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1. Introduction

Let G be a compact connected Lie group with Lie algebra g. Let u: M — g* be a

compact Hamiltonian G-space, equipped with a prequantum line bundle L. Choosing a

G-equivariant compatible almost complex structure, one obtains a spin-c Dirac operator
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@ acting on sections of AT 1M @ L. Its equivariant index is an element of the representa-
tion ring of G. The quantization-commutes-with-reduction ([@, R] = 0) theorem (cf. [18,
38,55,44]) says that the multiplicity of the irreducible representation with highest weight
A equals the index of a similarly-defined operator on the symplectic quotient u=1(\)/G
(this must be modified slightly in case A is not a regular value [41]).

Choose an invariant inner product on g. A well-known approach to [@, R] = 0 due to
Tian-Zhang [55] utilizes a deformation of @:

@, =@ —itc(var), teR (1)

where c¢(—) denotes Clifford multiplication, and vy, is the Hamiltonian vector field of the
function ||u[|%. As the parameter ¢ — oo, sections in the kernel of @; ‘localize’ near the
vanishing locus Z = {m € M|vy(m) = 0} = Crit(||x||?). This turns out to be closely
related to a formula of Paradan [44] for the index of @, involving contributions from the
components of Z. One has (cf. [27])

z=JG P nu (),
BeB

where B C t, is a finite discrete subset of a positive Weyl chamber, and M? is the
fixed-point submanifold of the 1-parameter subgroup generated by g € t. Thus there will
be a contribution from Z, = p~1(0), together with ‘correction terms’ from 0 # 3 € B.
One can show that the only contribution to the multiplicity of the trivial representation
comes from Zy. Combined with an argument of a more local nature (near x=1(0)), this
leads to a proof of the [Q, R] = 0 theorem.

In this article we prove analogous results for Hamiltonian loop group spaces. This
work builds on earlier articles [33] (joint with E. Meinrenken) and [34]. We very briefly
summarize some results from these papers here, and in somewhat greater detail in Sec-
tion 3. Assume G is also simple and simply connected for simplicity. Let LG denote the
loop group of G, the space of maps S' — G of some fixed Sobolev level s > % Let
DPp: M — Lg* be a Hamiltonian LG-space, with level k > 0 prequantum line bundle L
(cf. [2]). Fix a maximal torus 7' C G. In earlier work [33] with E. Meinrenken, we con-
structed a finite-dimensional ‘global transversal’ )} C M, as well as a canonical spinor
module Sy — Y. The submanifold ) is a small ‘thickening’ of the (possibly) singular
subset X = @ (t*) C M. In [34] we studied a Dirac-type operator 2 on Y acting on
sections of An_®S, where S = Sy ® L and n_ C gc denotes the sum of the negative
root spaces of G. The operator 2 was shown to represent an index pairing between a
spin-c Dirac operator for S, and the pull back of a Bott-Thom element for g/t, the latter
formally playing the role of a Poincaré dual to X in ).

In [34] we proved that 2 has a well-defined index index(2) € R~°°(T'), which is, more-

over, the Weyl-Kac numerator (restricted to 1 € S}

¢) of an element of the level k fusion

ring Ry (G), the analogue of the representation ring for level k positive energy represen-
tations of the loop group. The latter motivated us to define the ‘quantization’ of (M, L)
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as this particular element of Ry (G). In a related paper [29], the first author showed that
this definition agrees with that of E. Meinrenken [40] based on quasi-Hamiltonian spaces,
twisted K-homology, and the Freed-Hopkins-Teleman theorem.

The manifold ) is equipped with a moment map ¢: Y — t, which is proper on the
support of the Bott-Thom element. In Section 4 we introduce a deformation %, defined
by a formula similar to (1), except that we use a re-scaled version of vy which has
bounded norm. For ¢ > 0, the operators 2, have the same index (in R=>°(T)) as 2.

In Section 5 we prove a formula for index(%2) which is inspired by work of Ma and
Zhang [37]. The index is expressed as a sum of contributions indexed by the components
Zs =Y N¢p YB) of Z = {vy, =0}:

index(2) = ﬁGZWBtlggo indexaps(Z; | Up). (2)
Each contribution is a limit (in R~°°(T")) as ¢ — oo, of the index of an Atiyah-Patodi-
Singer boundary value problem on a compact neighborhood Ug of Z3N&X. The sum over
B in (2) is infinite, converging in R~°°(T). For the reader’s benefit we have provided a
brief introduction to elliptic boundary value problems in Section 2, mostly following the
recent references by Bér and Ballmann [7,6].

In Section 6 we follow a strategy similar to Ma-Zhang [36,37] and Braverman [12] to
prove a formula for the contributions in (2) in terms of transversally elliptic operators.
The end result is a formula in the spirit of Paradan [44]:

index(2) = Z index (0,0 ® Sym(vg)), (3)
BeEW-B

where 03¢ is a transversally elliptic symbol on the fixed-point set VB, and vg is the
normal bundle to Y* in ) equipped with a ‘B-polarized’ complex structure. The formula
(3) is sometimes called a ‘norm-square localization’ formula (or sometimes ‘non-abelian
localization’ formula), because the set of non-trivial contributions are indexed by the
components of the critical set of the norm-square of the moment map || ®]|?.

We remark that for a non-compact prequantized Hamiltonian G-space with proper
moment map, the analogue of index(2) is not defined in general. In their proof of the
Vergne conjecture, Ma-Zhang [35,37] showed that, nevertheless, the right-hand-side of
(2) is well-defined. The resulting ‘quantization’ of M satisfies the [Q, R] = 0 Theorem
and behaves functorially under restriction to subgroups. Thus one main difference in
our setting is that for us, the global object index(2) is defined, and (2) becomes a
theorem. Similar comments apply to the result of Paradan in [45], or of Hochs and the
second author in [21]. Another difference in our setting is the presence of the Bott-Thom
element; this changes little from a conceptual point of view, although it complicates the
proofs.

As in the work of Paradan [44] on compact Hamiltonian G-spaces, the norm-square
localization formula (3) leads to a new proof of the [@, R] = 0 Theorem for Hamiltonian
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loop group spaces, and we discuss this briefly in Section 6.4. We do not present a complete
proof of the [@, R] = 0 theorem here, as a couple of aspects would take us too far from our
main focus. These include an inequality involving the data of the affine Lie algebra Z/QB
and a slightly more refined local description of the spin-c structure Sy on ). However the
[Q, R] = 0 theorem follows from our main theorem, together with a relatively small part
of [30] (or [32] in preparation). Perhaps the most important application of the [Q, R] =0
theorem for Hamiltonian loop group spaces is to the Verlinde formula; for context, see
for example Bismut-Labourie [10] for a symplectic approach to the Verlinde formulas, or
the articles by Meinrenken [39,40] for the relationship with [@Q, R] = 0 for Hamiltonian
loop group spaces and quasi-Hamiltonian G-spaces.

The PhD thesis of the first author [30] (and the article [32] in preparation) give a very
different proof of a version of (3) (the contributions are expressed rather differently),
using combinatorial methods similar to Szenes and Vergne [54]. These references also
contain some simple examples of (3) for G = SU(2), SU(3).

Acknowledgments We thank Eckhard Meinrenken and Nigel Higson for helpful dis-
cussions and encouragement. We thank the referee for their careful reading of the
manuscript, and in particular for pointing out how to fix a gap in the proof of Proposi-
tion 6.10 in an earlier draft. Y. Song is supported by NSF grant 1800667.

Notation We often use the summation convention (repeated indices are summed over).
If V is a Zs-graded vector bundle, then V* (resp. V) denotes the even (resp. odd)
graded subbundle. If D: C*°(M,V) — C°(M,V) is an odd linear operator, then D*
denote the induced maps C> (M, V*) — C>°(M, V). Unless stated otherwise, [a, b] will
denote the graded commutator of the linear operators a, b. We use the Koszul sign rule
for graded tensor products.

On a Riemannian manifold (M, g), g will often be used to identify TM ~ T*M. For
a Hermitian vector bundle over M, the point-wise inner product (resp. norm) will be
denoted (—,—) (resp. | — |), while the inner product (resp. norm) on the space of L2
sections for the Riemannian measure will be denoted (—, —)asr (resp. || — ||ar). We will
drop the subscript M when the underlying manifold is clear from the context.

If K is a compact Lie group with Lie algebra ¢, we write Irr(K) for the set of iso-
morphism classes of irreducible representations of K, and R(K) for the representation
ring. The formal completion R~ (K) = Z"(X) of R(K) consists of formal infinite linear
combinations of irreducible representations m € Irr(K') with coefficients in Z. A sequence
of elements in R~°°(K) converges iff the coeflicient of 7 converges, for each 7 € Irr(K).
Given a representation W of K and 7 € Irr(K), W, ~ 7 ® Homg (7, W) denotes the
m-isotypical subspace. Given a K-equivariant linear map A: W — V A, denotes the
map W, — V, obtained by restriction.

If K acts smoothly on a manifold M, F is a K-equivariant vector bundle, and & € ¢,
then Ef : C®(M,E) — C>®(M, E) denotes the differential operator obtained by differ-
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entiating the action of exp(t§) on C°(M, E) at t = 0. In case E = M xR, E? is a vector
field on M that we denote ;.

Throughout G will denote a fixed compact connected Lie group with Lie algebra g.
Fix a choice of maximal torus T with Lie algebra t. The normalizer of T in G is denoted
N¢g(T), and the Weyl group W = N¢(T)/T. The integral lattice is A = ker(exp: t = T')
and its dual A* = Hom(A, Z) ~ Irr(T) is the (real) weight lattice. Fix an invariant inner
product B on g, which we use to identify g ~ g*.

2. Preliminaries on Dirac-type operators

In this section we briefly recall some definitions and results on elliptic boundary value
problems, mostly following [7,6]. We also recall criteria for determining that a Dirac-type
operator on a non-compact manifold is (K-)Fredholm, or has compact resolvent.

2.1. Elliptic boundary value problems

Let M be a complete Riemannian manifold with compact boundary and interior
unit normal vector v along OM. Let E, F' be Hermitian vector bundles, and let
9: C>®(M,E) — C>®(M,F) be a first-order differential operator. The symbol of 2
is the bundle map 04 : T*M ~ TM — Hom(E, F') defined by*

og(df) =12, f].

Following Béar and Ballmann [7, Section 2.1], we will say that 2 is of Dirac type if its
principal symbol satisfies the Clifford relations

(& m)idg (4)
<§7 77> 1dF

02(§)* 09(n) +oa(n)0z(f) =2
o9(&)oa(n) +oa(n)oz(§)” =2

for all &, € T* M. This definition implies Z is elliptic, and moreover that the composi-
tion

09(v)log(€) € End(Elon), € €T™(OM) ()

is skew-Hermitian (here T*(0M) is identified with the annihilator of v). A first-order
essentially self-adjoint differential operator A: C*°(OM, E) — C*(9M, E) with princi-
pal symbol (5) is called an adapted boundary operator for 2. Since OM is compact and
A is elliptic, A has compact resolvent and there is an orthonormal basis of L?(0M, E)
consisting of smooth eigensections of A.

1 1t is common to include a factor of /—1 in the definition. We are following the convention in [7].
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Let C2(M, E) denote the space of smooth sections of E with compact support in
the interior of M. The formal adjoint of 2 is the unique first-order differential operator
9*: C*(M,F) — C*>(M, E) such that

(2w, 'U)L2(M,F) = (w, @*U)LQ(M,E)

for all w € CX(M,E), v € CX(M,F). Then o9-(§) = —o5(§)*. For compactly
supported sections w € CX°(M,E), v € C*(M,F) (which may be non-zero on the
boundary), integration by parts gives Green’s formula:

(gwﬂ/)m(M,F) = (w, @*U)H(M,E) - (U@(V)w7v)L2(aM,F)~ (6)

The minimal extension P is the closure (in the sense of unbounded operators on
Hilbert spaces) of the operator with domain CS (M, E). The mazimal extension Pmax
has domain the space of L2-sections e € L?(M, E) such that there exists a section
f € L?*(M, F) with Ze = f in the sense of distributions (C2°(M, F) being the space of
test sections).

Let LIQOC(M , E) denote the space of sections of F that are locally square-integrable
(modulo sections vanishing almost everywhere), and let HL_(M, E) denote the space of
sections e € L (M, E) whose weak first covariant derivatives lie in L2 (M, E) as well.
If M is compact then L2 (M, E) = L*(M, E) and HL (M, E) = H'(M, E) is the usual
Sobolev space. It is convenient to introduce the smaller domain

HL(M,E) = H. (M, E) N dom(Zax)-

On a manifold with non-empty boundary dom(Zmin) ¢ HZ, (M, E) C dom(Zmax), see
Béar and Ballmann [6] for a precise characterization and detailed discussion. By impos-
ing suitable boundary conditions one obtains extensions in between the minimal and
maximal extensions.

In this article we will only need Atiyah-Patodi-Singer boundary conditions [5], which
are defined as follows. Let

Hors: H (M, E) — HY2(OM, E)

denote the trace map, the continuous extension of the map given on smooth sec-
tions by restriction to the boundary. Given an adapted boundary operator A, let
B.o(A) € HY?(OM, E) denote the closure of the subspace generated by the negative
eigenspaces of A. The Atiyah-Patodi-Singer (APS) boundary value problem (2, B<o(A))
is the extension of & with domain

dom(Z, B<o(A)) = {v € Hy(M, E)|Zanv € B<o(A)}-

A short calculation using (4), (5) shows that
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AY = —0g9(W)oAoogy(v) ' C®(OM,F) — C>®(0M, F),

is an adapted boundary operator for 2*. Let B<o(AY) C HY/2(0M, F') denote the closure
of the subspace generated by the non-positive eigenspaces for AV. Using Green’s formula,
the Hilbert space adjoint of the operator (2, B<o(A)) is the extension (2*, B<o(AY)) of
2* with domain

dom(2*, B<o(AY)) = {v € HL.(M, F)|Zanv € B<o(AY)}.
2.2. Fredholm conditions and the splitting theorem

In this section we continue to assume that & is a Dirac-type operator on a complete
Riemannian manifold with compact boundary. Following Béar and Ballmann, we say that
9 is coercive at infinity if there is a compact subset S C M and constant ¢ > 0 such
that

clvllizzar,ey < 120|201, 7) (7)

for all v € C°(M \ S, E). More generally, suppose a compact Lie group K acts on M,
E, F preserving the metrics and 2 is K-equivariant. For m € Irr(K), we say that 2
is (K, m)-coercive at infinity if P, is coercive, i.e. if there is a compact S; C M and
constant ¢, such that (7) holds for v € C°(M \ Sy, E). We say that 9 is K-coercive if
2 is (K, m)-coercive for each 7 € Irr(K).

A K-equivariant bounded linear operator A: H — H' is K-Fredholm if the operator
Ar: Hy — H. is Fredholm for each m € Irr(K). Such an operator has a K-indez in
R™>°(K), defined as

index(A) = Z index (A, ).

melrr(K)

Remark 2.1. We will also use the notation index(—) in closely related situations, and it
should be clear from the context which interpretation is being used. If H is Zy-graded and
A is an odd, possibly unbounded self-adjoint Fredholm operator, then index(A) denotes
the index of AT viewed as a bounded Fredholm operator from dom(A™) equipped with
the graph norm, to H. This coincides with dim(ker(A")) — dim(ker(A™)), the ‘graded
dimension’ of ker(A).

In the non-equivariant case, the following result is Theorem 8.5 in [6], and the proof
given there generalizes immediately to the equivariant case.

Theorem 2.2. Let M be a complete Riemannian manifold with compact boundary and
2:C>®(M,E) — C®(M,F) a Dirac-type operator. Let K be a compact Lie group acting
on M, E, F preserving the metrics. Suppose 2 is K -equivariant and A is a K -equivariant
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adapted boundary operator. If 9, * are K -coercive then (2, B<o(A)) is a K-Fredholm
operator.

We are now ready to state the splitting theorem for the special case of APS boundary
conditions. In the non-equivariant case the statement below is Theorem 8.17 in [6], and
the proof given there generalizes easily to the equivariant case. Splitting theorems of this
general kind appear in many places in the literature. For but one other example (which
allows even for families of operators), see Dai-Zhang [14].

Theorem 2.3. Let M be a complete Riemannian manifold without boundary, and
P: C*®(M,E) — C>*(M,F) a Dirac-type operator. Let K be a compact Lie group acting
on M, E, F preserving the metrics, and assume 2, 2* are K-coercive. Let N C M be
a compact K-invariant hypersurface with oriented normal bundle. Cut M along N to
obtain a manifold M’ with OM' = Ny U Na, where N1, N are two copies of N. Let 9’
denote the induced Dirac-type operator on M', acting between sections of the pullback
bundles E', F'. Let A be a K -equivariant adapted boundary operator for 9' along Ni;
then AU (—A) is an adapted boundary operator for 29'. Then we have the following
equality in R=>°(K):

index(2) = index(2’', B<o(A) LI B<o(—A)). (8)
Remark 2.4. In (8), (2, B<o(A) U B<o(—A)) denotes the extension of 2’ with domain
{ve HL,, (M',E")|%Zn,v € Bco(A), Zn,v € B<o(—A)}.

If the hypersurface N is such that N1, Ny are contained in distinct components of M’,
then the right hand side of (8) becomes the sum of two indices on the two components
of M'.

The following result on the discreteness of the spectrum for Schrédinger-type operators
is well-known, cf. [53,28]. It is also closely related to the property of being ‘k-coercive’
for all k > 0 in [7, Corollary 5.6]. We described the proof of a slightly more general result
in [34, Appendix B].

Proposition 2.5. Let M be a complete Riemannian manifold without boundary. Let D be
an essentially self-adjoint Dirac-type operator acting on sections of a Hermitian vector
bundle E. Let V' be a continuous function which is proper and bounded below. Then
D? +V is essentially self-adjoint with discrete spectrum.

For certain arguments later on it will be convenient to work with inequalities between
semi-bounded operators. If A is a self-adjoint operator on a Hilbert space H with domain
dom(A) and spectrum in [1, 00), then one defines an associated positive definite quadratic
form



Y. Loizides, Y. Song / Journal of Functional Analysis 278 (2020) 108445 9

qalui,uz) = (Auy, ug)

for all uy,us € dom(A). The completion of dom(A) using the inner product g4 is a
Hilbert space dom(qa) which can be identified with dom(A'/?), and is known as the
form domain of A (cf. [52, VIIL.6]). Given self-adjoint operators A, B with spectrum in
[1,00) one writes

if
dom(ga) C dom(gp) and qa(v,v) > gp(v,v) Vv € dom(ga)

(cf. [51, XTIIL.2, p.85]). Equivalently, A > B if the inclusion mapping

(dom(qA)v QA) — (dom(QB)a (IB)

is norm-decreasing. It is enough to check that for each v in a core for A, v € dom(gg)
and ga(v,v) > gg(v,v). More generally if A, B are self-adjoint operators with spectrum
in [—¢, 00) for some ¢ > 0 then one writes A > Bif A+c+1>B+c+ 1.

The following result is a consequence of Proposition 2.5, cf. [34, Appendix B] for
details.

Proposition 2.6. Let M, E, D, V be as in Proposition 2.5. Let K be a compact Lie group
acting on M, E preserving the metrics, and assume D, V' are K-equivariant. Let T be a
K -equivariant self-adjoint operator on L*(M, E) with spectrum in (0,00), and suppose
for some 7 € Irr(K) we have Ty > (D? + V). Then T is a compact operator.

Remark 2.7. Later on we study a complicated Dirac-type operator Z; and will obtain
an inequality as in the proposition (with T'= 2? + 1 and D a simpler Dirac-type op-
erator) from a Bochner formula. The estimate (22 + 1), > (D? + V), implies % is
(K, )-coercive, and the proposition says moreover that (2;), has discrete spectrum.

3. A Dirac-type operator associated to a loop group space

In this section we briefly review the setup and results from [33,34], and begin to study
a deformation of the operator under consideration.

3.1. Hamiltonian loop group spaces
Let LG denote the loops S' = R/Z — G of some fixed Sobolev level s > % Point-wise

multiplication of loops makes LG into a Banach Lie group. The Lie algebra of LG is
the space Lg = QY(S1,g) consisting of loops in g of Sobolev class s. We define the
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smooth dual Lg* to consist of g-valued 1-forms on S! of Sobolev level s — 1; the pairing
between Lg, Lg* is given by the inner product, followed by integration over the circle.
Lg* is regarded as the space of connections on the trivial principal G-bundle over S*,
and carries a smooth, proper LG action by gauge transformations:

g-&=Ad,{ —dgg', g€LG, £€Lgt (9)

The group G embeds in LG as the subgroup of constant loops. The integral lattice A
of G may be viewed as a subgroup of LG, by identifying A € A with the closed geodesic
t — exp(tA).

Definition 3.1. A proper Hamiltonian LG-space (M, waq, Prq) is a Banach manifold M
equipped with a smooth proper action of LG, a weakly non-degenerate, LG-invariant
closed 2-form wq, and a smooth, proper, LG-equivariant map

D M — Lg*
satisfying the moment map condition

tEm)wm = —d(Pr,€), € Lg.

For a more detailed discussion of Hamiltonian loop group spaces, see for example
[42,1,11].

3.2. The global transversal Y of a Hamiltonian loop group space

Let ®pq: M — Lg* be a proper Hamiltonian LG-space. The based loop group QG
acts freely on Lg*, and hence also on M. The quotient

p:M—=>M/QG =M

is a compact finite-dimensional G-manifold, and is an example of a quasi-Hamiltonian
G-space [1]. Since Lg*/QG ~ G, M comes equipped with a group-valued moment map

®: M — G.

Let B,(g/t) denote the ball of radius ¢ > 0 centered at the origin in g/t. The normal-
izer Ng(T') acts on B,(g/t) by the adjoint action. Using the inner product there is an
Ng(T)-equivariant identification g/t ~ t*-, where t* is the orthogonal complement of t
in g. There is an Ng(T')-equivariant map

rp: T x By(g/t) =T x Bq(tl) — G, (t, &) — texp(§)
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and for ¢ sufficiently small it is a diffeomorphism onto a tubular neighborhood U of T
in G. Define the Ng(T)-invariant open submanifold Y of M to be the pre-image:

Y =0 HU).

Let Y be the A-covering space of Y defined as the fibre product Y x ¢ (t x B4(g/t)), using
the map

rp o (expp,id): t x By(g/t) — U.

Thus Y = Y/A and we have a pullback diagram

Dy=(¢,$°/")
y > tx By(g/t) (10)
J/Tr ero(expT,id)
Y U
Py

The first component ¢ of the map ®y, defined by (10) is a moment map for the Ng(T') x
A-action (using t ~ t*), and ) can be seen to be a degenerate Hamiltonian Ng(T) x
A-space.

Interestingly, ) can be embedded Ng(T) x A-equivariantly into the infinite dimen-

sional manifold M, such that

o the map obtained by composition Y < M £ M has image Y and coincides with
the covering map 7: Y — Y
o the image of ) in M is a small ‘thickening’ of the (possibly) singular closed subset

X - a3

where t — Lg* is embedded as constant connections;
o the image of ) in M intersects all the LG-orbits transversally.

In earlier work [33, Section 6.4] with E. Meinrenken, we showed how to construct such
an embedding, depending on the choice of a connection on the principal Q2G-bundle
Lg* — G.? In [33] we referred to ) as a global transversal. One reason this perspective is
useful is for the description of a canonical spin-c structure on ), explained in the same
article.

2 In [33] we actually worked with a slightly larger space PG (a principal G-bundle over Lg*), which was
desirable for certain purposes, although we have avoided discussing it here for simplicity. The embedding
referred to here can be constructed by the same method.
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3.8. A lst-order elliptic operator on Y

Redefining Y to be smaller if needed, one can construct a complete Ng(T)-invariant
Riemannian metric g on Y, such that Y has a cylindrical end

Cylg = Q x (1,00),

where @ C Y is a compact Ng(T)-invariant hypersurface, the complement Y™\ Cylg, is
compact, and the metric

gley, = dz® + gq,

where g is a metric on @ and z € (1,00). This normal form can be constructed by be-
ginning with a slightly larger open subset Y’ = ®~1(U’), where U’ = r¢(T x By(g/t)),
and then choosing () to be the inverse image of a regular value ¢ of the map
Ipry o 77" 0 ®|ys|: Y’ — [0,¢'). The metric g can be constructed by patching together
a Ng(T)-invariant metric on Y’ with a cylindrical metric on a collaring neighborhood
of @ using a partition of unity; cf. [34, Section 4.7.1] for further details. One can ar-
range that the vector field d, on Y extends continuously by 0 to a neighborhood of Y
in M.

The pullback of g to Y is a Ng(T') X A-invariant complete metric on ). The Riemannian
volume determines a measure on V. Let Q, Cylg denote the inverse image under the
quotient map Y — Y of @, Cyl,, respectively. For convenience extend z: Cylg — (1, 00)
to a smooth Ng(T') x A-invariant function z: Y — (0, 00), such that 2=*(1,00) = Cylg.

Let E = E* ® E~ be a Zs-graded T x A-equivariant Hermitian vector bundle over
Y such that E*|g are trivial. Let § € C*°(), End(E)) be a bounded, odd, self-adjoint
T x A-equivariant bundle endomorphism, such that 62 = id on Cylg. Let

f:]0,00) = [1,00)

be a smooth, monotone non-decreasing function, equal to 1 on a neighborhood of [0, 1],
such that

S— 00

fs) =2 400 and  f(s)72f(s) =5 0. (11)

The composition foxz will serve as a kind of potential function on ); to keep the notation
from becoming overly cluttered we will continue to denote this composition just by f.
The product group T x A sits as a subgroup of LG. Given a U(1) central extension of
LG, we obtain a central extension of T'x A by restriction. Any central extension is trivial
over the torus hence is of the form 7" x /A\, for some U(1) central extension Aof A. In any
case, let T x A be a U (1) central extension. We assume that there is a homomorphism
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ki A — A* satisfying (k(A),\) >0 V0 # A € A,® and such that for all t € T, X € A we
have the following commutation relation:

Nt Al = e, (12)

We comment on the role of this assumption in Remark 3.4 below.
The following summarizes some results from [34].

Theorem 3.2. Let T x A be a central extension of T x A satisfying (12). Let S be a
T x K—equz’vam’ant spinor module on Y, equipped with a Clifford connection. With E as
above, let D denote the corresponding Dirac operator acting on sections of £ := E®S.
Let 0, f be as above with f satisfying the growth conditions (11). Then the Dirac-type
operator

2 =D+ f021 (13)
is T-Fredholm.

We will usually write f6 instead of f6®1 when it should not cause confusion. In terms
of a local orthonormal frame X1, ..., Xgim(y), the Dirac operator D is

~

D(e®s) = (—1)dee(e) (VE e®c(Xy)s + e®c(X,) VY s),
the (—1)9&(©) appears because of the Koszul sign rule.

Remark 3.3 (Examples). In [33] we constructed a canonical LG-equivariant spinor mod-
ule Sy for the vector bundle p*T'M, where p: M — M = M/QG is the quotient map.
The relevant central extension of LG here is the spin central extension (cf. [50,15]). If
G is semisimple, the resulting central extension of T x A satisfies (12). Above we men-
tioned that ) embeds into M as a finite-dimensional submanifold such that the map
obtained by composition J < M £+ M has image Y and coincides with the covering
map 7w: Y — Y. Since Y is an open subset of M, it follows that the pullback of Sy to Y
isa T x /A\—equivariant spinor module for Y satisfying (12). For the quantization problem,
one also wants to consider spinor modules obtained from Sy by twisting with auxiliary
line bundles.

Remark 3.4 (On the role of the commutation relation). The commutation relation for
the central extension that acts on the spinor module (12) plays a key role in [34] in
showing that the operator (13) is T-Fredholm. We will see that it also has a role in the
present article, stemming from Lemma 4.6. Looking ahead to Section 4, we will study
a deformation Z; of &, and the commutation relation implies that one of the terms

3 Such k are in one-one correspondence with inner products on t which take integer values on A.
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appearing in the Bochner-type formula for 22 goes to oo as one translates out to infinity
in )Y using the action of A. This observation plays a key role in the analysis of the
deformation Z; in Sections 4, 5.

Remark 3.5 (On the index as a pairing in K-theory).

(a) The pair (E, ) descend to Y, and represent a class [0] € K9.(Y). In [34], we showed
that the Dirac operator D¥ for S — Y (set E = C) defines a class [D°] in the
analytic K-homology group KK(T x Cy(Y),C), and the operator in Theorem 3.2
was interpreted as a representative for the Kasparov product jr([0]) ®7wco vy [D7]-

(b) The map k determines an action of A on Irr(T) =~ A* by translations. The
A-equivariance of 2, together with (12) imply that index(2) € R=>(T) = Z*
is invariant under this action.

(c) An important special case is for (E,6) representing the pullback under ¢8/t of the
Bott element for g/t ~ n_, in which case FE is trivial with fibres An_. In this case there
is additional anti-symmetry under the Weyl group, and index(%) is anti-symmetric
under a suitable action of the affine Weyl group, see [34] for details, and also Sec-
tion 6.4 for further discussion.

4. The deformation Z;

We use the inner product to identify t with t*, hence ¢ can be viewed as a map ) — t.
Choose a smooth bounded function

x: [0,00) = (0, 00)

such that, as 7 — oo, rx(r?) and rx’(r) remain bounded while ry(r) — oo. For example,
one can take

1
N

Definition 4.1. Given x as above, the corresponding taming map is

x(r) =

vy =t v=x(¢) ¢

Note that v is a bounded map by construction. The vector field generated by v, denoted
vy, is defined by

Uy|y = U<y)y|y'

On the right-hand-side, v(y) € t generates a vector field v(y)y, on Y that is then evaluated
at y € V.
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Remark 4.2. The terminology ‘taming map’ was introduced by Braverman [12]. In his
application, the taming map was required to satisfy certain growth conditions at infinity
(and would not be bounded). The taming map here is closer to that used by Harada and
Karshon [19].

One checks that

Z:={y e Vlvy(y) =0} = [J Y no ' (B).

Bet

The set of 8 € t; such that Y? N¢~1(3) # 0 is a discrete subset B C t,. We refer to the
subsets

Zsg=Y'n¢*(B), BeW:-B

as the ‘components’ of the vanishing locus Z (although they are not necessarily con-
nected).

Remark 4.3. Recall the (possibly singular) subset X = (¢%/*)~1(0) C . If the tubular
neighborhood U D T is chosen sufficiently small, then Y?N¢~1(8) # 0 < XPNe~1(B) #
(. Under the embedding Y < M, X is identified with ®(t*), hence X¥ N ¢~1(8) =
MP N @ (B). For B € ty we see that

VN (B)#£0 & G- (M Nd,(B)#0

and the latter subset of M is the component of the critical set of the norm-square of the
moment map ||® || labelled by 3, cf. [31] for further discussion.

Definition 4.4. The deformation Z; of Z is the family of Dirac-type operators
Py =D+ (1 +1)f021 — it&c(vy), teR.

We will drop the ‘1®’ when it should not cause confusion; in this notation one should
remember that the operators c(vy ), 6 graded commute.

4.1. Bochner formula for 9?

Let v; denote the components of v with respect to an orthonormal basis &5 =
1,...,dim(t) for t; these are smooth bounded R-valued functions on ). We refer to
det(S) = Homcyg(ry)(S*,S) as the determinant line bundle of the spin-c structure
S. The chosen connection on S determines a connection on det(S) in the usual way. We
define the spin-c moment map pu: Y — t* by

2mi(p,€) = §(£810 - v, et (14)
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(Note that the right-hand-side is an operator on C*°(Y, det(S)) which commutes with
multiplication by functions, hence defines a section of End(det(S)) = Y x C.) Sim-
ilarly using the chosen connection on E we define a moment map (cf. [8]) pup €
t* @ C>(),End(E)) by

omilup, &) = LF ~VE,  Eet (15)

Using the metric we identify TY ~ T*Y. If R is a Killing vector field and V the Levi-
Civita connection, the bundle endomorphism V4 R: X — VxR is skew-adjoint with
respect to the metric on TY, hence defines a section of the adjoint bundle so(TY). The
latter is identified with a subbundle of Cliff(T'Y) (recall so(V) ~ spin(V') C Cliff (V) for
a Euclidean vector space V'), hence for R Killing we obtain a section c(V4R) € End(S).
In terms of a local orthonormal frame X1, ..., Xqgim(y) we have

c(VeR) = 1c(X,)e(Vx, R).

The connection V¥ induces a connection VF() on End(FE) satisfying Vind(E)o =

[VE, o] as sections of End(E), for all vector fields X and o € C°°(),End(E)). The
covariant differential VF*(F)g defines a section of T*) ® End(E). It is convenient to
write ¢(VErd(E)g) for the section of End(E®S) obtained by applying the Clifford action
c to the T*Y ~ TY part of the tensor VER(E)G n terms of the local frame

o(VENEG) = Vi 0Be(X,) € Bnd(BSS).

Proposition 4.5 (Bochner formula, cf. [55,21]). Let & be an orthonormal basis of t. The
square of the deformed operator is given by

D7 =Dg , + P|oy|* + Amt{p + pp, v) + Qitvjﬁgj + ith (16)
where
b= —Q’ch(v.fgj) — c(dvj)c(fg,)
is a smooth bounded section of End(€), Dy =D+ (1+1)f0 and
Dj, = D%+ (1+)*f26° + (1 + t)c(df)0 + (1 + 1) fe(VIH)9). (17)
Proof. We have
@E = D?,t + t2|vy|2 - it[Dﬂ,t,C(”y)]' (18)
Since 6, c(vy) graded anti-commute, the cross-term simplifies to

[Do,t: ¢(vy)] = [D, e(vy)].
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Let X1, ..., Xaim(y) be a local orthonormal frame. Then
D, c(vy)] = [e(Xn), c(0)]VE, + c(Xa)[VE, s c(vy)]
= fzvjvg + c(X,)e(Vx, vy)
Yy
= =20,V +c(X,)((Vix, 0))c(&) + vie(Vix, &)

= —2vjvg”§ + c(dvj)c(&)) + 4v;c(Ve&l) (19)

and the expression in the last line holds globally.

Locally on Y we can choose a spin structure S(T)) and square-root det(S)/? such

that locally S ~ S(TY)®det(S)'/2. The Levi-Civita connection is torsion-free, implying
the following identity of operators acting on vector fields:

Vx =Lx + V. X.
If X is Killing, it follows that
VT = 3T 4 (VX)) (20)
where V3(TY) is the spin connection. Using the definitions of y, gz we have

€ / € / . ] . ]
gdet()"/? _ ggﬂsf * omi(u, &9), vg =LE — 2mi(up, &). (21)

&
Combining (20), (21)

v%} = L?J - 27ri(,u + UE, £]> + C(Vofi)a (22)

and this expression holds globally. Combining equations (18), (19), (22) gives (16).
Using A-invariance and our assumption that the metric and action both take product
forms on Cylg, it follows that c(£3,), c(Ve&3) are bounded operators. Note that

dvj =2 (|62 dics;di + x(|6[2)do;.

The functions x(|¢|?), X'(|¢|*)¢i¢; are bounded according to the conditions on x. The
1-form d¢; descends to Y. To show that it has bounded norm on Y, it suffices to consider
its behavior on Cyl,. Let Q" C @ be a small open subset such that we have a local or-
thonormal frame Xo, ..., Xqgim(y) for gg on Q'. Let X; = 0,, so that X,,,n = 1, ...,dim(Y)
is a local orthonormal frame for g on Y’ = Q' x (1,00) C Y. On Q' x (1,00) we have

gﬁ(dqu) = dg; (X)X

The 1-form d¢; extends smoothly to a neighborhood of the closure Y of Y in M, and
the vector fields X,, extend continuously to the closure of Y’ in M (in particular the
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vector field 0, on Y extends continuously by 0 to Y). Since Y C M is compact it follows
that d¢;(X,,) is a bounded function on Y”, hence g*(d¢;) has bounded norm on Y. This
proves b is bounded.

Equation (17) follows from

[D. £6] = [D, 10 + £, 6] = c(df)0 + fe(VE*F0). O
4.2. Fredholm property for P

The term (41, v) in the Bochner formula will play a crucial role, owing to the following.

Lemma 4.6. Let W C Y be a compact subset, and W = 7=Y(W) C Y. Then {u,v)|w is
proper and bounded below. Consequently the sum {(u,v) + f is proper and bounded below
on ).

Proof. For the first claim, since the quotient W/A = W is compact, it suffices to show
A
that (u, v)(A.y) P2 oo for each y € Y. The commutation relations (12) imply

w(Xy) = u(y) + k(A). On the other hand ¢(A.y) = ¢(y) + A. Thus

(1. 0) ) = x(16() + A1) ((B(0), 60)) + () + £*6(y), A) + (V). X))

Our assumptions on x imply that the first two terms in the brackets, when multiplied by
x(|é(y) + A|?), remain bounded as |A| — oo. Since x was assumed to be positive definite,
for large || the third term behaves like a constant times x(r2)r?, which goes to infinity
as r = |A| goes to infinity, again by our assumptions on x.

For the second claim, consider the joint function ({u,v), f): Y — R2. This map is
proper, because for any compact subset K C R, W = f~}(K) is a subset of the type
considered above, on which (p,v) is proper. For any ¢ € R, the map (s,t) € [¢,00) X
[c,0) — s+t € R is proper. Since (u,v), f are both bounded below, and as the
composition of proper maps is proper, it follows that (u,v) + f is proper. O

Proposition 4.7. Fort > 0, 9, is T-Fredholm.

Remark 4.8. The case t = 0, stated in Theorem 3.2, was proved in [34] using somewhat
different methods from the proof for ¢ > 0 below. We will make use of some positivity in
the proof, so it is not clear what happens when ¢ < 0. Note that, in contrast to the space
of bounded Fredholm operators, the space of bounded T-Fredholm operators is not open
in the norm topology, so it is possible that Z; is not T-Fredholm for any ¢ < 0.

Proof. Fix ¢ > 0 and A € A* ~ Irr(T'). We will show that (2?2 + 1)} ' is compact hence
(Z:)x has discrete spectrum, and a fortiori (2;), is Fredholm. By Proposition 2.6 it
suffices to prove an inequality of the form
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(Z8)x = (D* +V)x (23)

for some T-invariant continuous potential V' which is proper and bounded below.

We find a suitable V' using equation (16). Notice that |vy|, |(ug,v)|, 6], |VE4E)g)
are all bounded globally on ), using a combination of the facts that (1) v is bounded,
(2) the metric g, as well as the sections pg, 6 are A-invariant and are constant in the
z-direction on Cylg. We conclude that equation (16) takes the form

P} =D*+ 2oy |+ (1+1) f20° + dmt(p, v) + (L+) fbr + (L+t)c(df )by + 2itv; £Z; (24)

where by, by are bounded (uniformly in ¢) sections of End(€); note here we have taken
advantage of the fact that f > 1 to hide the terms in (16) containing b, (g, v) inside b;.

As in Tian-Zhang [55], a key observation is that, restricted to the A-isotypic compo-
nent, the operators [,fj in (16) become bounded (in fact since T is abelian, they restrict
to multiplication operators by a constant), so 2vj£§j is bounded by a constant ¢y (the
supremum over y € Y of 2|v;(y) - 2(\, &7)| = 4n[(\, v(y))|).

Since @ is self-adjoint, #2(y) is a non-negative endomorphism of E for each y € Y; let
9%(y) be its smallest eigenvalue. Thus 9?: Y — [0,00) is a continuous T x A-invariant
function, equal to 1 on Cylg.

Define a potential

V = 2oy 2+ At v) — tex + (14 27202 — (14 8) flbr| — (1 + D)ldf] - [bal.
Using equation (24), V satisfies (23). It is clear that V is T-invariant, continuous. Note

that |df| is bounded on Y \ Cylg, whereas on Cylg, |df| = [f/'(x)|. Since by, by are
bounded, it follows that there is a lower bound of the form

V > oy |? + At v) — tex + L+ )2 (1 + 09> —ef 2(F+F]),  (25)

for some constant c.
The growth condition (11) for f implies we can find so > 0 such that for s > s

FE) T2 ) + I (s)]) < 5e (26)

Let K C Y be the subset where x < s3. We consider V' on each of the subsets I and
Y\ K. On K the function #(u, v) is proper and bounded below by Lemma 4.6, while the
other terms in (25) are bounded. Thus V| is proper and bounded below.

Note that )\ K C Cylg. Since ¥|cy1, = 1 and using (26), we obtain the simpler lower
bound

Vpe = oy l® + dmt(p,v) — tex + 5(1+ 1) f2, (27)
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which holds on Y \ K. By Lemma 4.6, the function (u,v) + f is proper and bounded
below on ), and this easily implies that the right hand side of (27) is proper and bounded
below. O

4.8. Continuity of the index

Let H be a Hilbert space and let ag, a be unbounded self-adjoint operators such that
dom(ap) Ndom(a) is dense. Suppose the family of operators

a; = ag + ta, t>0

is essentially self-adjoint. The bounded transform of a; is the bounded self-adjoint op-
erator b(a;), where b(r) = r(1 +r2)~1/2. Tt is convenient to use the following criterion
adapted from Nicolaescu [43, Proposition 1.6].

Lemma 4.9 ([43]). Let a; = ap+ta, t > 0 be a family of unbounded self-adjoint operators,
as above. Suppose that for each t > 0 the following conditions hold:

(a) a; has a gap in its spectrum.
(b) dom(a;) C dom(a)
(c) a®> < C(a? + C") for some C,C" > 0.

Then the family of bounded transforms t — b(ay) is norm-continuous.

Remark 4.10. The third condition in Lemma 4.9 implies [|a|| < C”([|a&] + [|£]]) for
some C” > 0 and all £ € dom(a;). If the operators a; have a common core, then the
estimate (c¢) (verified on elements of the common core) implies dom(a;) C dom(a). If
the operators a; are Fredholm, then 0 is an isolated point of the spectrum, hence in
particular a; has a gap in its spectrum. Thus in this special case the criterion amounts
to proving the estimate (¢). If H is Zo graded and the a; are odd, then b(a;) is an
odd self-adjoint Fredholm operator with the same index as a;. Norm-continuity of the
bounded transform therefore implies index(a¢) is independent of ¢.

Proposition 4.11. For A € Irr(T) fized, the family of bounded operatorst — b(Z;)x, t > 0
is norm-continuous. Consequently index(%;) = index(Z) € R~>°(T).

Proof. Fix an isotypical component A € Irr(T). We will prove the proposition by applying
Lemma 4.9 and Remark 4.10 to the family of odd self-adjoint operators a; = (%)
(these have a common core consisting of smooth compactly supported sections in the
A-isotypical subspace). The operator a = (f6 — ic(vy))x. Since c(vy) is bounded we can
ignore this term. Likewise since ||f|| < 1 we can replace 6 with 1. Thus it suffices to prove
that there are constants C,C’” > 0 such that
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f2<o((2hH,+0). (28)
Using inequality (23) this amounts to showing
fF<ew+a). (29)

It is convenient to make use of the subset L C ) introduced in the proof of Proposi-
tion 4.7. Since V is bounded below, while f is bounded on K, it is easy to ensure (29)
holds on K by taking €’ > 0. On Y \ K, using the lower bound (27), inequality (29)
would follow from

2 <O (Amt{p,v) —tex + 21+ )2 + C).

As (u,v) is bounded below, by taking C’ > 0 we can ensure 4nt(u,v) + C’ > tcy. Then
taking C' > 2(1 +¢)~! gives the result. O

Remark 4.12. In fact to just show invariance of the index, it is enough to verify the weaker
result that the family of resolvents ¢t — (Z; + i);\1 is norm-continuous, or equivalently
that ¢ — (Z;), is continuous in the ‘gap topology’ on the space of closed unbounded
operators (see Kato [25, Theorem IV.2.23]). That this is sufficient is an older result of
Cordes and Labrousse [13] (see Kato [25, IV.5.17]). To prove norm-continuity of the
resolvents, one can use

(2 +i) = (D +1) ' = (2, 1) (D — 20) (2, £i) !
= (s —t)(Z £1) 71 (0 — ic(vy))(Zs £1) 7,

and so it is enough to prove that (%, £1);'f@ is bounded. The latter follows from
inequality (28) proved in Proposition 4.11.

Remark 4.13. Here is a slightly different perspective on Proposition 4.11, which avoids
using Lemma 4.9 in favor of Hilbert C*-module methods. Let H = C([0,1], H) be the
Hilbert C|0, 1]-module consisting of continuous functions [0, 1] — H. The family of self-
adjoint operators Z = (Z;)se[o,1] defines an unbounded self-adjoint operator on H (this
follows because the coefficients of %, vary continuously, in fact smoothly). A ‘localization’
theorem of Pierrot [49, Theorem 1.18] (see also [22]) implies Z defines a regular self-
adjoint operator on H; this means functional calculus for unbounded operators on Hilbert
C*-modules is available, hence F = b(Z) is a bounded operator on H. To show that the
index of %, is independent of ¢ € [0, 1], it suffices to show that the pair (H, F') defines a
KK-theory homotopy, i.e. a KK-theory cycle for the pair of C*-algebras (C*(T'), C[0, 1)),
cf. [20,24]. This amounts to showing that for each A € Irr(T'), the resolvents ¢ > (Z;+i); *
form a norm-continuous family of compact operators (cf. [20]), and we explained this al-
ready in Remark 4.12. This is a weaker result than Proposition 4.11, but still implies
constancy of the index.
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5. The Ma-Zhang-type index formula

Our goal in this section is to ‘break up’ the index of & into contributions from each
component of the vanishing locus Z. The basic tool we use for this is the splitting
theorem for elliptic boundary value problems, see Theorem 2.3. Using methods of Ma
and Zhang [37], we obtain a formula for index(2) € R~°°(T) as an infinite (but locally
finite) sum of contributions labelled by the components Zg of the vanishing locus. Each
contribution can be described as the ‘limit’, as the parameter ¢ — oo, of the index
of an Atiyah-Patodi-Singer (APS) [5] boundary value problem (%, B;) on a compact
neighborhood Ug of Z5 N X, where X = (¢%/Y)~1(0) C ).

5.1. The splitting theorem and 2

For each 8 € W - B, choose a small closed ball Bg C t centered on 8, such that
BsNB, = 0 for 3 # +. Recall that the intersection ZzN(Y\Cylg) = (V\Cylo)?Ng~1(B)
is compact. Let Us C ¢~ '(Bg) be a compact T-invariant neighborhood of ZgN(Y\ Cylg)
in Y such that Ug is also a manifold with smooth boundary 0Ug = Ng. By construction,
for each y € Nj either |vy,(y)| > 0 or #%(y) = 1. Fix a regular value R > 0 of the function
|¢]: ¥ — [0,00), and let

For ¢ > 0 the Dirac-type operator 2; is T-coercive (see Proposition 4.7). Choosing an
adapted boundary operator A for 2;” | Ur, we can apply the splitting theorem:

index(2) = index(%;) = index(%Z;" | Ur, B<o(A])) + index(Z;" | Wg, B<o(—A;")).
(30)

Remark 5.1. Note that in equation (30) we are allowing the boundary condition to
depend on the parameter . Thus the two summands on the right hand side are not
independent of ¢, although their sum is, by Proposition 4.11. One should compare the
approach in Ma-Zhang [37], which involves a similar boundary condition depending on t¢.

Equation (30) is really an infinite collection of equations, one for each allowed choice of
A . For results below it is convenient to choose a particular adapted boundary operator.
Let v be an inward unit normal vector for Ur along Ng. For the Dirac operator D, we
will use a canonical boundary operator A given along Ni by the expression

A=op(v)"'D — V¢ + dmNa) py (31)

! = —c(v) and h is the mean curvature of Ng, cf. Gilkey [16, p.142], Bir

where op(v)~
and Ballmann [7, Appendix A]. A useful property of this choice is that A anti-commutes

with c(v):
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Let AT (resp. A™) denote the restriction of A to sections of £T (resp. £7), thus A~ c(v) =
—c(v)AT. The operators AT are essentially self-adjoint (cf. the calculation on p. 25 of
[7]), hence AT is an adapted boundary operator for DT.

To obtain a ‘canonical’ boundary operator A; for %, take the expression for
09,(v)"19; along Ng and simply replace op(v) 1D with A; thus

Ay = A+itc(v)c(vy) — (1 4+ t)c(v) f6.

Since Np is T-invariant and vy lies in the tangent distribution to the orbits, c(v),
c(vy) anti-commute. The operators AtjE are again essentially self-adjoint, hence A is an
adapted boundary operator for ;" | Ug, and defines an Atiyah-Patodi-Singer boundary
problem (2,7, Boo(A;")). Since

—00,(1) 0 Af 005,(1) ™ = V) Afe(v) = A7,
the Hilbert space adjoint is (%, , B<o(A4;)).
5.2. Dependence of the APS index on t

Proposition 5.2 (cf. [37], Proposition 1.1). Fiz A\ € Irr(T) ~ A*. For t > 0, (A;)x is
invertible.

Proof. For the proof we temporarily suspend our convention regarding graded commu-
tators, and write {-,-} for the anti-commutator, [-,-] for the ordinary commutator. The
calculation of A? is similar to the Bochner formula (17):

AZ = A2+ 2oy |2 + (1 + 12207 +it{ A, c(v)c(vy)} — (1 + ){A, c(v) 0}

= A%+ oy P+ (L+ 0220 +ite(v)[= A, c(vy)] + (1 + t)e(v)[A, f0]

where in the second line we used {A,c(v)} = 0. In terms of a local orthonormal frame
X1 =v, X, ..., Xqim(y) for Y the operator A is

A=) Y c(Xn)Vk, + Ny,

n>2

Using that c(v, ) anti-commutes with c(v) we have

=4, ¢(v)] = c){ 3 c(Xa) V5, <05 }.

n>2

Arguing as in the proof of Proposition 4.7 we find that the anti-commutator in this
expression is bounded on the A-isotypical component (note that the argument is simpler
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than Proposition 4.7, because Ng is compact). Also, since N is compact, the commu-
tator [A, f6] is a bounded bundle endomorphism. Thus

AZ = A2+ 2oy 2+ (1 + 02207 + (1+1)S

where S is an operator which is bounded on the A-isotypical component. The manifold
Ugr was chosen such that at each point of y € Ng, either |vy,(y)| > 0 or §2(y) = 1; thus
lvy|? 4 f26? is a strictly positive bundle endomorphism along Ng. Taking ¢ > 0 we can
ensure these terms dominate, hence (A;)3 is invertible. 0O

Corollary 5.3. Fiz A € Irr(T) ~ A*. When t is sufficiently large, the summands
index(Z," | Ur, B<o(A{))x and index(Z;" | Wgr, B<o(—A; ) on the right hand side of
(30) are separately independent of t.

Proof. By Remark 5.1 it is enough to prove this for index(Z;" | Ug, B<o(A;))x. For
ease of reading, for the remainder of the proof we will omit ‘[ Ug’ from the notation. By
Proposition 5.2, there is some ¢y such that for all ¢ > ¢, the adapted boundary operator
(A4)y is invertible. Thus the Hilbert space adjoint of (2;", B<o(A]))x is (2, , B<o(A;))a
(i.e. we may omit the O-eigenspace), and so the index of (Z,", Bo(A])), is the index in
the Zo-graded sense of the odd self-adjoint operator (Z;, B<o(A¢))a.

We will prove that the index of the 2-parameter family (s,t) — (Zs, B<o(A4¢))x, s > 0,
t >ty is independent of (s, t). First fix t and consider the dependence on s. By Lemma 4.9
and Remark 4.10, norm-continuity of the bounded transforms follows from an estimate
of the form appearing in Lemma 4.9. But in this case the operator a = f6 — ic(vy) is
bounded on the compact space Ug, so the estimate holds.

Next fix s and consider the dependence on t > t). The idea is that by continuity
of the spectrum, invertibility of (A;)y for ¢ > ¢, implies that the boundary condition
B.o(At)y varies ‘continuously’ with ¢, since no eigenvalues can cross 0. This in turn
implies constancy of the index. A discussion of continuous families of boundary conditions
can be found, for example, in Bér and Ballmann [6, Section 8.2]. Let P.o(A;) denote
the L2-orthogonal projection onto B.o(A;), and let 7 > 0. Since OUg is compact, the
dense subspace dom(|A4;|") C L?(OUg, ) does not depend on ¢ and defines the level r
Sobolev space H(™ = L2(QUR,E). Tt follows from the spectral theorem that Po(A;)
induces a bounded linear operator P-o(A4;)™) in H(). According to a result in [6], it
suffices to prove that the family ¢ — P<0(At)(;), t >t is norm-continuous with respect
to the operator norm on B(H /(\T)) for r = 1/2. A short, self-contained proof of this fact
(for arbitrary r) can be found in [26, Theorem 3.2]. O

By Corollary 5.3, it makes sense to define

m index(Z;" | Ug, B<o(A}))

=1
t—o00

indexaps g(Z2,v)

as well as
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indexaps,r(Z,v) = tl;rgo index(2;" | Ur, B<o(A])) = Z indexaps 3(2,v), (32)
IBI<R

with the convergence being in R~°°(T'). Taking the limit ¢ — oo of (30) we find
index(2) = indexaps,r(Z,v) + tli)rgo index(Z;" | Wg, B<o(—A4})). (33)
5.8. Dependence of the APS index on R
Theorem 5.4 (compare [37] Theorem 2.1). The limit
Jimlim index(2;" | Wg, B<o(—=4])) =0
in R=°°(T).
In part of the proof we will use a method we learned from [37, pp. 27-29].

Proof. Fix A € A* ~ Irr(T). We will prove that when R is sufficiently large there is a
constant ¢t g such that for ¢ > ¢y g the inequality

1Zes]1? > 51V s|I? + (¢ = tam)lls]?

holds for all s € C°(Wkg, £)x satisfying (s, Ais)n,, > 0. Hence when ¢ > ¢ g both the
kernel and cokernel of (2, | Wr, B<o(—A]"))» vanish separately (recall that the adjoint
operator is (9, | Wr, B<o(—A;))), which implies the result.

By Green’s formula,

1Zes|” = (s, ZEs)wr — (5,¢() Ze5) N (34)
where we have used that —v is the inward unit normal vector for Wg, and the skew-
adjointness of c(v).

For the first term in (34) we use the lower bound (Z7), > (D? + V), proved in
Proposition 4.7, and the lower bound for the potential V' in equation (25):

V > oy |? + dmt(p, v) — tex + (L+6) f2(1+ )0 — cf 2(f + 1))

By (11), ¢f~2(f + |f’|) is bounded globally on Y by some constant ¢’. Assume ¢ > 1 so
2t >t + 1, thus

t7YV > tuy|? + A, v) — ex + 2 (19? — 2¢). (35)

We claim that for R and ¢ sufficiently large we have V|, > ¢; indeed, we may verify
this separately on Cylg, Wr \ Cylg:
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(a) On Cylg, ¥ =1 and f > 1, hence
t7YV > dm(u,v) — ex + FA(t—2¢).

Since (u,v) is bounded below, for ¢ > 0 we will have t=1V > 1.
(b) On Wi\ Cylg, f = 1. Dropping the non-negative term 92, we have

IV > tuy|? + dn(p,v) —cx — 2¢.

On Y\ Cylg the function (u,v) is proper and bounded below. Hence the subset Ky C
V\Cylg where 47 (p, v) < cx+2¢'+1 is compact. By taking R sufficiently large—thus
excising sufficiently many components of the vanishing locus Z N (Y \ Cylg) from
Y\ Cylg—say R > Ry, we can arrange that v, does not vanish on Ky N Wgr. By
compactness |vy,| is bounded below by some positive constant on Ky N Wg, hence
taking ¢ > 0 (depending on R) we can ensure

tloy|> + 4w, v) — ey — 2¢ > 1.
We have thus shown that for R > Ry and ¢ sufficiently large (depending on R)
(5, 2¢s)wn = (5,D8)wy, + (5, V)wy > (5,D%8)wy + tl|s]. (36)

Now consider the second term in (34). For the remainder of the proof we write V in
place of V€ to make expressions a little cleaner. Along Ny we have

—c(V)Dys = Ays + Vs — wh&

where h is the mean curvature of Ng. By assumption (s, A:$)n, > 0 hence, dropping
this term,

—(s,c(u)@ts)NR > (S,VVS)NR - %(s, hs) Ny, - (37)

To obtain an expression for (s, V,s), apply Green’s formula to the operator V = V¢ on
WR:

”VS”2 = (S,V*VS)WR - (UV(_V)vas)NR
=(s,V*'Vs)w, + (v ® s, V)N,
= (s,V*Vs)w, + (5,t(v)VS) Ny

where in the last line «(v) denotes the contraction operator defined using the metric.
Thus

(5, Vus)ng = HVSHZ — (5, V'Vs)wp.
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By the Lichnerowicz-Weitzenbock formula,
D?=V*V+R

where R is a bundle endomorphism of £, depending on the metrics of F, S, TY and
the choices of connections. Because these structures take a product form on Cylg and
are K—invariant, R is bounded globally on )Y by some constant r. Substituting these
expressions in (37) we have

~(5,c()Zs) y, > [ Vs]* = (5,D%8)w, — 7lls]|* = TR (s, hs) . (38)

Substituting (36), (38) into (34) yields, for R > R, and all ¢ sufficiently large (de-
pending on R):

|Zes]l? = | Vs]|* = RE¥E (s, hs) v+ (8 = 7).

As Np is compact, h is bounded above by a constant depending only on R. For any
0 € (0,1) there is an estimate (cf. [17, Theorem 1.5.1.10])

Islfv, < @ +87D)slly, + 8l Vs,
Choosing § to be sufficiently small we obtain an estimate of the form
1Zes)|* = 51IVslI® + (¢ = tar) 5]
for some constant ty g. O

5.4. The ‘limit of APS indez’ formula

By Theorem 5.4 we can take the limit as R — oo of (33):

index(2) = Rhm indeXAps,R(Q, v) = ZindeXAps,g(.@,U). (39)
— 00
B

For the second equality we have used (32). This is the Ma-Zhang-type ‘limit of APS index’
formula for index(2); it expresses the index as a sum of contributions indexaps g(Z,v)
labelled by the components of the vanishing locus Z. Z has infinitely many components,
but as a consequence of Theorem 5.4, the sum is locally finite, in the sense that for any
fixed A € Irr(7T'), indexaps g(Z,v)» = 0 for all but finitely many .

Remark 5.5. For a non-compact prequantized Hamiltonian G-space with proper moment
map, the analogue of index(Z) is not defined in general. In their proof of the Vergne
conjecture, Ma-Zhang [35,37] showed that indexaps(2,v), defined using a deformation
and limits R, ¢ — oo similar to above, is well-defined. The resulting ‘quantization’ of M
satisfies the [@, R] = 0 Theorem and behaves functorially under restriction to subgroups.
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6. The Paradan-type index formula

In this section we explain how to express the ‘limit of APS index’ contributions
indexaps g(Z,v) as indices of transversally elliptic symbols, resulting in a formula sim-
ilar to that of Paradan [44] (see also [48]) in the compact case. We will be somewhat
brief as our strategy follows along similar lines to Ma-Zhang [37, Section 1.4], [36]. Al-
though the situation is similar to [37], we cannot quite apply their results immediately:
for example, the operator we consider has an additional zeroth order term (containing
6), requiring small modifications. Throughout this section 5 will be fixed, and we set
U = U, N = Ng to simplify the notation.

6.1. A Braverman-type operator

Following the strategy of Ma-Zhang, the first step is to study a family of operators
M, t > 0 on an open manifold M D U of Braverman-type (cf. [12]), which extend
2, on U and such that indexaps g(Z,v) = index(Z) for all t > 0. The point is that
we end up with the ordinary index (rather than a limit of indices) of a Dirac-type
operator on M, and this is a little closer to the usual setting for transversally elliptic
symbols.

Recall that U = Ug C Y is a compact manifold with boundary 0U = N. Let M be
a relatively compact, collaring open neighborhood of U in Y, such that M N Z, = () for
~v # . There is a T-equivariant diffeomorphism

M ~U|JN x[0,00)
N

such that the outward normal vector —v = 9., r € [0, 00). By pullback from Y, we may
consider ' and S as T-equivariant vector bundles over M, and v, f, 6 as smooth sections
of the appropriate bundles over M.

Define a new metric gy on M by patching together the given metric on UUx N x [0, 1)
(viewed as an open subset of )) with a cylinder metric of the form dr?+gx on N x (0, c0),
using a partition of unity. Thus M becomes a complete manifold with cylindrical end
N x (1,00), where the metric takes the form

g INx(1,00) = dr® + gn.

Similarly we define Hermitian metrics and compatible connections on E, S by patching
together the given metrics and connections on U Uy N X [0,1) with metrics and connec-
tions on N x (0, 00) that are independent of r. In this way we obtain a new (essentially
self-adjoint) Dirac operator DM acting on sections of € over M, which extends the orig-
inal D on U; note that this operator differs from the Dirac operator on ), because we
have modified the metric and connections on the collar neighborhood N x [0, 00).
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Choose a smooth monotone function h: [0,00) — [1,00) such that h(r) = e” for r > 1
and h(r) =1 for r € [0,1/2). View h as a function on N X [0, c0) and extend it identically
by 1 to M. Define

M =Dl —ithe(var),  Dgh =DM + (1+t)hfo.
On U this agrees with the operator Z;.

Remark 6.1. Essentially we have attached a cylindrical end to U, and multiplied the
zeroth order terms in Z; by the function h which blows up at infinity in M. It is not
particularly important at this stage that h blows up exponentially, but this will be
convenient in the next subsection.

Proposition 6.2. For t > 1, the operator DM is T-Fredholm. For each \ € Irr(T), the
family of bounded transforms t — b(ZM)y is norm continuous.

Remark 6.3. The result holds for any ¢ > 0, although we will not need this.

Proof. We go through the argument somewhat rapidly, as it is similar to (but easier
than) the proofs of Propositions 4.7, 4.11. Using a Bochner formula for (2{¥)? one finds

(2}M)? = (DM)2 821 [upg [P+ (148)2h2 f260% + (L+-t)hby + (1+t)c(dh)by + 2ithv; LE; (40)

where by, be are bundle endomorphisms. One verifies that by, by are bounded (uniformly
in t) using a combination of the facts that: (1) both f, df are bounded on M, (2) on the
cylindrical end 5%4 is tangent to N and is independent of r, (3) with respect to the metric
gy on Y, the length of the vector 9, goes to zero at 9M; consequently in an orthonormal
frame (for M) adapted to the cylindrical end, the 0,-component d,v; of the gradient of
v; goes to zero at OM.

On the M-isotypical component the Lie derivative 2v7 Efj is bounded by a constant c.
Also 02 > 92, where 9?(m) is the smallest eigenvalue of §2(m). Define

V = t2h2|opr|? + (1 +1)2R2f29% — texh — (1 + t)h|by| — (14 t)|dh] - |ba],
so (ZM)3 > (D? + V). A small rearrangement (using also ¢ > 1) shows
V > th? (tloa | + tf20% — A2 (h + 7)) (41)

for some constant ¢ .

By assumption vy |2 4 f29? > 0 on N x [0,00) C M, and since the latter corresponds
to a relatively compact subset of Y, |var|? + f29? is bounded below by some constant
€>0on N x [0,00). There is an sy > 0 such that s > so implies e™2%(2e%) < §(c}) ™"

Let K = U Uyx N x [0, s0], a compact subset of M. Then V| is proper and bounded
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below. On M \ K = N X (sg,00), we have h = e” where r € (sg,00), and we obtain the
simpler bound

V|M\IC > Et(t - %)CQT. (42)

Since we assumed t > 1, this shows V is also proper and bounded below on the closure
of M\ K in M, and completes the proof that ZM is T-Fredholm.

For the norm-continuity, as in Proposition 4.11 it suffices to prove an inequality of
the form

(h2op|? + h2f20%)\ < C((ZM)? + C')

for some C,C’ > 0 (which may depend on t). The function |vys|? + f2|6|? is bounded on
M by some constant ¢. Thus it suffices to find C,C’ such that

ch? < C(V + ). (43)

This is easy to ensure on the compact set K where h is bounded by taking C,C’ > 0.
On the other hand on M \ K, h = €” and we may use (42), thus (43) is implied by

ce® < O(et(t — L)e* + )
which holds when C’ > 0 and C > 2ce~. 0O

Applying the splitting theorem to the partition M = U Uy (N x [0, oo)) and using
that the restriction of 2M to U agrees with %;, we have

index(ZM) = index(Z;" | U, B«o(Af)) + index(ZM " | N x [0,00), B<o(—A])).

Proposition 5.2 showed that for each A € Irr(T), (A¢)x is invertible for ¢ > 0. Thus
taking a limit as ¢t — oo, and using the fact that the left hand side is independent of
t > 0, we obtain

index(2M) = indexaps 5(Z,v) + tlim index(Z""" | N x [0,00), B<o(—AF)).

Proposition 6.4. lim;_, o, index(Z""" | N x [0, 00), B<o(=A])) = 0.

Proof. The proof is analogous (but much easier) than Theorem 5.4; as in that case, we
prove that there is a constant ¢y such that for ¢ > ¢y the inequality

N x[0,00
1210512 > L|Ws||? + (¢ — t2)]|s]|?

holds for all smooth compactly supported sections s € C°(N x [0,00),E)x satisfying
(s, A¢:s)n > 0. Using Green’s formula, this involves finding lower bounds for a term from
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the interior of N x [0,00) and a term from the boundary. The term from the interior
N % (0,00) is handled using (41), noting that for ¢ sufficiently large, the summands which
are quadratic in ¢ dominate, since |vps|?> + 6% > 0 on N x [0,00). The term from the
boundary is handled as in Theorem 5.4. O

Corollary 6.5. For all t > 1 index(ZM) = indexaps (2, v).
6.2. Deformation to a transversally elliptic operator

The next step is to describe a transversally elliptic operator on a compact manifold
containing M with the same index as 2. We follow a strategy of Braverman [12, Section
14]. The analytic details of this strategy were elaborated by Ma-Zhang [36].

Recall M = U Uy N x [0,00), and r denoted the second projection N x [0,00) —
[0,00). The metrics and connections take a product form on the cylindrical end Cyly =
N x (1,00). Introduce the new coordinate w = r=* on N x (3,
cylindrical end of M is Cyly = N x (0,1), with w — 0 being at infinity in M, and

00). In terms of w the

guley, = dr’ + gy = wtdw?® + gy, (44)

where gy is a Riemannian metric on V.
Let DM denote the double of M, a compact T-manifold constructed by gluing a
second copy M’ of M with reversed orientation along the cylindrical ends:

DM = MUCle M.

The gluing identifies N x {w} € M with N x {1 —w} C M’. The construction of DM
has a Zo symmetry about the hypersurface w = %; in particular it follows that the
coordinate function w extends beyond M, and identifies a neighborhood of Cyly in DM
with N x (—1,2). Choose a T-invariant Riemannian metric gpps on DM that has a

product form on Cyly:
gDM|Cy1N = dw® + gN = rdr? + gnN- (45)

Comparing (44), (45), the Riemannian volume elements are related by a Jacobian factor
w™2 =72 on Cyly.
Considering the zeroth order term in Z, we are led to consider the odd, self-adjoint

bundle map:
Y =201 — i®c(var). (46)

In terms of ¥, ZM = DM + hip. We will write ¢ (resp. ¥~ = (¢p7)*) when we wish to
emphasize the component of ¢ mapping £ to £~ (resp. £~ to £T).
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Choose a vector bundle F on M such that V* := £T@F is trivial, and let V™ = £~ O F,
Y = VT ® V™. The bundle endomorphism % of £ extends to the bundle endomorphism
1 @ idp of V. In order to simplify notation, when there is little risk of confusion we will
denote this extended bundle endomorphism by .

On Cyly, 9 is invertible, hence ¢ : VT — V™ restricts to an isomorphism over Cyl .
In particular the restriction of V= to Cyly is trivial as well. Using the trivializations on
Cyly, we extend V and ¢ trivially from M to DM. To keep the notation simple, we
will continue to denote these extensions by V, 1 respectively. Thus V* | M’ have fixed
trivializations, in terms of which 1* | M’ become the identity map.

The operator DM on M acting on sections of £ extends to the operator DM @ 0p
acting on sections of V* = £* @ F, where 0p: F — F denotes the zero operator. In
order to simplify notation we will denote this extended operator by D™. Consider the
function p on M given by

p:=h"t, pleyty = hl=e " =e Vv,
It follows from the formula for p|cy1, that p can be extended smoothly by 0 to DM. We
continue to denote this extension by p.

Similar to Braverman [12, Section 14|, we define a differential operator on DM that

we will denote

pD,

as follows. Given s € C*°(DM, V1), we first restrict to M C DM to obtain a section
slar € C*°(M, V1), to which we can apply the operator D™+ followed by multiplication

by p|ar- The result is a smooth section of V™ |57, which we then extend by 0 to a section
of V™.

Lemma 6.6. pD* defined above is a first order differential operator on DM with support
contained in the closure of M in DM.

Proof. To prove the lemma it suffices to show that the differential operator DM+ | Cyly
(recall Cyly = N x (0,1) in terms of the coordinate w) can be smoothly extended to a
differential operator over N x (—1,1) C DM. Since p vanishes identically on DM \ M,
the result follows.

It is convenient to use the ‘canonical’ adapted operator AN for DM along the hyper-
surface N x {1}, see equation (31). Since N x {3} is contained in the cylindrical end,
on Cyly we have an equality

DM = c(v)VE 4 c(v)AN

where v = —0, is the inward unit normal vector for the metric g on M used to define DM
Since AN is a differential operator on N, we may regard it as a differential operator on
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N x (—1,1) which is independent of w € (—1,1). Recall that the metrics and connections
take a product form on Cyly, so extend to N x (—1,1). Since —9, = w?d,, extends

smoothly past w = 0, there is no difficulty in extending the operator V¢ to N x (—1,1).

The endomorphism c(v) satisfies ¢(v)? = —1, and is independent of w on Cyly, so also

extends. O

As pDM-+ is a first-order differential operator, we may consider it as an unbounded
Hilbert space operator with domain H'(DM,V*t) ¢ L?(DM,V*). Fix a T-equivariant
invertible pseudo-differential operator R acting on sections of V* over DM with symbol

or(€) = (€)= (L+[¢3,) 72

Similar to Braverman [12, Section 14] we define a continuous family ¢ € [0, 1] of zeroth
order pseudodifferential operators on DM

P=(1—-t)" +t)pTR+ pDMTR. (47)

Then P; extends to a bounded linear operator L?(DM, V') — L?(DM, V™).

Recall that a pseudo-differential operator P on a compact G-manifold X is called
transversally elliptic if the support of the symbol o(P) (the subset of T*X where o(P)
fails to be invertible) intersected with the conormal space to the orbits

TEX ={£€eT*X|[(§,ax) =0,Ya € g}
is compact. References for transversally elliptic operators include [4,46].
Proposition 6.7. For t € [0,1) the operator P is transversally elliptic.
Proof. The symbol of P, is a bundle map V* — V~ given by*
ap (€)= (L =)™ + (ip®(&)"c(€)) ® Op. (48)

Outside M this equals (1 — t)yT, which is invertible for ¢ # 1. On M, p = h~! and
Y = (2f081 — i®c(var)) @ idp, thus

op ()l = (201 = 0081 +ipBe((6) 1 — (1~ Hhwn) ) @ idp.
The expression in the large brackets is a product symbol (see for example [9, p.56] for a
discussion of products), and the support of a product symbol is the intersection of the

supports of the two factors. Since vy, is tangent to the orbit directions, the intersection
of the support of

4 Here we revert to the more common convention for symbols, such that opw (€) = ic(€).
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c((€)7'e = (1~ t)hoar)

with T7M (the conormal directions to the orbits) is the vanishing locus of vys (viewed
as a subset of the zero section of T M), and the latter intersects the support of (1—t)f6
in a closed subset of the compact set U. 0O

We remind the reader of some properties of the operator 2 on the cylindrical end,
to be used in the proof of the next lemma. Recall from the proof of Proposition 6.2 that,
on the A-isotypical subspace, one has an inequality

(213 = (DY)? + V)a (49)

where V is a potential function (depending on \). Moreover there exists an rg > 1, and
constant Vy > 0 such that

V| Nx[ro.00) = Voe". (50)
Let
W =N X [rg,00),
a compact manifold with boundary, and let
2" = \w
be the restriction of 2 to W. Hence
27V =DV + e, DY =¢(0,)d, + DV, (51)

where 1 is the self-adjoint bundle endomorphism introduced in (59), D" is the restriction
of DM to W, and D¥ = —c(8,.)A" is a Dirac operator on N not depending on r. Recall
M is a compact subset of ) and M N U, = 0 for v # f3, so that 1 is invertible on the
compact set M \ int(U) D W. It follows from this and ¢ = 1* that there are constants
0 < ¢y < Cy such that

cylvl? < (¥?v,v) < CJuf? (52)

forallv eV, and m e W.
The square of 2V is given by

(21")? = (D) + DY, e"y] + ¥y, (53)

The operator [D", e"1)] commutes with T-invariant functions, and moreover (49), (50)
imply
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(D™, €] + e ?)\ > Ve, (54)

The next lemma is [36, Lemma 2.5] due to Ma and Zhang. It shows that solutions
of 2Ms = 0 decay very rapidly, as well as their first derivatives, as 7 — oo along the
cylindrical end. For the convenience of the reader we have included a proof here, in the
notation that we have established, closely following the argument in [36].

Lemma 6.8 (/36], Lemma 2.5). Let W = N X (r9,00) C M be as in the paragraph above.
Let s be a smooth section of & over W and suppose e~ "s € L2(W,E)x and 2{Vs = 0.
Then

em's, €M d.s, e™DNse L2(W,E),
for all m € R.

Remark 6.9. Once the square-integrability of €”"s is in hand, the square-integrability
of €™ 9,s,e™ DV s is obtained by ‘bootstrapping’ using DW's = —e"1)s, and indeed one
could obtain the same result for higher derivatives of s as well in this way. Heuristically
one might expect the behavior in Lemma 6.8 because if ¢ # 0 is a constant then the
ODE d@/(r) = ce"a(r) has solutions of the form a(r) = exp(ce”); if ¢ > 0 then e™"a(™)(r)
is not square-integrable on [0, 00) for any m, whereas if ¢ < 0 then e () (r) is square-
integrable on [0, 00) for every m.

Proof. Let w = w(r) € C°(R) be a non-negative function, which we view as a function
on W. Using 2}V s = 0 and since [D", e"1] commutes with w and satisfies (54), we have

0= ((21")%s,w’s) = ((D")s,w?s) + (([D", €"¢] + ¥ 9*)ws, ws)
> Re((DY)?s, w?s) + Vo(e* ws, ws). (55)
We apply Green’s formula to the first term, and also use D"'s = —e"1s (twice), leading

to

Re((D")?s,w?s) = Re(D"'s,w?D" s + [D, w?]s) + B,
= Re(e"tps, w?e hs — 2ww'c(8,)s) + By
> cyllemws|® = 2Cy [l Pws]| - [l *w's|| + B
where B,, is a boundary term, involving an integral over W = N x {rg}; and in the

last line we used ¥*¢ > cfp, the Cauchy-Schwartz inequality, |c(d,)s| = |s] and || < Cy.
Substituting this into (55), we have

0> (¢, + Vo)l ws||* —2Cy |l Pws| - ["/*w's]| + Bo. (56)
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Let x: R — [0,1] be a bump function with support contained in (rg — 1,79 + 1), and
set x(r) = x(k~1(r —ro) +10). As k — oo, xx — 1 pointwise, and is centered about 7.
We will view xj, as functions on W. Let w(r) = €™ xx(r). Then equation (56) becomes

0> (cf, +Vo)lle™ I xs||? = 20" /2 s | -l /27 (maxi + x4)s ]| + Bu- (57)

The boundary term B,, does not depend on k, since xx equals 1 on a neighborhood of rq
for all k. If |e(™+1/2)7 5| is square-integrable, then the middle term has a limit as k — oo,
so if this is the case, then the inequality (57) implies

(m+1)r

lim |e Xks||
k— oo

exists, hence |e(™+D7s| is square-integrable as well. By induction, |e™"s| is square-
integrable for all m € R.

Turning to the first derivatives, first note that since c(9,)d,, DV graded commute,
Green’s formula gives an identity

ID%al* = [|9,0l* + DY o + By, (58)

for @ smooth and compactly supported, where B/, is a boundary term. Let w = w(r) €
C°(R), and consider the equation:

—we"hs = wDWs.
Taking the L? norm-squared of both sides, we find

Cillwes||* = [[wD™ s
> 3[[D" (ws)|* — D", w]s|?
= 300-(ws)|* + 3DV (ws)||* + B, — | [D™, w]s||?

> ¢llwdrs|? + 5 |wDYs||* — gllw's||* + B, — IIDY, w]s||?,
where we used |la1 + az||? > 3|la1||? — [|az||* in the second and fourth lines, and (58) in
the third line. If we take w = xre™" as before, then the first part of the proof implies all
terms in this expression other than those containing d,.s, DV's are uniformly bounded in
k as k — oo (and B,,, does not depend on k as before). Consequently

mrDN

[e DY s|| = lim [xxe™ DVsll, [l sl = lim [lxie™ 3, s
k—oc0 k—oc0

are both finite. O

Proposition 6.10 (cf. [12] Section 14.6, [36] Section 3). Sections in the kernel of Py or
Py vanish identically outside M. For each \ € Irr(T), there are isomorphisms
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ker(Py)y ~ ker(2,")2, coker(Py)y = ker(P} ) ~ ker(2;"7).
Therefore Py is T-Fredholm and
index(P;) = index(2{") € R~°(T).
Proof. Fort =1
Py = (¢F + pDM )R

hence R induces an isomorphism between ker(P;) and ker(y* + pDM:+), where ¢+ +
pDM:F has domain HY (DM, V?1). Let s € ker(yp+ 4+ pDM:+),, then s must vanish outside
M, since outside M, p = 0 while ¢ is invertible. On M we have

ot + pDMF = 2"t @ idp, (59)
hence the F-component of s vanishes and

pPMts = .

Since p > 0 on M, this implies

that is, s lies in the kernel of the differential operator 91M "+ By elliptic regularity s is
smooth. Moreover s is gpas-square integrable, hence by (45), r’ls\cle is gar|cy1, -square
integrable. Applying Lemma 6.8, s is gps-square integrable, hence lies in dom(.@f\/[ ’+).
This shows that there is an inclusion ker(y)* + pDM:T)y < ker(@%Jr),\.

Conversely suppose s € ker(@lM ). Let § be the extension of s by 0 to DM.
Lemma 6.8 shows that 3 lies in the Sobolev space H'(DM, V') = dom(y* + pDM:+),
and hence in ker(¢)T + pD™:T) by (59). Combining this with the previous paragraph, we
have identified ker(yt + pDM-T)y with ker(2;77),.

The adjoint is

Py = R(~ +D"~ o p),

where the operator DM~ o p is the adjoint of pD**. Let s € ker(Pj)y. Since R is
invertible, we must have

(W= +DM~0op)s=0 (60)

in the sense of distributions. Similar to above s must vanish outside M, its F-component
vanishes, and
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2" (ps) = 0.

By elliptic regularity, ps|as is smooth. Since s is gpas-square-integrable, ps|ys is g-square
integrable. Thus ps|y; € ker(2;77).

Conversely suppose § € ker(.@lM ). Extending h§ by 0, we obtain a section s over
DM. By Lemma 6.8, s € H'(DM, V™). Since p|y, = b1,

2 (ph3) = 25 =0

and this implies (60) holds in the sense of distributions, hence s € ker(Py),. This proves
the map s — ps|y identifies ker(Pj)y with ker(2;"7)y. O

Corollary 6.11. The T-indez index(P;) € R~°°(T) is independent of t € [0, 1].

Proof. For each A € A*, the restriction of P; to the A-isotypical component is a norm-
continuous family of Fredholm operators, hence the index is constant. O

6.3. Abelian localization and the Paradan-type formula

For a compact G-manifold X, the symbol o(P) of a transversally elliptic operator
P: C®(X,E) — C®(X, F) defines a class in K& (T X); this class is given in terms of
the ‘difference bundle construction’ cf. [3], and only depends on the bundles F, F' and
the behavior of o(P) away from the O-section. If X is compact, then the index map

index: K&(TLX) — R™(G) (61)

is defined by realizing elements of K%(TéX ) as symbols of transversally elliptic operators
on X via the difference bundle construction, followed by taking the analytic index, see
[4,46]. If X is non-compact, then the index map (61) is defined by first embedding X
into a compact G-manifold X', and choosing suitable representatives of K-theory classes
which can be extended by the identity outside X. We did exactly this for X = M and
the bundle morphism ¢ (and hence also the symbol op, | in equation (48)) near the
beginning of Section 6.2, with the compact manifold X’ being the double DM.

Let U = U denote the interior of U = Ug. The restriction of the symbol of Py to U
is a symbol gg given by

00(€) = (2f0B1 +iBc((€) 71 — vy)) @ idp,

where the right hand side is viewed as a bundle map £t @ F — £~ @ F. This symbol
defines a class in K9(T:U), and by the above discussion, its index is index(P,). Since
the index depends only on the class in K%(T}U ), we may drop the idp component (this
represents the trivial element in K-theory), and we may use a (straight-line) homotopy
to eliminate the factors 2f, (£). This leads to the following.
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Proposition 6.12. The symbol
Fp.0(¢) = 0B +1Rc(€ — vy)
on U = (OJB is T-transversally elliptic and
index(0,9) = index(Fy) = indexaps g(Z,v).

For B # 0, let vg = I/(ﬁ,f]ﬁ) be the normal bundle to the fixed-point set UP. It
inherits a metric by identifying vg with the Riemannian orthogonal complement of TUS.
Let Tg C T denote the subtorus obtained by taking the closure of exp;(Rf3). Then Tj
fixes UP , so acts fibre-wise on the normal bundle v3. We may choose a complex structure
on v such that the complex Tg-weights are 5-polarized, i.e. for each complex weight o of
the T action on vg one has (a, 8) > 0. This condition determines the complex structure
on vg up to homotopy. Let Avg (resp. Sym(vg)) denote the complex exterior algebra
(resp. complex symmetric algebra) bundle. Let g denote v equipped with the opposite
complex structure; one has likewise AUz and Sym(7g).

The exterior algebra A7g is a spinor module for the Euclidean vector bundle vz — Us.
One has a short exact sequence

0= TUP - TU [UP — vz — 0.

By the 2-out-of-3 property for spin-c structures, the spinor modules S for TU and AUg
for vz determine a Zy-graded spinor module Sg for TU® such that

Sg@A\vg~S | UP. (62)

For the corresponding determinant line bundles, equation (62) implies
det(Sg) = det(S) ® det(vg). (63)

There is a symbol o ¢ on (J'BT” defined in a similar manner to og g:
03.0(€) = 001 +1@cs(£ —vy), (64)

where cg denotes Clifford multiplication for the spinor module Sg, and the right hand
side of (64) is viewed as a bundle map (E®S3)* — (E®Ss)~. The symbol og ¢ defines
a class in K$.(T::U%), so has an index.

The next proposition follows from an abelian localization theorem for transversally
elliptic symbols due to Paradan [44, Theorem 5.8, Proposition 6.4] (see also [48]), building
on results of Atiyah [4] and Berline-Vergne.

Proposition 6.13. index(cg9) = index(o,0 ® Sym(vg)).
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Here index(o ® Sym(v)) is defined as the sum over k& > 0 of index(c ® Sym*(v)),
the index of the transversally elliptic symbol ¢ twisted by the finite dimensional vector
bundle Sym®(v) (the kth symmetric power). As a corollary, we obtain a Paradan-type
([44,48]) ‘norm-square localization’ formula for index(2).

Theorem 6.14. We have the following equality in R~°°(T)

index(2) = Z indexaps g(Z,v) = Z index (0,9 ® Sym(vg)). (65)
B B

The sum is over € t labelling components Zg of the vanishing locus Z; in other words,
the sum is over B € t such that Zg = VBN¢~1(B) # 0. This is an infinite discrete subset

of t.
6.4. Remarks on the [Q, R] = 0 theorem for loop group spaces

In this section we briefly comment on the relation between Theorem 6.14 and the
[Q,R] = 0 theorem for Hamiltonian loop group spaces. The relationship between
Paradan-type formulas (as in (65)) and [@,R] = 0 theorems goes back to the work
of Paradan [44] (see also Paradan and Vergne [48]).

Throughout this section we assume G is simple and simply connected, and that the
inner product on g is the basic inner product, the unique invariant inner product normal-
ized such that the squared lengths of the short co-roots is 2. The possible U(1) central
extensions of LG are classified by an integer known as the level. Let LG denote the
level 1 central extension, sometimes called the basic central extension. By restriction we
obtain a central extension Ng(T) X A. Tt satisfies (12) with the homomorphism & being
the musical isomorphism induced by the basic inner product.

Let & : M — Lg* be a proper Hamiltonian LG-space. A vector bundle F — M is
said to be at level k € Z if F is f@—equivariant and the central circle acts with weight k.
A level k£ > 0 prequantum line bundle L — M is a line bundle at level k& with invariant
connection VI where the first Chern form ¢ (V%) = kwpy, and V¥ satisfies Kostant’s
condition (cf. [2]):

Ll —VE =2nik(®r,€), Ee€Lg®0C Ly

In joint work with E. Meinrenken [33] we constructed a canonical spinor module Sy for
Cliff (p*T M), where p: M — M = M/QG is the quotient map; in [33] Sy was referred
to as a ‘twisted spin-c structure’ for M. Sy is at level hY, the dual Coxeter number of
G. Let S = Sy ® L, a spinor module for p*T' M at level k +hV.

Recall that the ‘global transversal’ ) embeds N¢(T') x A-equivariantly into M (Sec-
tion 3.2), with T’p inducing an isomorphism T'Y ~ p*T M|y. Hence by restriction to ) we
obtain an Ng(T') x /A\—equivariant spinor module for ), that we also denote by S. Choos-
ing a compatible N (T) x A-invariant connection, we obtain a spin-c Dirac operator D*
acting on sections of S.
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Let n_ C gc¢ denote the sum of the negative root spaces of g, and let Bott(n_) =
[(An_,0)] € K% (g/t) denote the Bott-Thom element for g/t; here 6 is an odd self-adjoint
endomorphism of (g/t) x An_, invertible away from the origin (cf. [34, Section 4.5]). We
may choose 6 so that the pullback via ¢9/t of the pair (An_, 0) satisfies the conditions
of Section 3.3. Let D denote the Dirac operator acting on sections of An_®5S obtained
by coupling D¥ to the Zjy-graded bundle E = Y x An_, and 2 the operator described
in Theorem 3.2. According to the latter theorem, 2 is T-Fredholm.

With this setup, we may state a version of the [@, R] = 0 Theorem for proper Hamil-
tonian LG-spaces. For simplicity suppose G acts freely on <I>7\/l1 (0), so that the reduced
space Myeq = @Xj (0)/G is a smooth, finite-dimensional compact symplectic manifold
with prequantum line bundle Loq = L| ®31(0) /G. Choose a compatible almost complex
structure on Moeq and let @ denote the Dolbeault-Dirac operator twisted by Lyeq acting
on ATG 1 Mied @ Lyed-

Theorem 6.15. Let O pq: M — Lg* be a proper Hamiltonian LG-space, with level k > 0
prequantum line bundle L. Assume G acts freely on @Xj (0). Let 2, @ be the operators
described above. Then index(2)o = index(d).

Remark 6.16. There is a similar statement when 0 is a regular value of ® ¢, in which case
Meq is only an orbifold in general. There is also a statement when 0 is not necessarily
a regular value of ® 4, involving a shift (partial) desingularization as in [41].

Let us reformulate Theorem 6.15 to highlight its similarity with other instances of the
[@Q, R] = 0 phenomenon. We define the ‘quantization’ of the finite-dimensional symplectic
manifold M,.q to be the ‘Riemann-Roch number’:

Q(Mied, Lreq) = index(d) € Z. (66)

Let Ry (G) denote the level k fusion ring (or Verlinde algebra), a finite rank Z-module
(and ring) generated by the irreducible level k positive energy representations of LG (ct.
[50], [40, Appendix D]). A positive energy representation is, in particular, a representation
of the semi-direct product S}, x LG (SL, acts on LG by loop rotation, and this action lifts
to an action on f@) Elements V' € Ry, (G) have formal characters ch V € R=°°(SL xT),
given by the Weyl-Kac character formula [50,23].

In [34, Section 4.5] we proved that index(2) € R™°°(T) is anti-symmetric for the

p-shifted level (k +h") action of the affine Weyl group on A*, given by
Wiy A=WA+p) —p+ (k+h")k(n), w=(@,n) €W xA=Wa,

where recall k: A — A* is the map induced by the musical isomorphism t — t* for the
basic inner product.

Recall that by the Weyl character formula, characters of G are in 1-1 correspondence
with p-shifted W-anti-symmetric characters of T'. Likewise by the Weyl-Kac character
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formula, the above W, g-anti-symmetry implies that there is a unique element of the level
k fusion ring Q(M, L) € Ri(G) such that

(A . ch Q(M,L))‘ | =index() € B™(T) (67)
q:

where A = HaeRaHJr(l — €_q) is the Weyl-Kac denominator, and we restrict to ¢ =

1 € SL,. Partly motivated by this, in [34, Section 4.6] (combined with the result in [34,

Section 4.7]), we took (67) as the definition of the quantization Q(M, L) of (M, L); see
there for details.

The minimal irreducible positive energy representation of LG at level k is the one
labelled by the highest weight (k,0) € N x A*, cf. [50]. It follows from the Weyl-Kac
formula that the multiplicity of the minimal irreducible representation in V' € Ri(G) is
equal to the multiplicity of the trivial representation in A -ch V|,=1. Thus Theorem 6.15
is equivalent to:

Corollary 6.17. Let (M, L) be as in Theorem 6.15. Then Q(Myed, Lrea) equals the mul-
tiplicity of the minimal level k irreducible positive energy representation in Q(M, L).

Remark 6.18. A result of [29] proves that the definition of the quantization of (M, L)
given here (or [34]) is equivalent to the definition of E. Meinrenken [40] (the latter ap-
proach is via g-Hamiltonian spaces, twisted K-homology, and the Freed-Hopkins-Teleman
theorem). Thus Theorem 6.15 implies the [Q, R] = 0 Theorem for that definition as well.
The latter theorem had been proven much earlier in [2] using symplectic cutting tech-
niques and detailed analysis of the fixed-point expressions (in fact in [2], Atiyah-Segal-
Singer fixed-point expressions were used as a make-shift definition of the quantization
of (M, L), see [40] for further explanation).

The complete proof of Theorem 6.15 is not presented here, as it would take us too far
from the main topics of this article. The missing arguments are either already explained
in the literature, or will be explained in [32] (see also [30]). We settle for brief remarks
on the main steps (1)—(4):

(1) A local [Q, R] = 0 result.

The transversally elliptic symbol o ¢ is defined on a small open neighborhood Uy of
®,,(0) in Y (viewing Y as a submanifold of M). For this reason, it is not too difficult to
relate its index to the index of @ on the reduced space using, for example, a local normal
form near @Xj(O). By the cross-section theorem for Hamiltonian loop group spaces [42,
Theorem 4.8], one has the same local normal forms for Uy available as in the case of a
compact Hamiltonian G-space, hence this part of the argument is similar to the argument
for compact Hamiltonian G-spaces explained in [48, Theorem 8.3, Proposition 12.5] or
[44, Section 6], and leads to:

5 These papers also handle the singular case, which carries over to our setting as well.
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Proposition 6.19. index(¢) = index(09.9)o-

In other words, index(@) equals the multiplicity of the trivial representation in
index(cg,¢), the contribution of 8 = 0 in Theorem 6.14.

(2) A vanishing result when X% N ¢~1(B) = (.
Proposition 6.20. index(cs 9 ® Sym(vg)) vanishes unless X% N ¢~1(B) # 0.

Proof. The Bott element Bott(n_) is supported at 0 € g/t, so its pullback to Y is
supported on X' = (¢?/1)71(0). Recall 0 ¢ is a product symbol (see (64)) of the pullback
6 of the Bott symbol (supported on X') with the symbol icz(¢§ — vy) (supported on
VP N ¢~1(B)). The support of a product symbol is the intersection of the supports, so
05,0 is supported on X? N ¢~1(3). If the latter is empty then the support of os is
empty, and the index vanishes. 0O

As a small aside, recall that X ~ @X/}(t) C M, and moreover P |y = ¢|x. As S €t
we have X9 N¢~1(8) = MPN®{(S3). It follows from this that (W-orbits) of non-trivial
contributions in (65) correspond to the components of the critical set of ||®aq||?, cf. [27,
11,31].

(3) Bounds on the support of index(os ¢ ® Sym(vg)) for 5 # 0.

Let B # 0. Since T acts trivially on (Ug)?, and because the weights of the Tj ac-
tion on Sym(vg) are S-polarized, it follows (cf. [44,48] for similar discussions) that the
multiplicity function for index (o9 ® Sym(vg)) is supported in a half-space of the form
{& € (&, B) > dg}, where dg is a constant given by

nf (o, B), (68)

dg = i
acwt(An_®5Sg)

the infimum being taken over the set of complex weights for the action of T3 on An_®S3.
One proves the following:

Theorem 6.21. For each 3 € W - B such that X N ¢~1(8) # 0, the constant dg > 0.

This will be proved in detail in [32] (see also [30]); it relies on a more detailed local
description of the spinor module Sy (to get an expression for the constant dg), and a
slightly subtle inequality involving the data of the affine Lie algebra Z/LE; This inequality
is perhaps the most interesting aspect of Theorem 6.21; it plays the same role as the
‘magical inequality’ in [47].

(4) Conclusion.

By Proposition 6.20 and Theorem 6.21, index(ogs ® Sym(vg))o = 0 unless 8 = 0.
Theorem 6.14 then gives index(2)o = index(og,9)o. Theorem 6.15 now follows from
Proposition 6.19.
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