
Y. Lin et al. (2022) “Log Symplectic Manifolds and [Q, R] = 0,”
International Mathematics Research Notices, Vol. 2022, No. 18, pp. 14034–14066
Advance Access Publication June 2, 2021
https://doi.org/10.1093/imrn/rnab140

Log Symplectic Manifolds and [Q, R] = 0

Yi Lin1, Yiannis Loizides2, Reyer Sjamaar2 and Yanli Song3,∗

1Georgia Southern University, 2Cornell University, and 3Washington
University in St. Louis

∗Correspondence to be sent to: e-mail: yani.loizides@gmail.com

We show, under an orientation hypothesis, that a log symplectic manifold with simple

normal crossing singularities has a stable almost complex structure, and hence is Spinc.

In the compact Hamiltonian case we prove that the index of the Spinc Dirac operator

twisted by a prequantum line bundle satisfies a [Q, R] = 0 theorem.

1 Introduction

A b symplectic manifold is a manifold Mn (n even) equipped with a Poisson bivector π

such that πn/2 vanishes transversely along a hypersurface Z ⊂ M. The inverse π−1 = ω

may be thought of informally as a symplectic form with a pole along Z, or more precisely

as a smooth section of ∧2(bT∗M), where bTM is the b tangent bundle in the sense of

Melrose. b symplectic manifolds were introduced by Nest and Tsygan [21] in the context

of deformation quantization. They were studied extensively in [5, 8, 9], where it was

found that many well-known results from symplectic geometry have analogues in this

setting.

In [13], Guillemin, Miranda, and Weitsman described a formal geometric quan-

tization for compact prequantized b-symplectic manifold endowed with a Hamiltonian

action of a torus T assumed to have non-zero modular weights (see Definition 3.3);

under this assumption all of the reduced spaces are actually symplectic, and the formal

quantization was defined using the Guillemin–Sternberg [11] quantization-commutes-
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Log Symplectic Manifolds and 14035

with-reduction ([Q, R] = 0) principle. The authors proved the surprising result that the

formal quantization thus defined is finite dimensional and posed the problem of finding

a Fredholm operator whose equivariant index equals the quantization. Two possible

answers to this question were offered in [3]. The 1st approach involved an Atiyah–

Patodi–Singer-type index on a manifold with boundary obtained by removing a small

neighborhood of the hypersurface. The 2nd approach involved constructing a Spinc

structure on the whole manifold M, and taking the index of the Spinc Dirac operator.

It was proved that these two approaches agree and satisfy the [Q, R] = 0 principle,

hence also agree with the formal quantization of Guillemin, Miranda, and Weitsman.

In this article we revisit and extend the 2nd approach of [3] mentioned above. We

work in the more general setting, introduced and studied in [6], in which the symplectic

form is permitted to have poles along a simple normal crossings divisor. In this article

we will refer to such a singular symplectic form as a “log symplectic form,” in order

to avoid confusion with the more restricted b symplectic setting where the divisor is

required to be a smooth hypersurface. (Another suitable term would be “c symplectic

form,” where “c” is for “corner.”)

We observe that a log symplectic manifold with a simple normal crossing divisor

that admits global defining functions (Definition 2.5) possesses stable almost complex

structures (Corollary 3.15). Since stably almost complex manifolds are Spinc, we may

use the Spinc structure (and a prequantum line bundle) to define the “quantization” of a

compact log symplectic manifold in terms of the index of a Spinc Dirac operator. Given

a proper momentum map for the action, the regular reduced spaces are also compact

log symplectic manifolds [16]. This leads us to formulate and prove a [Q, R] = 0 theorem

in this context, extending the results of [3]. We explain how these results specialize to

the toric log symplectic manifolds considered in [6].

Notation and conventions. If V is a vector space, then V will denote the trivial vector

bundle with fibre V over the base (understood from context). If a Lie group G with Lie

algebra g acts on a manifold, the vector field generated by an element X ∈ g is denoted

XM , and its value at m ∈ M is the derivative at t = 0 of exp(−tX) · m.

2 Normal Crossing Divisors

2.1 Normal crossing divisors and the log tangent bundle

Let Mn be a connected manifold without boundary.
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14036 Y. Lin et al.

Definition 2.1. By a (simple) normal crossing divisor (M, Z) we mean a finite

collection Z of embedded real codimension 1 connected hypersurfaces in M such that if

Z1, ..., Zk ∈ Z and p ∈ Z1 ∩ · · · ∩ Zk, there is a local coordinate chart ϕ : U → Rn centred at

p that maps Zj ∩ U into a subset of the coordinate hyperplane xj = 0 in Rn. We refer to

such a chart (U, ϕ) as a normal crossing chart. In the sequel we will omit the adjective

“simple.”

The definition implies that any n + 1-fold intersection of the hypersurfaces

is empty. It is well known that if Z is a normal crossing divisor, then the sheaf of

smooth vector fields tangent to all Z ∈ Z is locally free and finitely generated, hence

corresponds to smooth local sections of a vector bundle TZM → M.

Definition 2.2. Let (Mn, Z) be a normal crossing divisor. The log tangent bundle TZM

is the smooth rank n vector bundle over M whose sheaf of smooth sections consists of

local vector fields tangent to all Z ∈ Z. The log tangent bundle is a Lie algebroid, with

anchor and bracket determined by the inclusion $(TZM) ⊂ $(TM).

Sections of the dual vector bundle T∗
ZM may be thought of as singular 1-forms

with at worst simple poles along Z. For example, if f is a smooth function vanishing to

order 1 along one of the hypersurfaces Z ∈ Z, and non-vanishing on M\Z, the singular 1-

form df /f may be thought of as a smooth section of the vector bundle T∗
ZM, since there

is an obvious way to make sense of its pairing with any smooth vector field tangent

to Z.

Definition 2.3. Sections of the exterior algebra bundle $(∧•T∗
ZM) = %•(M, Z) will be

referred to as log differential forms. As a special case of Lie algebroid cohomology,

%•(M, Z) carries a de Rham differential and the corresponding cohomology groups are

called the log de Rham cohomology H•(M, Z).

Definition 2.4. For Z ∈ Z there is a residue map

resZ : %•(M, Z) → %•−1(Z, Z ∩ Z)

where Z ∩ Z = {Z ∩ W|W ∈ Z, W (= Z} is the induced divisor on the hypersurface Z. One

definition of resZ is in terms of the contraction

resZ(α) = ι(eZ)α|Z
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Log Symplectic Manifolds and 14037

where eZ ∈ $(TZM|Z) is the canonical non-vanishing section, given in any normal

crossing chart (U, ϕ) mapping U ∩Z into the coordinate hyperplane x1 = 0, by restriction

to U ∩ Z of the local section x1∂/∂x1 of TZM.

Collectively the partially defined sections eZ for Z ∈ Z determine a canonical

basis for the kernel of the anchor map TZM → TM at every point in M.

Taking residues is compatible with de Rham differentials. For a log differential

form α, the residue resZ(α) = 0 if an only if α may be regarded as an element of

%(M, Z\{Z}). In particular a log differential form may be regarded as an ordinary smooth

form if and only if all of its residues vanish. These considerations lead to a version of

the Mazzeo–Melrose theorem (cf. [8, 20] for the case without crossings, [6, Section A.24]

for the case with crossings): the logarithmic de Rham cohomology

Hp(M, Z) ) Hp(M) ⊕
∏

i

Hp−1(Zi) ⊕
∏

i<j

Hp−2(Zi ∩ Zj) ⊕ · · · (1)

with the groups on the RHS being ordinary de Rham cohomology.

2.2 Orientations and stable isomorphism

Definition 2.5. Let Z ⊂ M be an embedded hypersurface. The sheaf of smooth real-

valued functions vanishing on Z is the sheaf of smooth sections of a real line bundle

IZ. Note that IZ is trivial if and only if Z admits a global defining function: a smooth

real-valued function f such that f −1(0) = Z and df |Z is non-vanishing. If Z is a normal

crossing divisor, then we will say that Z admits global defining functions if each Z ∈ Z
admits a global defining function.

For a normal crossing divisor Z, let

IZ =
⊗

Z∈Z
IZ.

The line bundles IZ , det(TM) and det(TZM) are related by

det(TM) ⊗ IZ ) det(TZM), (2)

via the map on sections ν ⊗ f ,→ f ν. In general the vector bundles TM and TZM are not

isomorphic.
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14038 Y. Lin et al.

Example 2.6. If M = S1 and Z is a single point, then TZM is the non-trivial real line

bundle over S1.

Example 2.7 (2-sphere). Let M = S2 be the unit sphere in R3 centred at the origin

x = y = z = 0. Let 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π be spherical coordinates, where θ is the

angle in the x, y plane, and ϕ is the angle to the positive z axis. Let Z = {Z} be the

hypersurface z = 0. The vector bundle TZM is trivial. Indeed, it suffices to produce one

non-vanishing global section: for example, take the vector field sin(ϕ)∂ϕ , which vanishes

only at (0, 0, ±1), and perform a rigid rotation by π/2 about the x-axis, so that the

zeros sit at the points (0, ±1, 0) ∈ Z; the resulting vector field represents a global non-

vanishing section of TZM. To obtain examples with crossings, we can add additional

hypersurfaces, for example, Z = {{x = 0}, {y = 0}, {z = 0}} is a normal crossing divisor

with TZM trivial.

Theorem 2.8. Let M be a manifold and let Z be a normal crossing divisor that admits

global defining functions. Then there exists an isomorphism

R ⊕ TZM ) R ⊕ TM. (3)

After choosing orientations on the line bundles IZ, the construction is canonical up to

homotopy.

Remark 2.9. It was pointed out to us that at least two related results already appear

in the literature. In the case of a hypersurface without crossing, Theorem 2.8 was stated

in [7, page 43, Remark] and proved in [15, Proposition 2.3].

Proof. We proceed by induction on the number of hypersurfaces in Z. Let Z ′, Z =
Z ′ ∪ {Z} be normal crossing divisors where Z contains one additional hypersurface Z.

By induction we may assume we have already constructed an isomorphism R ⊕ TZ ′M →
R ⊕ TM. It therefore suffices to construct a further isomorphism R ⊕ TZM → R ⊕ TZ ′M.

There is a canonical map

ι : TZM → T ′
ZM,

given by the obvious inclusion at the level of sheaves. We may find a global defining

function f for Z, and a vector field V tangent to Z ′, such that Vf = 1 holds on a

neighborhood of Z; let ρ ∈ C∞(M) be a bump function with support contained in this

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/18/14034/6291051 by W
ashington U

niversity School of M
edicine Library user on 08 Septem

ber 2023



Log Symplectic Manifolds and 14039

neighborhood and equal to 1 on Z. We have a block diagonal bundle morphism

(
f 0

0 ι

)

: R ⊕ TZM → R ⊕ T ′
ZM, (4)

which is an isomorphism away from Z. The strategy is to perturb the off-diagonal entries

near Z to obtain an isomorphism. Perturb (4) to

(
f ρ

df
f

−ρV ι

)

: R ⊕ TZM → R ⊕ T ′
ZM. (5)

In (5), −ρV is regarded as a bundle map R → TZ ′M that sends 1 ∈ $(R) to the vector

field −ρV ∈ $(TZ ′M).

Clearly, (5) is an isomorphism on M\supp(ρ), so it suffices to consider points

near Z in the support of ρ. Modifying ρ if necessary, we may assume supp(ρ) is covered

by normal crossing charts centered at points z ∈ Z. Let z ∈ Z and let (U, (x1 =
f |U , ..., xk, xk+1, ..., xn)) be a normal crossing chart centered at z, where Z ! U consists

of the hypersurfaces x1 = 0, ..., xk = 0. Without loss of generality we may also arrange

that V|U = ∂/∂x1. Local generators for TZM on U are

x1
∂

∂x1
, ..., xk

∂

∂xk
,

∂

∂xk+1
, ...,

∂

∂xn
.

Local generators for TZ ′M are the same, except with x1∂/∂x1 replaced with ∂/∂x1. With

respect to these local frames, the matrix representation of (5) is





x1 ρ 0

−ρ x1 0

0 0 1n−1



 .

The determinant x2
1 + ρ2 does not vanish on supp(ρ).

Up to homotopy, the construction described above only depends on homotopy

classes of global defining functions for the hypersurfaces in Z, or equivalently, on

choices of orientations on the line bundles IZ, Z ∈ Z. "

Remark 2.10. Assuming M is connected, one convenient way to fix choices of

orientations of the line bundles IZ is to select a connected component of M\ ∪ Z, and

then choose global defining functions that are > 0 on that component.
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14040 Y. Lin et al.

Remark 2.11. To simplify notation in later sections, we have assumed each Z ∈ Z is

connected, although this is not necessary in Theorem 2.8. A similar construction works

if IZ is trivial and if there is a defining function for each Z ∈ Z defined only on a

neighborhood of ∪Z.

Remark 2.12. Suppose π : M → X is a fibre bundle and Z = π−1(ZX) is the inverse

image of a normal crossing divisor ZX on X that admits global defining functions.

Choosing a connection we obtain splittings

TM ) π∗TX ⊕ ker(Tπ), TZM ) π∗TZX
X ⊕ ker(Tπ),

and it is clear from the proof of Theorem 2.8 that the stable isomorphism R ⊕ TM )
R ⊕ TZM can be chosen compatible with these splittings.

Corollary 2.13. Any normal crossing divisor (M, Z) has a finite cover (M̂, Ẑ) such that

TM̂ and TẐM̂ are stably isomorphic.

Proof. For any real line bundle E, the bundle of fibre-orientations of E is a two-fold

cover such that the pullback of E is trivial. Thus, for a suitable 2#Z-fold cover M̂, the

pullback of each of the line bundles IZ becomes trivial. "

Since rational Pontryagin classes are insensitive to real line bundles and finite

covers, we recover the following (see [3, ] for the case without crossings, where this was

explained in terms of Chern–Weil representatives).

Corollary 2.14. For any (M, Z), TM and TZM have the same rational Pontryagin

classes.

See also [15] for comparison of characteristic classes for TM and TZM.

3 Log Symplectic Manifolds

Definition 3.1. Let (M, Z) be a normal crossing divisor. A log symplectic form is a

closed log 2-form ω ∈ %2(M, Z) such that the map TZM → T∗
ZM induced by contraction

with ω is an isomorphism.

Example 3.2 (2-sphere). Let a ∈ (−1, 1). M = S2 admits the log symplectic form

ω = dz
2π(z − a)

dθ ,
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Log Symplectic Manifolds and 14041

for the divisor Z = {{z = a}}. One can easily produce examples with crossings, for

example, the log 2-form dz
2πxyzdθ with poles along the divisor {{x = 0}, {y = 0}, {z = 0}}.

3.1 Momentum maps

Let G be a compact connected Lie group with Lie algebra g, and let z ⊂ g denote the

centre. Suppose that G acts smoothly on M preserving the log symplectic 2-form ω, and

such that each hypersurface Z ∈ Z is mapped to itself. For X ∈ g, let XM (resp. XZ) denote

the corresponding vector field on M (resp. Z, for Z ∈ Z).

Definition 3.3. The modular weight of Z ∈ Z is the map cZ : Z → g∗ defined by

〈cZ, X〉 = ι(XZ)resZ(ω).

Proposition 3.4. cZ is constant and z∗-valued.

Proof. Recall that Z is connected. To see that cZ is constant, use the Cartan homotopy

formula and the compatibility of resZ with de Rham differentials. Then the fact that cZ

is z∗-valued follows because it is a G-equivariant map Z → g∗. "

It is convenient to work with a differential form representative for the image of ω

in H2(M) under the Mazzeo–Melrose map (1). To this end we first describe the inclusion

of Hp−1(Z) in Hp(M, Z) at the level of differential forms.

Proposition 3.5. There exists a G-invariant closed log 1-form εZ with support

contained in a G-invariant tubular neighborhood πZ : UZ → Z of Z such that resZ(εZ) = 1.

Moreover, there exists a G-invariant smooth non-negative function hZ with h−1
Z (0) = Z,

such that εZ|M\Z = 1
2d log(hZ)|M\Z.

Proof. Suppose first for simplicity that there is a smooth function f such that (1)

f −1(0) = Z, (2) df |Z does not vanish, and (3) df vanishes outside UZ. Then εZ = df /f ,

hZ = |f |2 have the desired properties.

A smooth function with the properties (1)–(3) may not exist, but one can still

construct suitable εZ, hZ. Identify UZ with the total space of the normal bundle ν(M, Z)

using a tubular neighborhood embedding. Choose a fibre metric on ν(M, Z) and let

r : ν(M, Z) → [0, ∞) be the radial function. Let χ ∈ C∞(R) be a smooth monotone

non-decreasing function such that χ(u) = u for u < 1
2 and χ(u) = 1 for u > 1. The
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14042 Y. Lin et al.

composition χ ◦ r2 is identically 1 outside a neighborhood of Z in UZ ) ν(M, Z), hence

can be extended by 1 to a smooth function hZ on M. Define

εZ|M\Z = 1
2

d log(hZ)|M\Z.

Let U ⊂ Z be an open subset such that ν(M, Z)|U ) U × R trivializes. Then, up to a

reparametrization, r2|U = x2 where x ∈ R is the fibre coordinate, hence εZ|UZ\Z is equal

to dx/x|UZ\Z on the subset of UZ\Z where r < 1/2. It follows that εZ|M\Z extends uniquely

to a globally defined log 1-form εZ with the desired properties. "

The inclusion of Hp−1(Z) in Hp(M, Z) is represented at the level of differential

forms by wedge product with εZ:

τ ∈ %p−1(Z) ,→ εZπ∗
Zτ ∈ %p(M, Z).

Recall that ω is the log symplectic 2-form on (M, Z). The (degenerate) log 2-form

ω̄ = ω −
∑

Z

εZπ∗
Z resZ(ω) − 1

2

∑

Z,W

εZεWresZ,W(ω) (6)

has vanishing residues, hence is smooth (here resZ,W(ω) := resZ∩W◦resW(ω) ∈ R is locally

constant, because taking residues commutes with d and dω = 0). And [ω̄] ∈ H2(M) is the

image of [ω] ∈ H2(M, Z) under the Mazzeo–Melrose isomorphism followed by projection

to H2(M). For X ∈ g

ι(XM)ω = ι(XM)ω̄ +
∑

Z

εZ〈cZ, X〉. (7)

Equation (7) and Proposition 3.5 show that if the modular weight cZ is non-zero, then

one expects a Hamiltonian function generating the flow of X to diverge like 1
2 log(hZ)

near Z = h−1
Z (0). In light of this qualitative difference between the cases cZ = 0 and

cZ (= 0, it is convenient to make the following definition.

Definition 3.6. Let Z (=0 be the subset of hypersurfaces Z ∈ Z such that cZ (= 0. Non-

empty intersections N = Z1 ∩ · · · ∩ Zk of elements Z1, ..., Zk ∈ Z (=0 will be referred to as

strata of (M, Z (=0).
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The discussion above motivates the following definition, which is only a slight

re-wording of that in [8, 9].

Definition 3.7. Let (M, Z, ω) be a G-equivariant log symplectic manifold, where Z is a

normal crossing divisor. The G action is Hamiltonian if there is a smooth G-equivariant

momentum map

µ : M\ ∪ Z (=0 → g∗

satisfying

ι(XM)ω = −d〈µ, X〉, ∀X ∈ g,

and such that the map

µ̄ = µ +
∑

Z

1
2

log(hZ)cZ (8)

extends smoothly to all of M. By construction the pair (ω̄, µ̄) satisfies ι(XM)ω̄ = −d〈µ̄, X〉,
hence (M, ω̄, µ̄) is a presymplectic Hamiltonian G-space.

Remark 3.8. The equations dω̄ = 0, ι(XM)ω̄ = −d〈µ̄, X〉 say that [ω̄ − µ̄] defines a

class in the Cartan model for the equivariant cohomology H2
G(M, R) (see e.g., [18] for

a brief introduction). Assuming M is connected, this equivariant cohomology class is

independent of the choices made in the construction (εZ, UZ, πZ) up to an overall constant

shift of µ̄ by an element of z∗. Indeed, the Mazzeo–Melrose theorem shows that [ω̄] ∈
H2(M, R) is independent of choices, so given any other [ω̄′−µ̄′], the difference ω̄−ω̄′ = dα

is exact. By averaging we may assume α is G-invariant. The momentum map equations

for µ̄, µ̄′ imply 〈µ̄ − µ̄′, X〉 − ι(XM)α is constant for any X ∈ g, hence must be of the form

〈ξ , X〉 for some ξ ∈ g∗. By G-invariance ξ ∈ z∗.

Example 3.9 (2-sphere). Revisiting M = S2 from Example 3.2, the log symplectic form

ω = dzdθ/2π(z − a), a ∈ (−1, 1) is invariant under the action of S1 by rotation about the

z axis with generating vector field XM = −2π∂/∂θ . The modular weight is

〈cZ, X〉 = ι(XZ)resZ(ω) = −1.

The S1 action is Hamiltonian with momentum map µ(z, θ) = − log(|z − a|) + a′ defined

on M\{z = 0}, for any a′ ∈ R.
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14044 Y. Lin et al.

Remark 3.10. In [9] it is shown that under certain conditions the modular weights

are highly constrained. In particular, assuming M is connected, Z has no crossings, and

that each positive codimension symplectic leaf of the Poisson structure ω−1 is compact,

then the modular weights are either all zero or all non-zero and parallel. In the normal

crossing case there can be mixtures of zero and non-zero modular weights (see Section

6.1 in [9] for an example).

3.2 Products and minimal coupling

The category of log symplectic manifolds is closed under taking products, and more

generally under a minimal coupling construction that we briefly outline here (cf. [12,

25] for the symplectic case).

Let π : P → B be a principal bundle with compact connected structure group K.

Suppose (B, ZB, ωB) is log symplectic. Let Z = π−1(ZB) be the pullback normal crossing

divisor. Let θ ∈ %1(P, k) be a connection 1-form, and define a closed log 2-form ωθ ∈
%2(P × k∗, pr−1

2 (Z)) by

ωθ = π∗ωB + d〈pr2, θ〉. (9)

Then ωθ is log symplectic on a neighborhood of P × {0} ⊂ P × k∗, with the same proof as

in the symplectic case. The action of K given by k · (p, ξ) = (k · p, Ad∗
k−1ξ) is Hamiltonian

with momentum map −pr2, and the reduced space at 0 is (B, ZB, ωB).

Suppose (9) is non-degenerate on P × Uk∗ where Uk∗ is an open neighborhood

of 0 in k∗ (e.g., this is automatic if B is compact). Let (F, ZF , ωF , µF) be a Hamiltonian

log symplectic K-manifold such that µF(F) ⊂ Uk∗ . Then the associated bundle P ×K F

is log symplectic: the normal crossing divisor consists of the hypersurfaces Z ×K F,

P ×K ZF where Z ∈ Z and ZF ∈ ZF , and the log symplectic structure is apparent after re-

interpreting P ×K F as the reduced space at 0 of P × k∗ × F (for log symplectic reduction

cf. [16]). Suppose that B carries an auxiliary Hamiltonian G-action with momentum map

µB and that P is a G-equivariant principal K-bundle with G-invariant connection θ .

Then P ×K F becomes a Hamiltonian log symplectic G-manifold, with momentum map

obtained via reduction in stages. The 2-form and momentum map are induced by the

following K-basic forms on P × F:

ω = π∗ωB + d〈µF , θ〉 + ωF , 〈µ, X〉 = π∗〈µB, X〉 + 〈µF , θ(XP)〉, X ∈ g.

Example 3.11. Let B = S2 be the unit sphere, and let P ) SU(2) ) S3 be the principal

S1-bundle over S2 with connection θ such that dθ = π∗%, where % is 1/4π times the area
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Log Symplectic Manifolds and 14045

form, and let us take ωB = % to be the symplectic form. The minimal coupling 2-form (9)

is

ωθ = (1 + ξ)π∗% + dξ · θ , ξ ∈ Lie(S1) ) R.

This is non-degenerate on the open set P × {ξ > −1} ⊂ P × R. Let F = S2 with S1-action,

2-form and momentum map as in Example 3.9. If the parameters a, a′ are chosen such

that µF > −1, then M = P ×S1 F acquires a log symplectic structure. In fact P is an

SU(2)-equivariant principal S1-bundle, and the action of SU(2) on the base B = S2 is

Hamiltonian. Hence, M becomes a log symplectic Hamiltonian SU(2)-space.

3.3 Prequantum data

Following [4, Chapter 6], we will say that a presymplectic Hamiltonian G-space (M, ω̄, µ̄)

is prequantizable if there exists a G-equivariant complex line bundle L such that the

image of its equivariant 1st Chern class cG
1 (L) in H2

G(M, R) is [ω̄ − µ̄]. By [4, Proposition

6.11], one can equip L with a Hermitian structure and Hermitian connection ∇L such

that the 1st Chern form of (L, ∇L) is ω̄ and such that the infinitesimal g-action ρL on $(L)

satisfies Kostant’s formula:

ρL(X) = ∇L
XM

+ 2π
√

−1〈µ̄, X〉. (10)

In the opposite direction, given (L, ∇L) with (∇L)2 = −2π
√−1ω̄, one may lift the g-

action on M to L using (10), and then the condition requires that the infinitesimal action

integrates to a G-action. The data (L, ∇L) are referred to as prequantization data for

(M, ω̄, µ̄).

Let (M, Z, ω) be a log symplectic manifold. Recall that the Mazzeo–Melrose

isomorphism determines a map H2(M, Z) → H2(M), which sends [ω] to [ω̄], where ω̄

is constructed as in (6). One may furthermore construct µ̄ as in equation (8) and by

Remark 3.8 the class [ω̄ − µ̄] + z∗ ∈ H2
G(M, R)/z∗ is independent of choices.

Definition 3.12. (M, Z, ω, µ) is prequantizable if the image of [ω̄− µ̄]+ z∗ ∈ H2
G(M, R)/z∗

equals the image of the equivariant 1st Chern class cG
1 (L) of a G-equivariant complex line

bundle L. In this case, after a shift of µ, µ̄ by an element of z∗, (M, ω̄, µ̄) is prequantizable

as a presymplectic Hamiltonian G-space. We define prequantization data (L, ∇L) for

(M, Z, ω, µ) to be prequantization data for the presymplectic Hamiltonian G-space

(M, ω̄, µ̄).
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14046 Y. Lin et al.

Remark 3.13. Suppose G = T is a torus, M is connected, and MT (= ∅. Then according

to [4, Example 6.10], (M, ω̄, µ̄) is prequantizable iff [ω̄] is integral and µ̄(p) lies in the

weight lattice of T, for some p ∈ MT .

Example 3.14 (2-sphere). Returning to Example 3.9, the regularized form ω̄ is integral

if its integral over S2 is an integer n. The latter equals the principal value integral of

ω = dzdθ/2π(z − a) over S2, which is

n = PV
∫ 1

−1

dz
z − a

= log
∣∣∣∣
1 − a
1 + a

∣∣∣∣ .

This forces the parameter a to lie in a countable subset of (−1, 1). Recall that the

momentum map µ(z, θ) = − log(|z − a|) + a′ where a′ ∈ R. For any pair of integers

n1, n2 such that n2 − n1 = n, a′ can be chosen such that µ takes the values n1, n2 at the

fixed-points z = 1, −1, respectively. We can arrange that µ̄ agrees with µ at the fixed

points, hence the lift (10) integrates to an action of S1.

3.4 Spinc structure

Let (M, Z, ω) be a log symplectic manifold where (M, Z) is a normal crossing divisor.

The log 2-form ω can be regarded as a fibre-wise symplectic form on the log tangent

bundle TZM, that is, (TZM, ω) is a symplectic vector bundle. On any symplectic vector

bundle (V, ωV) → M, one can find a compatible complex structure, which is by definition

a complex structure J ∈ End(V), J2 = −1 such that gV(·, ·) = ωV(·, J·) is a positive

definite symmetric bilinear form on V. The space of compatible complex structures is

contractible, hence in particular the choice of such a J is unique up to homotopy. This

leads to the following corollary of Theorem 2.8.

Corollary 3.15. Let (M, Z, ω) be a log symplectic manifold such that Z admits global

defining functions. Then M admits a stable almost complex structure. After choosing

orientations on the line bundles IZ for Z ∈ Z, the construction is canonical up to

homotopy.

Proof. By the remarks preceding the statement of the corollary, there is a compatible

complex structure on the symplectic vector bundle TZM, which is unique up to

homotopy. By Theorem 2.8, R2 ⊕ TM ) R2 ⊕ TZM, and the isomorphism is determined

up to homotopy by choices of orientations on the line bundles IZ for Z ∈ Z. Using the

isomorphism, we transfer the complex structure on R2 ⊕ TZM to R2 ⊕ TM. "

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/18/14034/6291051 by W
ashington U

niversity School of M
edicine Library user on 08 Septem

ber 2023



Log Symplectic Manifolds and 14047

Remark 3.16. If (M, Z, ω) is oriented (det(TM) is trivial) and log symplectic (det(TZM)

is trivial), then by (2), IZ admits a global non-vanishing section. Assuming furthermore

that Z does not have any crossings, a global non-vanishing section of IZ is the same

thing as a global defining function for Z.

Remark 3.17. It was pointed out to us that in the case of a single hypersurface a very

similar result appears in [7, Section 4], in the context of folded symplectic structures.

A stable almost complex structure determines a Spinc structure (see e.g., [4,

Appendix D], [7, Section 5]). A somewhat different direct construction of this Spinc

structure was outlined in [3, Remark A.11]. Choosing a Riemannian metric on M, it is

convenient to think of the Spinc structure in terms of a corresponding spinor module,

that is, Z2-graded hermitian vector bundle S → M, whose fibres Sm form a smooth

family of irreducible modules for the family of Clifford algebras Cl(TmM), that is, there

is given an isomorphism c : Cl(TM) → End(S). The Z2-grading on S is the eigenspace

decomposition for the chirality operator c($), where $ = (
√−1)n/2e1 · · · en in terms

of a local oriented orthonormal frame e1, ..., en. Away from Z, the anchor map is an

isomorphism, and this may be used to construct an isomorphism of Z2-graded complex

vector bundles

S|M\∪Z ) ∧T1,0(M\ ∪ Z). (11)

On the RHS the Z2-grading is given by the chirality operator determined by the

orientation on TM and not by the symplectic orientation on TZM; put differently (11)

maps the even subbundle S+ to forms of even (resp. odd) degree over components of

M\ ∪ Z where the orientations of TM and TZM agree (resp. disagree).

Remark 3.18. This slight subtlety concerning the Z2-grading is important. It is closely

related to the “cancellations” noted between the quantizations of pairs of reduced

spaces in a neighborhood of the hypersurface in [13].

A spinor module E has an “anti-canonical line bundle” defined by

L = HomCl(TM)(E
∗, E).

This is a complex line bundle (by Schur’s lemma). In case E arises from a stable almost

complex structure, say, from a complex structure on Rp ⊕ TM,

L = detC(Rp ⊕ TM).
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In our situation, E = S arises from a complex structure on R2 ⊕ TM ) R2 ⊕ TZM,

where TZM carries an ω-compatible complex structure, and R2 ) C carries its standard

complex structure. Since detC(C) is trivial, we deduce that in our setting

L ) detC(TZM). (12)

3.5 Quantization

A choice of connection ∇ on a spinor module E determines a Spinc Dirac operator /∂,

defined by the composition

$(E)
∇−→ $(T∗M ⊗ E)

g#

−→ $(TM ⊗ E)
c−→ $(E).

In our case the spinor module of interest is E = S ⊗ L, where S is the spinor module

associated to the stable almost complex structure as in Corollary 3.15, and L is a

prequantum line bundle. We will denote the resulting operator /∂L; it is an odd elliptic

operator acting on smooth sections of a Z2-graded Hermitian vector bundle S ⊗ L over

the Riemannian manifold M. If M is compact, /∂L has a well-defined Fredholm index,

denoted index(/∂L), which is independent of the choices of metrics and connections.

Definition 3.19. Let (M, Z, ω, L) be a compact prequantized log symplectic manifold,

where Z is a normal crossing divisor that admits global defining functions. Let S

be the spinor module obtained from the stable almost complex structure on M and

choices of orientations on the line bundles IZ for Z ∈ Z. We define the quantization or

Riemann–Roch number of (M, Z, ω, L) to be the index of the Dirac operator index(/∂L) ∈
Z. In the G-equivariant case, we may take the equivariant index indexG(/∂L) ∈ R(G), the

representation ring of G.

The index theorem gives the following formula for the Riemann–Roch number:

index(/∂L) =
∫

M
Â(TM)Ch(L)1/2Ch(L) =

∫

M
Td(TZM)Ch(L). (13)

The 2nd expression follows from (12) and Corollary 2.14. In the equivariant case, note

that since G preserves Z, the fixed-point submanifold Mg of g ∈ G is automatically

transverse to the image of the anchor map TZM → TM. It follows that each fixed-point

component F ⊂ Mg acquires a normal crossing divisor ZF = {Z ∩ F|Z ∈ Z} admitting
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global defining functions, and the anchor descends to a g-equivariant isomorphism

TZM|F/TZF
F ) νF

where νF is the normal bundle to F in M. At each point m ∈ F, TZM|m is a complex

representation of the cyclic subgroup generated by g, hence the fixed subspace TZF
F|m

and the quotient νF |m are both complex. One has the following version of the fixed-point

formula

indexG(/∂L)(g) =
∑

F⊂Mg

∫

F

Td(TZF
F)Chg(L)

Chg(
λ−1ν0,1

F

) , (14)

where ν0,1
F ⊂ νF ⊗ C is the −√−1-eigenbundle for the complex structure, and F carries

the orientation induced from the orientations on M, νF .

Remark 3.20. As a consequence of (13) and (14), the quantization of (M, Z, ω, L)

depends only on the product orientation on IZ (not on the individual orientations of the

IZ), or equivalently, by (2), on the induced orientation on M. Reversing the orientation

reverses the sign of the quantization.

Example 3.21. Let M = S2 be the unit sphere in R3 equipped with the log symplectic

form ω = dzdθ/2π(z − a), a ∈ (−1, 1), Z = {{z = a}} and Hamiltonian S1 action with

generating vector field XM = −2π∂/∂θ and momentum map µ = − log(|z − a|) + a′

(Examples 3.2 and 3.9). From Example 3.14, ω is integral if n = log |(1 − a)/(1 + a)| ∈ Z,

and in this case for any n1, n2 ∈ Z with n2 − n1 = n there is a choice of a′ such that

µ|z=1 = n1, µ|z=−1 = n2. Applying the Atiyah–Bott formula (14), the S1-equivariant

quantization is

indexS1(/∂
L)(t) = tn1

1 − t
− tn2

1 − t
∈ Z[t] = R(S1). (15)

Note that in the more familiar symplectic setting, the weights for the S1 action at the

fixed points would have opposite signs. Here the signs are the same since we use a

complex structure compatible with the log symplectic form, and the latter undergoes a

sign flip across the hypersurface z = a. The contribution from z = −1 has an overall

minus sign from the induced orientation. The result is a (virtual) representation of S1 of

dimension n.
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14050 Y. Lin et al.

Example 3.22 (Minimal coupling). The minimal coupling construction from Section

3.2 leads to further examples. Suppose the base (B, ωB) and fibre (F, ωF) both satisfy the

conditions in Definition 3.19. Then the minimal coupling space M = P ×K B satisfies the

conditions in Definition 3.19 as well. Let QF = QF,+ −QF,− ∈ R(K) be the quantization of

the fibre, where QF,± are representations of K (the Z2-graded components of the kernel

of /∂LF ), and let QF,± = P ×K QF,± be the associated bundles. The quantization of M is the

difference

indexG(/∂LB⊗QF,+) − indexG(/∂LB⊗QF,−), (16)

where LB → B is the chosen prequantum line bundle on the base, and /∂LB is the Dirac

operator on the base. There are various approaches to (16). One approach is to use

the Atiyah–Singer theorem for families, which implies, by comparing index formulas,

that the index of the Dirac operator on M equals the index of the Dirac operator on B

twisted by the class [/∂M/B] ∈ K0
G(B) determined by the family of Dirac operators on the

fibres of M → B. In this case the Z2-graded components of the kernel of the family

have constant dimension, forming the vector bundles QF,+ and QF,−, respectively, hence

[/∂M/B] = [QF,+] − [QF,−] ∈ K0
G(B), and (16) follows. For slightly more abstract approaches,

see for example, [2, Remark 3.7] or [1, Theorem 3.5] (in the latter, one needs to lift /∂LB to

a K = H-transversely elliptic operator on tot(P), and take H-invariants on both sides of

the equation).

For the case of the S2-bundle over S2 described in Example 3.11, we may use the

result of Example 3.21 for the fibre. Suppose for example that a, a′ are chosen such that

0 ≤ n1 ≤ n2, hence QF,+ = Cn1
⊕ · · · ⊕ Cn2−1, QF,− = 0. On the other hand, LB = P ×S1 C1.

Hence, the SU(2)-equivariant quantization is

n2∑

j=n1+1

indexSU(2)(/∂
O(j)) =

n2⊕

j=n1+1

Vj

where O(j) = P ×S1 Cj, Vj is the irreducible representation of SU(2) with highest

weight j.

4 Non-Abelian Localization and [Q, R] = 0

In this section we turn to the non-abelian localization formula and the [Q, R] = 0

theorem. We adapt an approach due to Paradan [22] in the compact symplectic setting,
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based on deformation through transversely elliptic symbols. Throughout this section

we assume (M, Z, ω, µ) is a compact Hamiltonian log symplectic manifold.

We will furthermore assume that the momentum map µ : M\ ∪ Z (=0 → g∗ is

proper (see also Lemma 4.8). Although this condition was not needed to make sense of

Definition 3.19, it becomes relevant in formulating and proving the [Q, R] = 0 theorem.

In particular, if µ is not proper, then µ−1(0)/G may be non-compact, in which case

Definition 3.19 does not apply to the reduced space.

Example 4.1. For a simple example where µ−1(0) is non-compact, consider M = S2 ×
S2 # S1 with

ω = dz1

2πz1
dθ1 − dz2

2πz2
dθ2, XM = −2π

∂

∂θ1
− 2π

∂

∂θ2
, µ = − log(|z1|) + log(|z2|),

using notation as in Example 3.9. The momentum map is defined on the subset M\∪Z =
{z1z2 (= 0}. The fibre µ−1(0) is the intersection of this subset with {|z1| = |z2|}.

Remark 4.2. If M is compact and the divisor Z does not have any crossings, then the

momentum map µ : M\ ∪ Z (=0 → g∗ is automatically proper.

4.1 Kirwan vector field

Choose an invariant inner product on g that we use to identify g ) g∗. Let T be a maximal

torus with Lie algebra t ) t∗, and let t∗+ be a positive chamber.

Definition 4.3. The Kirwan vector field is the G-invariant vector field κ on M\ ∪ Z (=0

given by the formula

κ(m) =
(
µ(m)

)
M(m), m ∈ M\ ∪ Z (=0. (17)

Equivalently, κ is the Hamiltonian vector field for the function −‖µ‖2/2 on M\ ∪ Z (=0.

Proposition 4.4. Let (M, Z, ω, µ) be a compact Hamiltonian log symplectic manifold.

The vanishing locus of the Kirwan vector field κ is

C = G ·
⋃

β∈t∗
+

Mβ ∩ µ−1(β). (18)

The set B ⊂ t∗+ of β such that Mβ ∩ µ−1(β) (= ∅ is finite.
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Proof. The description (18) follows immediately from the definition of κ (cf. [14]). Since

M is compact, the set St(M, t) of infinitesimal stabilizer types for the T action is finite.

If B is infinite, then one of the Mh with 0 (= h ∈ St(M, t) would have to occur infinitely

many times in the list (Mβ)β∈B. Hence, the set B ∩ h would be infinite. The momentum

map condition implies that the projection µh∗ of the momentum map to h∗ is locally

constant on Mh. Therefore, for β ∈ B ∩ h, µh∗ must take the value β on the components

of Mh intersecting Mh ∩ µ−1(β) non-trivially. Since M is compact, Mh has finitely many

components, and this is a contradiction. "

Remark 4.5. The set C in (18) coincides with the critical locus of the Hamiltonian

−‖µ‖2/2.

In Paradan’s approach [22], one uses the Kirwan vector field to deform the

symbol of the Dirac operator in the space of transversely elliptic symbols. In our

situation κ is only defined on M\ ∪ Z (=0. We now explain a straight-forward method

of modifying κ so that it extends smoothly to M, in such a way that the vanishing locus

(18) is unchanged.

Definition 4.6. Fix ε > 0 and let logε : [0, ∞) → [log(ε), ∞) be a smooth monotone non-

decreasing modification of the function log, such that logε(|x|) = log(|x|) for |x| > 2ε,

logε(|x|) = log(ε) for |x| < ε.

Definition 4.7. Fix ε > 0 and define

µ̃ = µ̄ +
∑

Z∈Z

1
2

logε(hZ)cZ.

In other words we have replaced log with logε in (8). Similarly, define the degenerate

smooth 2-form ω̃ by replacing εZ with d1
2 logε(hZ) in (6) (recall εZ ! M\Z = d1

2 log(hZ) !
M\Z). The pair (ω̃, µ̃) is smooth on all of M and satisfies the momentum map equation

ι(XM)ω̃ = −d〈µ̃, X〉. Let κ̃ be the G-equivariant vector field on M defined as in (17) but

with µ̃ in place of µ. We will write µ̃ε , κ̃ε instead of µ̃, κ̃ when we want to emphasize the

dependence on ε.

The vanishing locus of κ̃ is

C̃ = G ·
⋃

β∈t∗
+

Mβ ∩ µ̃−1(β). (19)
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(Note however that since ω̃ is degenerate, the vanishing locus of κ̃ is no longer the

same as the critical locus for −‖µ̃‖2/2.) We will argue that for ε sufficiently small, the

vanishing loci (18) and (19) coincide.

Lemma 4.8. Let (M, Z, ω, µ) be a compact Hamiltonian log symplectic space. Then

µ : M\ ∪ Z (=0 → g∗ is proper if and only if for each stratum N = Z1 ∩ · · · ∩ Zk, Zj ∈ Z (=0, the

cone generated by non-negative linear combinations of the modular weights cZ1
, ..., cZk

is strongly convex.

Proof. If cZ1
, ..., cZk

do not form a convex cone, then some non-zero non-negative linear

combination of them vanishes. Then using (8) and since µ̄ is bounded on M, it will be

possible to choose a sequence of points pn ∈ M\ ∪ Z (=0 approaching N such that |µ(pn)|
remains bounded. Hence, µ is not proper. The other direction is similar, again using

equation (8). "

Lemma 4.9. Let N = Z1 ∩ · · ·∩Zk be a stratum of (M, Z (=0). There is an open subset UN ⊂
g∗ containing span{cZ1

, ..., cZk
}\{0} and invariant under non-zero scalar multiplication, as

well as an open neighborhood UN of N in M such that if X ∈ UN then XM does not vanish

on UN .

Proof. Since non-vanishing is an open condition (and invariant under non-zero scalar

multiplication of the generator X), it suffices to consider the vector field generated by

some X ∈ span{cZ1
, ..., cZk

}\{0} on N. Let

X =
∑

j

tjcZj

be non-zero. By Definition 3.3,

ι(XZi
)resZi

(ω) =
∑

j

tj〈cZi
, cZj

〉 =: ri ∈ R.

The constants ri, i = 1, ..., k cannot all be zero because

∑

i

tiri =
∑

i,j

titj〈cZi
, cZj

〉 = ‖X‖2 > 0.

We conclude that XM does not vanish on the intersection N, since its contraction with

some residue of ω does not vanish. "
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Lemma 4.10. Assume µ : M\∪Z (=0 → g∗ is proper. Then there is an open neighborhood

U ′′ of ∪Z (=0, and an ε′′ > 0 such that for all ε′′ > ε > 0, κ̃ε does not vanish on U ′′.

Proof. We will use the notation from the previous lemma. Let Z1 ∩ · · · ∩ Zk = N ∈ N
range over strata of (M, Z (=0). We may choose an open cover {U ′

N}N∈N of ∪Z (=0 such that

(1) U ′
N ⊂ UN , (2) for all Z ∈ Z (=0 not intersecting N, the function |hZ| ! U ′

N ≥ δ > 0.

Recall

µ̃ε = µ̄ −
∑

Z

1
2

logε(hZ)cZ,

where µ̄ extends smoothly to M, hence is bounded. By properness cZ1
, ..., cZk

generate a

strongly convex cone. If ε is small, it follows that in U ′
N and sufficiently near N, µ̃ε is a

small perturbation of

−
∑

j

1
2

log(ε)cZj
.

More precisely, there is an open set U ′′
N ⊂ U ′

N with U ′′
N ∩ N = U ′

N ∩ N, such that µ̃ε ! U ′′
N

takes values in the open set UN ⊂ g∗. (We emphasize that the fact that cZ1
, ..., cZk

generate

a strongly convex cone is being used here.) The previous lemma implies that κ̃ε does not

vanish on U ′′
N . There are finitely many N to consider, hence taking ε sufficiently small,

we can ensure this holds for all N ∈ N . Then take U ′′ = ∪N∈N U ′′
N . "

Corollary 4.11. Assume µ : M\ ∪ Z (=0 → g∗ is proper. For ε > 0 sufficiently small the

vanishing loci C = C̃, and µ, µ̃ agree on C.

Proof. Since

µ = µ̄ −
∑

Z

1
2

log(hZ)cZ,

we see that by choosing ε sufficiently small, we may ensure µ, µ̃ε agree everywhere

except on an arbitrarily small neighborhood of ∪Z (=0. In particular we may choose ε′′ >

ε > 0 sufficiently small that µ, µ̃ε agree on M\U ′′, where U ′′, ε′′ are from Lemma 4.10.

The result follows. "

From now on we assume ε is as in Corollary 4.11, hence κ̃ is a smooth vector

field on M with vanishing locus C (equation (18)).
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4.2 Paradan-type deformation

Having constructed a suitable G-equivariant map µ̃ : M → g∗ ) g and associated vector

field κ̃, we will now apply the general results of Paradan [22] and Paradan–Vergne [24]

to deduce a [Q, R] = 0 theorem.

Definition 4.12. Assume we are in the setting of Definition 3.19. We will identify

TM ) T∗M using the Riemannian metric. Let ξ ∈ T∗M. The symbol of the Dirac operator

/∂L is σ (ξ) = c(ξ), Clifford multiplication on the pullback of the spinor module S ⊗ L to

T∗M. Using the vector field κ̃ we define a deformed symbol

σ̃ (ξ) = c(ξ − κ̃).

The symbols σ , σ̃ are homotopic (through the family t ,→ c(ξ−t̃κ), t ∈ [0, 1]), hence

define the same class in the K-theory K0
G(T∗M). Following Paradan [22] we will consider

σ̃ as a transversely elliptic symbol, in order to take advantage of the extra flexibility

allowed for homotopies of such symbols.

Let Y be a (possibly non-compact) G-manifold, and let T∗
GY ⊂ T∗Y be the

conormal space to the G-orbit directions. The compactly supported G-equivariant

K-theory K0
G(T∗

GY) can be described in terms of equivalence classes of pairs (E, γ ),

where E is a Z2-graded G-equivariant vector bundle over T∗
GY, and γ ∈ End(E) is a

G-equivariant odd bundle endomorphism that restricts to an isomorphism outside a

compact set. Atiyah [1] defined an analytic index map

indexG : K0
G(T∗

GY) → R−∞(G), (20)

extending the more familiar analytic index map K0
G(T∗Y) → R(G), where R−∞(G) is the

formal completion of the representation ring, the set of possibly infinite formal integer

linear combinations of irreducible characters χλ where λ is a dominant weight.

The restriction of σ̃ to T∗
GM determines a class [̃σ ] ∈ K0

G(T∗
GM). Since the analytic

index map (20) extends the ordinary analytic index map, we have

indexG(/∂L) = indexG([̃σ ]). (21)

Since c(ξ − κ̃) is invertible except when ξ = κ̃(m), the subset of T∗
GM where

σ̃ fails to be invertible is C = κ̃−1(0M) ⊂ T∗
GM, the vanishing locus of κ̃ viewed as a

subset of the zero section in T∗
GM. Atiyah [1] established an excision-type property of
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the index that applies in this situation. Let Uβ be a G-invariant open neighborhood of

Cβ = G · (Mβ ∩ µ−1(β)) ⊂ C. We may assume the Uβ , β ∈ B are sufficiently small that

Uβ1
∩ Uβ2

= ∅ for β1 (= β2. Let σ̃β be the restriction of σ̃ to T∗Uβ ; since σ̃β ! T∗
GUβ

is invertible outside the compact subset Cβ ⊂ T∗
GUβ , we obtain a well-defined class

[̃σβ ] ∈ K0
G(T∗

GUβ). Then the excision property (and (21)) says that the equation

indexG(/∂L) = indexG([̃σ ]) =
∑

β∈B
indexG([̃σβ ]) (22)

holds in R−∞(G). Equation (22) (or more explicit versions thereof, cf. [24, Theorem 8.6])

are referred to as non-abelian localization formulas in K-theory.

4.3 The [Q, R] = 0 theorem

We now formulate a [Q, R] = 0 theorem for compact Hamiltonian log symplectic

manifolds in the special case that G acts freely on µ−1(0).

Let (M, Z, ω, µ) be a Hamiltonian log symplectic manifold. Assume G acts freely

on µ−1(0). Then one can show [16] that

(a) µ−1(0) and M0 = µ−1(0)/G are smooth. An orientation on M induces an

orientation on M0.

(b) For each Z ∈ Z that intersects µ−1(0), Z0 = (Z ∩ µ−1(0))/G is a smooth

hypersurface in M0. Hence, there is a normal crossing divisor Z0 in M0. If Z
admits global defining functions then Z0 does as well.

(c) There is a unique log symplectic form ω0 on (M0, Z0) such that p∗ω0 = ι∗ω,

where p : µ−1(0) → M0 is the quotient map and ι : µ−1(0) ↪→ M is the

inclusion map. If L is a G-equivariant prequantum line bundle on M, then

L0 = L|µ−1(0)/G is a prequantum line bundle on M0.

(d) There is a G-equivariant diffeomorphism ϕ : µ−1(0) × Ug∗ → U ⊂ M, where

Ug∗ is a G-invariant open neighborhood of 0 ∈ g∗ and U is a G-invariant open

neighborhood of µ−1(0) in M having the two properties: (1) for each Z ∈ Z,

ϕ−1(Z ∩ U) = (Z ∩ µ−1(0)) × Ug∗ , (2) if prj, j = 1, 2 are the projection maps to

the 1st and 2nd factors respectively in µ−1(0) × Ug∗ , then

ϕ∗ω = pr∗
1p∗ω0 + d〈pr2, pr∗

1θ〉

where θ is a connection on the principal G-bundle p : µ−1(0) → M0.

All except (d) are routine.
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Theorem 4.13. Let (M, Z, ω, µ, L) be a compact prequantized Hamiltonian log symplec-

tic manifold such that Z admits global defining functions and µ is proper. Assume G

acts freely on µ−1(0) and let (M0, Z0, ω0) be the reduced log symplectic manifold with

prequantum line bundle L0, and the induced orientation. Then

indexG(/∂L
M)G = index(/∂

L0
M0

).

Remark 4.14. In [3] this result was proved in the special case where the divisor Z
has no crossings and the modular weights are non-zero. Under these assumptions the

complement M\ ∪ Z is a symplectic Hamiltonian G-space with proper momentum map.

This made it possible to deduce the result from a theorem of Ma and Zhang.

Remark 4.15. Theorem 4.13 is closely analogous to the symplectic [Q, R] = 0 theorem

[17]. We comment that there is a very general [Q, R] = 0-type theorem due to Paradan and

Vergne [23] that applies to arbitrary G-equivariant Spinc Dirac operators on compact

manifolds, hence applies to the operator /∂L
M . However, the Paradan–Vergne result is

different from Theorem 4.13; in particular their result employs a different momentum

map and moreover indexG(/∂L
M)G can have contributions from more than one of its level

sets.

Using a shifting trick established in [16], Theorem 4.13 implies a similar result

for the multiplicity of any irreducible representation Vλ ∈ R(G) with highest weight λ:

Corollary 4.16. Let (M, Z, ω, µ) be as in Theorem 4.13. Assume Gλ acts freely on µ−1(λ).

Let Mλ = µ−1(λ)/Gλ be the reduced log symplectic manifold [16], with prequantum line

bundle Lλ = (L|µ−1(λ) ⊗ C−λ)/Gλ, and the induced orientation. Then

(
indexG(/∂L

M) ⊗ V∗
λ

)G = index(/∂
Lλ
Mλ

).

Proof. Let O ⊂ g∗ denote the coadjoint orbit containing −λ equipped with the standard

Kirillov–Kostant–Souriau symplectic form and compatible complex structure. It admits

the prequantum line bundle E = G ×Gλ
C−λ → G/Gλ ) O, and the index of the

corresponding twisted Dirac operator is V∗
λ . By the shifting trick Mλ is the reduced space

at 0 of the product M × O. Applying Theorem 4.13 to M × O yields

(
indexG(/∂L

M) ⊗ V∗
λ

)G = indexG(/∂L!E
M×O)G = index(/∂

Lλ
Mλ

).
"
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We will deduce Theorem 4.13 from general theorems due to Paradan [22] and

Paradan–Vergne [24]; these authors studied equation (22) in detail for deformations of

Dirac-type symbols via G-equivariant maps M → g, as is the case in our situation, where

the deformation κ̃ is associated to the G-equivariant map µ̃ : M → g∗ ) g. We first prove

a lemma.

Lemma 4.17. Let (M, Z, ω, µ) and L be as in Theorem 4.13. Then taking G-invariants of

both sides of the non-abelian localization formula (22) yields

indexG(/∂L)G = indexG([σ0])G, (23)

or in other words, the only contribution to the trivial representation in (22) comes from

β = 0.

Proof. A criterion for exactly this result is given in [24, Theorem 9.6] (see also

Definitions 7.1 and 9.2 as well as the paragraph below Theorem 8.6 of [24] for

explanations of the notation). To state it, we introduce some notation. We shall need

to consider vector bundles carrying more than one complex structure below. If V is a

real vector bundle equipped with a complex structure I ∈ $(End(V)), then we write

(V, I)1,0, resp. (V, I)0,1 for the +√−1, resp. −√−1 eigenbundles of I in V ⊗ C.

Let 0 (= β ∈ B, and let Mβ ⊂ Mβ be the union of components of Mβ that

intersect µ−1(β) non-trivially. Let ν be the normal bundle to Mβ in M. We may equip

ν with the complex structure Jβ = Aβ/|Aβ |, where Aβ denotes the (skew-symmetric)

endomorphism of ν given by the action of β. Then the complex exterior algebra ∧(ν, Jβ)0,1

is a Cl(ν)-module. Let gβ ⊂ g be the infinitesimal stabilizer of β under the adjoint

action. We regard g/gβ as a complex vector space, with complex structure jβ = adβ/|adβ |;
equivalently, since β ∈ t+, (g/gβ , jβ)1,0 is a sum of positive root spaces. Then the criterion

in [24, Theorem 9.6] states that it suffices to show that the (locally constant, real)

eigenvalue for the action of b = −√−1β on the Cl(TMβ)-spinor module

Sβ = HomCl(ν)(∧(ν, Jβ)0,1, S ⊗ L|Mβ
) ⊗ det(g/gβ , jβ)0,1

is positive. (Note that there is indeed only a single eigenvalue for each component of

Mβ by Schur’s lemma, because b commutes with the Cl(TMβ)-action.) This eigenvalue is

equal to one half the action of b on the anti-canonical line bundle of Sβ :

Lβ = det(ν, Jβ)1,0 ⊗
(
det(g/gβ , jβ)0,1)2 ⊗ det(TZM, J)1,0|Mβ

⊗ L2|Mβ
(24)
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where we used equation (12) for the anti-canonical line bundle of S. The hypersurfaces

in Z are automatically transverse to Mβ , because they are preserved by the G-action.

Thus TZM|Mβ
) TZ∩Mβ

Mβ ⊕ ν, and since β acts trivially on TZ∩Mβ
Mβ , there is no harm

in omitting this in (24), that is, it suffices to consider the action of b on the line bundle

L′
β = det(ν, Jβ)1,0 ⊗

(
det(g/gβ , jβ)0,1)2 ⊗ det(ν, J)1,0|Mβ

⊗ L2|Mβ
. (25)

We are now in essentially the same situation encountered in the symplectic setting.

Since the action is locally constant on Mβ , it suffices to study (25) at a single point m

in each component of Cβ . The eigenvalues for the action of b on (g/gβ , jβ)0,1 are negative

by construction. The fibre νm is a direct sum ν′
m ⊕ g/gβ , where g/gβ is identified with

the orthogonal complement to gβ in g and is embedded in νm as a subset of the G-orbit

directions. Note that the complex structure jβ on g/gβ is compatible with the restriction

of the log symplectic form to g/gβ ⊂ νm: for X ∈ g/gβ ,

ωm(XM , (adβX)M) = −dm〈µ, X〉
(
(adβX)M

)
= −〈ad2

βX, X〉 = ‖adβX‖2 > 0

where in the 1st equality we used the momentum map equation, in the 2nd equality we

used equivariance of the momentum map (dmµ(YM) = −ad∗
Yβ = adβY, as µ(m) = β and

using g ) g∗), and in the 3rd equality we used that adβ is skew adjoint. Thus, performing

a small homotopy of J if necessary, we may assume that J preserves g/gβ ⊂ νm and

equals jβ on this subspace; it is then clear that the eigenvalues of b on (g/gβ , J|g/gβ
)1,0

are positive. Hence, after cancelling the g/gβ contributions, we are left to consider the

action of b on the complex line

det(ν′
m, Jβ)1,0 ⊗ det(ν′

m, J)1,0 ⊗ L2
m.

The eigenvalues of b on (ν′
m, Jβ)1,0 are positive by construction, the eigenvalues on

(ν′
m, J)1,0 have mixed signs, but the negative ones cancel with the corresponding

eigenvalues for the action on (ν′
m, Jβ)1,0. Hence, the eigenvalue for the action of b on

det(ν′
m, Jβ)1,0 ⊗det(ν′

m, J)1,0 is non-negative. On the other hand, equation (10) shows that

the eigenvalue of b on Lm is 2π‖β‖2 > 0. "

Proof of Theorem 4.13. Since G acts freely on µ−1(0), there is a direct sum decompo-

sition

TM|µ−1(0) ) p∗TM0 ⊕ g ⊕ g∗.
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The trivial bundle g ⊕ g∗ ) gC carries a canonical complex structure, and hence a spinor

module ∧gC. We therefore obtain an induced spinor module for TM0:

S′
0 = HomCl(gC)(∧gC, S|µ−1(0))/G. (26)

By [24, Theorem 9.6], indexG(σ0)G equals the index of a Dirac operator on M0, acting on

sections of S′
0 ⊗ L0. To complete the proof it suffices to show that S′

0 is homotopic to the

spinor module S0 on Mr determined by its log symplectic structure and orientation.

We can deduce this from the normal form given in item (d) near the beginning

of Section 4.3. The map p ◦ pr1 : U → M0 is a fibre bundle with fibres diffeomorphic to

T∗G, and by item (d), TZ∩UU ) (p ◦ pr1)∗TZ0
M0 ⊕ gC (identifying g ⊕ g∗ with gC also).

Using the formula for the log symplectic form in item (d), it follows that the complex

structure (p ◦ pr1)∗J0 ⊕ JgC on TZ∩UU is compatible with ω, where J0 is a ω0-compatible

complex structure on TZ0
M0 and JgC is the standard complex structure on gC. Using

Remark 2.12, the stable isomorphism may be chosen such that the spinor module S|U =
(p ◦ pr1)∗S0⊗̂ ∧ gC. This implies the desired result. "

Example 4.18. We return to Example 3.21, carrying over the notation introduced there.

Suppose n1 ≤ n2 (the other case being analogous). The reduced spaces µ−1(j)/S1, j ∈ Z
are either (1) empty if j < n1, (2) a single point with positive orientation if n1 ≤ j < n2, or

(3) a pair of points with opposite orientations if n2 ≤ j. Cases (1) and (3) have vanishing

quantization. Thus according to the [Q, R] = 0 theorem

indexS1(/∂
L)(t) =

n2−1∑

j=n1

tj

in agreement with (15).

4.4 Brief remarks on the singular case

Let (M, Z, ω, µ) be a compact log symplectic Hamiltonian G-space. If the action of G

on µ−1(0) is only locally free instead of free, then the reduced space M0 = µ−1(0)/G

is an orbifold. In order to generalize Theorem 4.13 to this situation, one option is to

define the (orbifold) spinor module on the reduced space M0 by equation (26), and define

the quantization of M0 to be the index of the corresponding Dirac operator twisted

by L0. Then Theorem 4.13 holds with the same proof. Alternatively, one can extend the

definitions and constructions to orbifolds. We briefly indicate how this can be done.
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Let Mn be an orbifold. For p ∈ M let $p denote the isotropy group; we allow

the isotropy group to act non-effectively in orbifold charts. We define a (simple) normal

crossing divisor in M to be a finite collection Z of codimension 1 suborbifolds such that

if Z1, ..., Zk ∈ Z and p ∈ Z1 ∩ · · ·∩ Zk, there is a local orbifold chart ϕ : U → Rn/$p centred

at p such that

(a) Rn = Rk × Rn−k and $p acts only on the 2nd factor;

(b) for j = 1, ..., k, ϕ maps Zj ∩ U into a subset of {xj = 0}/$p, where x1, ..., xk are

the coordinates in Rk.

Assuming Z admits global defining functions, this definition implies that each inter-

section Z1 ∩ · · · ∩ Zk has a neighborhood in M of the form Rk × (Z1 ∩ · · · ∩ Zk), a product

of a manifold with the suborbifold Z1 ∩ · · · ∩ Zk.

By working in orbifold charts, one verifies that the sheaf of smooth sections

of TM tangent to all Z ∈ Z forms the sheaf of smooth sections of an orbifold vector

bundle TZM, which can moreover be equipped with the obvious analogue of the Lie

algebroid structure present in the manifold case. The definition of a log symplectic

form then carries over. Using the remark above regarding existence of a neighborhood

of Z1 ∩ · · · ∩ Zk of product form, one can carry through the construction of the stable

isomorphism between TM and TZM. Hence, TM becomes stably almost complex as in

the manifold case, and the rest of the definition of the quantization carries through. The

statement and proof of Theorem 4.13 then generalize to the case where G acts locally

freely on µ−1(0).

In the still more general setting with no assumptions on the action of G on

µ−1(0), one can obtain an analogue of Theorem 4.13 using a shift desingularization to a

nearby weakly regular value as in [19].

5 Toric Log Symplectic Manifolds

In this section we specialize our result to the toric log symplectic manifolds defined and

classified in [10] (for the case without crossings) and [6] (for the case with crossings).

We begin by giving a brief introduction to the framework in [6].

Recall that in the symplectic case, there is a systematic procedure for construct-

ing all compact toric examples. In brief, given a convex polytope 8 ⊂ t∗ satisfying the

Delzant condition, one obtains a toric symplectic manifold from the trivial principal T-

bundle 8×T by performing symplectic cutting along each of the codimension 1 faces of

8. The authors of [6] generalized this construction to the log symplectic case and proved

a corresponding classification theorem. Two of the main new features they discovered
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were (1) the codomain t∗ of the momentum map can be replaced by a more complicated

“tropical welded space”; (2) the principal T-bundle used in the construction can be non-

trivial.

5.1 Tropical welded spaces and log affine polytopes

Let n > 0 be even and let t∗ be a real vector space of dimension n/2 (soon to be the

dual of the Lie algebra of a compact torus T). To avoid confusion below, we will use the

notation T ∗ to denote the space t∗ viewed as an abelian Lie group with Lie algebra t∗.

A tropical welded space [6, Definition 3.8] (9, D, ξ) is a smooth connected T ∗-manifold

9n/2, equipped with a normal crossing divisor D and a closed non-degenerate t∗-valued

log 1-form ξ ∈ %1(9, D) ⊗ t∗, such that the image of [ξ ] in H1(9) ⊗ t∗ under the Mazzeo–

Melrose map vanishes. Here “non-degenerate” means that the map TD9 → 9 × t∗

induced by ξ is an isomorphism; the closedness of ξ implies that this map is in fact an

isomorphism of Lie algebroids, where 9 × t∗ is identified with the action Lie algebroid

9 ! t∗ for the T ∗ action.

Any such space may be constructed by gluing together a number of copies

of partial compactifications of t∗ ([6, Section 3.2]), and in particular the connected

components of 9\ ∪ D are affine spaces modelled on t∗. Let 90 ⊂ 9\ ∪ D be a connected

component, and choose an origin p0 ∈ 90 so that 90 becomes identified with t∗. Given

any point p ∈ 9\ ∪ D, we may obtain an element of t∗ by taking the principal value

integral of ξ along any smooth curve from p0 to p, which is transverse to D; the vanishing

of the component of [ξ ] in H1(9) ⊗ t∗ implies that the result does not depend on the

choice of curve. Thus by choosing a single basepoint in 9\ ∪ D one obtains a consistent

identification of each component of 9\ ∪ D with t∗.

A log affine hyperplane in 9 is a smooth connected embedded hypersurface

H ⊂ 9 not contained in D, which is preserved under translations by some hyperplane

in T ∗. An admissible log affine polytope (compare [6, Definition 5.3]) is a compact

submanifold with corners 8n ⊂ 9n, such that the closures of the codimension 1 strata

of ∂8 are contained in log affine hyperplanes, and every stratum of ∂8 intersects every

stratum of D transversely. An oriented admissible log affine polytope has a well-defined

regularized volume, defined as the principal value integral of the top power of ξ over 8.

One says 8 is convex if its intersection with each component of 9\ ∪ D is convex. There

is also a version of the Delzant condition, see [6, Definition 5.20].
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5.2 Construction of toric log symplectic manifolds

Let T be a compact torus with Lie algebra t. Let (9, D, ξ) be a tropical welded space

where ξ ∈ %1(9, D) ⊗ t∗. Let πP : P → 9 be a principal T-bundle. There is a canonically

defined obstruction class Tr(c1(P)∧ ξ) ∈ H3(9, D) [6, Definition 4.15], and in [6, Theorem

4.16] it is shown that if the obstruction class vanishes then the total space of P admits

log symplectic forms ωP with poles along the divisor ZP = π−1(D) satisfying

ι(XP)ωP = −π∗
P 〈ξ , X〉.

The space of equivalence classes of such log symplectic forms up to T-equivariant

symplectomorphisms inducing the identity on 9 is an affine space of the real vector

space H2(9, D) [6, Theorem 4.16].

If 8 ⊂ 9 is an admissible convex log affine polytope satisfying the Delzant

condition, then one can perform a log symplectic version of symplectic cutting on

π−1(8) ⊂ P along the faces of 8 in order to obtain a smooth closed log symplectic

T-manifold (M2n, Z, ω), with induced map π : M → 8 ⊂ 9 satisfying

ι(XM)ω = −π∗〈ξ , X〉.

We refer the reader to [6, Theorem 5.18, Corollary 5.21, Theorem 6.3] for details and

further results.

The modular weights of (M, Z, ω) are minus the residues of ξ at the various

hypersurfaces of D. Choosing a basepoint p0 ∈ 9\ ∪ D, each connected component of

9\ ∪ D becomes identified with t∗, and hence the map π determines a map

µ : M\ ∪ Z → t∗, (27)

which is a momentum map in the sense of Definition 3.7. It is explained in [6,

Proposition A.5] that the residues c1, ..., ck associated to a collection D1, ..., Dk ∈ D such

that D1 ∩ · · · ∩ Dk (= ∅ are linearly independent. In particular it follows from Lemma 4.8

that µ is proper.

5.3 Quantization of toric log symplectic manifolds

By the transversality assumption on the strata of 8, the vertices of 8, which are the

images of the T-fixed point submanifolds of M, lie in 9\∪D. We may choose a basepoint

in 9\ ∪ D to arrange that one of these vertices lies in the weight lattice : for T once the
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components of 9\ ∪ D are identified with t∗ (e.g., choose the basepoint to be one of the

vertices of 8). As a corollary of Remark 3.13 we have the following:

Corollary 5.1. A toric log symplectic manifold (M, Z, ω, µ) is prequantizable (in the

sense of Definition 3.12) if and only if the image of [ω] in H2(M) is integral.

Assume the image of [ω] ∈ H2(M) is integral, and let (L, ∇L) be prequantum

data. If 8 is oriented and D admits global defining functions, then the quantization

indexT(/∂L) ∈ R(T) is defined (Definition 3.19) and depends only on the isomorphism

class of the T-equivariant line bundle L as well as the chosen orientation of 8

(reversing the orientation reverses the overall sign). Since µ is (automatically) proper,

Corollary 4.16 of the [Q, R] = 0 theorem applies and yields the following description

of the quantization. Let 91, ..., 9k be the connected components of 9\ ∪ D. For each

1 ≤ j ≤ k, let oj ∈ {±1} be the parity of the number hypersurfaces of D crossed by a

smooth curve connecting the basepoint to a point of 9j. Under the identification of 9j

with t∗, 9j ∩ 8 becomes a (possibly non-compact) polyhedron 8j ⊂ t∗ with finitely many

edges. Let [8j ∩ :] denote the characteristic function of 8j ∩ :.

Corollary 5.2. The multiplicity of the representation Cλ, λ ∈ : in indexT(/∂L) is

k∑

j=1

oj[8j ∩ :](λ).

It is a consequence of Corollary 4.16 that the RHS vanishes for all but finitely

many λ ∈ :. Corollary 5.2 is a generalization of the following well-known fact from

the compact toric symplectic case: the quantizing Hilbert space is a finite dimen-

sional representation of T, and the set of weights that occurs is 8 ∩ :, each with

multiplicity 1.

Remark 5.3. The map π : M → 8 ⊂ 9 allows us to define a more refined “quantiza-

tion,” as follows. The Dirac operator determines a class [/∂L] in the K-homology group

KT
0 (M), and we may take its push-forward π∗[/∂L] ∈ KT

0 (8) ) K0(8) ⊗ R(T). Since 8 may

have non-trivial topology, this K-homology class may contain additional information.

Pushing forward further under the map 8 → pt recovers indexT(/∂L) ∈ R(T).
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