section s: M — V, we generally write |s| for the point-
wise norm of s, and ||s| for the L?*norm using the Riemannian volume form. If A is
a C*-algebra and & a Hilbert A-module, we generally write Z4(&) (resp. #a(&)) for
the compact (resp. adjointable) operators in the sense of Hilbert modules. Last but not
least, we use the notation ® for graded tensor products.

Acknowledgments. We want to address very special thanks to G. Kasparov; how much
the present article owes to his recent work (and the multiple discussions we had about it)
will be evident throughout the reading. Happy 70th Birthday Genna! We also thank N.
Higson and M. Braverman for helpful discussions. Y. Song is supported by NSF grants
DMS-1800667, 1952557.

1. Transverse K-homology class of the Dirac operator

Let (M™, g) be an even-dimensional Riemannian manifold (not necessarily complete)
equipped with an isometric action of a compact' Lie group G. Let g denote the Lie
algebra of G. Let CLff(TM) denote the Clifford algebra bundle of M, and Cl (M) =
Co(M, Cliff(TM)) the C*-algebra of continuous sections vanishing at infinity.

1.1. Orbital Clifford algebra, and a key lemma

We first review some material from the recent work of Kasparov [17]. For every m € M,
let

d
Pm: B EGH— — e meT, M,
dt|,_,

denote the infinitesimal action at the point m. We define
L = pm(9) CTnM

to be the tangent space to the orbit G-m at m. We would like to define spaces of ‘smooth’
and ‘continuous’ sections of L,ep . Since the orbits of a compact Lie group action
typically vary in dimension (the map m — dim(T',;,) is only lower semi-continuous in
general), this takes a little care.

Let p: g := M x g — T M denote the smooth bundle map induced by the maps p,,,
i.e. p is the anchor map for the action Lie algebroid gp;. By post-composition p induces a
map (also denoted p) on sections. We define the space of smooth and compactly supported
sections of T" to be

L In fact, the results and proofs of this section remain valid even if G is only a locally compact Lie group
acting properly and isometrically on M.
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C(M,T) := p(CZ(M, gnr)) € CF (M, TM).

This is a simple instance of a singular foliation in the sense of [2]: a C°(M)-submodule
of the space of smooth compactly supported vector fields which is involutive and lo-
cally finitely generated. The space of continuous sections of T'M vanishing at infinity
Co(M,TM) is the Banach space completion of C°(M,TM) with respect to the supre-
mum norm. We define the space of continuous sections of T’ vanishing at infinity Co(M,T)
to be the closure of C°(M,T") in Co(M,TM). Dropping the vanishing conditions we ob-
tain similar definitions of the space of smooth sections and the space of continuous
sections. In particular, this endows I' = U, Iy, with the structure of a continuous
field of vector spaces over M, that we call the orbital tangent field. (Recall that T' being
a continuous field of vector spaces means that it admits a set of sections ¢ that generate
I point-wise and such that m — |o,,| is a continuous function on M.)

Definition 1.1. The orbital Clifford algebra Clp(M) is the C*-subalgebra of Cl. (M) gen-
erated by Cy(M,T') and Cy(M). Clp(M) is a Cy(M)-algebra, and may equivalently be
described as the algebra of continuous sections vanishing at infinity of the continuous
field of C*-algebras Cliff(T") = L, Cliff(T,,), where the continuous field structure is
inherited from that of I'. Clp(M) contains a dense subalgebra generated by C°(M,T")
and C°(M), denoted CIF,(M).

Let E be a G-equivariant Zs-graded Hermitian Clifford module bundle over M, and
let D be a Dirac operator associated to a G-equivariant Clifford connection V on FE.
Locally, in terms of a local orthonormal frame ey, ...e,,

D= c(ei)Vei,

1

n
i—
where c(+) denotes Clifford multiplication.

Lemma 1.2. Let Y be a vector field on M and VVC denote the Levi-Civita connection

associated to the metric g. Then,

n

[c(Y),D] = —2Vy — Y c(e:)c(VECY).

=1

In particular, if Y is a smooth section of the orbital tangent field T', then [c(Y),D] is a
differential operator of order 1 in the orbit direction.

Let v: M — g be a smooth map. Introduce the differential operator %, acting on
smooth sections of E by

d m —tv(m
(Log)m) = 2| e (e ),
t=0
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Note that if f € C*°(M), then L, = f.Z,. We will use boldface v: m € M +— p,,(v(m))
to denote the vector field generated by v. The difference V,,—.%, is an operator of order 0.

Definition 1.3. The moment map for the pair (E,V) (cf. [5]) is the smooth section uf €
C>®(M, g*@End(E)) defined by the equation

<,UE7V> =V, -2,
for all v € C*° (M, g).

An element h € C*°(G) acts on p € C°(M, E) by the convolution operator

(Gnip)(m) = hx p(m) = / hg)g - olg™" - m) dg,
G

where dg denotes a left invariant Haar measure.
Key Lemma. Let v: M — g be a smooth map. For any h € C*(G) and ¢ € C°(M, E),
Zy(hx@)(m) = —(vah) * p(m),

where vE denotes the right-invariant vector field on G generated by v,, := v(m) € g,
which acts by differentiation on h. For any x € CX®(M), the operator x[c(v),D]é,
extends to a bounded operator on L*(M,E).

Proof. By definition

d
Lubrolm) = G| [ Ha)eg-plg e m) dy
t=0
G
d v -1
== h(e™"™g)g- (g~ -m)dg
t:OG
— —(h) * p(m)

where in the second line we used a change of variables.
Lemma 1.2 and Definition 1.3 show that the commutator [c(v), D] = —2.%, + B where
B is the bundle endomorphism

B=—2(ug,v)— Y _ce;)c(VETY).
i=1

Let B1, .-, Bdim(g) be a basis of g, and let v;: M — R be the components of v relative to
the basis. By the calculation above
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(hx ) E vi(h; * @)

where h; = —BJRh € C°(G). The second statement follows because the bundle endo-
morphism B and the smooth functions v; are bounded on the support of x. O

1.2. K-homology and the transverse Dirac class

If (M, g) is complete then D is essentially self-adjoint, and the standard practice is to
attach the following K-homology class to the Dirac operator:

D) = [(L3(M, E), F = D(1+ D?)"%)] € K&(Co(M)). (1)

Theorem 1.4 below shows that the same pair (L?(M, E), F) defines a class in a different
K-homology group. This observation is due to Kasparov: see Lemma 8.8 of [17] for the
case of the de Rham-Dirac operator.

The representations of G and Clp(M) on L?(M, E) by Clifford multiplication form a
covariant pair, hence L?(M, E) carries a representation of the crossed-product algebra

G X CIF(M)

Theorem 1.4. If (M, g) is complete, the pair (L*(M, E), F) determines a class in K°(G x
Clp(M)).

Proof. It suffices to verify that for every a € G x Clp(M), [F,a] is a compact operator.
That the other Fredholm module axioms hold is analogous to standard cases. We may
assume a = h ® a, with h € C*(G) and « € CI (M), since such elements are dense
in G x Clp(M). Let x € C°(M) be a bump function equal to 1 on the compact set
G - supp(a) C M. Hence a = xa and [D, a] = x[D, a]. Following [4] or [16, Lemma 4.2],
we first write I’ as a Cauchy integral:

2 o0
F:—/D(1+)\2+D2)_1d)\,
s
0

so that,
2 o0
== / + A%+ D?) 7 ((1 4+ A?*)x[D,a] + Dx[a,DID)(1 + A* + D?)"'d\.  (2)
™
0
Since D is G-invariant, [D, a] = [D, a]%},, and the latter is a bounded operator by virtue

of the Key Lemma. The operator

(1+ 2 (1 + 2 +D*)"x[D, d] (3)
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is compact by the Rellich lemma. Since ||(1+ A% + D?)7!|| is O(A~?), the norm of (3) is
uniformly bounded in A, and the product

(1+22)(1 4+ M\ +D?)"'x[D,a](1 + X2 + D?)~!
is a compact operator with norm O(A~2). For the second integrand
(14 A*+ D?)"'Dx[a, DID(1 + A* + D*)~! (4)

note that (1 + A2 + D?)~!Dy is compact by the Rellich lemma, and has norm O(A™1).
Using again the fact that [a, D] is bounded, it follows that (4) is a compact operator of
norm O(A~2). Thus both integrands in (2) are compact with norm O(\~2), hence the
integral converges in the norm topology to a compact operator. O

If M is not complete then [13, Chapter 10] explains a slightly more elaborate con-
struction that produces a class [Dys] € K&(Co(M)) from a Dirac operator. (One could
also replace the metric on M with one that is complete, and this leads to the same K-
homology class.) Using similar techniques it is not difficult to do the same in our setting,
and we outline how this is done in Appendix A. Granted this we make the following
definition.

Definition 1.5. Let M be a Riemannian manifold with an isometric action of a compact
Lie group G. Let D be a G-equivariant Dirac operator acting on sections of a Clifford
module bundle E. The Hilbert space L?(M, E) and the operator D determine a K-
homology class [Dasr] € K°(G x Clp(M)) that we refer to as the transverse Dirac class
associated to D. If M is complete, this is the class described in Theorem 1.4. For the
general case see Appendix A.

Remark 1.6. Two well-known facts about [Dys] € K&(Co(M)) are that (i) the class does
not depend on the metric, and (ii) in the complete case the operator F' can be replaced by
X(D) where x is any ‘normalizing function’, cf. [13, Chapter 10]. Similar results hold for
[Dar] € K°G x Clp(M)). Given two G-invariant complete metrics go, g1 on M, there
is a canonical isometric isomorphism (I, gg) — (I", g1) given fiberwise by the square-root
of the composite map

b :
T, 21 251, (Flat and sharp exponents denote metric contractions.)

This induces a canonical isomorphism Clr (M, gg) — Clr (M, g1) between the correspond-
ing orbital Clifford algebras, and so also between the crossed products by G. These
isomorphisms intertwine the corresponding classes in K°(G x Clp(M, g;)), and in this
sense [Dasr] is independent of the metric.
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1.8. Significance of the class [Dasr]

We discuss here briefly why the class [Dasr] € K*(G x Clp(M)) is referred to as a
transverse index class, by explaining its relationship with the more familiar class [Dy/] €
K%(CO(M )). The result stated is included for expository purposes, without proof and at
the cost of some rigor. However it suggests an interesting geometric interpretation of the
class [Das,r] in the spirit of non-commutative geometry and index theory of foliations,
and might provide some helpful insights to the reader.

Let (B1, ..., Bdim(g)) be a basis of g. Following Kasparov [17, Definition 8.3] we define
the orbital Dirac operator by

dim(g)
Dr:GxCI®(M)—»GxCIF(M) 5 Dr= Y c(p(B;)ZLs,

j=1

where CIY (M) is the smooth version of Clp (M), and £, denotes Lie differentiation for
the diagonal action of G on G x CI°(M) given by (¢9®a)(h) = g-a(g~'h). This definition
leads (after considerable work,? compare [17, Definition 8.5]) to the construction of an
element

[Dr] € KKC(Co(M), G x Clp(M)).

If all the orbits of G have the same dimension, this element is the longitudinal index class
of a family of Dirac operators over the orbit space M/G. The following theorem extends
this observation, and shows that the class [Dyr] € KK(G x Clp(M),C) previously
constructed should be interpreted as a transverse index class.

Theorem 1.7. [DM] = [DF}®GD<CIF(M)[DM,F}'

Comment on the proof. Kasparov proves this theorem in [17, Theorem 8.9] in the case
where the Clifford module is the exterior algebra bundle A*T*M&C, with D being the
de Rham-Dirac operator d +d*. The resulting class [dasr] € K°(G x Cl,gr(M)) lies in a
slightly different KK-group, but is in essence the same as the one from Theorem 1.4 (This
class is used later in Section 4). The theorem above can be proved by a straightforward
readaptation of Kasparov’s arguments, or by a direct reduction to the special case he
deals with. O

2 The receptacle of the class [Dr] given here is technically not right, and more sophisticated KK-groups
have to be used. However, it is sufficient for the purpose of exposition and motivation, especially since it
will not be used thereafter.



10 Y. Loizides et al. / Advances in Mathematics 380 (2021) 107604

1.4. Restriction to open sets

Let U be a G-invariant open set of M, let ty: Co(U) — Co(M) be the extension-
by-0 homomorphism, and ¢};: K&(Co(M)) — K&(Co(U)) the corresponding restriction
map on K-homology. A well-known property of the class [Das] € K&(Co(M)) (cf. [13,
Proposition 10.8.8]) is that

t7[Dm] = [Du]

where [Dy] € K& (Co(U)) is the class determined by the restriction D|y.

The class [Das,r] has an analogous property. We will abuse notation slightly and use
1y to also denote the extension-by-0 homomorphism Clp(U) < Clp(M), as well as the
induced *-homomorphism between the crossed products G x Clp(U) — G x Clp(M).
Thus there is a restriction map

i K%G x Clp(M)) — K°(G x CIp(U)).

Proposition 1.8. The restriction of D to U determines a class [Dyr] € K%(G x Clp(U))
and L*U[DM,F] = [DU,F]-

For a proof, see Appendix B.
1.5. Manifolds with boundary

Let M be a Riemannian G-manifold with boundary, and let M = OM be the boundary,
equipped with the restriction of the metric and of the G-action. There is a short exact
sequence of C*-algebras

0 — Co(M\ M) — Co(M) = Co(M) — 0
which induces a corresponding 6-term exact sequence in K-homology. Let
8: KHCo(M \ M)) — K°(Co(M))

be the induced boundary homomorphism.

Suppose E — M is an ungraded Clifford module bundle on the odd—dimensi%al
M\M] € KI(CO(M\
M)). Let E = E‘az@i’ equipped with Zo-grading E* the +i-eigenbundles of c(n), where
n is an inward unit normal vector to the boundary. A well-known property of the class

D cf. [13, Proposition 11.2.15]) is that

manifold M. A Dirac operator D for E‘| N\M determines a class [6

M\M] (

D7\ p/] = D]
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where [Dys] € K°(Co(M)) is the class associated to a Dirac operator acting on sections
of E.

Transverse Dirac classes have an analogous property. The definitions of I and of the
orbital Clifford algebra Clp (M ) go through for the manifold with boundary M. Moreover
the definition of I' is compatible with restriction to the boundary, in the sense that the
restriction of T' to the boundary (in the sense of continuous fields), coincides with the
orbital tangent field of the boundary. We therefore make a slight abuse of notation and
write I' for the orbital tangent fields on each of M , M \ M and M.

There is a surjective *-homomorphism CIF(M ) — Clp (M) given by restriction. Since
the boundary is G-invariant, there is an extension of C*-algebras

0— G x Clp(M \ M) = G x Clp(M) = G x Clp(M) — 0,
and a corresponding boundary map in K-homology:
9: KNG x Clp(M \ M)) — K°(G x Clp(M))

It is straight-forward to adapt the arguments in Theorem 1.4 and Appendlx A to

show that a Dirac operator D acting on sections of E\M\M yields a class [D €

K (G x Clp(M \ M)).

M\M, rl

Proposition 1.9. Let E be an (ungraded) Clifford module over the odd-dimensional man-
ifold M, and [DM\M ol € K'(G x Clp (M \ M)) the corresponding class. Let E = E|a]\7’
equipped with Zo-grading E* the =+i-eigenbundles of c(n), where n is an inward unit
normal vector to the boundary. Then

A7 ar.r) = [Darr):

For a proof, see Appendix C.
2. Deformed Dirac operator and KK-product

In this section we assume (M, g) is a complete Riemannian G-manifold (without
boundary).

2.1. Deformed Dirac operator

Let us first review some definitions introduced by Braverman [7]. A taming map is a
G-equivariant map

viM —g
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such that the induced vector field v : m € M — p,, (v(m)) has a compact vanishing locus.
It is convenient to assume that || < 1 with equality outside a compact neighborhood of
the vanishing locus (one can always achieve this after re-scaling v by a suitable smooth
positive function). Following Braverman [7], a non-negative G-invariant function f €
C>®(M)€ is said to be admissible if

. /?
lim = o0.
Mmoo |df|ar + f(IVECV A + Vg + [(0E V)| E) + 1
(In this expression, |- |ar is used to denote the point-wise norms on the vector bundles

TM ~T*M and End(T'M) induced by the Riemannian metric, | - |z denotes the point-
wise norm on the vector bundle End(F) induced by the Hermitian structure, and | - |4
denotes the norm on the Lie algebra g induced from its inner product.) One can show
[7, Lemma 2.7] that admissible functions always exist.

Definition 2.1. Let £ — M be a Clifford module bundle and let D be a Dirac operator
acting on sections of E. Let v: M — g be a taming map and let f be an admissible
function. The deformed Dirac operator is the Dirac-type operator

Dp =D +ifc(v).

Intuitively, the assumption that f be admissible ensures that the cross-terms in D?,
can be neglected. This is reminiscent of Kasparov’s technical theorem, which provides
operators playing the same role in the general construction of the KK-product. The
admissibility property also ensures nice properties of the spectrum of Dzy (cf. proof of
Lemma 2.3), which makes it possible to define an equivariant index.

Theorem 2.2 (Braverman [7]). Let Dy, be a deformed Dirac operator associated to a Zo-
graded Clifford module bundle E = E+ & E~. Then the pair (L*(M, E),Dy,) determines
a class

D] € KKo(C*(G),C),
which is independent of the choice of admissible function f. Under the identification

KKo(C*(G),C) ~ R™(G) = Z% given by the Peter-Weyl theorem, the class [Dy,]
identifies with its index

Ind(Dyp,) =Y (mf —m;)-7 € R™°(G)

7r€C:v

where mE < oo is the multiplicity of the irreducible representation © € G in ker(Dp ) N
L*(M, E?%).
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To give some idea of what is involved, we outline an argument. Let Fj, = Dy, (1 +
chu)_%. Recall that 4}, denotes the operator of convolution by h. First, for every h €
C*(G), [F,6n] = 0 by G-invariance of Fj,. It only remains to see that (1 — F7,)%}, is
compact, which comes from the following lemma:

Lemma 2.3. Let h € C*(G). Then, (1+ D?%,)~'%}, is a compact operator on L*(M, E).

Proof. (of the lemma) For G compact, the Peter-Weyl theorem states that C*(G) is an
infinite direct sum over matrix algebras End(w), 7 € G. It suffices to consider the case
where h lies in a single summand End(7) (in other words, h is a matrix coefficient for ).

Equivalently we must show that the restriction of (14 chy)_l to each isotypic component
in L?(M, E) is compact. One has

D}, =D? + f|v]* +1i (fID,c(v)] + c(df)c(v))

In terms of a local orthonormal frame ey, ..., €qim(ar) the commutator writes

D.cv)] = 2, + 3 ele))e(VED) + ().

On the m-isotypic component, one has an inequality of semi-bounded operators |.%,| <
Cr | (the latter is a multiplication operator for the function | on M) with C; a constant
just depending on the representation m. Thus on the w-isotypic component one has an
inequality of semi-bounded operators

D%, > D%+ 2 (w3, — 12 (F(Cabla + V" %lar + (62, 0)] ) + dflulvlar) ). (5)

The definition of admissible function implies that the term in the inner brackets, multi-
plied by the factor of f~2, goes to 0 at infinity. On the other hand |v|3;, = 1 outside a
compact set in M. Consequently on the w-isotypic component, there is an inequality of
semi-bounded operators of the form

D% >D*+V

where the potential function V is proper and bounded below. It is known that the
operator D? + V has discrete spectrum (cf. [18, Appendix B] for a short proof and
further references). This implies D 5, restricted to the m-isotypical component has discrete
spectrum, and hence compact resolvent. O

2.2. KK-product factorization

We now come to the main result of the article, which is a KK-product factorization
of the K-homology class [Dy] € KKo(C*(G),C).
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Given two C*-algebras A and B, we denote E(A, B) the set of (A, B) KK-cycles (or
Kasparov A, B-bimodules). Recall the following theorem, which allows to recognize when
a KK-cycle arises as a KK-product.

Theorem 2.4 (Connes-Skandalis, [26]). Let A, B,C be graded C*-algebras, with A sepa-
rable. Let

(Hy,m, 1) € E(A,B), (Ha,m, Fy) € E(B,C),

and let &, & be their respective KK-theory classes. Suppose that F € .,?C(Hl@\)BHg) 18
a C-linear bounded operator such that

(a) (H=H,®pH,,m®1,F) c E(A,C),

(b) F is an Fy-connection, i.e. for every £ € Hy, the operators (€& .)Fa—(—1)32O) F(£.)
and (ER.)*F — (=1)18@ Fy(¢® .)* are compact operators.

(c) For every a € A, a[F1<§>Bl, Fla* > 0 modulo compact operators on H.

Then, the cycle (H,m®&1,F) € E(A,C) represents the KK-product &Qp& €
KK(A,C). Moreover, the KK-product & ®p&s always admits a representative of this
form, which is unique up to (norm-continuous) homotopy.

Now, consider a deformed Dirac operator D, = D+1 fc(v), where f is an admissible
function and v is the vector field associated to the taming map v : M — g, with |v| =1
outside a compact neighborhood of the zero set of v. The latter condition means that
the vector field v determines a class

[v] = [(Clr(M),ic(v))] € KK (C, Clp(M)).
Let
7%V € KKo(C*(G), G x Clp(M))

be its image under the descent map ;¢ : KKS (C, Clp(M)) — KKo(C*(G), G x Clp(M)).
We can then form the product

7€ W@ [Dar] € KKo(C*(G), C).

Theorem 2.5. The K-homology class [Dy] € KKo(C*(G),C) of the deformed Dirac op-
erator factors as the following KK-product:

Dp] = jG[V]@)GxClr(M)[DM,F] € KKy (C*(G),C).

Proof. The first condition of the Connes-Skandalis criterion (Theorem 2.4) is Theo-
rem 2.2. It suffices to check the F-connection condition for £ = a € G x Clp(M)
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of the form a = h®a with h € C®(G), a € CI®(M). The operator denoted
(a®.): LA (M,E) = (G x Clp(M))®gxcir(v)L?(M,E) ~ L*(M,E) in the Connes-
Skandalis criterion is given by the action of a € G x Clp(M) on L?(M, E), hence we
must verify that Fj,a—(—1)4°8(aF is a compact operator on L*(M, E). Let y € C2°(M)
be a bump function equal to 1 on the compact set G - supp(a) C M. Let

B =Dya— (—1)%9aD = [D,a] +i fc(v)a.

Then B = xB and it follows from the Key Lemma that B is a bounded operator. Using
integral expressions as in the proof of Theorem 1.4, one has

Fra— (—1)dee@gp

R

/(1 £A2 4 D2) (1 4+ A2)xB — (—1)™E@ D, BD) (1 + A? + D) \d.
0

As in the proof of Theorem 1.4, the integrand is compact with operator norm O(\~2),
hence the integral converges in norm to a compact operator. The verification for (a@ O
is similar.

We now check the positivity condition. Recall that for G compact C*(G) is isomorphic
to the direct sum over 7 € G of matrix algebras End(). It suffices to consider h € C*(G)
lying in a single summand End(r). Recall €, denotes the operator of convolution by h.
Write the commutator [ic(v), Fj] via an integral formula for Fp, as in the proof of
Theorem 1.4:

Gulic(v), Fpl6, = % /(1 + A%+ D%) ! ((1 + 2 Gulic(v), Dy )6y
0

+ Dy, Grlic(v), D)€ Dfu)(1 + 224+ D2)1dN. (6)

The integral formula for Fp, is convergent in the strong operator topology. Here, we
have used the G-equivariance of c¢(v) and Dy, which implies that they commute with
%},. Consider the graded commutator

lic(v),Dp] =ile(v),D] + flv]*.

It follows from the admissibility condition on f and our assumption that || = 1 outside
a compact set that the function

F(wlP? = FHCRPI+ Vv + [ 1))

is bounded below, where C is the constant appearing in inequality (5); let —oo <b <0
be any (strictly) lower bound. It follows from the proof of Lemma 2.3 (see especially
inequality (5)) that the operator
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P =[ic(v),Ds] —b

is a positive unbounded operator when restricted to the m-isotypical component of
L?(M, E). Thus

©Gh [iC(V), ny]cg; = (ghp(g;t + bcgh(g;,

and 6, P%; is a positive operator. The contribution of P to the integrand in (6) is
a positive operator, and the corresponding integral converges in the strong operator
topology to a positive operator.

The contribution to the integral (6) of b%, %, is

oo

2%
= [a+x+03)" ((1 +N)GE + ny%h%;Df,,)u FA24D2) NN (7)

0

The two terms in the integrand are analyzed as in the proof of Theorem 1.4. For example
consider

b(1+ A*+D3%,) 'Dp %%, D (1+ A +D3,) (8)

By Lemma 2.3 the operator (1 + A? +D?%))~'D 4%}, is compact, with norm O(A™!), and
the same is true of its adjoint. Thus (8) is a compact operator with norm O(A72). It
follows that the integral (7) converges in norm to a compact operator. O

Remark 2.6. In the case when M is compact, the equivariant index of D can be obtained
by applying the collapse map M — pt to the class [D] € K2(Co(M)). In the present
non-compact situation, the result above shows that the map (j%[v]®.) plays a similar
role.

3. Applications

In this section let M be a complete Riemannian manifold equipped with an isometric
action of a compact Lie group G, and let Dy, = D+1i fc(v) be a deformed Dirac operator
associated to a (Zg-graded) Clifford module bundle £ — M.

3.1. FExcision for deformed Dirac operators

A first consequence of the KK-product factorization of Dy, is an excision result for
its index, which can be seen as a rough K-theoretic analogue of localization formulas in
equivariant cohomology.
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Recall that we assumed |v| = 1 outside a compact set. Let U C M be a G-invariant
open set such that |v| = 1 outside U, and let ¢yy: Clp(U) < Clp(M) be the extension-
by-0 homomorphism. Let vy =v|y. The pair (Clp(U),c(vy)) determines a class [vy] €
KKS(C, Clp(U)).

Proposition 3.1. (1p).[vy] = [v] € KKE(C, Clp(M)).

Proof. Under the obvious identification Clp(U)@CIF(U)CIF(M) ~ Clp(U), the ele-
ment ()« [(Clr(U), c(vv))] = [(Clr(U), c(vv))]@cip()[tw] is represented by the pair
[(Clr(U), c(vy))] € KKY(C,Clp(M)). Then, a homotopy between this cycle and the
cycle (Clp(M),c(v)) is provided by the following (C, Clp(M)®C|0, 1])-cycle (&,.%):

& = {continuous functions f: [0,1] — Clp(M) : supp(f(1)) CU}; F =ic(v).

That 1 — 2 =1 — |v|? is a compact operator on & comes from the fact that |v|? = 1
outside of U, whence the result. O

Corollary 3.2. [ny] = jG[VU]@)GxClp(U)[DU,F]-

Proof. This follows from the KK-product factorization of Theorem 2.5, Proposition 3.1,
plus associativity of the Kasparov product:

[Ds] = (i@ w))®Darr] = i o]@([tw]S[Darr])
together with the fact that [ty/]®gwcip(ar)[Das,r] = [Du,r] (Proposition 1.8). O

The corollary together with another application of Theorem 2.5 on the manifold U,
imply that the index of D, can be computed from the index of a deformed Dirac operator
on U. This operator is determined up to suitable homotopy by the condition that it
represents the KK-product j¢ [VU]@)GKCIF(U) [Du.r]. Note however that one cannot simply
restrict D, to U; one should for example complete the metric on U and also replace f|ir
with a function that is admissible for U. This result was proved by Braverman [7] using
the cobordism invariance of the index (see the next section). Here we obtain it as a
consequence of the KK-product factorization.

3.2. Cobordism invariance of the index

We will reprove the following result of Braverman [7], which leads directly to the
cobordism invariance of the index of the deformed Dirac operator.

Theorem 3.3. Let M be a Riemannian G-manifold which is the boundary of a Rieman-
nian G-manifold M. Let E be a G-equivariant (ungraded) Clifford module bundle over
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M, and let B = E|M be the induced Clifford module bundle over the boundary M with Zo-
graded subbundles E* given by the +i-eigenbundles of c(n), where n is the inward unit
normal vector to the boundary. Let D be a Dirac operator associated to E, let v: M — g
be a taming map and let v be its restriction to M. Then

7 M®axen(an[Dar] =0 € K°(C*(G)).

3.2.1. Review of cobordism invariance in the standard case

Let us first recall the Baum-Douglas Taylor proof of cobordism invariance in the
standard case (cf. [3, p.765]), i.e. we assume M (and then M) is compact, and ignore
the G-action. The key C*-algebra extension is

0 — Co(M \ M) — Co(M) L5 Co(M) — 0 (9)

where r denotes restriction to the boundary. The proof of cobordism invariance is based
on the analogue of Proposition 1.9:

9[D] = [D]

where [D] € Kl(CO(]T/.f\ M)) is the K-homology class defined by the Dirac operator D
on the odd-dimensional (open) manifold M \ M, and 0 is the boundary homomorphism
in the six term exact sequence (in K-homology) associated to (9).

Let p (resp. p) denote the homomorphism C — Co(M) (resp. C — Co(M)) obtained
from the collapsing map M — pt (resp. M — pt). Hence

rop=p = por =p" (10)
We have
p*[D] =" or* 0 9[D]

but the middle composition r* o d = 0 because it is the composition of two successive
maps in the six term sequence. O

3.2.2. Proof of Theorem 3.3
The relevant C*-algebra extension to consider in this case is

0— G x Clp(M\ M) = G x Clp(M) 5 G x Clp(M) — 0, (11)
where r is also the restriction map. The replacements for the collapsing maps p, p are

the taming maps 7, v which define elements j[7] € KKo(C*(G), G x Clp(M)), %) €
KKo(C*(GQ), G x Clp(M)) respectively. Then, we have
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i€l = i PIelr]

which is the analogue of equation (10) (we regard the *-homomorphism r as an element
[r*] € KK(G x Clp(M),G x Clp(M)) here). Thus

WD = P88 [Darr] = CFIBI]E0D 5 1,
where the second equality uses Proposition 1.9. But
[7‘*]@8[[)1\7,1“] =r*o 8[DM7F]

and 7* o0 = 0 for the same reason as before: it is the composition of two successive maps
in the six term exact sequence for (11). This completes the proof. O

4. Deformed Dirac operators and transversally elliptic operators

In this section, we provide a KK-theoretic proof of the following theorem due to
Braverman [7, Theorem 5.5] (see also [21,19]).

Theorem 4.1. Let M be a complete Riemannian G-manifold equipped with an isometric
action of a compact Lie group G, and let Dy, be a deformed Dirac operator. Then, the
equivariant index of Dy, in R™°°(G) is equal to the index (in Atiyah’s sense) of the
transversally elliptic symbol 09(&) = ic(& + v) obtained by deforming the symbol of the
Dirac operator using the vector field v.

Such transversally elliptic deformations have interesting applications; we mention for
example the work of Paradan [22] on the quantization-commutes-with-reduction theorem
in symplectic geometry.

The idea of the proof is relatively simple: we observe that with the appropriate KK-
groups, the product of [v] and of an appropriate symbol class [ops ] of D is the K-
theory class of the transversally elliptic symbol 00 defined above. The result then follows
from our KK-product factorization and a KK-theoretic Poincaré duality theorem for
transversally elliptic operators obtained by Kasparov [17, Theorem 8.18].

The first four subsections of this section might be viewed as a brief further ‘invitation’
to Kasparov’s work [17]; we do not attempt to be exhaustive, but rather describe a small
sample of the many new constructions and results contained in [17], in view of deriving
Theorem 4.1.

4.1. The transverse de Rham and Dolbeault classes

Recall that there is a canonical K-homology class [dy] € KK (CL.(M),C) associ-
ated to the de Rham-Dirac operator acting on differential forms. Denoting Cl,gr(M) =
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ClT(M)@)cO(M)Clp(M), a similar construction to 1.4 applied to the de Rham-Dirac op-
erator on L?(M,ANT*M) produces a class [dysr] € KK(G x Cl,gr(M),C) that we refer
to as the transverse de Rham class (cf. [17, Definition-Lemma 8.8]).

Definition 4.2. Let (F,c: Cliff(TM) — End(F)) be a G-equivariant Clifford module
bundle on M. We define a Hilbert Cl,(M)-module &; as follows: the underlying Banach
space is Co(M, E), the (right) Cl;(M)-module structure is determined on generators
£ € Co(M,TM) by the formula

e-&=i(=1)*c(¢)e,
and the Cl,(M)-valued inner product is given point-wise as the composition

—"/24@i
E®E — E*® E = End(E) ~ Endc)(E) @ Cff(TM) "% Cliff(T M),

where the first map uses the isomorphism F ~ E* determined by the Hermitian structure
and Endc)(F) denotes endomorphisms of E that commute with the CLff(T'M) action.

The class [Dy/] € KKG(CO (M), C) associated to the Dirac operator on E factors as a
KK-product (cf. [17, Definition 3.9, Proposition 3.10])

D] = [&]®c, (an)dar] (12)

where [&,] € ZKKY(M;Cy(M),Cl(M))? is the class represented by the cycle having
Hilbert Cl,(M)-module &; = Cy(M, E) and the zero operator. One has a similar result
for the classes [Dar,r), [dar,r]. To state it, recall that there is a product in ZKK (cf. [16,
Proposition 2.21]):

S ZKK (M; A, B) x ZKKY(M; C, D) — ZKKE (M; A®¢y(ar)C, B&cy (a1 D).

We will write 1ci.(ar) € RKKY (M; Clp (M), Clp (M) for the class represented by the
pair (Clp(M),0). The following is the natural analogue of (12), and can be checked
without difficulty, using for instance Theorem 2.4.

Proposition 4.3. There is a factorization
[Darr] = i9([E @M 1cim () @ xct,er(an[dar,r] € KK(G x Clp (M), C).

There is a well-known class [de] € ZKK(M;Co(TM),Cl(M)) implementing the
KK-equivalence between the algebras Co(TM) and Cl.(M) (cf. [17, Definition 2.5]); it

3 If A and B be Co(M)-C*-algebras, recall that the bivariant K-group ZKK% (M; A, B) is defined the
same way as KK(A, B), with the following additional requirement: if (H, F') is a KK-cycle, then for every
feCo(M),a € A be B,§ € H, one has (fa)éb = a&(fb).
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can be described explicitly via a family of Dirac operators Z,,, m € M on the family of
Hilbert spaces L*(T,, M, Cliff(T},,M)), m € M for the fibers of the bundle 7rps: TM —
M.

Definition 4.4 (/17], Definition 8.17). Let Clp(TM) := Co(T'M) ®c,(ary Clr (M) (beware
this is not exactly the orbital Clifford algebra of the G-manifold TM). The transverse
Dolbeault class is the product

—cl

[07ar.r] = i([de]@rr Lo () @ xct,er () [darr] € KK(G x Clp(TM),C).  (13)

The symbol (&) = ic((£)71€) of the bounded transform F = D(1 4 D?)~/2 of the
Dirac operator determines a class [o;] = [(Co(TM, w5, E), 0(£))] € ZKKE (M; Co(M),
Co(TM)). By [17, Proposition 3.10],

[001]®cy(rany[de] = [&:] € ZKKE (M; Co(M), Cl,(M)). (14)

In Kasparov’s terminology, the element in (14) is referred to as the Clifford symbol of D.
Proposition 4.3 and equations (13), (14) give us the formula

. -~ ~ —=cl
[Darr] = 5 ([om]@arlerr () Oawiran@rarr] € KK(G x Clp(M),C).  (15)
4.2. Transversally elliptic symbols and the symbol algebra Sr(M)

For the purpose of motivation, suppose M is a compact Riemannian manifold (we will
drop the compactness assumption shortly). Let A be a G-equivariant pseudo-differential
operator with symbol o 4 acting on sections of a G-equivariant Hermitian vector bundle
E.* The support supp(c4) of o4 is the subset of T*M ~ TM where o4 fails to be
invertible. The operator A is said to be transversally elliptic if supp(ca) N TaM is
compact, where TaM ~ T5M = ann(I') is the conormal space to the G-orbits. In this
case Atiyah proved [1] that the restriction A, (7 € @) of A to each isotypical component
is Fredholm, hence A has a well-defined ‘index’,”

index(A) = > index(A)7 € R™°(G) = Z°. (16)
'n'GC:'

Moreover, the index depends only on the class in K& (TgM) = K§ (Co(TgM)) defined
by the symbol.

However the K-theory group of the algebra Cy(T¢M) turns out to not be ideal for
the purpose of stating an index theorem. Kasparov’s replacement for Co(T M) in this
context is the following.

4 By the ‘symbol’ 04 of A, we will mean a section of 7},,End(E) in the usual Hérmander (p = 1,5 = 0)
class, defined everywhere and not required to be homogeneous, whose equivalence class modulo symbols of
lower order is the class of the principal symbol of A.

5 Atiyah proved a stronger result, that the index determines a distribution on G.
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Definition 4.5 (/17], Definition-Lemma 6.2). Let M be a Riemannian manifold (not nec-
essarily compact) with an isometric action of a compact Lie group G. The symbol algebra
GSr(M) is the norm-closure in Cy,(T'M) (the algebra of continuous bounded functions on
TM) of the set of all smooth, bounded functions b(m, &) on TM, which are compactly
supported in the m variable, and satisfy the following two conditions:

(a) The exterior derivative d,,b(m, &) in m is norm-bounded uniformly in £, and there
is an estimate |deb(m, &) < C(1 + |€])~! for a constant C which depends only on b
and not on (m,§).

(b) The restriction of b to T¢ M belongs to Co(TaM).

Given a G-equivariant Zs-graded Hermitian vector bundle F, we can similarly define a
Hilbert &p(M)-module, denoted &r(F), as the norm-closure in the space of bounded
sections of the pull-back bundle 7%, F satisfying similar conditions to those in Defini-
tion 4.5 (using the norm on the fibers of 7.,,E induced by the Hermitian structure).

We now return to our usual setting, with M a complete Riemannian G-manifold.
From now on, we refer to transversally elliptic operators (or symbols) according to the
following definition.

Definition 4.6. Let A be a properly supported, odd, self-adjoint G-invariant pseudodif-
ferential operator of order 0 acting on sections of a G-equivariant Z,-graded Hermitian
vector bundle E. We will say that A (or its symbol 04) is transversally elliptic if for
every a € Co(M), a- (1 —0%) € &p(M).

Since &r(M) C Hs () (Sr(F)) (the compact operators on &r(E) in the Hilbert
module sense), a transversally elliptic symbol determines a class

[o4] = [(Sr(E), 0.4)] € ZKK (M; Co(M), Sr(M)).
By construction there is a *-homomorphism t7, ., : &r(M) — Co(Te M), hence a map
RKKY (M; Co(M),Sp(M)) — ZKKY (M; Co(M), Co(TeM)).

In this sense the element [04] € ZKK®(M;Co(M),Sr(M)) can be viewed as a ‘refine-
ment’ of the ‘naive’ class in ZKK (M; Co(M), Co(TeM)) defined by the symbol.

4.3. The class farr

Recall the trivial bundle gy; = M x g and the anchor map p: gy — T'M describing
the vector fields generated by the G-action. We now fix a G-invariant metric (—, —)q,,
on the bundle gas such that g(p(8), p(8)) < (8, 8)gs - Using the metrics on gar, TM the
anchor p has a transpose
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p' TM — ga.

Definition 4.7. We define a smooth bundle map p: TM — TM to be the composition
T
p=pop'.

Remark 4.8. The range of ¢ is contained in I' C T'M, and ¢ is, roughly speaking, a
smooth version of fiber-wise orthogonal projection T;,M — T'),. For simplicity suppose
the metric on gy is constant. Let £, ..., 34™(8) be an orthonormal basis of g, and
Bir = p(BY), ..., j/i[m(g) = p(B4™(9)) the corresponding vector fields on M. Let X be a
vector field. Then

dim(g)

p(X) = > g(X, BB

Jj=1

If the action of G is free, then ¢(X) is, to a first approximation, the projection of X to
the orbit directions (with some re-scaling of its components). At the other extreme, in a
neighborhood of an isolated fixed point, the length |ﬁfw\ is O(r) where r is the distance
to the fixed-point, and consequently the length |p(X)| is O(r?) (the typical example
would be the vector field rdp in R?).

Having defined the map ¢, we may state another useful description of the symbol
algebra S (M), which interprets its elements as symbols having negative order in the
transverse directions:

Lemma 4.9 ([17], Definition-Lemma 6.2). Under item (a) in the definition of S (M)
above, item (b) is equivalent to the following estimate: for any € > 0 there exists a
constant c. > 0 such that

|b(m,&)| < ce~ T — + &, Vm e M,§ € T, M.

The following definition is one of the main reasons to introduce the symbol algebra

&r(M).

Definition 4.10. [17, pp.1344-1345] The element [farr] € ZKK®(M; &r(M), Clp(TM))
is the class represented by the pair (Clp(TM), fa,r) where at a point (m,§) € T,,, M, the
operator fasr(m, &) is left Clifford multiplication by —ipm (£){pm(£))~!. (Recall from
Definition 4.4 that Clp(T'M) := Co(TM) ®@cyary Clr(M). For ¢ € C*°(M,End(T'M))
see Definition 4.7.)

Note that for b € G&p(M), the estimate in Lemma 4.9 shows that the prod-
uct b(m, §)(1 — farr(m,€)?) = b(m, §){pm(€))~? belongs to Co(TM) C Clp(TM) =
K (ran (Cle(TM)). Hence the pair (Clp(T'M), far,r) does define a KK-cycle.
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Remark 4.11. The class [fp; ] should be viewed as the symbol class of the orbital Dirac
element sketched in Section 1.3. On the other hand, it implements a KK-equivalence
between S (M) and Clp(TM).

4.4. Kasparov’s index theorem for transversally elliptic operators

Let X be a compact Riemannian manifold equipped with an isometric action of the
compact Lie group G. Let A be a G-equivariant, odd, self-adjoint order-0 pseudodiffer-
ential operator acting on sections of a Zs-graded Hermitian vector bundle E. Suppose
the symbol o4 is transversally elliptic in the sense of Definition 4.6. Then

o The symbol determines a class [04] € ZKK(X;Co(X), 6r(X)).

o The pair (L*(X, E), A) determines a class [A4] € KK(G x Cy(X),C), and moreover
index(A) € R~°(G) ~ K°(C*(@)) is the push-forward of [A] under the map p: X —
pt ([15], [17, Proposition 6.4]). Indeed to demonstrate the latter point, recall C*(G) =
@, caEnd(Vx) by the Peter-Weyl theorem. The projection e, € C*(G) corresponding

to the summand End(V;) determines a K-theory class [e;] € Ko(C*(G)), and by

definition the index pairing ([ex],p«[A]) = index(erAe,) = index(A,), compatible

with (16).

Kasparov’s index theorem relates these two KK-theory classes. To state it, it is convenient
to introduce a variant of the symbol class.

Definition 4.12 (/17], Definition 8.13). Recall the element [fxr] € ZKKY(X;6r(X),
Clp(TX)) introduced in Definition 4.10. The tangent Clifford symbol class [o*'] is the
KK-product

0] = [04]®s,(x)[fx,r] € ZKK(X; Co(X), Clp(TX)).
In the sequel it will be convenient to use similar notation in a slightly broader context:
if [w] € KKY(«7, 61 (X)) (or ZKK) for some C*-algebra 7, then we will write [w*!] as
shorthand for the product [w]®e,.(x)[fx,r] € KK (<, Clp(TX)).

Kasparov provides (see the paragraph following [17, Definition 8.13]) the following
explicit cycle (rx r, STx,r) representing the class [affl]: the Hilbert module is the tensor
product

&rxr = Co(TX, 7 x E)®cyrx)Clr (TX)

and the operator Stx r is

N2 (0481) + Ny?(18fx 1) (17)
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where the weights N1, Ny =1 — Ny € Cp°(TX) take the form

(€)?
(€)% + (p2(£))*’

For later use, we note that the weights N, Ny are chosen according to Kasparov’s

N1($7§): Ng(x,f): (18)

technical theorem, and have the following important properties:

Lemma 4.13. N;/? - &p(X) C Co(TX) and Na(1 — % 1) € Co(TX).

In fact, the first inclusion holds even when X is non-compact (this will be used later).
The lemma shows that N; (%GF(X)(GF(E))@H) C %IF(TX) (6F(E)®GF(X)CIF(TX))
and Na(1 — 5 ) € Ko (rx) (Gr(E)®sp.(x)Clr(TX)), as in the general construction
of the KK-product (cf. the proof of [6, Theorem 18.4.3]). It follows from standard argu-
ments that (&rx,r, Stx,r) is indeed a cycle representing [affl]. It is not hard and rather
instructive to check this fact together with the previous lemma by hand.

With these preparations, we can finally state Kasparov’s index theorem for transver-
sally elliptic operators.

Theorem 4.14 (/17], Theorem 8.18). Let A be a transversally elliptic operator on a com-
pact Riemannian G-manifold X. Then,

[A] = jG([”f]@GxClr(TX)[ECTIX,F] € KK(G x Co(X), C).

Remark 4.15. Kasparov gives several other variants of the index theorem, but this version
is best suited to our purposes. Moreover, his theorem still applies if X and G are non-
compact, as long as G acts properly and isometrically on X. We will only need the
compact case.

4.5. Transversally elliptic symbols on open manifolds

Atiyah [1] (see also [24, Section 3]) defined a distributional index more generally for any
element s € K%(TgM ) where M is a not-necessarily compact Riemannian G-manifold.
The construction proceeds as follows. Atiyah proves [1, Lemma 3.6] that one can find a
Zy-graded Hermitian vector bundle E = Ey® Ey on M and oy € Co(TM, 75, ,End(E))
an odd, self-adjoint bundle endomorphism whose restriction to T M represents the class
a, and such that one has 02, = 1 outside 7,.;,(K) for a G-invariant compact subset K of
M. Choose a Hermitian vector bundle F' — M such that EO = Fy @ F is trivial, and fix
a trivialization. Let E1 =FE,®F and o)y = oy @idp. Via o) we obtain a trivialization
of (E1 @ F)|a\ k- Choose a relatively compact G-invariant open neighborhood U of K,
and let ¢y U — M be the inclusion; we will use the same symbol for the induced
open inclusion TgU — T M. The pair (E‘|U,5M\U) represents a class ay € K%(TgU)
and apy = (ty,m)«0u by construction. Choose a G-equivariant open embedding ¢y, x
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of U into a compact G-manifold X; again we use the same symbol for the induced
open inclusion TU — T X. Using the trivializations over U \ K, the bundle E | and
endomorphism &/|y can be extended trivially to X (denoted E x, 0x respectively) and
represent the class ax = (1y.x )« € K& (TgX). Atiyah defines

index(apr) = index(Ax) € R™°(G)

where Ax is any transversally elliptic operator on X such that the (naive) K-theory
class of its symbol is ax. Atiyah proves an excision property [1, Theorem 3.7] showing
that the index can be determined just from data on U, and hence the construction is
independent of the various choices.

We can reformulate this construction and Atiyah’s excision result in the language
of Theorem 4.14: suppose that one manages to choose o,; such that, in addition
to the conditions above, one has (1 — 0%;) € &r(M). Then o) determines a class
[oar.c) = [(Sr(E),00)] € KKE(C,&r(M)) refining the class aas. The subscript ‘¢’ is to
emphasize that this is a K-theory class whose support is compact over M, in contrast
with the symbols defining elements of the group ZKK (M;Co(M), Sp(M)) that were
considered in Section 4.2. One then obtains similar classes [5p.c] = [(Sr(E|y),d|v)] €
KK%(C,&p(U)) refining ay, [6x.] € [(Sr(Ex),ox)] € KKE(C, &1 (X)) refining ax,
and moreover

[ox.c] = (w.x)slovel,  loamel = (om)louel- (19)
Let [5%], [ofL], [0} ] be the corresponding tangential Clifford symbols obtained by
KK-product with fxr, fu,r, fa,r respectively. Functoriality of the classes f_ r under
open embeddings implies the tangential Clifford symbols satisfy analogous formulae to
(19).
Let p: X — pt be the collapse map, and [0, x] € %’KKG(X; C(X),6r(X)) the class
defined by the symbol of Ax, so that p.[oa x] = [0x.]- By Theorem 4.14,

—=cl

index(Ax) = p.[Ax] = j([0¥.])®axcirrx) [Orx r).

Equations (19), as well as the functoriality of the KK-product and of the transverse
Dolbeault class, give the equivalent formulae

—=cl

index(Ax) = j9([657))®ax i) [0ru,r] = i ([0 ) @i an Orarr]-

We thus obtain the following formula for the index in Atiyah’s sense of aj; =
Ve nilone) € KG(TaM):

. * . c oy =cl
index(ty, prlonrc]) = J “( [U}:WI,C] )@axcir(rm) O r]- (20)
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4.6. Proof of Theorem J.1 (beginning)

The discussion of Sections 4.2-4.5 applies in a more general setting where F is a Zo-
graded Hermitian vector bundle and A is a transversally elliptic operator. With the aim
of proving Theorem 4.1, we now return to the setting of interest, where v: M — gis a
taming map with induced vector field v (having a compact vanishing locus), and Dy, is a
deformed Dirac operator acting on sections of a Cliff(T'M )-module (E,c: Cliff(TM) —
End(E)).

Using the vector field v, define the deformed symbol

op(&) =ic((&) ¢ +v), £e€TM~T"M.

Since v is a section of I, the support supp(c%) NTgM = {(x,0) € TM : v(z) =0}. By
assumption the vanishing locus of v is compact, hence the pair (Co(TaM, 77, 5 E), a9)
represents an element a,, = [09] € K& (Tg M), and so has a distributional index. Our goal
is to prove Theorem 4.1, which states that index(Dj,) = index(cy,); we will deduce this
result as a consequence of the KK-product factorization (Theorem 2.5) and Kasparov’s
index Theorem 4.14.

As a first step, let us re-write the right-hand-side of Theorem 4.1 in the language
of Section 4.5. Recall that we assumed |v| < 1, with equality outside a G-invariant
relatively compact open set U C M. Define

o, (§) =ic((1— v e+ ). (21)

Note that on the open subset of M where |v| = 1, 0,(§) simplifies to the invertible
bundle endomorphism ic(v) (not depending on the fiber variable £). It follows that
supp(c)NTgM = supp(o,)NTeM, and the two symbols are homotopic, the formula for
the homotopy being given by the same formula as (21) except with (1 — |v|?)!/? replaced
with (1—|v|?)Y/2t+(1—t), where t € [0, 1]. Thus the symbols ,,, 2 define the same class
o, € K&(TeM). Since (1—|v|?) has compact support, one has (1—02) € &p(M). By the
discussion in Section 4.5, the pair (S6p(E), 0, represents a class [0,,..] € KK (C, & (M))
that refines a,, € K& (TgM). By equation (20),

. . el 2 —=cl
index(a, ) = JG([Ui,l])(gGKCIF(TM) [8TM,F]' (22)

The next subsection explains how to factor out [v] € KK (C, Clp(M)) in the equation
above.

4.7. The symbol class of the transverse Dirac element

Recall that the same operator D defines K-homology classes in two different groups,
[Das] € K&(Co(M)), [Darr] € K%G x Clp(M)) (Theorem 1.4). The order-0 symbol
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a(€) = ic({€)71€) (the symbol of F = D(1 + D?)~1/2) determines an element [oy;] =
[(Co(TM, 7%y, E),0)] € ZKKE (M;Co(M),Co(TM)). On the other hand the analogue
of [Das.r] at the level of symbols is the class [0, 1] € ZKKY (M; Clp (M), Sp(M)) defined
by the pair (Sr(E), o). Recall that the Hilbert &p(M)-module &p(F) was defined in
Definition 4.5 for an arbitrary G-equivariant Z,-graded Hermitian vector bundle E. In
our setting E is also a (left) Cliff(7'M)-module bundle, and with this additional structure
Gr(E) also becomes a (left) Clp(M)-module.

Lemma 4.16. The pair (&r(E),0) represents a class [opr] € ZKKE(M;Clp(M),
Sr(M)).

Proof. The only property that needs to be checked is that graded commutators [c(a), o],
for a € Clp(M), lie in A (ar)(Sr(£)). It suffices to consider a € C°(M,T'). Then

[ic(a), o(€)] = 2g(a, €)(€) ™" (23)

Since a is a section of I', this vanishes identically for £ € T M, so a fortiori its restriction
to T M lies in Co (T M). Tts differential in the ¢-direction satisfies the required estimate,
so (23) is an element of & (M) C A, (m)(6r(E)). O

The next lemma provides a symbol analogue of the factorization [Dp] =
F¢(V))®ewcir(ar) [Da,r] from Theorem 2.5. Recall that the class [0,c] € KKY(C,&p(M))
was defined in Section 4.6 (just before equation (22)).

Lemma 4.17. [0,.c] = [V|®ci.(ar)loa,r] € KKE(C,8r(M)).

Proof. Equation (21) defining o, is a classical KK-product formula of Kasparov (cf. [6,
Proposition 18.10.1]), applied to the classes [v] and [oar,r]. O

Applying the lemma to equation (22) we obtain
. Criaa d A el
index(av,) = 5% (V@i (an) (055 1)) @cw cir(ran) [3;M,r]~ (24)
4.8. End of the proof of Theorem /.1

By Theorem 2.5 and equation (15), one has

—cl

[Dfu] = jG ([V@Clr(M) ([UM@Mlclr(M))) ®G><CIF(TM) [8TM,1"}'

Comparing this to equation (24), we see that the proof of Theorem 4.1 is completed by
the following result, which is the symbol analogue of Theorem 1.7.

Proposition 4.18. [04/]& ¢, Lleie () = (045 1] € KKE(Clp (M), Clp(TM)).
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Proof. Note that

H = Gr(E)Bep ) Clr(TM) =~ Co(TM, 750 E)&cy (rar) Clr (T M)
~ Co(TM, 750 E)®c,(a)Clr (M)

as Hilbert Clp(T'M) = Co(TM)®cy(ar)Clr (M )-modules; thus the KK-elements on the

left and right hand sides are naturally represented on the same Clp(T'M)-module 7.

The representations of Clp(M) differ however; we denote the representation for [U}\(},F]

(vesp. [om]®c,(an Ll (i) by mo (resp. m1), where for a € Clp(M),
mo0(a) = c(a)®1, m1(a) = 1®a
(here 1®a denotes the operator e®f — (—1)dea(e)deel@) e f).

The operator representing [UM]®M101F(M) is o(m, &)®1 = ic((¢)~1¢)®1. The opera-
tor representing the product

[o37.0] = [oar,r]@ e (an [Far,r] € KK (Clr (M), Clr (TM)),
can be taken to be the same as that in (17), namely
So = N2 (0®1) + N3 > (18 r)

where the weights Ny = 1 — Ny € Cy(TM) are as in equation (18); indeed the only
additional condition that needs to be checked is the compactness of the commuta-
tors [mo(a), So|, and this follows from the observation that for a € Cy(M,TI") one has
g(a, (£)71¢) € &r (M), together with Lemma 4.13.

We perform a ‘rotation’ homotopy simultaneously on the operator Sy and represen-
tation mo. For ¢ € [0,1] let

mi(a) = cos(Zt)c(a)®1 + sin(Zt)18a, Sy = N2 (0®1) + Ny *farra,

where

Farre(m, €) = sin(5)ic({pm(€)) ™ om(€))B1 — cos(5)18i (pm (€)™ om (€).

It is clear that mg, 71, Sp coincide with the previous definitions. Let us check that this is
a homotopy of Kasparov cycles. The commutator condition for the representation follows
because [m(a), far,r,e] = 0 for all a € Clp(M) and t € [0,1]. For f € Cy(M), the function
f(1 — S?) is the same as f(1 — S?) except for an additional cross-term

—2sin(5HN} 2 (m, €) - Ny 2 (m, &) - f(m) - (5, 225). (25)
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The product f(m) - g({€) 71, (om(€)) "Lom(§)) € Sp(M). Since Ny < 1, Lemma 4.13
implies that (25) lies in Co(T'M ). From this it follows that m(a)(1—S7) € o (ran) ()
for all a € Clp(M).

After the homotopy, the representations of Clp(M) on 4 for the two cycles agree,
and we are left with the operator

Si= N2 (081) + Ny farras farra(m,€) = ic((m()) " om(€)B1.

Note that the graded commutator [0@1, far,r,1) is the function

2
Toa@9(& em(8)
and g(&, om(£)) = g(&, pmp,,(€)) > 0. It follows that the operator
[U(/X\)l, Sl]

is positive (and a fortiori positive modulo compacts). By a well-known criterion of
Connes-Skandalis (cf. [6, Proposition 17.2.7]), the cycles (J#,m1,S1), (€, 71,0®1) are
operator homotopic. O

Appendix A. The case of non-complete manifolds

This appendix follows up Section 1, and uses the same notation. Recall that on non-
complete manifolds, the main issue comes from the possible non-self-adjointness of the
Dirac operator, so that K-homology classes have to be constructed with slightly more
care. Adapting the techniques given in [12] or [13, Chapter 10], we generalize the con-
struction of the class [Dyr] € K°(G x Clp(M)) to the case where M is not complete.
Throughout this section ~ stands for equality modulo compact operators.

Let x : R — [—1,1] be a ‘normalizing function’, i.e. a continuous odd function which
is positive on (0,00) and tends to 1 at oo, and let H = L?(M,E). Cover M with
relatively compact G-invariant open sets U; and let fj2 be a G-invariant partition of
unity subordinate to the cover. Let D; be a G-equivariant essentially self-adjoint operator
agreeing with D on U; (for example, compress D between suitable G-invariant bump
functions with support contained in a compact neighborhood of U;). Let

F=Y"fx(D))f;
J
which converges in the strong operator topology to a bounded self-adjoint operator.

Lemma A.1 (/13] Lemma 10.8.3). Let D1, Da be essentially self-adjoint first order differ-
ential operators on M which restrict to the same elliptic operator on some open subset
UcCM. Let g € Co(U). Then x(D1)g ~ x(D2)g.
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Now, let a = h®a € G x Clp(M) where h € C*°(G) and « € CIF.(M). Choose a
G-invariant compactly supported cut-off function f equal to 1 on the support of a;, and
let Dy be an essentially self-adjoint operator that agrees with D in a neighborhood of
the support of f. Then, the lemma above (combined with the G-invariance of f) shows
that

[F,a] ~ [x(Dy),a];  a(F? —1) ~ a(x(Dy)* = 1).

Following the proof of Theorem 1.4 in the complete case, the operators on the right hand
sides are compact, so that (H, F) is a Fredholm module.

Moreover, if F’ is an operator constructed the same way as F but from a different
partition of unity, Lemma A.1 shows for every a € G x Clp(U),

a(FF' + F'F)a* ~ 2ax(Df)?*a* > 0 modulo compact operators

(f being a function depending on a as above), which is a well-known sufficient condition
for F to be norm-continuously homotopic to F' (see [26]). Therefore, the K-homology
class [(H, F)] € K°(G x Clp(M)) does not depend on the choice of the partition of unity
(and the cover). Finally, if M is complete, a similar calculation shows that [(H, F)] =
[(H,x(D))] in K% G x Clp(M)).

Appendix B. Proof of Proposition 1.8

The proof is standard and follows closely [13, Proposition 10.8.8]. We include it for
the convenience of the reader. Let U be a G-invariant open set of M, and ¢f;: K*(G x
Clp(M)) — K°(G x Clp(U)) be the associated extension-by-0 homomorphism. Recall we
want to prove that ¢;[Dasr] = [Du,r].

1

Proof. Let (H,F) := (L?*(M,E),F = D(1 + D?)2) be the Fredholm module of The-
orem 1.4, and let P denote the orthogonal projection H — Hy = L*(U, E) (given by
multiplication by the characteristic function of the subset U). Then

PFP: Hy — Hy

is a bounded operator, and (Hy, PFP) is a Fredholm module over G x Clp(U) (to see
this, note that P commutes with G x Clp(U), and P|g, = 1).

Let @ be the orthogonal projection to L*(M \ U, E|yn\v), i.e. @ =1 — P. In terms of
the decomposition H = PH @& QH, the operator F' becomes the 2 x 2 matrix:

»_ (PFP PFQ
- \QFP QFQ )"

Notice that for a € G x Clp(U), aQ = 0. Moreover (recall ~ stands for equality up to
compact operators)
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aPFQ = PaFQ ~ PFa@Q = 0.

Consequently

uF ~ aPFP 0 '
0 0
This shows that the restriction of the G x Clp(M)-Fredholm module (H, F) to a G x
Clp(U)-Fredholm module equals (Hy, PFP) up to a locally compact perturbation (the

entries QF P, PFQ and QF(Q in the matrix for F') and a degenerate module (namely
(QH,0)). Thus

wl(H, F)] = [(Hy, PFP)].
It remains to check that the cycle (Hy, PFP) for K°(G x Clp(U)) is operator homotopic
to (Hy, Fy) where Fyy = 3 f;x(D;) f; is the operator constructed in Appendix A. Let
a=h®a, h€ C®(G), ac CIF.(U). Fix j and consider

a*(PEPfix(D;)f; + fix(D;)f; PFP)a (26)

as an operator on Hy. Note that Pa = a since « has support contained in the G-invariant
set U. Thus

PFPf;x(D;)fja ~ PFPaf;jx(D;)f; = PFaf;jx(D;)f; ~ PFf;jx(D;)f;a.

Applying similar arguments to the other factors of P in (26), it follows that, modulo
compact operators, the operator in (26) is

a*(Ffix(D;)f; + fix(D;) f;F)a
and the latter is positive modulo compact operators, by the results of Appendix A applied
to the operator F' on M. We obtain that the operator in (26) is positive modulo compact
operators. Since af; vanishes for all but finitely many j, we conclude that
a*(PFPFy + FyPFP)a >0 mod J# (Hy).
This proves (Hy, PF P) is homotopic to the cycle (Hy, Fyy) from Appendix A. O

Appendix C. Proof of Proposition 1.9

Again, the proof is standard and follows closely [13, Proposition 11.2.15] or [3]. It is
included for the convenience of the reader.
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Recall the context: M = dM is the boundary of a Riemannian G-manifold M , and
let W = M ~. M. Consider the C*-algebra extension:

0—>GxClp(W) = GxClp(M) - Gx Clp(M) — 0,

and the corresponding boundary map 0 in K-homology. Let E — M be an ungraded
Clifford module bundle, D a Dirac operator acting on sections of E, and [5W,p] € K1(Gx
Clp(W)) the corresponding K-homology class. The restriction to the boundary E =
E| a7 becomes a Zs-graded Cliff(TM )-module bundle with the graded subbundles E*
being the +i-eigenbundles of c(n), where n is the inward unit normal vector to the
boundary. Let D be a Dirac operator acting on sections of E and [Dyr] € K°(G x

Clp(M)) the corresponding K-homology class. We want to show that d[Dw.r| = [Dasr].

Proof. Let € > 0 such that (0,e) x M C W be a collar neighborhood of M for which G
acts trivially on the (0,¢) part. We then have the following morphisms of extensions

0 —— GxClp(W) —————————— G x Clp(M) —————— G x Clp(M) —— 0

Textension—by—o Textension—by—o

0 —— G x Clp((0,€) x M) ———— G x CIp([0,&) x M) —— G x Clp(M) — 0

j :

0 — Co(0,¢) ® (G x Clp(M)) —— C5[0,€) ® (G x Clp(M)) — G x Clp(M) —— 0

Notice that the bottom extension is simply the cone extension, so that the associated
boundary map is the suspension isomorphism

5 : K*T(Co(0,6)®(G x Clp(M))) — K*(G x Clp(M)).

Since the class [[~)W’p] does not depend on the choice of the metric, we can equip (0,g) x M
with the product metric. This way, the class [Dw.r] € K*(G x Clp(W)) identifies over
the collar neighborhood with the exterior KK-product [D(Ovs)]GAi)[DM,F], where Do) is
the Dirac operator on (0,¢) and [D(g¢)] € K'(Cy(0,¢)). But the map [D(g,)]® . is inverse
to the suspension isomorphism, so that

5([D(0,¢))®[Dar,r]) = [Dasr]

The conclusion then follows from the naturality of the boundary map. 0O
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