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We show, under an orientation hypothesis, that a log symplectic manifold with simple
normal crossing singularities has a stable almost complex structure, and hence is Spin,,.
In the compact Hamiltonian case we prove that the index of the Spin, Dirac operator

twisted by a prequantum line bundle satisfies a [Q, R] = 0 theorem.

1 Introduction

A b symplectic manifold is a manifold M" (n even) equipped with a Poisson bivector =
such that 7"/? vanishes transversely along a hypersurface Z c M. The inverse 77! =
may be thought of informally as a symplectic form with a pole along Z, or more precisely
as a smooth section of A2(°T*M), where °TM is the b tangent bundle in the sense of
Melrose. b symplectic manifolds were introduced by Nest and Tsygan [21] in the context
of deformation quantization. They were studied extensively in [5, 8, 9], where it was
found that many well-known results from symplectic geometry have analogues in this
setting.

In [13], Guillemin, Miranda, and Weitsman described a formal geometric quan-
tization for compact prequantized b-symplectic manifold endowed with a Hamiltonian
action of a torus T assumed to have non-zero modular weights (see Definition 3.3);
under this assumption all of the reduced spaces are actually symplectic, and the formal

quantization was defined using the Guillemin-Sternberg [11] quantization-commutes-

Received November 13, 2020; Revised May 03, 2021; Accepted May 04, 2021
Communicated by Prof. Anton Alekseev

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

€202 Joquieydag g0 Uo Jasn Aleiqr] SUIDIPSIAl JO [00UDS ANSISAIUN UOIBUIYSEAN AQ LGOLBZ9/PE0Y L/8L/ZZ0Z/RI0NE/UII/W0o" dNo"olWapEedE/:S)Y WOl POpeojumod


https://doi.org/10.1093/imrn/rnab140

Log Symplectic Manifolds and 14035

with-reduction ([Q, R] = 0) principle. The authors proved the surprising result that the
formal quantization thus defined is finite dimensional and posed the problem of finding
a Fredholm operator whose equivariant index equals the quantization. Two possible
answers to this question were offered in [3]. The 1st approach involved an Atiyah-
Patodi-Singer-type index on a manifold with boundary obtained by removing a small
neighborhood of the hypersurface. The 2nd approach involved constructing a Spin,
structure on the whole manifold M, and taking the index of the Spin, Dirac operator.
It was proved that these two approaches agree and satisfy the [Q,R] = 0 principle,
hence also agree with the formal quantization of Guillemin, Miranda, and Weitsman.

In this article we revisit and extend the 2nd approach of [3] mentioned above. We
work in the more general setting, introduced and studied in [6], in which the symplectic
form is permitted to have poles along a simple normal crossings divisor. In this article
we will refer to such a singular symplectic form as a “log symplectic form,” in order
to avoid confusion with the more restricted b symplectic setting where the divisor is
required to be a smooth hypersurface. (Another suitable term would be “c symplectic
form,” where “c” is for “corner.”)

We observe that a log symplectic manifold with a simple normal crossing divisor
that admits global defining functions (Definition 2.5) possesses stable almost complex
structures (Corollary 3.15). Since stably almost complex manifolds are Spin,, we may
use the Spin, structure (and a prequantum line bundle) to define the “quantization” of a
compact log symplectic manifold in terms of the index of a Spin, Dirac operator. Given
a proper momentum map for the action, the regular reduced spaces are also compact
log symplectic manifolds [16]. This leads us to formulate and prove a [Q, R] = 0 theorem
in this context, extending the results of [3]. We explain how these results specialize to

the toric log symplectic manifolds considered in [6].

Notation and conventions. If V is a vector space, then V will denote the trivial vector
bundle with fibre V over the base (understood from context). If a Lie group G with Lie
algebra g acts on a manifold, the vector field generated by an element X € g is denoted

X, and its value at m € M is the derivative at ¢t = 0 of exp(—tX) - m.

2 Normal Crossing Divisors
2.1 Normal crossing divisors and the log tangent bundle

Let M™ be a connected manifold without boundary.
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Definition 2.1. By a (simple) normal crossing divisor (M,Z) we mean a finite
collection Z of embedded real codimension 1 connected hypersurfaces in M such that if
Zy,wnZye Zandp € Z; N---NZ, there is a local coordinate chart ¢: U — R” centred at
p that maps ZiNnu into a subset of the coordinate hyperplane x;=0 in R™. We refer to
such a chart (U, ¢) as a normal crossing chart. In the sequel we will omit the adjective

“simple.”

The definition implies that any n + 1-fold intersection of the hypersurfaces
is empty. It is well known that if Z is a normal crossing divisor, then the sheaf of
smooth vector fields tangent to all Z € Z is locally free and finitely generated, hence

corresponds to smooth local sections of a vector bundle T-M — M.

Definition 2.2. Let (M", Z) be a normal crossing divisor. The log tangent bundle Tz M
is the smooth rank n vector bundle over M whose sheaf of smooth sections consists of
local vector fields tangent to all Z € Z. The log tangent bundle is a Lie algebroid, with
anchor and bracket determined by the inclusion I'(T;M) C I'(TM).

Sections of the dual vector bundle T2 M may be thought of as singular 1-forms
with at worst simple poles along Z. For example, if f is a smooth function vanishing to
order 1 along one of the hypersurfaces Z € Z, and non-vanishing on M\Z, the singular 1-
form df/f may be thought of as a smooth section of the vector bundle T%M, since there
is an obvious way to make sense of its pairing with any smooth vector field tangent
to Z.

Definition 2.3. Sections of the exterior algebra bundle I'(A*TZM) = Q* (M, Z) will be
referred to as log differential forms. As a special case of Lie algebroid cohomology,
Q°*(M, Z) carries a de Rham differential and the corresponding cohomology groups are
called the log de Rham cohomology H* (M, Z).

Definition 2.4. For Z € Z there is a residue map

res,: Q*(M, 2) —» Q" 1(Z, 2N Z)

where ZNZ = {ZNW|W € Z,W # Z} is the induced divisor on the hypersurface Z. One

definition of res, is in terms of the contraction

res;(a) = t(eg)al,
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where e, € I'(TzM]|;) is the canonical non-vanishing section, given in any normal
crossing chart (U, ¢) mapping UNZ into the coordinate hyperplane x; = 0, by restriction
to U N Z of the local section x;9/9x; of Tz M.

Collectively the partially defined sections e, for Z € Z determine a canonical
basis for the kernel of the anchor map TzM — TM at every point in M.

Taking residues is compatible with de Rham differentials. For a log differential
form «, the residue res,(o) = O if an only if « may be regarded as an element of
Q (M, Z2\{Z}). In particular a log differential form may be regarded as an ordinary smooth
form if and only if all of its residues vanish. These considerations lead to a version of
the Mazzeo—Melrose theorem (cf. [8, 20] for the case without crossings, [6, Section A.24]

for the case with crossings): the logarithmic de Rham cohomology
HP (M, 2) ~HP(M) & [ [HP ' zp o [[HP 2z, nZp @ - (1)
i i<j

with the groups on the RHS being ordinary de Rham cohomology.

2.2 Orientations and stable isomorphism

Definition 2.5. Let Z C M be an embedded hypersurface. The sheaf of smooth real-
valued functions vanishing on Z is the sheaf of smooth sections of a real line bundle
Z,. Note that 7, is trivial if and only if Z admits a global defining function: a smooth
real-valued function f such that f~!(0) = Z and df|, is non-vanishing. If Z is a normal
crossing divisor, then we will say that Z admits global defining functions ifeach Z € Z

admits a global defining function.

For a normal crossing divisor Z, let

Iz =)L,

ZeZ

The line bundles 7z, det(TM) and det(T;M) are related by
det(TM) @ Iz ~ det(TzM), (2)

via the map on sections v ® f > fv. In general the vector bundles TM and T;M are not

isomorphic.
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Example 2.6. If M = S' and Z is a single point, then TzM is the non-trivial real line

bundle over S!.

Example 2.7 (2-sphere). Let M = S? be the unit sphere in R3 centred at the origin
x=y=2z=0.Let0 <0 <271, 0 < ¢ < r be spherical coordinates, where 0 is the
angle in the x,y plane, and ¢ is the angle to the positive z axis. Let Z = {Z} be the
hypersurface z = 0. The vector bundle Tz is trivial. Indeed, it suffices to produce one
non-vanishing global section: for example, take the vector field sin(¢)d,, which vanishes
only at (0,0,+1), and perform a rigid rotation by 7/2 about the x-axis, so that the
zeros sit at the points (0,+1,0) € Z; the resulting vector field represents a global non-
vanishing section of T;M. To obtain examples with crossings, we can add additional
hypersurfaces, for example, Z = {{x = 0}, {y = 0}, {z = 0}} is a normal crossing divisor
with TzM trivial.

Theorem 2.8. Let M be a manifold and let Z be a normal crossing divisor that admits

global defining functions. Then there exists an isomorphism
ROTM~RodTM. (3)

After choosing orientations on the line bundles Z,, the construction is canonical up to

homotopy.

Remark 2.9. It was pointed out to us that at least two related results already appear
in the literature. In the case of a hypersurface without crossing, Theorem 2.8 was stated

in [7, page 43, Remark] and proved in [15, Proposition 2.3].

Proof. We proceed by induction on the number of hypersurfaces in Z. Let Z/, Z =
Z' U {Z} be normal crossing divisors where Z contains one additional hypersurface Z.
By induction we may assume we have already constructed an isomorphism R@ Tz M —
R @ TM. It therefore suffices to construct a further isomorphism R@ ToM — R& Tz M.

There is a canonical map
1: TzM — T>M,

given by the obvious inclusion at the level of sheaves. We may find a global defining
function f for Z, and a vector field V tangent to Z’, such that Vf = 1 holds on a
neighborhood of Z; let p € C*°(M) be a bump function with support contained in this
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neighborhood and equal to 1 on Z. We have a block diagonal bundle morphism

f oy, ,
0 R®TzM—- RO T:M, (4)
L

which is an isomorphism away from Z. The strategy is to perturb the off-diagonal entries

near Z to obtain an isomorphism. Perturb (4) to

f oY
" 7 ):ROT:M - RO T;M. (5)

In (5), —pV is regarded as a bundle map R — Tz M that sends 1 € I'(R) to the vector
field —pV € ['(Tz M).

Clearly, (5) is an isomorphism on M\supp(p), so it suffices to consider points
near Z in the support of p. Modifying p if necessary, we may assume supp(p) is covered
by normal crossing charts centered at points z € Z. Let z € Z and let (U, (x; =
Fly r Xy X 100000 X)) be a normal crossing chart centered at z, where Z | U consists
of the hypersurfaces x; = 0, ...,x; = 0. Without loss of generality we may also arrange

that V|; = 9/9x;. Local generators for TzM on U are

0 0 0 d

Xy X T
0x, 0xy, 0Xp,q 0x,,

Local generators for Tz M are the same, except with x,9/9x, replaced with 3/9x;. With

respect to these local frames, the matrix representation of (5) is

X p 0
-0 X 0
0o o0 1,,

The determinant x7 + p? does not vanish on supp(p).
Up to homotopy, the construction described above only depends on homotopy
classes of global defining functions for the hypersurfaces in Z, or equivalently, on

choices of orientations on the line bundles Z,, Z € Z. [ |

Remark 2.10. Assuming M is connected, one convenient way to fix choices of
orientations of the line bundles Z, is to select a connected component of M\ U Z, and

then choose global defining functions that are > 0 on that component.
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Remark 2.11. To simplify notation in later sections, we have assumed each Z € Z is
connected, although this is not necessary in Theorem 2.8. A similar construction works
if 7z is trivial and if there is a defining function for each Z € Z defined only on a
neighborhood of UZ.

Remark 2.12. Suppose 7: M — X is a fibre bundle and Z = n~!(Zy) is the inverse
image of a normal crossing divisor Zyz on X that admits global defining functions.

Choosing a connection we obtain splittings

TM ~ n*TX @ ker(Tn),  TzM ~n*Tz X & ker(Tn),

and it is clear from the proof of Theorem 2.8 that the stable isomorphism R & TM =~
R @ TzM can be chosen compatible with these splittings.

Corollary 2.13. Any normal crossing divisor (M, Z) has a finite cover (11, 2) such that
TM and TZAM are stably isomorphic.

Proof. For any real line bundle E, the bundle of fibre-orientations of E is a two-fold
cover such that the pullback of E is trivial. Thus, for a suitable 2#Z _fold cover M, the

pullback of each of the line bundles Z, becomes trivial. |

Since rational Pontryagin classes are insensitive to real line bundles and finite
covers, we recover the following (see [3, | for the case without crossings, where this was

explained in terms of Chern-Weil representatives).

Corollary 2.14. For any (M, Z), TM and TzM have the same rational Pontryagin

classes.

See also [15] for comparison of characteristic classes for TM and Tz M.

3 Log Symplectic Manifolds

Definition 3.1. Let (M, Z) be a normal crossing divisor. A log symplectic form is a
closed log 2-form w € Q?(M, Z) such that the map TM — T M induced by contraction

with » is an isomorphism.

Example 3.2 (2-sphere). Leta € (—1,1). M = S? admits the log symplectic form

dz
w = —-
2n(z — a)

’
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for the divisor Z = {{z = a}}. One can easily produce examples with crossings, for

example, the log 2-form #d)fyzde with poles along the divisor {{x = 0}, {y = 0}, {z = 0}}.

3.1 Momentum maps

Let G be a compact connected Lie group with Lie algebra g, and let 3 C g denote the
centre. Suppose that G acts smoothly on M preserving the log symplectic 2-form w, and
such that each hypersurface Z € Z is mapped to itself. For X € g, let X;, (resp. X,,) denote

the corresponding vector field on M (resp. Z, for Z € Z).

Definition 3.3. The modular weight of Z € Z is the map c¢,: Z — g* defined by
(€7, X) = (X )res,(w).

Proposition 3.4. c, is constant and 3*-valued.

Proof. Recall that Z is connected. To see that c, is constant, use the Cartan homotopy
formula and the compatibility of res, with de Rham differentials. Then the fact that c,

is 3*-valued follows because it is a G-equivariant map Z — g*. |

It is convenient to work with a differential form representative for the image of w
in H2(M) under the Mazzeo—Melrose map (1). To this end we first describe the inclusion
of HP~1(Z) in HP (M, Z) at the level of differential forms.

Proposition 3.5. There exists a G-invariant closed log 1-form ¢, with support
contained in a G-invariant tubular neighborhood n,: U, — Z of Z such that res,(s;) = 1.
Moreover, there exists a G-invariant smooth non-negative function h, with hgl(O) =Z,

such that e4]y ; = 3d10g(hy) [y -

Proof. Suppose first for simplicity that there is a smooth function f such that (1)
f71(0) = Z, (2) df], does not vanish, and (3) df vanishes outside U,. Then ¢, = df/f,
h, = |f|? have the desired properties.

A smooth function with the properties (1)-(3) may not exist, but one can still
construct suitable ¢, h,. Identify U, with the total space of the normal bundle v(M, Z)
using a tubular neighborhood embedding. Choose a fibre metric on v(l,Z) and let
r: v(M,Z) — [0,00) be the radial function. Let x € C*(R) be a smooth monotone

1

non-decreasing function such that x(u) = u for u < 5 and x(u) = 1 for u > 1. The
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composition x o r? is identically 1 outside a neighborhood of Z in U, ~ v(M, Z), hence

can be extended by 1 to a smooth function s, on M. Define

1
ezlmz = §d10g(hz)|M\z-

Let U C Z be an open subset such that v(M,Z2)|; ~ U x R trivializes. Then, up to a
reparametrization, r2|U = x2 where x € R is the fibre coordinate, hence ALY is equal
to dx/x|y,, 7 on the subset of U;\Z where r < 1/2. It follows that ¢y, ; extends uniquely

to a globally defined log 1-form ¢, with the desired properties. |

The inclusion of HP~1(Z) in HP (M, Z) is represented at the level of differential

forms by wedge product with ¢,:
1€ QPH2) > eyt € QP (M, 2).
Recall that w is the log symplectic 2-form on (M, Z). The (degenerate) log 2-form

- 1
®O=w-— Zszngresz(a)) —3 z ezEyTeSz 7 (@) (6)
z zZw

has vanishing residues, hence is smooth (here res; 1, (w) := reszyoresy, (w) € Ris locally
constant, because taking residues commutes with d and dw = 0). And [@] € H2(M) is the
image of [w] € H2(M, Z) under the Mazzeo—Melrose isomorphism followed by projection
to H®(M). For X € g

(X = 1Xy)d+ D e5(Cz, X). (7)
Z

Equation (7) and Proposition 3.5 show that if the modular weight c, is non-zero, then
one expects a Hamiltonian function generating the flow of X to diverge like %log(hz)
near Z = hEI(O). In light of this qualitative difference between the cases ¢, = 0 and

c; # 0, it is convenient to make the following definition.

Definition 3.6. Let Z, be the subset of hypersurfaces Z € Z such that c¢; # 0. Non-
empty intersections N = Z; N --- N Z of elements Z,, ..., Z; € 2, will be referred to as
strata of (M, Z40)-
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The discussion above motivates the following definition, which is only a slight

re-wording of that in [8, 9].

Definition 3.7. Let (M, Z,w) be a G-equivariant log symplectic manifold, where Z is a
normal crossing divisor. The G action is Hamiltonian if there is a smooth G-equivariant

momentum map

piM\UZ,5— g

satisfying

(X = —d(u, X), VX e g,

and such that the map

1
a=u+ Z 3 log(hy)cy (8)
z

extends smoothly to all of M. By construction the pair (o, 1) satisfies 1(X;)o = —d(i, X),

hence (M, @, i) is a presymplectic Hamiltonian G-space.

Remark 3.8. The equations do = 0, (X))o = —d{i,X) say that [0 — ] defines a
class in the Cartan model for the equivariant cohomology Hé(M, R) (see e.g., [18] for
a brief introduction). Assuming M is connected, this equivariant cohomology class is
independent of the choices made in the construction (g5, Uy, 7;) up to an overall constant
shift of i by an element of 3*. Indeed, the Mazzeo—Melrose theorem shows that [®] €
H?(M,R) is independent of choices, so given any other [&' —ji'], the difference ®— &' = da
is exact. By averaging we may assume « is G-invariant. The momentum map equations
for i, i/ imply (i — i/, X) — 1(Xpp« is constant for any X € g, hence must be of the form

(¢,X) for some & € g*. By G-invariance & € 3*.

Example 3.9 (2-sphere). Revisiting M = S? from Example 3.2, the log symplectic form
w = dzdf/2n(z — a), a € (—1,1) is invariant under the action of S! by rotation about the

z axis with generating vector field X;; = —279/06. The modular weight is

The S! action is Hamiltonian with momentum map u(z,6) = —log(|z — al) + a’ defined

on M\{z = 0}, for any a’ € R.
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Remark 3.10. In [9] it is shown that under certain conditions the modular weights
are highly constrained. In particular, assuming M is connected, Z has no crossings, and
that each positive codimension symplectic leaf of the Poisson structure »~! is compact,
then the modular weights are either all zero or all non-zero and parallel. In the normal
crossing case there can be mixtures of zero and non-zero modular weights (see Section

6.1 in [9] for an example).

3.2 Products and minimal coupling

The category of log symplectic manifolds is closed under taking products, and more
generally under a minimal coupling construction that we briefly outline here (cf. [12,
25] for the symplectic case).

Let 7w : P — B be a principal bundle with compact connected structure group K.
Suppose (B, Z5, wp) is log symplectic. Let Z = 7 ~1(Z3) be the pullback normal crossing
divisor. Let # € Q!(P,¥) be a connection 1-form, and define a closed log 2-form w, €
Q%(P x ¢, pr, ' (2)) by

Wy = TT*C()B + d(pr2'9>‘ (9)

Then w, is log symplectic on a neighborhood of P x {0} C P x ¢*, with the same proof as
in the symplectic case. The action of K given by k- (p,§) = (k- p, Ad;_,§) is Hamiltonian
with momentum map —pr,, and the reduced space at 0 is (B, Zg, wg).

Suppose (9) is non-degenerate on P x Uy where Uy is an open neighborhood
of 0 in ¢* (e.g., this is automatic if B is compact). Let (F, Zp, wp, up) be a Hamiltonian
log symplectic K-manifold such that uz(F) C U.. Then the associated bundle P x; F
is log symplectic: the normal crossing divisor consists of the hypersurfaces Z xx F,
P xy Zp where Z € Z and Z; € Z5, and the log symplectic structure is apparent after re-
interpreting P xx F as the reduced space at 0 of P x £* x F (for log symplectic reduction
cf. [16]). Suppose that B carries an auxiliary Hamiltonian G-action with momentum map
wup and that P is a G-equivariant principal K-bundle with G-invariant connection 6.
Then P xx F becomes a Hamiltonian log symplectic G-manifold, with momentum map
obtained via reduction in stages. The 2-form and momentum map are induced by the

following K-basic forms on P x F:

w:n*wB+d(,uF,9)+wF, <M1X> Zn*<:u'BrX)+<:u’Fr6(XP)>/ XEQ‘

Example 3.11. Let B = S? be the unit sphere, and let P ~ SU(2) ~ S3 be the principal

S'-bundle over S? with connection 6 such that df = 7*Q, where  is 1/4r times the area
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form, and let us take wgy = Q2 to be the symplectic form. The minimal coupling 2-form (9)

is
wg=(1+&E*Q+ds-0, £ eLieS') ~R.

This is non-degenerate on the open set P x {§ > —1} C P x R. Let F = S? with S!-action,
2-form and momentum map as in Example 3.9. If the parameters a,a’ are chosen such
that up > —1, then M = P xgq F acquires a log symplectic structure. In fact P is an
SU(2)-equivariant principal S!'-bundle, and the action of SU(2) on the base B = S? is

Hamiltonian. Hence, M becomes a log symplectic Hamiltonian SU(2)-space.

3.3 Prequantum data

Following [4, Chapter 6], we will say that a presymplectic Hamiltonian G-space (M, @, jt)
is prequantizable if there exists a G-equivariant complex line bundle L such that the
image of its equivariant 1st Chern class Cf(L) in Hé(M, R) is [@ — il. By [4, Proposition
6.11], one can equip L with a Hermitian structure and Hermitian connection V such
that the 1st Chern form of (L, V) is @ and such that the infinitesimal g-action p’ on I'(L)

satisfies Kostant's formula:

PP X) = Vi + 27/ -1(j1, X). (10)

In the opposite direction, given (L, VF) with (V})? = —27./—1®, one may lift the g-
action on M to L using (10), and then the condition requires that the infinitesimal action
integrates to a G-action. The data (L, VL) are referred to as prequantization data for
M, w, v).

Let (M, Z,w) be a log symplectic manifold. Recall that the Mazzeo-Melrose
isomorphism determines a map H?(M, Z) — H?(M), which sends [w] to [@], where &
is constructed as in (6). One may furthermore construct iz as in equation (8) and by
Remark 3.8 the class [ — ] + 3* € Hé(M, R)/3* is independent of choices.

Definition 3.12. (M, Z, w, 1) is prequantizable if the image of [ — ]+ 3* € Hé(M, R)/3*
equals the image of the equivariant 15! Chern class cf(L) of a G-equivariant complex line
bundle L. In this case, after a shift of u, i by an element of 3*, (M, ®, 1) is prequantizable
as a presymplectic Hamiltonian G-space. We define prequantization data (L, V') for
(M, Z,w,u) to be prequantization data for the presymplectic Hamiltonian G-space
M, o, ).
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Remark 3.13. Suppose G = T is a torus, M is connected, and M” # (. Then according
to [4, Example 6.10], (M, @, it) is prequantizable iff [®] is integral and i (p) lies in the
weight lattice of T, for some p € M7.

Example 3.14 (2-sphere). Returning to Example 3.9, the regularized form & is integral
if its integral over S? is an integer n. The latter equals the principal value integral of

w = dzdf /27 (z — a) over S?, which is

1 dz l—-a
n=>PV = log .
_1Z—a 14a

This forces the parameter a to lie in a countable subset of (—1,1). Recall that the
momentum map wu(z,0) = —log(|z — a|) + @’ where a’ € R. For any pair of integers
n;, ny such that n, — n; = n, a’ can be chosen such that x takes the values n;, n, at the
fixed-points z = 1, —1, respectively. We can arrange that i agrees with u at the fixed

points, hence the lift (10) integrates to an action of S!.

3.4 Spin, structure

Let (M, Z,w) be a log symplectic manifold where (M, Z) is a normal crossing divisor.
The log 2-form » can be regarded as a fibre-wise symplectic form on the log tangent
bundle TzM, that is, (T;M, ») is a symplectic vector bundle. On any symplectic vector
bundle (V, wy,) — M, one can find a compatible complex structure, which is by definition
a complex structure J € End(V), J> = —1 such that gy(,) = wy(-,J) is a positive
definite symmetric bilinear form on V. The space of compatible complex structures is
contractible, hence in particular the choice of such a J is unique up to homotopy. This

leads to the following corollary of Theorem 2.8.

Corollary 3.15. Let (M, Z,») be a log symplectic manifold such that Z admits global
defining functions. Then M admits a stable almost complex structure. After choosing
orientations on the line bundles 7, for Z € Z, the construction is canonical up to

homotopy.

Proof. By the remarks preceding the statement of the corollary, there is a compatible
complex structure on the symplectic vector bundle TzM, which is unique up to
homotopy. By Theorem 2.8, R? @ TM ~ R? @ TzM, and the isomorphism is determined
up to homotopy by choices of orientations on the line bundles Z, for Z € Z. Using the

isomorphism, we transfer the complex structure on R? & TzM to R? @ TM. |
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Remark 3.16. If (M, Z, w) is oriented (det(TM) is trivial) and log symplectic (det(TzM)
is trivial), then by (2), Zz admits a global non-vanishing section. Assuming furthermore
that Z does not have any crossings, a global non-vanishing section of Z; is the same

thing as a global defining function for Z.

Remark 3.17. It was pointed out to us that in the case of a single hypersurface a very

similar result appears in [7, Section 4], in the context of folded symplectic structures.

A stable almost complex structure determines a Spin, structure (see e.g., [4,
Appendix D], [7, Section 5]). A somewhat different direct construction of this Spin,
structure was outlined in [3, Remark A.11]. Choosing a Riemannian metric on M, it is
convenient to think of the Spin, structure in terms of a corresponding spinor module,
that is, Z,-graded hermitian vector bundle S — M, whose fibres S,, form a smooth
family of irreducible modules for the family of Clifford algebras CI(T,,M), that is, there
is given an isomorphism c: CI(TM) — End(S). The Z,-grading on S is the eigenspace
decomposition for the chirality operator c¢(I'), where I' = (v/—1)"2¢, --.e, in terms
of a local oriented orthonormal frame e, ...,e,. Away from Z, the anchor map is an
isomorphism, and this may be used to construct an isomorphism of Z,-graded complex

vector bundles

Shnuz = ATYO(M\ U 2). (11)

On the RHS the Z,-grading is given by the chirality operator determined by the
orientation on TM and not by the symplectic orientation on TzM; put differently (11)
maps the even subbundle S* to forms of even (resp. odd) degree over components of

M\ U Z where the orientations of TM and Tz;M agree (resp. disagree).

Remark 3.18. This slight subtlety concerning the Z,-grading is important. It is closely
related to the “cancellations” noted between the quantizations of pairs of reduced

spaces in a neighborhood of the hypersurface in [13].

A spinor module E has an “anti-canonical line bundle” defined by

This is a complex line bundle (by Schur’s lemma). In case E arises from a stable almost

complex structure, say, from a complex structure on R? & TM,

£ = det(RP & TM).
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In our situation, E = S arises from a complex structure on R? @ TM ~ R? @ TzM,
where Tz carries an w-compatible complex structure, and R? ~ C carries its standard

complex structure. Since det:(C) is trivial, we deduce that in our setting
L ~ det(TzM). (12)

3.5 Quantization

A choice of connection V on a spinor module E determines a Spin, Dirac operator 4,

defined by the composition
v sk g# C
I'E) > T(T'TMQ®E) - TI'(TM®E) - I'(E).

In our case the spinor module of interest is E = S ® L, where S is the spinor module
associated to the stable almost complex structure as in Corollary 3.15, and L is a
prequantum line bundle. We will denote the resulting operator #; it is an odd elliptic
operator acting on smooth sections of a Z,-graded Hermitian vector bundle S ® L over
the Riemannian manifold M. If M is compact, HL has a well-defined Fredholm index,

denoted index((;fL), which is independent of the choices of metrics and connections.

Definition 3.19. Let (M, Z,»,L) be a compact prequantized log symplectic manifold,
where Z is a normal crossing divisor that admits global defining functions. Let S
be the spinor module obtained from the stable almost complex structure on M and
choices of orientations on the line bundles Z, for Z € Z. We define the quantization or
Riemann-Roch number of (M, Z,w,L) to be the index of the Dirac operator index(aL) €
Z. In the G-equivariant case, we may take the equivariant index indexG(aL) € R(G), the

representation ring of G.

The index theorem gives the following formula for the Riemann-Roch number:
index(#) = / A(TM)Ch(L)/?Ch(L) = / Td(TzM)Ch(L). (13)
M M

The 2nd expression follows from (12) and Corollary 2.14. In the equivariant case, note
that since G preserves Z, the fixed-point submanifold M9 of g € G is automatically
transverse to the image of the anchor map TzM — TM. It follows that each fixed-point

component F C MY acquires a normal crossing divisor Z; = {Z N F|Z € Z} admitting
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global defining functions, and the anchor descends to a g-equivariant isomorphism
TZM|F/TZFF ~ VF
where vy is the normal bundle to F in M. At each point m € F, TzM|,, is a complex

representation of the cyclic subgroup generated by g, hence the fixed subspace Tz F|,,

and the quotient vg|,, are both complex. One has the following version of the fixed-point

formula
Td(Tz,F)ChY(L)
d , 14
ln eXG(a )(g) FCZZVIQ/ Chg lvlgl) ( )

where vg’l C v ® C is the —+/—1-eigenbundle for the complex structure, and F carries

the orientation induced from the orientations on M, vg.

Remark 3.20. As a consequence of (13) and (14), the quantization of (M, Z,w,L)
depends only on the product orientation on 7z (not on the individual orientations of the
Z,), or equivalently, by (2), on the induced orientation on M. Reversing the orientation

reverses the sign of the quantization.

Example 3.21. Let M = S? be the unit sphere in R® equipped with the log symplectic
form w = dzd#/2n(z — a), a € (—1,1), Z = {{z = a}} and Hamiltonian S' action with
generating vector field X;, = —279/00 and momentum map p© = —log(lz — al) + @
(Examples 3.2 and 3.9). From Example 3.14, w is integral if n = log |(1 — a)/(1 + a)| € Z,
and in this case for any n,,n, € Z with n, — n; = n there is a choice of a’ such that
Wl,y = ny, ml,—_, = n,. Applying the Atiyah-Bott formula (14), the S!'-equivariant

quantization is

t”l £

-t 1-t

indexg (#")(t) = € ZIt] = R(SY). (15)

Note that in the more familiar symplectic setting, the weights for the S! action at the
fixed points would have opposite signs. Here the signs are the same since we use a
complex structure compatible with the log symplectic form, and the latter undergoes a
sign flip across the hypersurface z = a. The contribution from z = —1 has an overall
minus sign from the induced orientation. The result is a (virtual) representation of S of

dimension n.
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Example 3.22 (Minimal coupling). The minimal coupling construction from Section
3.2 leads to further examples. Suppose the base (B, wp) and fibre (F, wz) both satisfy the
conditions in Definition 3.19. Then the minimal coupling space M = P x B satisfies the
conditions in Definition 3.19 as well. Let Qp = Qr , —Qp _ € R(K) be the quantization of
the fibre, where Qp | are representations of K (the Z,-graded components of the kernel
of #*¥), and let Qp + = P xg Qp . be the associated bundles. The quantization of M is the

difference
indexG(aLB‘ggF'*) — indexG(aLB@’QF"), (16)

where Ly — B is the chosen prequantum line bundle on the base, and #® is the Dirac
operator on the base. There are various approaches to (16). One approach is to use
the Atiyah-Singer theorem for families, which implies, by comparing index formulas,
that the index of the Dirac operator on M equals the index of the Dirac operator on B
twisted by the class [#M/B] e K%(B) determined by the family of Dirac operators on the
fibres of M — B. In this case the Z,-graded components of the kernel of the family
have constant dimension, forming the vector bundles Qr , and Qr _, respectively, hence
[#M/B] = [Qp 1 -[QF _]€ K%(B), and (16) follows. For slightly more abstract approaches,
see for example, [2, Remark 3.7] or [1, Theorem 3.5] (in the latter, one needs to lift ¥ to
a K = H-transversely elliptic operator on tot(P), and take H-invariants on both sides of
the equation).

For the case of the S?-bundle over S? described in Example 3.11, we may use the
result of Example 3.21 for the fibre. Suppose for example that a, a’ are chosen such that
0<n, <ny henceQp, =C, & ---®C,,_;, Qp _ = 0. On the other hand, Ly = P xa C;.

Hence, the SU(2)-equivariant quantization is

na n2
. OG
Y indexg, (7Y = P Y
j=ni1+1 j=ni1+1

where O(j) = P xq C;, V; is the irreducible representation of SU(2) with highest
weight j.
4 Non-Abelian Localization and [Q,R] =0

In this section we turn to the non-abelian localization formula and the [Q,R] = 0

theorem. We adapt an approach due to Paradan [22] in the compact symplectic setting,
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based on deformation through transversely elliptic symbols. Throughout this section
we assume (M, Z,w, u) is a compact Hamiltonian log symplectic manifold.

We will furthermore assume that the momentum map w: M\ U 2, — g* is
proper (see also Lemma 4.8). Although this condition was not needed to make sense of
Definition 3.19, it becomes relevant in formulating and proving the [Q, R] = 0 theorem.
In particular, if 4 is not proper, then 1 ~1(0)/G may be non-compact, in which case

Definition 3.19 does not apply to the reduced space.

Example 4.1. For a simple example where ;=1 (0) is non-compact, consider M = S? x
5% © S' with

9
o1 Xy = —2m— —2r—, pu=—log(|z;|) + log(|z,)),

using notation as in Example 3.9. The momentum map is defined on the subset M\UZ =
{z,z, # 0}. The fibre 1 ~!(0) is the intersection of this subset with {|z;| = |z,}.

Remark 4.2. If M is compact and the divisor Z does not have any crossings, then the

momentum map pu: M\ U 2, — g* is automatically proper.

4.1 Kirwan vector field

Choose an invariant inner product on g that we use to identify g >~ g*. Let T be a maximal

torus with Lie algebra t >~ t*, and let t be a positive chamber.

Definition 4.3. The Kirwan vector field is the G-invariant vector field x on M\ U Z

given by the formula
K(m) = (u(m)),,(m), meM\UZ,. (17)
Equivalently, « is the Hamiltonian vector field for the function —|u?/2 on M\ U Z0-

Proposition 4.4. Let (M, Z,», 1) be a compact Hamiltonian log symplectic manifold.

The vanishing locus of the Kirwan vector field « is

c=G-|J M nultp. (18)

et

The set B C t} of B such that M# N u=1(B) # ¢ is finite.
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Proof. The description (18) follows immediately from the definition of « (cf. [14]). Since
M is compact, the set St(IM, t) of infinitesimal stabilizer types for the T action is finite.
If B is infinite, then one of the MY with 0 # h € St(M, t) would have to occur infinitely
many times in the list (M#) pen- Hence, the set BN h would be infinite. The momentum
map condition implies that the projection yy« of the momentum map to h* is locally
constant on MY. Therefore, for 8 € BNbh, Mg must take the value 8 on the components
of MY intersecting MY N 1~ (B) non-trivially. Since M is compact, MY has finitely many

components, and this is a contradiction. [ |

Remark 4.5. The set C in (18) coincides with the critical locus of the Hamiltonian
—llell?/2.

In Paradan’s approach [22], one uses the Kirwan vector field to deform the
symbol of the Dirac operator in the space of transversely elliptic symbols. In our
situation « is only defined on M\ U Z_,. We now explain a straight-forward method
of modifying « so that it extends smoothly to M, in such a way that the vanishing locus

(18) is unchanged.

Definition 4.6. Fix ¢ > 0 and let log, : [0, 00) — [log(e), c0) be a smooth monotone non-
decreasing modification of the function log, such that log, (|x|) = log(|x|) for |x| > 2¢,

log, (Ix|) = log(e) for |x| < €.

Definition 4.7. Fix ¢ > 0 and define

=+ ZZZ % log, (hz)c;.
In other words we have replaced log with log, in (8). Similarly, define the degenerate
smooth 2-form @ by replacing s, with dlog, (h,) in (6) (recall ¢, | M\Z = d3 log(hy) |
M\Z). The pair (w, &) is smooth on all of M and satisfies the momentum map equation
1(Xypo = —d{i, X). Let k be the G-equivariant vector field on M defined as in (17) but
with & in place of u. We will write ji, k¥, instead of [, K when we want to emphasize the

dependence on e.
The vanishing locus of k is

C=G- U MP N L(B). (19)

et
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(Note however that since w is degenerate, the vanishing locus of k¥ is no longer the
same as the critical locus for —|/jz||?/2.) We will argue that for ¢ sufficiently small, the

vanishing loci (18) and (19) coincide.

Lemma 4.8. Let (M, Z,w,u) be a compact Hamiltonian log symplectic space. Then
w: M\UZ_, — g* is proper if and only if for each stratum N = Z, N---NZ, Z; € Z,,, the
cone generated by non-negative linear combinations of the modular weights ¢, ..., ¢z,

is strongly convex.

Proof. If Czy1+1Cz, do not form a convex cone, then some non-zero non-negative linear
combination of them vanishes. Then using (8) and since & is bounded on M, it will be
possible to choose a sequence of points p,, € M\ U Z_, approaching N such that |u(p,)|
remains bounded. Hence, 1 is not proper. The other direction is similar, again using

equation (8). [ |

Lemma4.9. LetN =Z;N---NZ; be a stratum of (M, Z_). There is an open subset tly C
g* containing span{cy , ..., ¢z }\{0} and invariant under non-zero scalar multiplication, as
well as an open neighborhood Uy of N in M such that if X € 4{;; then X}, does not vanish

on Uy.

Proof. Since non-vanishing is an open condition (and invariant under non-zero scalar
multiplication of the generator X), it suffices to consider the vector field generated by

some X € span{ch,...,cZk}\{O} on N. Let
J
be non-zero. By Definition 3.3,

UX7)resy (w) = Z tj<CZi/CZJ-> =1, eR.
J

The constants r;, i = 1, ..., k cannot all be zero because
Z t,r;, = Z titjics, cz) = IX11* > 0.
i i,j

We conclude that X;; does not vanish on the intersection I, since its contraction with

some residue of w does not vanish. [ |
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Lemma 4.10. Assume u: M\UZ,, — g* is proper. Then there is an open neighborhood

U” of UZ 0, and an ¢” > 0 such that for all ¢’ > ¢ > 0, k, does not vanish on U”.

Proof. We will use the notation from the previous lemma. Let Z, N---NZ, =N € N/
range over strata of (M, Z_,). We may choose an open cover {Uy}yc of UZ such that
(1) Uy C Uy, (2) forall Z € Z o not intersecting N, the function |hy,| | Uy > 6§ > 0.

Recall

- _ 1
He = [ — Z 2 log, (hz)cz,
Z

where /i extends smoothly to M, hence is bounded. By properness ¢, ..., Cz, generate a
strongly convex cone. If ¢ is small, it follows that in Uz/v and sufficiently near N, ji, is a

small perturbation of
L 1
J

More precisely, there is an open set Uy, C Uy, with Uy NN = Uy NN, such that iz, | Uy
takes values in the open set iy, C g*. (We emphasize that the fact that ¢, , ..., ¢, generate
a strongly convex cone is being used here.) The previous lemma implies that k, does not
vanish on Uy. There are finitely many NV to consider, hence taking ¢ sufficiently small,
we can ensure this holds for all N € V. Then take U” = Uy Uy n

Corollary 4.11. Assume p: M\ U Z,, — g¢* is proper. For ¢ > 0 sufficiently small the

vanishing loci C = C, and wu, it agree on C.

Proof. Since
_ 1
H=p— ; 2 log(hz)cy,

we see that by choosing ¢ sufficiently small, we may ensure pu, i, agree everywhere
except on an arbitrarily small neighborhood of UZ . In particular we may choose €’ >
€ > 0 sufficiently small that p, i, agree on M\U”, where U”, ¢” are from Lemma 4.10.
The result follows. |

From now on we assume ¢ is as in Corollary 4.11, hence k is a smooth vector

field on M with vanishing locus C (equation (18)).
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4.2 Paradan-type deformation

Having constructed a suitable G-equivariant map u: M — g* >~ g and associated vector
field k, we will now apply the general results of Paradan [22] and Paradan—Vergne [24]
to deduce a [Q, R] = 0 theorem.

Definition 4.12. Assume we are in the setting of Definition 3.19. We will identify
TM ~ T*M using the Riemannian metric. Let £ € T*M. The symbol of the Dirac operator
#* is o (€) = c(¢), Clifford multiplication on the pullback of the spinor module S ® L to

T*M. Using the vector field k we define a deformed symbol
o(§) =c —k).

The symbols o, ¢ are homotopic (through the family ¢ — c(§—tk), t € [0, 1]), hence
define the same class in the X-theory K%(T*M). Following Paradan [22] we will consider
o as a transversely elliptic symbol, in order to take advantage of the extra flexibility
allowed for homotopies of such symbols.

Let Y be a (possibly non-compact) G-manifold, and let T;Y C T*Y be the
conormal space to the G-orbit directions. The compactly supported G-equivariant
K-theory K%(T’&Y) can be described in terms of equivalence classes of pairs (E,y),
where E is a Z,-graded G-equivariant vector bundle over T;Y, and y € End(E) is a
G-equivariant odd bundle endomorphism that restricts to an isomorphism outside a

compact set. Atiyah [1] defined an analytic index map
index;: K%(TLY) — R™(G), (20)

extending the more familiar analytic index map K%(T* Y) — R(G), where R~*°(G) is the
formal completion of the representation ring, the set of possibly infinite formal integer
linear combinations of irreducible characters x, where A is a dominant weight.

The restriction of o to T;M determines a class [o] € K%(TEM). Since the analytic

index map (20) extends the ordinary analytic index map, we have
index;(#") = index ([5]). (21)
Since c(§ — k) is invertible except when £ = k(m), the subset of T;M where

o fails to be invertible is C = ¥ ~1(0y,) C T:M, the vanishing locus of k viewed as a

subset of the zero section in T;M. Atiyah [1] established an excision-type property of
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the index that applies in this situation. Let Uz be a G-invariant open neighborhood of
Cp=G- (MP N u=1(B)) C C. We may assume the Ug, B € B are sufficiently small that
Uy NUg, = 0 for B # B,. Let 54 be the restriction of & to T*Uy; since o | TgUs
is invertible outside the compact subset Cﬁ C TEUﬁ, we obtain a well-defined class

logl € K%(T}‘;Uﬂ). Then the excision property (and (21)) says that the equation

index;(#") = index,([5]) = ) index ([5,]) (22)
BeB

holds in R~*°(G). Equation (22) (or more explicit versions thereof, cf. [24, Theorem 8.6])

are referred to as non-abelian localization formulas in K-theory.

4.3 The [Q,R] = 0 theorem

We now formulate a [Q,R] = 0 theorem for compact Hamiltonian log symplectic
manifolds in the special case that G acts freely on =1 (0).
Let (M, Z, w, 1) be a Hamiltonian log symplectic manifold. Assume G acts freely

on 1~ 1(0). Then one can show [16] that

(@ u~1(0) and M, = 1~ 1(0)/G are smooth. An orientation on M induces an
orientation on M.

(b) For each Z € Z that intersects ©~1(0), Z, = (Z N w~1(0))/G is a smooth
hypersurface in M. Hence, there is a normal crossing divisor Z; in M. If Z
admits global defining functions then Z, does as well.

(c) There is a unique log symplectic form w, on (M,, Z,) such that p*w, = t*w,
where p: ©71(0) — M, is the quotient map and ¢: ©~1(0) < M is the
inclusion map. If L is a G-equivariant prequantum line bundle on M, then
Ly = L|,-1(0)/G is a prequantum line bundle on M.

(d) There is a G-equivariant diffeomorphism ¢: 1 ~1(0) x Uy > UCM, where
U, is a G-invariant open neighborhood of 0 € g* and U is a G-invariant open
neighborhood of 1 ~!(0) in M having the two properties: (1) for each Z € Z,
e lZNU)=ZNu10) x U, (2) if prj, j = 1,2 are the projection maps to
the 1st and 2nd factors respectively in £ ~1(0) x Ug+, then

¢*w = prip*w, + d(pr,, prio)

where 6 is a connection on the principal G-bundle p: £~1(0) — M,.

All except (d) are routine.
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Theorem 4.13. Let (M, Z,w, 1, L) be a compact prequantized Hamiltonian log symplec-
tic manifold such that Z admits global defining functions and u is proper. Assume G
acts freely on 1 ~1(0) and let (M,, Z,, ®,) be the reduced log symplectic manifold with

prequantum line bundle Ly, and the induced orientation. Then
. L \G . L
index;(#y)" = 1ndex(aﬂfl’0).

Remark 4.14. In [3] this result was proved in the special case where the divisor Z
has no crossings and the modular weights are non-zero. Under these assumptions the
complement M\ U Z is a symplectic Hamiltonian G-space with proper momentum map.

This made it possible to deduce the result from a theorem of Ma and Zhang.

Remark 4.15. Theorem 4.13 is closely analogous to the symplectic [Q, R] = 0 theorem
[17]. We comment that there is a very general [Q, R] = 0-type theorem due to Paradan and
Vergne [23] that applies to arbitrary G-equivariant Spin, Dirac operators on compact
manifolds, hence applies to the operator JZLV[. However, the Paradan-Vergne result is
different from Theorem 4.13; in particular their result employs a different momentum
map and moreover index(#%,)¢ can have contributions from more than one of its level

sets.

Using a shifting trick established in [16], Theorem 4.13 implies a similar result

for the multiplicity of any irreducible representation V, € R(G) with highest weight A:

Corollary 4.16. Let (M, Z,w, 1) be as in Theorem 4.13. Assume G, acts freely on w ).
Let M, = u~'(1)/G, be the reduced log symplectic manifold [16], with prequantum line
bundle L, = (L] ,1,) ® C_,)/G,, and the induced orientation. Then

(indeXG(aﬁ/[) ® V;‘)G = index(&fﬁ}k).

Proof. Let O C g* denote the coadjoint orbit containing —A equipped with the standard
Kirillov—-Kostant-Souriau symplectic form and compatible complex structure. It admits
the prequantum line bundle E = G x5 C_, — G/G, ~ O, and the index of the
corresponding twisted Dirac operator is V}. By the shifting trick M, is the reduced space
at 0 of the product M x O. Applying Theorem 4.13 to M x O yields

(indexG(alLVI) ® Vi“)G = indeXG(aﬁ/IIZ;EO)G = index(aﬁ/}k).
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We will deduce Theorem 4.13 from general theorems due to Paradan [22] and
Paradan-Vergne [24]; these authors studied equation (22) in detail for deformations of
Dirac-type symbols via G-equivariant maps M — g, as is the case in our situation, where
the deformation k is associated to the G-equivariant map u: M — g* ~ g. We first prove

a lemma.

Lemma 4.17. Let (M, Z,»,u) and L be as in Theorem 4.13. Then taking G-invariants of

both sides of the non-abelian localization formula (22) yields

indexG(aL)G = indeXG([crO])G, (23)

or in other words, the only contribution to the trivial representation in (22) comes from

B =0.

Proof. A criterion for exactly this result is given in [24, Theorem 9.6] (see also
Definitions 7.1 and 9.2 as well as the paragraph below Theorem 8.6 of [24] for
explanations of the notation). To state it, we introduce some notation. We shall need
to consider vector bundles carrying more than one complex structure below. If V is a
real vector bundle equipped with a complex structure I € I'(End(V)), then we write
(V,D0, resp. (V,D%! for the ++/—1, resp. —/—1 eigenbundles of I in V ® C.

Let 0 # B € B, and let M; C M’ be the union of components of M” that
intersect ©~!(B) non-trivially. Let v be the normal bundle to M s in M. We may equip
v with the complex structure J; = Ag/|Ag|, where A, denotes the (skew-symmetric)
endomorphism of v given by the action of 8. Then the complex exterior algebra A(v, Jﬂ)o'1
is a Cl(v)-module. Let g5 C g be the infinitesimal stabilizer of g under the adjoint
action. We regard g/g, as a complex vector space, with complex structure j; = adg/|adgl;
equivalently, since g e t_, (g/g/g,jﬁ)l'0 is a sum of positive root spaces. Then the criterion
in [24, Theorem 9.6] states that it suffices to show that the (locally constant, real)
eigenvalue for the action of b = —/—1p on the CI(TMp)-spinor module

Sg = Homg,, (A, Jp)*!, S ® Liyy,) ® det(g/gg,75)""

is positive. (Note that there is indeed only a single eigenvalue for each component of
My by Schur’s lemma, because b commutes with the Cl(TMﬂ)—action.) This eigenvalue is

equal to one half the action of b on the anti-canonical line bundle of Sg:

. 2
Ly = det(v,Jp)"° ® (det(g/gg.jp)"")” ® det(TzM, )"0y, & L2y, (24)
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where we used equation (12) for the anti-canonical line bundle of S. The hypersurfaces
in Z are automatically transverse to My, because they are preserved by the G-action.
Thus TzM|y, =~ Tzny,Mg ® v, and since § acts trivially on Tzqy;, My, there is no harm

in omitting this in (24), that is, it suffices to consider the action of b on the line bundle

5 = det(v,Jp)'* @ (det(9/55.J5)°")" @ det(v, )"y, @ L2y, (25)

We are now in essentially the same situation encountered in the symplectic setting.
Since the action is locally constant on My, it suffices to study (25) at a single point m
in each component of C4. The eigenvalues for the action of b on (g/gﬂ,jﬂ)o'1 are negative
by construction. The fibre v,, is a direct sum vy, ® g/gz, where g/gg is identified with
the orthogonal complement to g4 in g and is embedded in v,, as a subset of the G-orbit
directions. Note that the complex structure j; on g/g, is compatible with the restriction

of the log symplectic form to g/gg C v,,: for X € g/gg,
W (X, (@dgX) ) = —d,y, (1, X) ((adgX)y,) = —(ad3X, X) = ladgX|* > 0

where in the 1st equality we used the momentum map equation, in the 2nd equality we
used equivariance of the momentum map (d,,u(Yy,) = —ady = adlg Y, as u(m) = B and
using g ~ g*), and in the 3rd equality we used that ad, is skew adjoint. Thus, performing
a small homotopy of J if necessary, we may assume that J preserves g/gz C v, and
equals j; on this subspace; it is then clear that the eigenvalues of b on (g/gﬂ,J|g/gﬁ)1'0
are positive. Hence, after cancelling the g/g; contributions, we are left to consider the

action of b on the complex line
det(vy,, Jp)'° ® det(vy,, N0 @ L2

The eigenvalues of b on (v;n,Jﬁ)l'0 are positive by construction, the eigenvalues on
(v, 'O have mixed signs, but the negative ones cancel with the corresponding
eigenvalues for the action on (v;n,Jﬁ)l'O. Hence, the eigenvalue for the action of b on
det(v;n,Jﬁ)l'0 ® det(v,,J)1? is non-negative. On the other hand, equation (10) shows that

the eigenvalue of b on L, is 27| B|1% > 0. |

Proof of Theorem 4.13. Since G acts freely on 1 ~!(0), there is a direct sum decompo-

sition

TM|M—1(O) :p*TMO @g@g*
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The trivial bundle g ® g* ~ 9c carries a canonical complex structure, and hence a spinor

module Ag .. We therefore obtain an induced spinor module for TMj:
86 == HOIIlCl(gC) (/\gc, S|M_1(O))/G' (26)

By [24, Theorem 9.6], indexG(ao)G equals the index of a Dirac operator on I, acting on
sections of Sj ® Ly. To complete the proof it suffices to show that Sj is homotopic to the
spinor module S, on M, determined by its log symplectic structure and orientation.

We can deduce this from the normal form given in item (d) near the beginning
of Section 4.3. The map p o pry: U — M, is a fibre bundle with fibres diffeomorphic to
T*G, and by item (d), TznyU =~ (p o pry)*Tz M, & 9c (identifying g @ g* with g, also).
Using the formula for the log symplectic form in item (d), it follows that the complex
structure (p o pry)*Jy, @ Jy. on Tz, U is compatible with o, where J; is a wy-compatible
complex structure on Tz M, and J,_ is the standard complex structure on g .. Using
Remark 2.12, the stable isomorphism may be chosen such that the spinor module S|; =
(p o Pry)*Se® A 9c This implies the desired result. ]

Example 4.18. We return to Example 3.21, carrying over the notation introduced there.
Suppose n, < n, (the other case being analogous). The reduced spaces 1 ~1(j)/S!,j € Z
are either (1) empty if j < n;, (2) a single point with positive orientation if n; <j < n,, or
(3) a pair of points with opposite orientations if n, < j. Cases (1) and (3) have vanishing
quantization. Thus according to the [Q, R] = 0 theorem

ny—1

indexq () (1) = D ¢

J=m
in agreement with (15).

4.4 Brief remarks on the singular case

Let (M, Z,w, 1) be a compact log symplectic Hamiltonian G-space. If the action of G
on 1~1(0) is only locally free instead of free, then the reduced space M, = u~1(0)/G
is an orbifold. In order to generalize Theorem 4.13 to this situation, one option is to
define the (orbifold) spinor module on the reduced space M, by equation (26), and define
the quantization of M, to be the index of the corresponding Dirac operator twisted
by L. Then Theorem 4.13 holds with the same proof. Alternatively, one can extend the

definitions and constructions to orbifolds. We briefly indicate how this can be done.
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Let M™ be an orbifold. For p € M let ', denote the isotropy group; we allow
the isotropy group to act non-effectively in orbifold charts. We define a (simple) normal
crossing divisor in M to be a finite collection Z of codimension 1 suborbifolds such that
ifZ,,...Z € Zand p € Z, N---NZ, there is a local orbifold chart ¢: U — R"/TI', centred
at p such that

(a) R" =Rk x R"* and I', acts only on the 2nd factor;
(b) forj=1,...,k, ¢ maps Zj N U into a subset of {X]- =0}/ Fp, where x, ..., x; are

the coordinates in R¥.

Assuming Z admits global defining functions, this definition implies that each inter-
section Z; N --- N Z; has a neighborhood in M of the form R* x (Z; N ---N Z), a product
of a manifold with the suborbifold Z, N--- N Z,.

By working in orbifold charts, one verifies that the sheaf of smooth sections
of TM tangent to all Z € Z forms the sheaf of smooth sections of an orbifold vector
bundle TzM, which can moreover be equipped with the obvious analogue of the Lie
algebroid structure present in the manifold case. The definition of a log symplectic
form then carries over. Using the remark above regarding existence of a neighborhood
of Z, N--- N Z; of product form, one can carry through the construction of the stable
isomorphism between TM and T;M. Hence, TM becomes stably almost complex as in
the manifold case, and the rest of the definition of the quantization carries through. The
statement and proof of Theorem 4.13 then generalize to the case where G acts locally
freely on 1 ~1(0).

In the still more general setting with no assumptions on the action of G on
w~1(0), one can obtain an analogue of Theorem 4.13 using a shift desingularization to a

nearby weakly regular value as in [19].

5 Toric Log Symplectic Manifolds

In this section we specialize our result to the toric log symplectic manifolds defined and
classified in [10] (for the case without crossings) and [6] (for the case with crossings).
We begin by giving a brief introduction to the framework in [6].

Recall that in the symplectic case, there is a systematic procedure for construct-
ing all compact toric examples. In brief, given a convex polytope A C t* satisfying the
Delzant condition, one obtains a toric symplectic manifold from the trivial principal T-
bundle A x T by performing symplectic cutting along each of the codimension 1 faces of
A. The authors of [6] generalized this construction to the log symplectic case and proved

a corresponding classification theorem. Two of the main new features they discovered
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were (1) the codomain t* of the momentum map can be replaced by a more complicated
“tropical welded space”; (2) the principal T-bundle used in the construction can be non-

trivial.

5.1 Tropical welded spaces and log affine polytopes

Let n > 0 be even and let t* be a real vector space of dimension n/2 (soon to be the
dual of the Lie algebra of a compact torus T). To avoid confusion below, we will use the
notation 7* to denote the space t* viewed as an abelian Lie group with Lie algebra t*.
A tropical welded space [6, Definition 3.8] (X, D, &) is a smooth connected 7*-manifold
¥"2, equipped with a normal crossing divisor D and a closed non-degenerate t*-valued
log 1-form & € Q! (T, D) ® t*, such that the image of [£] in H!(X) ® t* under the Mazzeo—
Melrose map vanishes. Here “non-degenerate” means that the map TpX — X x t*
induced by ¢ is an isomorphism; the closedness of & implies that this map is in fact an
isomorphism of Lie algebroids, where ¥ x t* is identified with the action Lie algebroid
¥ x t* for the 7* action.

Any such space may be constructed by gluing together a number of copies
of partial compactifications of t* ([6, Section 3.2]), and in particular the connected
components of X\ UD are affine spaces modelled on t*. Let ¥; C ¥\ UD be a connected
component, and choose an origin p, € X, so that X, becomes identified with t*. Given
any point p € X\ U D, we may obtain an element of t* by taking the principal value
integral of £ along any smooth curve from p, to p, which is transverse to D; the vanishing
of the component of [£] in H!(X) ® t* implies that the result does not depend on the
choice of curve. Thus by choosing a single basepoint in ¥\ U D one obtains a consistent
identification of each component of X\ U D with t*.

A log affine hyperplane in ¥ is a smooth connected embedded hypersurface
H C ¥ not contained in D, which is preserved under translations by some hyperplane
in 7*. An admissible log affine polytope (compare [6, Definition 5.3]) is a compact
submanifold with corners A" C £, such that the closures of the codimension 1 strata
of dA are contained in log affine hyperplanes, and every stratum of dA intersects every
stratum of D transversely. An oriented admissible log affine polytope has a well-defined
regularized volume, defined as the principal value integral of the top power of & over A.
One says A is convex if its intersection with each component of X\ U D is convex. There

is also a version of the Delzant condition, see [6, Definition 5.20].

€202 Joquieydag g0 Uo Jasn Aleiqr] SUIDIPSIAl JO [00UDS ANSISAIUN UOIBUIYSEAN AQ LGOLBZ9/PE0Y L/8L/ZZ0Z/RI0NE/UII/W0o" dNo"olWapEedE/:S)Y WOl POpeojumod



Log Symplectic Manifolds and 14063
5.2 Construction of toric log symplectic manifolds

Let T be a compact torus with Lie algebra t. Let (X,D,&) be a tropical welded space
where § € Q}(Z,D) ® t*. Let 7p: P — ¥ be a principal T-bundle. There is a canonically
defined obstruction class Tr(c, (P) A&) € H3(%,D) [6, Definition 4.15], and in [6, Theorem
4.16] it is shown that if the obstruction class vanishes then the total space of P admits

log symplectic forms wp with poles along the divisor Z, = 7 ~!(D) satisfying

[(Xp)wp = —Tj (€, X).

The space of equivalence classes of such log symplectic forms up to T-equivariant
symplectomorphisms inducing the identity on ¥ is an affine space of the real vector
space H2(%, D) [6, Theorem 4.16].

If A ¢ ¥ is an admissible convex log affine polytope satisfying the Delzant
condition, then one can perform a log symplectic version of symplectic cutting on
n~Y(A) c P along the faces of A in order to obtain a smooth closed log symplectic

T-manifold (M?", Z, ), with induced map 7: M — A C ¥ satisfying

(X = —n*(, X).

We refer the reader to [6, Theorem 5.18, Corollary 5.21, Theorem 6.3] for details and
further results.

The modular weights of (M, Z,®w) are minus the residues of &£ at the various
hypersurfaces of D. Choosing a basepoint p, € £\ U D, each connected component of

¥\ UD becomes identified with t*, and hence the map 7 determines a map

w:M\UZ — t*, (27)

which is a momentum map in the sense of Definition 3.7. It is explained in [6,
Proposition A.5] that the residues cy, ..., ¢, associated to a collection Dy, ...,D; € D such
that D; N--- N Dy # @ are linearly independent. In particular it follows from Lemma 4.8
that u is proper.

5.3 Quantization of toric log symplectic manifolds

By the transversality assumption on the strata of A, the vertices of A, which are the
images of the T-fixed point submanifolds of M, lie in ¥\ UD. We may choose a basepoint

in ¥\ UD to arrange that one of these vertices lies in the weight lattice A for T once the
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components of £\ UD are identified with t* (e.g., choose the basepoint to be one of the

vertices of A). As a corollary of Remark 3.13 we have the following:

Corollary 5.1. A toric log symplectic manifold (M, Z, w, 1) is prequantizable (in the

sense of Definition 3.12) if and only if the image of [»] in H?(M) is integral.

Assume the image of [w] € H%(M) is integral, and let (L, V*) be prequantum
data. If A is oriented and D admits global defining functions, then the quantization
indexT(aL) € R(T) is defined (Definition 3.19) and depends only on the isomorphism
class of the T-equivariant line bundle L as well as the chosen orientation of A
(reversing the orientation reverses the overall sign). Since u is (automatically) proper,
Corollary 4.16 of the [Q,R] = 0 theorem applies and yields the following description
of the quantization. Let X,,..., X; be the connected components of X\ U D. For each
1 <j<klet 0; € {1} be the parity of the number hypersurfaces of D crossed by a
smooth curve connecting the basepoint to a point of ¥;. Under the identification of %;
with t*, X; N A becomes a (possibly non-compact) polyhedron A; C t* with finitely many
edges. Let [A; N A] denote the characteristic function of A; N A.

Corollary 5.2. The multiplicity of the representation C,, A € A in indexT(aL) is

k
> oA N AIR).

j=1

It is a consequence of Corollary 4.16 that the RHS vanishes for all but finitely
many A € A. Corollary 5.2 is a generalization of the following well-known fact from
the compact toric symplectic case: the quantizing Hilbert space is a finite dimen-
sional representation of T, and the set of weights that occurs is A N A, each with

multiplicity 1.

Remark 5.3. The map n: M — A C X allows us to define a more refined “quantiza-
tion,” as follows. The Dirac operator determines a class [#"] in the K-homology group
KI(M), and we may take its push-forward 7 9" e KI(A) ~ Ky(A) ® R(T). Since A may
have non-trivial topology, this K-homology class may contain additional information.

Pushing forward further under the map A — pt recovers indexT(aL) € R(T).
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