
Advances in Mathematics 380 (2021) 107604

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A KK-theoretic perspective on deformed Dirac 

operators
Yiannis Loizides ∗, Rudy Rodsphon ∗, Yanli Song ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2020
Received in revised form 10 August 
2020
Accepted 9 January 2021
Available online 25 January 2021
Communicated by Dan Voiculescu

Dedicated to Gennadi Kasparov for 
his 70th birthday

Keywords:
K-theory
KK-theory
Index theory
Analytic localization

We study the index theory of a class of perturbed Dirac 
operators on non-compact manifolds of the form D + i c(X), 
where c(X) is a Clifford multiplication operator by an orbital 
vector field with respect to the action of a compact Lie 
group. Our main result is that the index class of such 
an operator factors as a KK-product of certain KK-theory 
classes defined by D and X. As a corollary we obtain the 
excision and cobordism-invariance properties first established 
by Braverman. An index theorem of Braverman relates the 
index of D + i c(X) to the index of a transversally elliptic 
operator. We explain how to deduce this theorem using a 
recent index theorem for transversally elliptic operators due 
to Kasparov.
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0. Introduction

The present work studies, from the perspective of KK-theory, the index theory of a 
class of Dirac-type operators on non-compact manifolds. A Dirac operator D on a non-
compact manifold always determines a K-homology class [D], but extracting a ‘numerical 
index’ (in a possibly generalized sense) often requires additional ingredients, which can 
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be either boundary conditions at infinity, or appropriate devices playing the role of 
compactness, relevant choices being dictated by the geometric situation at hand. In 
some cases, such a device can be a suitable perturbation of D.

A standard example on Rn is the operator d + d∗ + ext(x) + int(x) acting on 
L2(Rn, ∧T ∗Rn), where ext(·), int(·) denote exterior and interior multiplication respec-
tively. Its square is a harmonic oscillator so that the operator has index one. On the 
KK-theoretic side, it is well-known that this operator represents the KK-product of the 
Bott/dual-Dirac and the Dirac elements, which is then the identity. Extensive generaliza-
tions of this calculation (in various forms) laid the foundations of important techniques 
used to prove KK-theoretic Poincaré duality results in index theory, or more broadly in 
much of the work done on the Baum-Connes conjecture.

Another source of interesting examples is operators of Callias-type, introduced in [9]. 
The perturbation here is a suitable ‘potential’ Φ, and the operator D + Φ is Fredholm. 
KK-product interpretations of the Fredholm index have been provided in [8], in [11] via 
unbounded KK-theory with recent improvements in [10]. Loosely speaking, the potential 
defines a K-theory class [Φ] on the manifold, and the index of D + Φ arises as the KK-
product [Φ]⊗̂C0(M)[D].

In this article, we shall focus on a class of operators that we will call deformed Dirac 
operators. Their study originates partly from [27] and has been systematized by Braver-
man in [7]. These operators have found interesting applications, notably in the resolution 
of a conjecture of Vergne on the quantization commutes with reduction problem [20], 
and subsequent extensions of this work (e.g. [14]).

Let M be a complete Riemannian manifold equipped with an isometric action ρ of a 
compact Lie group G, let E be a G-equivariant Clifford module bundle over M and let 
D be a Dirac operator acting on sections of E. In our setting the additional geometric 
data used to obtain a well-defined index is a G-equivariant map ν : M → g = Lie(G)
such that the vector field ν : m ∈ M %→ ρm(ν(m)) has a compact vanishing locus; 
Braverman [7] referred to such a map as a taming map. Deformed Dirac operators are 
then operators of the form Dfν = D + i fc(ν), where f ∈ C∞(M) is a function satisfying 
a growth condition at infinity (see Section 2), and c(ν) is Clifford multiplication. A 
deformed Dirac operator has a well-defined equivariant index, similar to transversally 
elliptic operators (in the sense of Atiyah [1]). We will come back to this analogy shortly.

An important technical consideration in studying Dfν lies in the calculation of the 
commutator of D with the perturbation. Whereas this commutator is a bounded operator 
in the two first examples, it is a differential operator of order one (in the orbit directions) 
in the case of deformed Dirac operators, which makes the KK-product factorization of 
their index much less straightforward.

One of the aims of this paper is to provide such a KK-product interpretation. Heuristi-
cally, the idea is rather natural, and involves viewing the perturbation as a dual-Dirac-like 
element [ν] in the orbit directions. This requires an ‘orbital Clifford algebra’ ClΓ(M) in-
troduced recently by Kasparov [17]. A simple but key observation is that the operator D
determines a class in the K-homology of the crossed product algebra G ! ClΓ(M) (see 
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the Key Lemma in Section 1); the difficulty with the commutator mentioned above then 
disappears.

The rest of the paper explores some consequences by revisiting the index theorem, 
excision and cobordism invariance properties obtained by Braverman in [7]. From the 
perspective developed, the last two points become almost automatic and follow mostly 
from functorial arguments. Braverman’s index theorem states that the analytic index of 
a deformed Dirac operator is equal to the topological index of a transversally elliptic 
symbol, obtained by deforming the symbol of D by the vector field ν. We show how this 
result can be deduced from the KK-product factorization and Kasparov’s index theo-
rem for transversally elliptic operators [17, Theorem 8.18]. This makes the relationship 
between the indices of deformed Dirac operators and of transversally elliptic operators 
more transparent. It is also possible, as shown in [20], to relate such an index to an 
Atiyah-Patodi-Singer-type index, but this will not be discussed here.

A final note on quantization commutes with reduction in the case of a Hamiltonian G-
space with proper moment map: many obvious similarities between the analytic approach 
relying on the properties of the deformed Dirac operator [27,20,14], and the topological 
one based on K-theory classes of transversally elliptic symbols [22,24,23] may be spotted. 
In view of our last observation, it seems plausible that both approaches become essentially 
the same (up to Poincaré duality). It would be desirable to develop a synthesis of these 
methods in the framework of KK-theory, hopefully offering a unifying perspective on 
these works, and optimistically leading to conceptual simplifications. This is partly the 
motivation of the present paper, and will be the topic of future work. Some steps in this 
direction have been initiated in [25].

The contents of the paper are as follows:
• Section 1 reviews some material from [17], and in particular the notion of orbital 

Clifford algebra, which is used to build a transverse index class from the Dirac operator.
• Section 2 contains the main result, explaining how the equivariant index of deformed 

Dirac operators can be seen in terms of a KK-product. Preparatory material on deformed 
Dirac operators is included.

• Section 3 revisits the excision and cobordism invariance of the index of deformed 
Dirac operators obtained in [7], from the point of view developed in Section 2.

• Section 4 reviews further material from [17], and derives Braverman’s index theorem. 
The level of knowledge of Kasparov theory expected of the reader is somewhat higher 
in this section. Although the context and the C∗-algebras involved may be less familiar, 
the KK-theoretic techniques deployed are fairly standard.

• Appendices. Certain arguments in the main body are streamlined if one has the 
flexibility to work on non-complete manifolds, and Appendix A explains how to deal 
with this case. Evident extensions of classical results stated in Section 1 have their 
proofs relegated to Appendices B and C.

Notation. Throughout the article G denotes a compact Lie group with Lie algebra 
g. We denote i =

√
−1. Our convention for Clifford algebras is c(v)2 = −|v|2. The 
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notation 〈v〉 := (1 + |v|2)1/2. Given a Hermitian or Euclidean vector bundle V → M

on a Riemannian manifold and section s : M → V , we generally write |s| for the point-
wise norm of s, and ‖s‖ for the L2-norm using the Riemannian volume form. If A is 
a C∗-algebra and E a Hilbert A-module, we generally write KA(E ) (resp. BA(E )) for 
the compact (resp. adjointable) operators in the sense of Hilbert modules. Last but not 
least, we use the notation ⊗̂ for graded tensor products.

Acknowledgments. We want to address very special thanks to G. Kasparov; how much 
the present article owes to his recent work (and the multiple discussions we had about it) 
will be evident throughout the reading. Happy 70th Birthday Genna! We also thank N. 
Higson and M. Braverman for helpful discussions. Y. Song is supported by NSF grants 
DMS-1800667, 1952557.

1. Transverse K-homology class of the Dirac operator

Let (Mn, g) be an even-dimensional Riemannian manifold (not necessarily complete) 
equipped with an isometric action of a compact1 Lie group G. Let g denote the Lie 
algebra of G. Let Cliff(TM) denote the Clifford algebra bundle of M , and Clτ (M) =
C0(M, Cliff(TM)) the C∗-algebra of continuous sections vanishing at infinity.

1.1. Orbital Clifford algebra, and a key lemma

We first review some material from the recent work of Kasparov [17]. For every m ∈ M , 
let

ρm : β ∈ g %−→ d

dt

∣∣∣∣
t=0

e−tβ ·m ∈ TmM,

denote the infinitesimal action at the point m. We define

Γm = ρm(g) ⊂ TmM

to be the tangent space to the orbit G ·m at m. We would like to define spaces of ‘smooth’ 
and ‘continuous’ sections of ,m∈MΓm. Since the orbits of a compact Lie group action 
typically vary in dimension (the map m %→ dim(Γm) is only lower semi-continuous in 
general), this takes a little care.

Let ρ : gM := M × g → TM denote the smooth bundle map induced by the maps ρm, 
i.e. ρ is the anchor map for the action Lie algebroid gM . By post-composition ρ induces a 
map (also denoted ρ) on sections. We define the space of smooth and compactly supported 
sections of Γ to be

1 In fact, the results and proofs of this section remain valid even if G is only a locally compact Lie group 
acting properly and isometrically on M .
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C∞
c (M,Γ) := ρ(C∞

c (M, gM )) ⊂ C∞
c (M,TM).

This is a simple instance of a singular foliation in the sense of [2]: a C∞
c (M)-submodule 

of the space of smooth compactly supported vector fields which is involutive and lo-
cally finitely generated. The space of continuous sections of TM vanishing at infinity 
C0(M, TM) is the Banach space completion of C∞

c (M, TM) with respect to the supre-
mum norm. We define the space of continuous sections of Γ vanishing at infinity C0(M, Γ)
to be the closure of C∞

c (M, Γ) in C0(M, TM). Dropping the vanishing conditions we ob-
tain similar definitions of the space of smooth sections and the space of continuous 
sections. In particular, this endows Γ = ,m∈MΓm with the structure of a continuous 
field of vector spaces over M , that we call the orbital tangent field. (Recall that Γ being 
a continuous field of vector spaces means that it admits a set of sections σ that generate 
Γ point-wise and such that m %→ |σm| is a continuous function on M .)

Definition 1.1. The orbital Clifford algebra ClΓ(M) is the C∗-subalgebra of Clτ (M) gen-
erated by C0(M, Γ) and C0(M). ClΓ(M) is a C0(M)-algebra, and may equivalently be 
described as the algebra of continuous sections vanishing at infinity of the continuous 
field of C∗-algebras Cliff(Γ) = ,m∈MCliff(Γm), where the continuous field structure is 
inherited from that of Γ. ClΓ(M) contains a dense subalgebra generated by C∞

c (M, Γ)
and C∞

c (M), denoted Cl∞Γ,c(M).

Let E be a G-equivariant Z2-graded Hermitian Clifford module bundle over M , and 
let D be a Dirac operator associated to a G-equivariant Clifford connection ∇ on E. 
Locally, in terms of a local orthonormal frame e1, . . . en,

D =
n∑

i=1
c(ei)∇ei ,

where c(·) denotes Clifford multiplication.

Lemma 1.2. Let Y be a vector field on M and ∇LC denote the Levi-Civita connection 
associated to the metric g. Then,

[c(Y ),D] = −2∇Y −
n∑

i=1
c(ei)c(∇LC

ei Y ).

In particular, if Y is a smooth section of the orbital tangent field Γ, then [c(Y ), D] is a 
differential operator of order 1 in the orbit direction.

Let ν : M → g be a smooth map. Introduce the differential operator Lν acting on 
smooth sections of E by

(Lνϕ)(m) = d

dt

∣∣∣∣
t=0

etν(m) · ϕ(e−tv(m) ·m).
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Note that if f ∈ C∞(M), then Lfν = fLν . We will use boldface ν : m ∈ M %→ ρm(ν(m))
to denote the vector field generated by ν. The difference ∇ν−Lν is an operator of order 0.

Definition 1.3. The moment map for the pair (E, ∇) (cf. [5]) is the smooth section µE ∈
C∞(M, g∗⊗̂End(E)) defined by the equation

〈µE ,ν〉 = ∇ν − Lν

for all ν ∈ C∞(M, g).

An element h ∈ C∞(G) acts on ϕ ∈ C∞
c (M, E) by the convolution operator

(Chϕ)(m) = h & ϕ(m) =
∫

G

h(g)g · ϕ(g−1 ·m) dg,

where dg denotes a left invariant Haar measure.

Key Lemma. Let ν : M → g be a smooth map. For any h ∈ C∞(G) and ϕ ∈ C∞
c (M, E),

Lν(h & ϕ)(m) = −(νRmh) & ϕ(m),

where νRm denotes the right-invariant vector field on G generated by νm := ν(m) ∈ g, 
which acts by differentiation on h. For any χ ∈ C∞

c (M), the operator χ[c(ν), D]Ch

extends to a bounded operator on L2(M, E).

Proof. By definition

Lν(h & ϕ)(m) = d

dt

∣∣∣∣
t=0

∫

G

h(g)etνmg · ϕ(g−1e−tνm ·m) dg

= d

dt

∣∣∣∣
t=0

∫

G

h(e−tνmg)g · ϕ(g−1 ·m) dg

= −(νRmh) & ϕ(m)

where in the second line we used a change of variables.
Lemma 1.2 and Definition 1.3 show that the commutator [c(ν), D] = −2Lν +B where 

B is the bundle endomorphism

B = −2〈µE , ν〉 −
n∑

i=1
c(ei)c(∇LC

ei Y ).

Let β1, ..., βdim(g) be a basis of g, and let νj : M → R be the components of ν relative to 
the basis. By the calculation above
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Lν(h & ϕ) =
∑

j

νj(hj & ϕ)

where hj := −βR
j h ∈ C∞(G). The second statement follows because the bundle endo-

morphism B and the smooth functions νj are bounded on the support of χ. !

1.2. K-homology and the transverse Dirac class

If (M, g) is complete then D is essentially self-adjoint, and the standard practice is to 
attach the following K-homology class to the Dirac operator:

[DM ] =
[
(L2(M,E), F = D(1 + D2)− 1

2 )
]
∈ K0

G(C0(M)). (1)

Theorem 1.4 below shows that the same pair (L2(M, E), F ) defines a class in a different 
K-homology group. This observation is due to Kasparov: see Lemma 8.8 of [17] for the 
case of the de Rham-Dirac operator.

The representations of G and ClΓ(M) on L2(M, E) by Clifford multiplication form a 
covariant pair, hence L2(M, E) carries a representation of the crossed-product algebra 
G ! ClΓ(M).

Theorem 1.4. If (M, g) is complete, the pair (L2(M, E), F ) determines a class in K0(G !
ClΓ(M)).

Proof. It suffices to verify that for every a ∈ G ! ClΓ(M), [F, a] is a compact operator. 
That the other Fredholm module axioms hold is analogous to standard cases. We may 
assume a = h ⊗ α, with h ∈ C∞(G) and α ∈ Cl∞Γ,c(M), since such elements are dense 
in G ! ClΓ(M). Let χ ∈ C∞

c (M) be a bump function equal to 1 on the compact set 
G · supp(α) ⊂ M . Hence a = χa and [D, a] = χ[D, a]. Following [4] or [16, Lemma 4.2], 
we first write F as a Cauchy integral:

F = 2
π

∞∫

0

D(1 + λ2 + D2)−1 dλ,

so that,

[F, a] = 2
π

∞∫

0

(1 + λ2 + D2)−1((1 + λ2)χ[D, a] + Dχ[a,D]D
)
(1 + λ2 + D2)−1 dλ. (2)

Since D is G-invariant, [D, a] = [D, α]Ch, and the latter is a bounded operator by virtue 
of the Key Lemma. The operator

(1 + λ2)(1 + λ2 + D2)−1χ[D, a] (3)
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is compact by the Rellich lemma. Since ‖(1 + λ2 + D2)−1‖ is O(λ−2), the norm of (3) is 
uniformly bounded in λ, and the product

(1 + λ2)(1 + λ2 + D2)−1χ[D, a](1 + λ2 + D2)−1

is a compact operator with norm O(λ−2). For the second integrand

(1 + λ2 + D2)−1Dχ[a,D]D(1 + λ2 + D2)−1 (4)

note that (1 + λ2 + D2)−1Dχ is compact by the Rellich lemma, and has norm O(λ−1). 
Using again the fact that [a, D] is bounded, it follows that (4) is a compact operator of 
norm O(λ−2). Thus both integrands in (2) are compact with norm O(λ−2), hence the 
integral converges in the norm topology to a compact operator. !

If M is not complete then [13, Chapter 10] explains a slightly more elaborate con-
struction that produces a class [DM ] ∈ K0

G(C0(M)) from a Dirac operator. (One could 
also replace the metric on M with one that is complete, and this leads to the same K-
homology class.) Using similar techniques it is not difficult to do the same in our setting, 
and we outline how this is done in Appendix A. Granted this we make the following 
definition.

Definition 1.5. Let M be a Riemannian manifold with an isometric action of a compact 
Lie group G. Let D be a G-equivariant Dirac operator acting on sections of a Clifford 
module bundle E. The Hilbert space L2(M, E) and the operator D determine a K-
homology class [DM,Γ] ∈ K0(G !ClΓ(M)) that we refer to as the transverse Dirac class
associated to D. If M is complete, this is the class described in Theorem 1.4. For the 
general case see Appendix A.

Remark 1.6. Two well-known facts about [DM ] ∈ K0
G(C0(M)) are that (i) the class does 

not depend on the metric, and (ii) in the complete case the operator F can be replaced by 
χ(D) where χ is any ‘normalizing function’, cf. [13, Chapter 10]. Similar results hold for 
[DM,Γ] ∈ K0(G ! ClΓ(M)). Given two G-invariant complete metrics g0, g1 on M , there 
is a canonical isometric isomorphism (Γ, g0) → (Γ, g1) given fiberwise by the square-root 
of the composite map

Γm
g!
0−−→ Γ∗

m
g"
1−−→ Γm. (Flat and sharp exponents denote metric contractions.)

This induces a canonical isomorphism ClΓ(M, g0) → ClΓ(M, g1) between the correspond-
ing orbital Clifford algebras, and so also between the crossed products by G. These 
isomorphisms intertwine the corresponding classes in K0(G ! ClΓ(M, gi)), and in this 
sense [DM,Γ] is independent of the metric.
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1.3. Significance of the class [DM,Γ]

We discuss here briefly why the class [DM,Γ] ∈ K0(G ! ClΓ(M)) is referred to as a 
transverse index class, by explaining its relationship with the more familiar class [DM ] ∈
K0

G(C0(M)). The result stated is included for expository purposes, without proof and at 
the cost of some rigor. However it suggests an interesting geometric interpretation of the 
class [DM,Γ] in the spirit of non-commutative geometry and index theory of foliations, 
and might provide some helpful insights to the reader.

Let (β1, . . . , βdim(g)) be a basis of g. Following Kasparov [17, Definition 8.3] we define 
the orbital Dirac operator by

DΓ : G! Cl∞Γ (M) → G! Cl∞Γ (M) ; DΓ =
dim(g)∑

j=1
c(ρ(βj))Lβj

where Cl∞Γ (M) is the smooth version of ClΓ(M), and Lβj denotes Lie differentiation for 
the diagonal action of G on G !Cl∞Γ (M) given by (g/a)(h) = g ·a(g−1h). This definition 
leads (after considerable work,2 compare [17, Definition 8.5]) to the construction of an 
element

[DΓ] ∈ KKG(C0(M), G! ClΓ(M)).

If all the orbits of G have the same dimension, this element is the longitudinal index class 
of a family of Dirac operators over the orbit space M/G. The following theorem extends 
this observation, and shows that the class [DM,Γ] ∈ KK(G ! ClΓ(M), C) previously 
constructed should be interpreted as a transverse index class.

Theorem 1.7. [DM ] = [DΓ]⊗̂G!ClΓ(M)[DM,Γ].

Comment on the proof. Kasparov proves this theorem in [17, Theorem 8.9] in the case 
where the Clifford module is the exterior algebra bundle Λ•T ∗M⊗̂C, with D being the 
de Rham-Dirac operator d +d∗. The resulting class [dM,Γ] ∈ K0(G !Clτ⊕Γ(M)) lies in a 
slightly different KK-group, but is in essence the same as the one from Theorem 1.4 (This 
class is used later in Section 4). The theorem above can be proved by a straightforward 
readaptation of Kasparov’s arguments, or by a direct reduction to the special case he 
deals with. !

2 The receptacle of the class [DΓ] given here is technically not right, and more sophisticated KK-groups 
have to be used. However, it is sufficient for the purpose of exposition and motivation, especially since it 
will not be used thereafter.
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1.4. Restriction to open sets

Let U be a G-invariant open set of M , let ιU : C0(U) ↪→ C0(M) be the extension-
by-0 homomorphism, and ι∗U : K0

G(C0(M)) → K0
G(C0(U)) the corresponding restriction 

map on K-homology. A well-known property of the class [DM ] ∈ K0
G(C0(M)) (cf. [13, 

Proposition 10.8.8]) is that

ι∗U [DM ] = [DU ]

where [DU ] ∈ K0
G(C0(U)) is the class determined by the restriction D|U .

The class [DM,Γ] has an analogous property. We will abuse notation slightly and use 
ιU to also denote the extension-by-0 homomorphism ClΓ(U) ↪→ ClΓ(M), as well as the 
induced ∗-homomorphism between the crossed products G ! ClΓ(U) ↪→ G ! ClΓ(M). 
Thus there is a restriction map

ι∗U : K0(G! ClΓ(M)) → K0(G! ClΓ(U)).

Proposition 1.8. The restriction of D to U determines a class [DU,Γ] ∈ K0(G ! ClΓ(U))
and ι∗U [DM,Γ] = [DU,Γ].

For a proof, see Appendix B.

1.5. Manifolds with boundary

Let M̃ be a Riemannian G-manifold with boundary, and let M = ∂M̃ be the boundary, 
equipped with the restriction of the metric and of the G-action. There is a short exact 
sequence of C∗-algebras

0 → C0(M̃ \M) → C0(M̃) → C0(M) → 0

which induces a corresponding 6-term exact sequence in K-homology. Let

∂ : K1(C0(M̃ \M)) → K0(C0(M))

be the induced boundary homomorphism.
Suppose Ẽ → M̃ is an ungraded Clifford module bundle on the odd-dimensional 

manifold M̃ . A Dirac operator D̃ for Ẽ|M̃\M determines a class [D̃M̃\M ] ∈ K1(C0(M̃ \
M)). Let E = Ẽ|∂M̃ , equipped with Z2-grading E± the ±i -eigenbundles of c(n), where 
n is an inward unit normal vector to the boundary. A well-known property of the class 
[D̃M̃\M ] (cf. [13, Proposition 11.2.15]) is that

∂[D̃M̃\M ] = [DM ]
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where [DM ] ∈ K0(C0(M)) is the class associated to a Dirac operator acting on sections 
of E.

Transverse Dirac classes have an analogous property. The definitions of Γ and of the 
orbital Clifford algebra ClΓ(M̃) go through for the manifold with boundary M̃ . Moreover 
the definition of Γ is compatible with restriction to the boundary, in the sense that the 
restriction of Γ to the boundary (in the sense of continuous fields), coincides with the 
orbital tangent field of the boundary. We therefore make a slight abuse of notation and 
write Γ for the orbital tangent fields on each of M̃ , M̃ \M and M .

There is a surjective ∗-homomorphism ClΓ(M̃) → ClΓ(M) given by restriction. Since 
the boundary is G-invariant, there is an extension of C∗-algebras

0 → G! ClΓ(M̃ \M) → G! ClΓ(M̃) → G! ClΓ(M) → 0,

and a corresponding boundary map in K-homology:

∂ : K1(G! ClΓ(M̃ \M)) → K0(G! ClΓ(M))

It is straight-forward to adapt the arguments in Theorem 1.4 and Appendix A to 
show that a Dirac operator D̃ acting on sections of Ẽ|M̃\M yields a class [D̃M̃\M,Γ] ∈
K1(G ! ClΓ(M̃ \M)).

Proposition 1.9. Let Ẽ be an (ungraded) Clifford module over the odd-dimensional man-
ifold M̃ , and [D̃M̃\M,Γ] ∈ K1(G !ClΓ(M̃ \M)) the corresponding class. Let E = Ẽ|∂M̃ , 
equipped with Z2-grading E± the ±i -eigenbundles of c(n), where n is an inward unit 
normal vector to the boundary. Then

∂[D̃M̃\M,Γ] = [DM,Γ].

For a proof, see Appendix C.

2. Deformed Dirac operator and KK-product

In this section we assume (M, g) is a complete Riemannian G-manifold (without 
boundary).

2.1. Deformed Dirac operator

Let us first review some definitions introduced by Braverman [7]. A taming map is a 
G-equivariant map

ν : M → g
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such that the induced vector field ν : m ∈ M %→ ρm(ν(m)) has a compact vanishing locus. 
It is convenient to assume that |ν| ≤ 1 with equality outside a compact neighborhood of 
the vanishing locus (one can always achieve this after re-scaling ν by a suitable smooth 
positive function). Following Braverman [7], a non-negative G-invariant function f ∈
C∞(M)G is said to be admissible if

lim
M&m→∞

f2

|df |M + f(|∇LCν|M + |ν|g + |〈µE ,ν〉|E) + 1 = ∞.

(In this expression, | · |M is used to denote the point-wise norms on the vector bundles 
TM 3 T ∗M and End(TM) induced by the Riemannian metric, | · |E denotes the point-
wise norm on the vector bundle End(E) induced by the Hermitian structure, and | · |g
denotes the norm on the Lie algebra g induced from its inner product.) One can show 
[7, Lemma 2.7] that admissible functions always exist.

Definition 2.1. Let E → M be a Clifford module bundle and let D be a Dirac operator 
acting on sections of E. Let ν : M → g be a taming map and let f be an admissible 
function. The deformed Dirac operator is the Dirac-type operator

Dfν = D + i fc(ν).

Intuitively, the assumption that f be admissible ensures that the cross-terms in D2
fν

can be neglected. This is reminiscent of Kasparov’s technical theorem, which provides 
operators playing the same role in the general construction of the KK-product. The 
admissibility property also ensures nice properties of the spectrum of D2

fν (cf. proof of 
Lemma 2.3), which makes it possible to define an equivariant index.

Theorem 2.2 (Braverman [7]). Let Dfν be a deformed Dirac operator associated to a Z2-
graded Clifford module bundle E = E+ ⊕E−. Then the pair (L2(M, E), Dfν) determines 
a class

[Dfν ] ∈ KK0(C∗(G),C),

which is independent of the choice of admissible function f . Under the identification 
KK0(C∗(G), C) 3 R−∞(G) = ZĜ given by the Peter-Weyl theorem, the class [Dfν ]
identifies with its index

Ind(Dfν) :=
∑

π∈Ĝ

(m+
π −m−

π ) · π ∈ R−∞(G)

where m±
π < ∞ is the multiplicity of the irreducible representation π ∈ Ĝ in ker(Dfν) ∩

L2(M, E±).
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To give some idea of what is involved, we outline an argument. Let Ffν = Dfν(1 +
D2

fν)−
1
2 . Recall that Ch denotes the operator of convolution by h. First, for every h ∈

C∗(G), [Ffν , Ch] = 0 by G-invariance of Ffν . It only remains to see that (1 − F 2
fν)Ch is 

compact, which comes from the following lemma:

Lemma 2.3. Let h ∈ C∗(G). Then, (1 + D2
fν)−1Ch is a compact operator on L2(M, E).

Proof. (of the lemma) For G compact, the Peter-Weyl theorem states that C∗(G) is an 
infinite direct sum over matrix algebras End(π), π ∈ Ĝ. It suffices to consider the case 
where h lies in a single summand End(π) (in other words, h is a matrix coefficient for π). 
Equivalently we must show that the restriction of (1 +D2

fν)−1 to each isotypic component 
in L2(M, E) is compact. One has

D2
fν = D2 + f2|ν|2 + i

(
f [D, c(ν)] + c(df)c(ν)

)

In terms of a local orthonormal frame e1, ..., edim(M) the commutator writes

[D, c(ν)] = Lν +
∑

j

c(ej)c(∇LC
ejν) + 〈µE , ν〉.

On the π-isotypic component, one has an inequality of semi-bounded operators |Lν| ≤
Cπ| ν| (the latter is a multiplication operator for the function | ν| on M) with Cπ a constant 
just depending on the representation π. Thus on the π-isotypic component one has an 
inequality of semi-bounded operators

D2
fν ≥ D2 + f2

(
|ν|2M − f−2(f(Cπ|ν|g + |∇LCν|M + |〈µE , ν〉|E) + |df |M |ν|M

))
. (5)

The definition of admissible function implies that the term in the inner brackets, multi-
plied by the factor of f−2, goes to 0 at infinity. On the other hand |ν|2M = 1 outside a 
compact set in M . Consequently on the π-isotypic component, there is an inequality of 
semi-bounded operators of the form

D2
fν ≥ D2 + V

where the potential function V is proper and bounded below. It is known that the 
operator D2 + V has discrete spectrum (cf. [18, Appendix B] for a short proof and 
further references). This implies Dfν restricted to the π-isotypical component has discrete 
spectrum, and hence compact resolvent. !

2.2. KK-product factorization

We now come to the main result of the article, which is a KK-product factorization 
of the K-homology class [Dfν ] ∈ KK0(C∗(G), C).



14 Y. Loizides et al. / Advances in Mathematics 380 (2021) 107604

Given two C∗-algebras A and B, we denote E(A, B) the set of (A, B) KK-cycles (or 
Kasparov A, B-bimodules). Recall the following theorem, which allows to recognize when 
a KK-cycle arises as a KK-product.

Theorem 2.4 (Connes-Skandalis, [26]). Let A, B, C be graded C∗-algebras, with A sepa-
rable. Let

(H1,π1, F1) ∈ E(A,B), (H2,π2, F2) ∈ E(B,C),

and let E1, E2 be their respective KK-theory classes. Suppose that F ∈ LC(H1⊗̂BH2) is 
a C-linear bounded operator such that

(a) (H = H1⊗̂BH2, π1⊗̂1, F ) ∈ E(A, C),
(b) F is an F2-connection, i.e. for every ξ∈H1, the operators (ξ⊗̂ .)F2−(−1)deg(ξ)F (ξ⊗̂ .)

and (ξ⊗̂ .)∗F − (−1)deg(ξ)F2(ξ⊗̂ .)∗ are compact operators.
(c) For every a ∈ A, a[F1⊗̂B1, F ]a∗ ≥ 0 modulo compact operators on H.

Then, the cycle (H, π1⊗̂1, F ) ∈ E(A, C) represents the KK-product E1⊗̂BE2 ∈
KK(A, C). Moreover, the KK-product E1⊗̂BE2 always admits a representative of this 
form, which is unique up to (norm-continuous) homotopy.

Now, consider a deformed Dirac operator Dfν = D + i fc(ν), where f is an admissible 
function and ν is the vector field associated to the taming map ν : M → g, with |ν| = 1
outside a compact neighborhood of the zero set of ν. The latter condition means that 
the vector field ν determines a class

[ν] =
[(

ClΓ(M), i c(ν)
)]

∈ KKG
0 (C,ClΓ(M)).

Let

jG[ν] ∈ KK0(C∗(G), G! ClΓ(M))

be its image under the descent map jG : KKG
0 (C, ClΓ(M)) → KK0(C∗(G), G !ClΓ(M)). 

We can then form the product

jG[ν]⊗̂G!ClΓ(M)[DM,Γ] ∈ KK0(C∗(G),C).

Theorem 2.5. The K-homology class [Dfν ] ∈ KK0(C∗(G), C) of the deformed Dirac op-
erator factors as the following KK-product:

[Dfν ] = jG[ν]⊗̂G!ClΓ(M)[DM,Γ] ∈ KK0(C∗(G),C).

Proof. The first condition of the Connes-Skandalis criterion (Theorem 2.4) is Theo-
rem 2.2. It suffices to check the F -connection condition for ξ = a ∈ G ! ClΓ(M)
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of the form a = h⊗̂α with h ∈ C∞(G), α ∈ Cl∞c (M). The operator denoted 
(a⊗̂ .) : L2(M, E) → (G ! ClΓ(M))⊗̂G!ClΓ(M)L

2(M, E) 3 L2(M, E) in the Connes-
Skandalis criterion is given by the action of a ∈ G ! ClΓ(M) on L2(M, E), hence we 
must verify that Ffνa −(−1)deg(a)aF is a compact operator on L2(M, E). Let χ ∈ C∞

c (M)
be a bump function equal to 1 on the compact set G · supp(α) ⊂ M . Let

B = Dfνa− (−1)deg(a)aD = [D, a] + i fc(ν)a.

Then B = χB and it follows from the Key Lemma that B is a bounded operator. Using 
integral expressions as in the proof of Theorem 1.4, one has

Ffνa− (−1)deg(a)aF

= 2
π

∞∫

0

(1 + λ2 + D2
fν)−1((1 + λ2)χB − (−1)deg(a)DfνχBD

)
(1 + λ2 + D2)−1dλ.

As in the proof of Theorem 1.4, the integrand is compact with operator norm O(λ−2), 
hence the integral converges in norm to a compact operator. The verification for (a⊗̂ .)∗
is similar.

We now check the positivity condition. Recall that for G compact C∗(G) is isomorphic 
to the direct sum over π ∈ Ĝ of matrix algebras End(π). It suffices to consider h ∈ C∗(G)
lying in a single summand End(π). Recall Ch denotes the operator of convolution by h. 
Write the commutator [i c(ν), Ffν ] via an integral formula for Ffν as in the proof of 
Theorem 1.4:

Ch[i c(ν), Ffν ]C ∗
h = 2

π

∞∫

0

(1 + λ2 + D2
fν)−1

(
(1 + λ2) Ch[i c(ν),Dfν ]C ∗

h

+ Dfν Ch[i c(ν),Dfν ]C ∗
h Dfν

)
(1 + λ2 + D2

fν)−1dλ. (6)

The integral formula for Ffν is convergent in the strong operator topology. Here, we 
have used the G-equivariance of c(ν) and Dfν , which implies that they commute with 
Ch. Consider the graded commutator

[i c(ν),Dfν ] = i [c(ν),D] + f |ν|2.

It follows from the admissibility condition on f and our assumption that |ν| = 1 outside 
a compact set that the function

f
(
|ν|2 − f−1(Cπ|ν| + |∇LCν| + |〈µE ,ν〉|)

)

is bounded below, where Cπ is the constant appearing in inequality (5); let −∞ < b ≤ 0
be any (strictly) lower bound. It follows from the proof of Lemma 2.3 (see especially 
inequality (5)) that the operator
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P = [i c(ν),Dfν ] − b

is a positive unbounded operator when restricted to the π-isotypical component of 
L2(M, E). Thus

Ch[i c(ν),Dfν ]C ∗
h = ChPC ∗

h + bChC ∗
h ,

and ChPC ∗
h is a positive operator. The contribution of P to the integrand in (6) is 

a positive operator, and the corresponding integral converges in the strong operator 
topology to a positive operator.

The contribution to the integral (6) of bChC ∗
h is

2b
π

∞∫

0

(1 + λ2 + D2
fν)−1

(
(1 + λ2)ChC ∗

h + DfνChC ∗
hDfν

)
(1 + λ2 + D2

fν)−1dλ. (7)

The two terms in the integrand are analyzed as in the proof of Theorem 1.4. For example 
consider

b(1 + λ2 + D2
fν)−1DfνChC ∗

hDfν(1 + λ2 + D2
fν)−1. (8)

By Lemma 2.3 the operator (1 + λ2 + D2
fν)−1DfνCh is compact, with norm O(λ−1), and 

the same is true of its adjoint. Thus (8) is a compact operator with norm O(λ−2). It 
follows that the integral (7) converges in norm to a compact operator. !

Remark 2.6. In the case when M is compact, the equivariant index of D can be obtained 
by applying the collapse map M → pt to the class [D] ∈ K0

G(C0(M)). In the present 
non-compact situation, the result above shows that the map (jG[ν]⊗̂ .) plays a similar 
role.

3. Applications

In this section let M be a complete Riemannian manifold equipped with an isometric 
action of a compact Lie group G, and let Dfν = D + i fc(ν) be a deformed Dirac operator 
associated to a (Z2-graded) Clifford module bundle E → M .

3.1. Excision for deformed Dirac operators

A first consequence of the KK-product factorization of Dfν is an excision result for 
its index, which can be seen as a rough K-theoretic analogue of localization formulas in 
equivariant cohomology.
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Recall that we assumed |ν| = 1 outside a compact set. Let U ⊂ M be a G-invariant 
open set such that |ν| = 1 outside U , and let ιU : ClΓ(U) ↪→ ClΓ(M) be the extension-
by-0 homomorphism. Let νU =ν|U . The pair (ClΓ(U), c(νU )) determines a class [νU ] ∈
KKG

0 (C, ClΓ(U)).

Proposition 3.1. (ιU )∗[νU ] = [ν] ∈ KKG(C, ClΓ(M)).

Proof. Under the obvious identification ClΓ(U)⊗̂ClΓ(U)ClΓ(M) 3 ClΓ(U), the ele-
ment (ιU )∗[(ClΓ(U), c(νU ))] = [(ClΓ(U), c(νU ))]⊗̂ClΓ(U)[ιU ] is represented by the pair 
[(ClΓ(U), c(νU ))] ∈ KKG(C, ClΓ(M)). Then, a homotopy between this cycle and the 
cycle (ClΓ(M), c(ν)) is provided by the following (C, ClΓ(M)⊗̂C[0, 1])-cycle (E , F ):

E = {continuous functions f : [0, 1] → ClΓ(M) : supp(f(1)) ⊂ U}; F = i c(ν).

That 1 − F 2 = 1 − |ν|2 is a compact operator on E comes from the fact that |ν|2 = 1
outside of U , whence the result. !

Corollary 3.2. [Dfν ] = jG[νU ]⊗̂G!ClΓ(U)[DU,Γ].

Proof. This follows from the KK-product factorization of Theorem 2.5, Proposition 3.1, 
plus associativity of the Kasparov product:

[Dfν ] = (jG[νU ]⊗̂[ιU ])⊗̂[DM,Γ] = jG[νU ]⊗̂([ιU ]⊗̂[DM,Γ])

together with the fact that [ιU ]⊗̂G!ClΓ(M)[DM,Γ] = [DU,Γ] (Proposition 1.8). !

The corollary together with another application of Theorem 2.5 on the manifold U , 
imply that the index of Dfν can be computed from the index of a deformed Dirac operator 
on U . This operator is determined up to suitable homotopy by the condition that it 
represents the KK-product jG[νU ]⊗̂G!ClΓ(U)[DU,Γ]. Note however that one cannot simply 
restrict Dfν to U ; one should for example complete the metric on U and also replace f |U
with a function that is admissible for U . This result was proved by Braverman [7] using 
the cobordism invariance of the index (see the next section). Here we obtain it as a 
consequence of the KK-product factorization.

3.2. Cobordism invariance of the index

We will reprove the following result of Braverman [7], which leads directly to the 
cobordism invariance of the index of the deformed Dirac operator.

Theorem 3.3. Let M be a Riemannian G-manifold which is the boundary of a Rieman-
nian G-manifold M̃ . Let Ẽ be a G-equivariant (ungraded) Clifford module bundle over 
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M̃ , and let E = Ẽ|M be the induced Clifford module bundle over the boundary M with Z2-
graded subbundles E± given by the ±i -eigenbundles of c(n), where n is the inward unit 
normal vector to the boundary. Let D be a Dirac operator associated to E, let ν̃ : M̃ → g

be a taming map and let ν be its restriction to M . Then

jG[ν]⊗̂G!ClΓ(M)[DM,Γ] = 0 ∈ K0(C∗(G)).

3.2.1. Review of cobordism invariance in the standard case
Let us first recall the Baum-Douglas Taylor proof of cobordism invariance in the 

standard case (cf. [3, p.765]), i.e. we assume M̃ (and then M) is compact, and ignore 
the G-action. The key C∗-algebra extension is

0 → C0(M̃ \M) → C0(M̃) r−→ C0(M) → 0 (9)

where r denotes restriction to the boundary. The proof of cobordism invariance is based 
on the analogue of Proposition 1.9:

∂[D̃] = [D]

where [D̃] ∈ K1(C0(M̃ \M)) is the K-homology class defined by the Dirac operator D̃
on the odd-dimensional (open) manifold M̃ \M , and ∂ is the boundary homomorphism 
in the six term exact sequence (in K-homology) associated to (9).

Let p̃ (resp. p) denote the homomorphism C → C0(M̃) (resp. C → C0(M)) obtained 
from the collapsing map M̃ → pt (resp. M → pt). Hence

r ◦ p̃ = p ⇒ p̃∗ ◦ r∗ = p∗. (10)

We have

p∗[D] = p̃∗ ◦ r∗ ◦ ∂[D̃]

but the middle composition r∗ ◦ ∂ = 0 because it is the composition of two successive 
maps in the six term sequence. !

3.2.2. Proof of Theorem 3.3
The relevant C∗-algebra extension to consider in this case is

0 → G! ClΓ(M̃ \M) → G! ClΓ(M̃) r−→ G! ClΓ(M) → 0, (11)

where r is also the restriction map. The replacements for the collapsing maps p̃, p are 
the taming maps ν̃, ν which define elements jG[ν̃] ∈ KK0(C∗(G), G !ClΓ(M̃)), jG[ν] ∈
KK0(C∗(G), G ! ClΓ(M)) respectively. Then, we have



Y. Loizides et al. / Advances in Mathematics 380 (2021) 107604 19

jG[ν] = jG[ν̃]⊗̂[r∗]

which is the analogue of equation (10) (we regard the ∗-homomorphism r as an element 
[r∗] ∈ KK(G ! ClΓ(M̃), G ! ClΓ(M)) here). Thus

jG[ν]⊗̂[DM,Γ] = jG[ν̃]⊗̂[r∗]⊗̂[D̃M,Γ] = jG[ν̃]⊗̂[r∗]⊗̂∂[D̃M̃,Γ],

where the second equality uses Proposition 1.9. But

[r∗]⊗̂∂[D̃M̃,Γ] = r∗ ◦ ∂[D̃M̃,Γ]

and r∗ ◦∂ = 0 for the same reason as before: it is the composition of two successive maps 
in the six term exact sequence for (11). This completes the proof. !

4. Deformed Dirac operators and transversally elliptic operators

In this section, we provide a KK-theoretic proof of the following theorem due to 
Braverman [7, Theorem 5.5] (see also [21,19]).

Theorem 4.1. Let M be a complete Riemannian G-manifold equipped with an isometric 
action of a compact Lie group G, and let Dfν be a deformed Dirac operator. Then, the 
equivariant index of Dfν in R−∞(G) is equal to the index (in Atiyah’s sense) of the 
transversally elliptic symbol σ0

ν(ξ) = i c(ξ + ν) obtained by deforming the symbol of the 
Dirac operator using the vector field ν.

Such transversally elliptic deformations have interesting applications; we mention for 
example the work of Paradan [22] on the quantization-commutes-with-reduction theorem 
in symplectic geometry.

The idea of the proof is relatively simple: we observe that with the appropriate KK-
groups, the product of [ν] and of an appropriate symbol class [σM,Γ] of D is the K-
theory class of the transversally elliptic symbol σ0

ν defined above. The result then follows 
from our KK-product factorization and a KK-theoretic Poincaré duality theorem for 
transversally elliptic operators obtained by Kasparov [17, Theorem 8.18].

The first four subsections of this section might be viewed as a brief further ‘invitation’ 
to Kasparov’s work [17]; we do not attempt to be exhaustive, but rather describe a small 
sample of the many new constructions and results contained in [17], in view of deriving 
Theorem 4.1.

4.1. The transverse de Rham and Dolbeault classes

Recall that there is a canonical K-homology class [dM ] ∈ KKG(Clτ (M), C) associ-
ated to the de Rham-Dirac operator acting on differential forms. Denoting Clτ⊕Γ(M) =
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Clτ (M)⊗̂C0(M)ClΓ(M), a similar construction to 1.4 applied to the de Rham-Dirac op-
erator on L2(M, ∧T ∗M) produces a class [dM,Γ] ∈ KK(G ! Clτ⊕Γ(M), C) that we refer 
to as the transverse de Rham class (cf. [17, Definition-Lemma 8.8]).

Definition 4.2. Let (E, c : Cliff(TM) → End(E)) be a G-equivariant Clifford module 
bundle on M . We define a Hilbert Clτ (M)-module Eτ as follows: the underlying Banach 
space is C0(M, E), the (right) Clτ (M)-module structure is determined on generators 
ξ ∈ C0(M, TM) by the formula

e · ξ = i (−1)deg(e)c(ξ)e,

and the Clτ (M)-valued inner product is given point-wise as the composition

E ⊗E → E∗ ⊗E = End(E) 3 EndCl(E) ⊗ Cliff(TM) 2−n/2tr⊗id−−−−−−−→ Cliff(TM),

where the first map uses the isomorphism E 3 E∗ determined by the Hermitian structure 
and EndCl(E) denotes endomorphisms of E that commute with the Cliff(TM) action.

The class [DM ] ∈ KKG(C0(M), C) associated to the Dirac operator on E factors as a 
KK-product (cf. [17, Definition 3.9, Proposition 3.10])

[DM ] = [Eτ ]⊗̂Clτ (M)[dM ] (12)

where [Eτ ] ∈ RKKG(M ; C0(M), Clτ (M))3 is the class represented by the cycle having 
Hilbert Clτ (M)-module Eτ = C0(M, E) and the zero operator. One has a similar result 
for the classes [DM,Γ], [dM,Γ]. To state it, recall that there is a product in RKK (cf. [16, 
Proposition 2.21]):

⊗̂M : RKKG(M ;A,B) × RKKG(M ;C,D) → RKKG(M ;A⊗̂C0(M)C,B⊗̂C0(M)D).

We will write 1ClΓ(M) ∈ RKKG(M ; ClΓ(M), ClΓ(M)) for the class represented by the 
pair (ClΓ(M), 0). The following is the natural analogue of (12), and can be checked 
without difficulty, using for instance Theorem 2.4.

Proposition 4.3. There is a factorization

[DM,Γ] = jG([Eτ ]⊗̂M1ClΓ(M))⊗̂G!Clτ⊕Γ(M)[dM,Γ] ∈ KK(G! ClΓ(M),C).

There is a well-known class [dξ] ∈ RKKG(M ; C0(TM), Clτ (M)) implementing the 
KK-equivalence between the algebras C0(TM) and Clτ (M) (cf. [17, Definition 2.5]); it 

3 If A and B be C0(M)-C∗-algebras, recall that the bivariant K-group RKKG(M ; A, B) is defined the 
same way as KK(A, B), with the following additional requirement: if (H, F ) is a KK-cycle, then for every 
f ∈ C0(M), a ∈ A, b ∈ B, ξ ∈ H, one has (fa)ξb = aξ(fb).
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can be described explicitly via a family of Dirac operators Dm, m ∈ M on the family of 
Hilbert spaces L2(TmM, Cliff(TmM)), m ∈ M for the fibers of the bundle πTM : TM →
M .

Definition 4.4 ([17], Definition 8.17). Let ClΓ(TM) := C0(TM) ⊗C0(M) ClΓ(M) (beware 
this is not exactly the orbital Clifford algebra of the G-manifold TM). The transverse 
Dolbeault class is the product

[∂cl
TM,Γ] = jG([dξ]⊗̂M1ClΓ(M))⊗̂G!Clτ⊕Γ(M)[dM,Γ] ∈ KK(G! ClΓ(TM),C). (13)

The symbol σ(ξ) = i c(〈ξ〉−1ξ) of the bounded transform F = D(1 + D2)−1/2 of the 
Dirac operator determines a class [σM ] = [(C0(TM, π∗

TME), σ(ξ))] ∈ RKKG(M ; C0(M),
C0(TM)). By [17, Proposition 3.10],

[σM ]⊗̂C0(TM)[dξ] = [Eτ ] ∈ RKKG(M ;C0(M),Clτ (M)). (14)

In Kasparov’s terminology, the element in (14) is referred to as the Clifford symbol of D. 
Proposition 4.3 and equations (13), (14) give us the formula

[DM,Γ] = jG([σM ]⊗̂M1ClΓ(M))⊗̂G!ClΓ(TM)[∂
cl
TM,Γ] ∈ KK(G! ClΓ(M),C). (15)

4.2. Transversally elliptic symbols and the symbol algebra SΓ(M)

For the purpose of motivation, suppose M is a compact Riemannian manifold (we will 
drop the compactness assumption shortly). Let A be a G-equivariant pseudo-differential 
operator with symbol σA acting on sections of a G-equivariant Hermitian vector bundle 
E.4 The support supp(σA) of σA is the subset of T ∗M 3 TM where σA fails to be 
invertible. The operator A is said to be transversally elliptic if supp(σA) ∩ TGM is 
compact, where TGM 3 T ∗

GM = ann(Γ) is the conormal space to the G-orbits. In this 
case Atiyah proved [1] that the restriction Aπ (π ∈ Ĝ) of A to each isotypical component 
is Fredholm, hence A has a well-defined ‘index’,5

index(A) =
∑

π∈Ĝ

index(Aπ)π ∈ R−∞(G) = ZĜ. (16)

Moreover, the index depends only on the class in K0
G(TGM) = KG

0 (C0(TGM)) defined 
by the symbol.

However the K-theory group of the algebra C0(TGM) turns out to not be ideal for 
the purpose of stating an index theorem. Kasparov’s replacement for C0(TGM) in this 
context is the following.

4 By the ‘symbol’ σA of A, we will mean a section of π∗
TMEnd(E) in the usual Hörmander (ρ = 1, δ = 0)

class, defined everywhere and not required to be homogeneous, whose equivalence class modulo symbols of 
lower order is the class of the principal symbol of A.
5 Atiyah proved a stronger result, that the index determines a distribution on G.
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Definition 4.5 ([17], Definition-Lemma 6.2). Let M be a Riemannian manifold (not nec-
essarily compact) with an isometric action of a compact Lie group G. The symbol algebra
SΓ(M) is the norm-closure in Cb(TM) (the algebra of continuous bounded functions on 
TM) of the set of all smooth, bounded functions b(m, ξ) on TM , which are compactly 
supported in the m variable, and satisfy the following two conditions:

(a) The exterior derivative dmb(m, ξ) in m is norm-bounded uniformly in ξ, and there 
is an estimate |dξb(m, ξ)| ≤ C(1 + |ξ|)−1 for a constant C which depends only on b
and not on (m, ξ).

(b) The restriction of b to TGM belongs to C0(TGM).

Given a G-equivariant Z2-graded Hermitian vector bundle E, we can similarly define a 
Hilbert SΓ(M)-module, denoted SΓ(E), as the norm-closure in the space of bounded 
sections of the pull-back bundle π∗

TME satisfying similar conditions to those in Defini-
tion 4.5 (using the norm on the fibers of π∗

TME induced by the Hermitian structure).

We now return to our usual setting, with M a complete Riemannian G-manifold. 
From now on, we refer to transversally elliptic operators (or symbols) according to the 
following definition.

Definition 4.6. Let A be a properly supported, odd, self-adjoint G-invariant pseudodif-
ferential operator of order 0 acting on sections of a G-equivariant Z2-graded Hermitian 
vector bundle E. We will say that A (or its symbol σA) is transversally elliptic if for 
every a ∈ C0(M), a · (1 − σ2

A) ∈ SΓ(M).

Since SΓ(M) ⊂ KSΓ(M)(SΓ(E)) (the compact operators on SΓ(E) in the Hilbert 
module sense), a transversally elliptic symbol determines a class

[σA] = [(SΓ(E),σA)] ∈ RKKG(M ;C0(M),SΓ(M)).

By construction there is a ∗-homomorphism ι∗TGM : SΓ(M) → C0(TGM), hence a map

RKKG(M ;C0(M),SΓ(M)) → RKKG(M ;C0(M), C0(TGM)).

In this sense the element [σA] ∈ RKKG(M ; C0(M), SΓ(M)) can be viewed as a ‘refine-
ment’ of the ‘naive’ class in RKKG(M ; C0(M), C0(TGM)) defined by the symbol.

4.3. The class fM,Γ

Recall the trivial bundle gM = M × g and the anchor map ρ : gM → TM describing 
the vector fields generated by the G-action. We now fix a G-invariant metric (−, −)gM

on the bundle gM such that g(ρ(β), ρ(β)) ≤ (β, β)gM . Using the metrics on gM , TM the 
anchor ρ has a transpose
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ρ) : TM → gM .

Definition 4.7. We define a smooth bundle map ϕ : TM → TM to be the composition 
ϕ = ρ ◦ ρ).

Remark 4.8. The range of ϕ is contained in Γ ⊂ TM , and ϕ is, roughly speaking, a 
smooth version of fiber-wise orthogonal projection TmM → Γm. For simplicity suppose 
the metric on gM is constant. Let β1, ..., βdim(g) be an orthonormal basis of g, and 
β1
M = ρ(β1), ..., βdim(g)

M = ρ(βdim(g)) the corresponding vector fields on M . Let X be a 
vector field. Then

ϕ(X) =
dim(g)∑

j=1
g(X,βj

M )βj
M .

If the action of G is free, then ϕ(X) is, to a first approximation, the projection of X to 
the orbit directions (with some re-scaling of its components). At the other extreme, in a 
neighborhood of an isolated fixed point, the length |βj

M | is O(r) where r is the distance 
to the fixed-point, and consequently the length |ϕ(X)| is O(r2) (the typical example 
would be the vector field r∂θ in R2).

Having defined the map ϕ, we may state another useful description of the symbol 
algebra SΓ(M), which interprets its elements as symbols having negative order in the 
transverse directions:

Lemma 4.9 ([17], Definition-Lemma 6.2). Under item (a) in the definition of SΓ(M)
above, item (b) is equivalent to the following estimate: for any ε > 0 there exists a 
constant cε > 0 such that

|b(m, ξ)| ≤ cε
〈ϕm(ξ)〉2

〈ξ〉2 + ε, ∀m ∈ M, ξ ∈ TmM.

The following definition is one of the main reasons to introduce the symbol algebra 
SΓ(M).

Definition 4.10. [17, pp.1344–1345] The element [fM,Γ] ∈ RKKG(M ; SΓ(M), ClΓ(TM))
is the class represented by the pair (ClΓ(TM), fM,Γ) where at a point (m, ξ) ∈ TmM , the 
operator fM,Γ(m, ξ) is left Clifford multiplication by −iϕm(ξ)〈ϕm(ξ)〉−1. (Recall from 
Definition 4.4 that ClΓ(TM) := C0(TM) ⊗C0(M) ClΓ(M). For ϕ ∈ C∞(M, End(TM))
see Definition 4.7.)

Note that for b ∈ SΓ(M), the estimate in Lemma 4.9 shows that the prod-
uct b(m, ξ)(1 − fM,Γ(m, ξ)2) = b(m, ξ)〈ϕm(ξ)〉−2 belongs to C0(TM) ⊂ ClΓ(TM) =
KClΓ(TM)(ClΓ(TM)). Hence the pair (ClΓ(TM), fM,Γ) does define a KK-cycle.
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Remark 4.11. The class [fM,Γ] should be viewed as the symbol class of the orbital Dirac 
element sketched in Section 1.3. On the other hand, it implements a KK-equivalence 
between SΓ(M) and ClΓ(TM).

4.4. Kasparov’s index theorem for transversally elliptic operators

Let X be a compact Riemannian manifold equipped with an isometric action of the 
compact Lie group G. Let A be a G-equivariant, odd, self-adjoint order-0 pseudodiffer-
ential operator acting on sections of a Z2-graded Hermitian vector bundle E. Suppose 
the symbol σA is transversally elliptic in the sense of Definition 4.6. Then

• The symbol determines a class [σA] ∈ RKK(X; C0(X), SΓ(X)).
• The pair (L2(X, E), A) determines a class [A] ∈ KK(G ! C0(X), C), and moreover 

index(A) ∈ R−∞(G) 3 K0(C∗(G)) is the push-forward of [A] under the map p : X →
pt ([15], [17, Proposition 6.4]). Indeed to demonstrate the latter point, recall C∗(G) =
⊕π∈ĜEnd(Vπ) by the Peter-Weyl theorem. The projection eπ ∈ C∗(G) corresponding 
to the summand End(Vπ) determines a K-theory class [eπ] ∈ K0(C∗(G)), and by 
definition the index pairing 〈[eπ], p∗[A]〉 = index(eπAeπ) = index(Aπ), compatible 
with (16).

Kasparov’s index theorem relates these two KK-theory classes. To state it, it is convenient 
to introduce a variant of the symbol class.

Definition 4.12 ([17], Definition 8.13). Recall the element [fX,Γ] ∈ RKKG(X; SΓ(X),
ClΓ(TX)) introduced in Definition 4.10. The tangent Clifford symbol class [σtcl

A ] is the 
KK-product

[σtcl
A ] = [σA]⊗̂SΓ(X)[fX,Γ] ∈ RKKG(X;C0(X),ClΓ(TX)).

In the sequel it will be convenient to use similar notation in a slightly broader context: 
if [ω] ∈ KKG(A , SΓ(X)) (or RKK) for some C∗-algebra A , then we will write [ωtcl] as 
shorthand for the product [ω]⊗̂SΓ(X)[fX,Γ] ∈ KKG(A , ClΓ(TX)).

Kasparov provides (see the paragraph following [17, Definition 8.13]) the following 
explicit cycle (ETX,Γ, STX,Γ) representing the class [σtcl

A ]: the Hilbert module is the tensor 
product

ETX,Γ = C0(TX,π∗
TXE)⊗̂C0(TX)ClΓ(TX)

and the operator STX,Γ is

N1/2
1 (σA⊗̂1) + N1/2

2 (1⊗̂fX,Γ) (17)
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where the weights N1, N2 = 1 −N1 ∈ C∞
b (TX) take the form

N1(x, ξ) = 〈ξ〉2

〈ξ〉2 + 〈ϕx(ξ)〉3 , N2(x, ξ) = 〈ϕx(ξ)〉3
〈ξ〉2 + 〈ϕx(ξ)〉3 . (18)

For later use, we note that the weights N1, N2 are chosen according to Kasparov’s 
technical theorem, and have the following important properties:

Lemma 4.13. N1/2
1 · SΓ(X) ⊂ C0(TX) and N2(1 − f2X,Γ) ∈ C0(TX).

In fact, the first inclusion holds even when X is non-compact (this will be used later). 
The lemma shows that N1

(
KSΓ(X)(SΓ(E))⊗̂1

)
⊂ KClΓ(TX)

(
SΓ(E)⊗̂SΓ(X)ClΓ(TX)

)

and N2(1 − f2X,Γ) ∈ KClΓ(TX)
(
SΓ(E)⊗̂SΓ(X)ClΓ(TX)

)
, as in the general construction 

of the KK-product (cf. the proof of [6, Theorem 18.4.3]). It follows from standard argu-
ments that (ETX,Γ, STX,Γ) is indeed a cycle representing [σtcl

A ]. It is not hard and rather 
instructive to check this fact together with the previous lemma by hand.

With these preparations, we can finally state Kasparov’s index theorem for transver-
sally elliptic operators.

Theorem 4.14 ([17], Theorem 8.18). Let A be a transversally elliptic operator on a com-
pact Riemannian G-manifold X. Then,

[A] = jG([σtcl
A ])⊗̂G!ClΓ(TX)[∂

cl
TX,Γ] ∈ KK(G! C0(X),C).

Remark 4.15. Kasparov gives several other variants of the index theorem, but this version 
is best suited to our purposes. Moreover, his theorem still applies if X and G are non-
compact, as long as G acts properly and isometrically on X. We will only need the 
compact case.

4.5. Transversally elliptic symbols on open manifolds

Atiyah [1] (see also [24, Section 3]) defined a distributional index more generally for any 
element αM ∈ K0

G(TGM) where M is a not-necessarily compact Riemannian G-manifold. 
The construction proceeds as follows. Atiyah proves [1, Lemma 3.6] that one can find a 
Z2-graded Hermitian vector bundle E = E0⊕E1 on M and σM ∈ Cb(TM, π∗

TMEnd(E))
an odd, self-adjoint bundle endomorphism whose restriction to TGM represents the class 
α, and such that one has σ2

M = 1 outside π−1
TM (K) for a G-invariant compact subset K of 

M . Choose a Hermitian vector bundle F → M such that Ẽ0 = E0 ⊕F is trivial, and fix 
a trivialization. Let Ẽ1 = E1⊕F and σ̃M = σM ⊕ idF . Via σ̃M we obtain a trivialization 
of (E1 ⊕ F )|M\K . Choose a relatively compact G-invariant open neighborhood U of K, 
and let ιU,M : U ↪→ M be the inclusion; we will use the same symbol for the induced 
open inclusion TGU ↪→ TGM . The pair (Ẽ|U , ̃σM |U ) represents a class αU ∈ K0

G(TGU)
and αM = (ιU,M )∗αU by construction. Choose a G-equivariant open embedding ιU,X
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of U into a compact G-manifold X; again we use the same symbol for the induced 
open inclusion TGU ↪→ TGX. Using the trivializations over U \K, the bundle Ẽ|U and 
endomorphism σ̃M |U can be extended trivially to X (denoted ẼX , σ̃X respectively) and 
represent the class αX = (ιU,X)∗αU ∈ K0

G(TGX). Atiyah defines

index(αM ) = index(AX) ∈ R−∞(G)

where AX is any transversally elliptic operator on X such that the (naive) K-theory 
class of its symbol is αX . Atiyah proves an excision property [1, Theorem 3.7] showing 
that the index can be determined just from data on U , and hence the construction is 
independent of the various choices.

We can reformulate this construction and Atiyah’s excision result in the language 
of Theorem 4.14: suppose that one manages to choose σM such that, in addition 
to the conditions above, one has (1 − σ2

M ) ∈ SΓ(M). Then σM determines a class 
[σM,c] = [(SΓ(E), σM )] ∈ KKG(C, SΓ(M)) refining the class αM . The subscript ‘c’ is to 
emphasize that this is a K-theory class whose support is compact over M , in contrast 
with the symbols defining elements of the group RKKG(M ; C0(M), SΓ(M)) that were 
considered in Section 4.2. One then obtains similar classes [σ̃U,c] = [(SΓ(Ẽ|U ), ̃σ|U )] ∈
KKG(C, SΓ(U)) refining αU , [σ̃X,c] ∈ [(SΓ(ẼX), ̃σX)] ∈ KKG(C, SΓ(X)) refining αX , 
and moreover

[σ̃X,c] = (ιU,X)∗[σ̃U,c], [σM,c] = (ιU,M )∗[σ̃U,c]. (19)

Let [σ̃tcl
X,c], [σ̃tcl

U,c], [σtcl
M,c] be the corresponding tangential Clifford symbols obtained by 

KK-product with fX,Γ, fU,Γ, fM,Γ respectively. Functoriality of the classes f−,Γ under 
open embeddings implies the tangential Clifford symbols satisfy analogous formulae to 
(19).

Let p : X → pt be the collapse map, and [σA,X ] ∈ RKKG(X; C(X), SΓ(X)) the class 
defined by the symbol of AX , so that p∗[σA,X ] = [σ̃X,c]. By Theorem 4.14,

index(AX) = p∗[AX ] = jG([σ̃tcl
X,c])⊗̂G!ClΓ(TX)[∂

cl
TX,Γ].

Equations (19), as well as the functoriality of the KK-product and of the transverse 
Dolbeault class, give the equivalent formulae

index(AX) = jG([σ̃tcl
U,c])⊗̂G!ClΓ(TU)[∂TU,Γ] = jG([σtcl

M,c])⊗̂G!ClΓ(TM)[∂
cl
TM,Γ].

We thus obtain the following formula for the index in Atiyah’s sense of αM =
ι∗TGM [σM,c] ∈ K0

G(TGM):

index(ι∗TGM [σM,c]) = jG([σtcl
M,c])⊗̂G!ClΓ(TM)[∂

cl
TM,Γ]. (20)
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4.6. Proof of Theorem 4.1 (beginning)

The discussion of Sections 4.2–4.5 applies in a more general setting where E is a Z2-
graded Hermitian vector bundle and A is a transversally elliptic operator. With the aim 
of proving Theorem 4.1, we now return to the setting of interest, where ν : M → g is a 
taming map with induced vector field ν (having a compact vanishing locus), and Dfν is a 
deformed Dirac operator acting on sections of a Cliff(TM)-module (E, c : Cliff(TM) →
End(E)).

Using the vector field ν, define the deformed symbol

σ0
ν(ξ) = i c(〈ξ〉−1ξ + ν), ξ ∈ TM 3 T ∗M.

Since ν is a section of Γ, the support supp(σ0
ν) ∩ TGM = {(x, 0) ∈ TM : ν(x) = 0}. By 

assumption the vanishing locus of ν is compact, hence the pair (C0(TGM, π∗
TGME), σ0

ν)
represents an element αν = [σ0

ν ] ∈ K0
G(TGM), and so has a distributional index. Our goal 

is to prove Theorem 4.1, which states that index(Dfν) = index(αν); we will deduce this 
result as a consequence of the KK-product factorization (Theorem 2.5) and Kasparov’s 
index Theorem 4.14.

As a first step, let us re-write the right-hand-side of Theorem 4.1 in the language 
of Section 4.5. Recall that we assumed |ν| ≤ 1, with equality outside a G-invariant 
relatively compact open set U ⊂ M . Define

σν(ξ) = i c
(
(1 − |ν|2)1/2〈ξ〉−1ξ + ν

)
. (21)

Note that on the open subset of M where |ν| = 1, σν(ξ) simplifies to the invertible 
bundle endomorphism i c(ν) (not depending on the fiber variable ξ). It follows that 
supp(σ0

ν) ∩TGM = supp(σν) ∩TGM , and the two symbols are homotopic, the formula for 
the homotopy being given by the same formula as (21) except with (1 − |ν|2)1/2 replaced 
with (1 −|ν|2)1/2t +(1 −t), where t ∈ [0, 1]. Thus the symbols σν , σ0

ν define the same class 
αν ∈ K0

G(TGM). Since (1 −|ν|2) has compact support, one has (1 −σ2
ν) ∈ SΓ(M). By the 

discussion in Section 4.5, the pair (SΓ(E), σν) represents a class [σν,c] ∈ KKG(C, SΓ(M))
that refines αν ∈ K0

G(TGM). By equation (20),

index(αν) = jG([σtcl
ν,c])⊗̂G!ClΓ(TM)[∂

cl
TM,Γ]. (22)

The next subsection explains how to factor out [ν] ∈ KKG(C, ClΓ(M)) in the equation 
above.

4.7. The symbol class of the transverse Dirac element

Recall that the same operator D defines K-homology classes in two different groups, 
[DM ] ∈ K0

G(C0(M)), [DM,Γ] ∈ K0(G ! ClΓ(M)) (Theorem 1.4). The order-0 symbol 
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σ(ξ) = i c(〈ξ〉−1ξ) (the symbol of F = D(1 + D2)−1/2) determines an element [σM ] =
[(C0(TM, π∗

TME), σ)] ∈ RKKG(M ; C0(M), C0(TM)). On the other hand the analogue 
of [DM,Γ] at the level of symbols is the class [σM,Γ] ∈ RKKG(M ; ClΓ(M), SΓ(M)) defined 
by the pair (SΓ(E), σ). Recall that the Hilbert SΓ(M)-module SΓ(E) was defined in 
Definition 4.5 for an arbitrary G-equivariant Z2-graded Hermitian vector bundle E. In 
our setting E is also a (left) Cliff(TM)-module bundle, and with this additional structure 
SΓ(E) also becomes a (left) ClΓ(M)-module.

Lemma 4.16. The pair (SΓ(E), σ) represents a class [σM,Γ] ∈ RKKG(M ; ClΓ(M),
SΓ(M)).

Proof. The only property that needs to be checked is that graded commutators [c(a), σ], 
for a ∈ ClΓ(M), lie in KSΓ(M)(SΓ(E)). It suffices to consider a ∈ C∞

c (M, Γ). Then

[i c(a),σ(ξ)] = 2g(a, ξ)〈ξ〉−1. (23)

Since a is a section of Γ, this vanishes identically for ξ ∈ TGM , so a fortiori its restriction 
to TGM lies in C0(TGM). Its differential in the ξ-direction satisfies the required estimate, 
so (23) is an element of SΓ(M) ⊂ KSΓ(M)(SΓ(E)). !

The next lemma provides a symbol analogue of the factorization [Dfν ] =
jG([ν])⊗̂G!ClΓ(M)[DM,Γ] from Theorem 2.5. Recall that the class [σν,c] ∈ KKG(C, SΓ(M))
was defined in Section 4.6 (just before equation (22)).

Lemma 4.17. [σν,c] = [ν]⊗̂ClΓ(M)[σM,Γ] ∈ KKG(C, SΓ(M)).

Proof. Equation (21) defining σν is a classical KK-product formula of Kasparov (cf. [6, 
Proposition 18.10.1]), applied to the classes [ν] and [σM,Γ]. !

Applying the lemma to equation (22) we obtain

index(αν) = jG([ν]⊗̂ClΓ(M)[σtcl
M,Γ])⊗̂G!ClΓ(TM)[∂

cl
TM,Γ]. (24)

4.8. End of the proof of Theorem 4.1

By Theorem 2.5 and equation (15), one has

[Dfν ] = jG
(
[ν]⊗̂ClΓ(M)([σM ]⊗̂M1ClΓ(M))

)
⊗̂G!ClΓ(TM)[∂

cl
TM,Γ].

Comparing this to equation (24), we see that the proof of Theorem 4.1 is completed by 
the following result, which is the symbol analogue of Theorem 1.7.

Proposition 4.18. [σM ]⊗̂C0(M)1ClΓ(M) = [σtcl
M,Γ] ∈ KKG(ClΓ(M), ClΓ(TM)).
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Proof. Note that

H := SΓ(E)⊗̂SΓ(M)ClΓ(TM) 3 C0(TM,π∗
TME)⊗̂C0(TM)ClΓ(TM)

3 C0(TM,π∗
TME)⊗̂C0(M)ClΓ(M)

as Hilbert ClΓ(TM) = C0(TM)⊗̂C0(M)ClΓ(M)-modules; thus the KK-elements on the 
left and right hand sides are naturally represented on the same ClΓ(TM)-module H . 
The representations of ClΓ(M) differ however; we denote the representation for [σtcl

M,Γ]
(resp. [σM ]⊗̂C0(M)1ClΓ(M)) by π0 (resp. π1), where for a ∈ ClΓ(M),

π0(a) = c(a)⊗̂1, π1(a) = 1⊗̂a

(here 1⊗̂a denotes the operator e⊗̂f %→ (−1)deg(e)deg(a)e⊗̂af).
The operator representing [σM ]⊗̂M1ClΓ(M) is σ(m, ξ)⊗̂1 = i c(〈ξ〉−1ξ)⊗̂1. The opera-

tor representing the product

[σtcl
M,Γ] = [σM,Γ]⊗̂SΓ(M)[fM,Γ] ∈ KKG(ClΓ(M),ClΓ(TM)),

can be taken to be the same as that in (17), namely

S0 = N1/2
1 (σ⊗̂1) + N1/2

2 (1⊗̂fM,Γ)

where the weights N2 = 1 − N1 ∈ Cb(TM) are as in equation (18); indeed the only 
additional condition that needs to be checked is the compactness of the commuta-
tors [π0(a), S0], and this follows from the observation that for a ∈ C0(M, Γ) one has 
g(a, 〈ξ〉−1ξ) ∈ SΓ(M), together with Lemma 4.13.

We perform a ‘rotation’ homotopy simultaneously on the operator S0 and represen-
tation π0. For t ∈ [0, 1] let

πt(a) = cos(π2 t)c(a)⊗̂1 + sin(π2 t)1⊗̂a, St = N1/2
1 (σ⊗̂1) + N1/2

2 fM,Γ,t,

where

fM,Γ,t(m, ξ) = sin(π2 t)i c(〈ϕm(ξ)〉−1ϕm(ξ))⊗̂1 − cos(π2 t)1⊗̂i 〈ϕm(ξ)〉−1ϕm(ξ).

It is clear that π0, π1, S0 coincide with the previous definitions. Let us check that this is 
a homotopy of Kasparov cycles. The commutator condition for the representation follows 
because [πt(a), fM,Γ,t] = 0 for all a ∈ ClΓ(M) and t ∈ [0, 1]. For f ∈ C0(M), the function 
f(1 − S2

t ) is the same as f(1 − S2
0) except for an additional cross-term

−2 sin(π2 t)N
1/2
1 (m, ξ) ·N1/2

2 (m, ξ) · f(m) · g
( ξ
〈ξ〉 ,

ϕm(ξ)
〈ϕm(ξ)〉

)
. (25)
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The product f(m) · g(〈ξ〉−1ξ, 〈ϕm(ξ)〉−1ϕm(ξ)) ∈ SΓ(M). Since N2 ≤ 1, Lemma 4.13
implies that (25) lies in C0(TM). From this it follows that πt(a)(1 −S2

t ) ∈ KClΓ(TM)(H )
for all a ∈ ClΓ(M).

After the homotopy, the representations of ClΓ(M) on H for the two cycles agree, 
and we are left with the operator

S1 = N1/2
1 (σ⊗̂1) + N1/2

2 fM,Γ,1, fM,Γ,1(m, ξ) = i c(〈ϕm(ξ)〉−1ϕm(ξ))⊗̂1.

Note that the graded commutator [σ⊗̂1, fM,Γ,1] is the function

2
〈ξ〉〈ϕm(ξ)〉g(ξ,ϕm(ξ))

and g(ξ, ϕm(ξ)) = g(ξ, ρmρ)m(ξ)) ≥ 0. It follows that the operator

[σ⊗̂1, S1]

is positive (and a fortiori positive modulo compacts). By a well-known criterion of 
Connes-Skandalis (cf. [6, Proposition 17.2.7]), the cycles (H , π1, S1), (H , π1, σ⊗̂1) are 
operator homotopic. !

Appendix A. The case of non-complete manifolds

This appendix follows up Section 1, and uses the same notation. Recall that on non-
complete manifolds, the main issue comes from the possible non-self-adjointness of the 
Dirac operator, so that K-homology classes have to be constructed with slightly more 
care. Adapting the techniques given in [12] or [13, Chapter 10], we generalize the con-
struction of the class [DM,Γ] ∈ K0(G ! ClΓ(M)) to the case where M is not complete. 
Throughout this section ∼ stands for equality modulo compact operators.

Let χ : R → [−1, 1] be a ‘normalizing function’, i.e. a continuous odd function which 
is positive on (0, ∞) and tends to 1 at ∞, and let H = L2(M, E). Cover M with 
relatively compact G-invariant open sets Uj and let f2

j be a G-invariant partition of 
unity subordinate to the cover. Let Dj be a G-equivariant essentially self-adjoint operator 
agreeing with D on Uj (for example, compress D between suitable G-invariant bump 
functions with support contained in a compact neighborhood of Uj). Let

F =
∑

j

fjχ(Dj)fj

which converges in the strong operator topology to a bounded self-adjoint operator.

Lemma A.1 ([13] Lemma 10.8.3). Let D1, D2 be essentially self-adjoint first order differ-
ential operators on M which restrict to the same elliptic operator on some open subset 
U ⊂ M . Let g ∈ C0(U). Then χ(D1)g ∼ χ(D2)g.
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Now, let a = h⊗̂α ∈ G ! ClΓ(M) where h ∈ C∞(G) and α ∈ Cl∞Γ,c(M). Choose a 
G-invariant compactly supported cut-off function f equal to 1 on the support of α, and 
let Df be an essentially self-adjoint operator that agrees with D in a neighborhood of 
the support of f . Then, the lemma above (combined with the G-invariance of f) shows 
that

[F, a] ∼ [χ(Df ), a] ; a(F 2 − 1) ∼ a(χ(Df )2 − 1).

Following the proof of Theorem 1.4 in the complete case, the operators on the right hand 
sides are compact, so that (H, F ) is a Fredholm module.

Moreover, if F ′ is an operator constructed the same way as F but from a different 
partition of unity, Lemma A.1 shows for every a ∈ G ! ClΓ(U),

a(FF ′ + F ′F )a∗ ∼ 2aχ(Df )2a∗ ≥ 0 modulo compact operators

(f being a function depending on a as above), which is a well-known sufficient condition 
for F ′ to be norm-continuously homotopic to F (see [26]). Therefore, the K-homology 
class [(H, F )] ∈ K0(G !ClΓ(M)) does not depend on the choice of the partition of unity 
(and the cover). Finally, if M is complete, a similar calculation shows that [(H, F )] =
[(H, χ(D))] in K0(G ! ClΓ(M)).

Appendix B. Proof of Proposition 1.8

The proof is standard and follows closely [13, Proposition 10.8.8]. We include it for 
the convenience of the reader. Let U be a G-invariant open set of M , and ι∗U : K0(G !
ClΓ(M)) → K0(G !ClΓ(U)) be the associated extension-by-0 homomorphism. Recall we 
want to prove that ι∗U [DM,Γ] = [DU,Γ].

Proof. Let (H, F ) := (L2(M, E), F = D(1 + D2)− 1
2 ) be the Fredholm module of The-

orem 1.4, and let P denote the orthogonal projection H → HU = L2(U, E) (given by 
multiplication by the characteristic function of the subset U). Then

PFP : HU → HU

is a bounded operator, and (HU , PFP ) is a Fredholm module over G ! ClΓ(U) (to see 
this, note that P commutes with G ! ClΓ(U), and P |HU = 1).

Let Q be the orthogonal projection to L2(M \U, E|M\U ), i.e. Q = 1 − P . In terms of 
the decomposition H = PH ⊕QH, the operator F becomes the 2 × 2 matrix:

F =
(
PFP PFQ

QFP QFQ

)
.

Notice that for a ∈ G ! ClΓ(U), aQ = 0. Moreover (recall ∼ stands for equality up to 
compact operators)
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aPFQ = PaFQ ∼ PFaQ = 0.

Consequently

aF ∼
(
aPFP 0

0 0

)
.

This shows that the restriction of the G ! ClΓ(M)-Fredholm module (H, F ) to a G !
ClΓ(U)-Fredholm module equals (HU , PFP ) up to a locally compact perturbation (the 
entries QFP , PFQ and QFQ in the matrix for F ) and a degenerate module (namely 
(QH, 0)). Thus

ι∗U [(H,F )] = [(HU , PFP )].

It remains to check that the cycle (HU , PFP ) for K0(G !ClΓ(U)) is operator homotopic 
to (HU , FU ) where FU = Σjfjχ(Dj)fj is the operator constructed in Appendix A. Let 
a = h⊗̂α, h ∈ C∞(G), α ∈ Cl∞Γ,c(U). Fix j and consider

a∗(PFPfjχ(Dj)fj + fjχ(Dj)fjPFP )a (26)

as an operator on HU . Note that Pa = a since α has support contained in the G-invariant 
set U . Thus

PFPfjχ(Dj)fja ∼ PFPafjχ(Dj)fj = PFafjχ(Dj)fj ∼ PFfjχ(Dj)fja.

Applying similar arguments to the other factors of P in (26), it follows that, modulo 
compact operators, the operator in (26) is

a∗(Ffjχ(Dj)fj + fjχ(Dj)fjF )a

and the latter is positive modulo compact operators, by the results of Appendix A applied 
to the operator F on M . We obtain that the operator in (26) is positive modulo compact 
operators. Since afj vanishes for all but finitely many j, we conclude that

a∗(PFPFU + FUPFP )a ≥ 0 mod K (HU ).

This proves (HU , PFP ) is homotopic to the cycle (HU , FU ) from Appendix A. !

Appendix C. Proof of Proposition 1.9

Again, the proof is standard and follows closely [13, Proposition 11.2.15] or [3]. It is 
included for the convenience of the reader.
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Recall the context: M = ∂M̃ is the boundary of a Riemannian G-manifold M̃ , and 
let W = M̃ "M . Consider the C∗-algebra extension:

0 → G! ClΓ(W ) → G! ClΓ(M̃) → G! ClΓ(M) → 0,

and the corresponding boundary map ∂ in K-homology. Let Ẽ → M̃ be an ungraded 
Clifford module bundle, D̃ a Dirac operator acting on sections of Ẽ, and [D̃W,Γ] ∈ K1(G !
ClΓ(W )) the corresponding K-homology class. The restriction to the boundary E =
Ẽ|∂M̃ becomes a Z2-graded Cliff(TM)-module bundle with the graded subbundles E±

being the ±i -eigenbundles of c(n), where n is the inward unit normal vector to the 
boundary. Let D be a Dirac operator acting on sections of E and [DM,Γ] ∈ K0(G !
ClΓ(M)) the corresponding K-homology class. We want to show that ∂[D̃W,Γ] = [DM,Γ].

Proof. Let ε > 0 such that (0, ε) ×M ⊂ W be a collar neighborhood of M for which G
acts trivially on the (0, ε) part. We then have the following morphisms of extensions

0 G ! ClΓ(W ) G ! ClΓ(M̃) G ! ClΓ(M) 0

0 G ! ClΓ((0, ε) ×M)

extension-by-0

G ! ClΓ([0, ε) ×M)

extension-by-0

G ! ClΓ(M) 0

0 C0(0, ε) ⊗̂
(
G ! ClΓ(M)

)

!

C0[0, ε) ⊗̂
(
G ! ClΓ(M)

)

!

G ! ClΓ(M) 0

Notice that the bottom extension is simply the cone extension, so that the associated 
boundary map is the suspension isomorphism

δ : K•+1(C0(0, ε)⊗̂(G! ClΓ(M))
)
→ K•(G! ClΓ(M)).

Since the class [D̃W,Γ] does not depend on the choice of the metric, we can equip (0, ε) ×M

with the product metric. This way, the class [D̃W,Γ] ∈ K1(G ! ClΓ(W )) identifies over 
the collar neighborhood with the exterior KK-product [D(0,ε)]⊗̂[DM,Γ], where D(0,ε) is 
the Dirac operator on (0, ε) and [D(0,ε)] ∈ K1(C0(0, ε)). But the map [D(0,ε)]⊗̂ . is inverse 
to the suspension isomorphism, so that

δ([D(0,ε)]⊗̂[DM,Γ]) = [DM,Γ]

The conclusion then follows from the naturality of the boundary map. !
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