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In an earlier article we introduced a new definition for the 
‘quantization’ of a Hamiltonian loop group space M, involving 
the equivariant L2-index of a Dirac-type operator D on a non-
compact finite dimensional submanifold Y of M. In this article 
we study a deformation of this operator, similar to the work 
of Tian-Zhang and Ma-Zhang. We obtain a formula for the 
index with infinitely many non-trivial contributions, indexed 
by the components of the critical set of the norm-square of 
the moment map. This is the main part of a new proof of the 
[Q, R] = 0 theorem for Hamiltonian loop group spaces.
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1. Introduction

Let G be a compact connected Lie group with Lie algebra g. Let µ : M → g∗ be a 
compact Hamiltonian G-space, equipped with a prequantum line bundle L. Choosing a 
G-equivariant compatible almost complex structure, one obtains a spin-c Dirac operator 
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/∂ acting on sections of ∧T ∗
0,1M⊗L. Its equivariant index is an element of the representa-

tion ring of G. The quantization-commutes-with-reduction ([Q, R] = 0) theorem (cf. [18,
38,55,44]) says that the multiplicity of the irreducible representation with highest weight 
λ equals the index of a similarly-defined operator on the symplectic quotient µ−1(λ)/Gλ

(this must be modified slightly in case λ is not a regular value [41]).
Choose an invariant inner product on g. A well-known approach to [Q, R] = 0 due to 

Tian-Zhang [55] utilizes a deformation of /∂:

/∂t = /∂ − itc(vM ), t ∈ R (1)

where c(−) denotes Clifford multiplication, and vM is the Hamiltonian vector field of the 
function 1

2‖µ‖
2. As the parameter t → ∞, sections in the kernel of /∂t ‘localize’ near the 

vanishing locus Z = {m ∈ M |vM (m) = 0} = Crit(‖µ‖2). This turns out to be closely 
related to a formula of Paradan [44] for the index of /∂, involving contributions from the 
components of Z. One has (cf. [27])

Z =
⋃

β∈B
G · (Mβ ∩ µ−1(β)),

where B ⊂ t+ is a finite discrete subset of a positive Weyl chamber, and Mβ is the 
fixed-point submanifold of the 1-parameter subgroup generated by β ∈ t. Thus there will 
be a contribution from Z0 = µ−1(0), together with ‘correction terms’ from 0 *= β ∈ B. 
One can show that the only contribution to the multiplicity of the trivial representation 
comes from Z0. Combined with an argument of a more local nature (near µ−1(0)), this 
leads to a proof of the [Q, R] = 0 theorem.

In this article we prove analogous results for Hamiltonian loop group spaces. This 
work builds on earlier articles [33] (joint with E. Meinrenken) and [34]. We very briefly 
summarize some results from these papers here, and in somewhat greater detail in Sec-
tion 3. Assume G is also simple and simply connected for simplicity. Let LG denote the 
loop group of G, the space of maps S1 → G of some fixed Sobolev level s > 1

2 . Let 
ΦM : M → Lg∗ be a Hamiltonian LG-space, with level k > 0 prequantum line bundle L
(cf. [2]). Fix a maximal torus T ⊂ G. In earlier work [33] with E. Meinrenken, we con-
structed a finite-dimensional ‘global transversal’ Y ⊂ M, as well as a canonical spinor 
module S0 → Y. The submanifold Y is a small ‘thickening’ of the (possibly) singular 
subset X = Φ−1

M (t∗) ⊂ M. In [34] we studied a Dirac-type operator D on Y acting on 
sections of ∧n−⊗̂S, where S = S0 ⊗ L and n− ⊂ gC denotes the sum of the negative 
root spaces of G. The operator D was shown to represent an index pairing between a 
spin-c Dirac operator for S, and the pull back of a Bott-Thom element for g/t, the latter 
formally playing the role of a Poincaré dual to X in Y.

In [34] we proved that D has a well-defined index index(D) ∈ R−∞(T ), which is, more-
over, the Weyl-Kac numerator (restricted to 1 ∈ S1

rot) of an element of the level k fusion 
ring Rk(G), the analogue of the representation ring for level k positive energy represen-
tations of the loop group. The latter motivated us to define the ‘quantization’ of (M, L)
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as this particular element of Rk(G). In a related paper [29], the first author showed that 
this definition agrees with that of E. Meinrenken [40] based on quasi-Hamiltonian spaces, 
twisted K-homology, and the Freed-Hopkins-Teleman theorem.

The manifold Y is equipped with a moment map φ : Y → t, which is proper on the 
support of the Bott-Thom element. In Section 4 we introduce a deformation Dt, defined 
by a formula similar to (1), except that we use a re-scaled version of vM which has 
bounded norm. For t > 0, the operators Dt have the same index (in R−∞(T )) as D .

In Section 5 we prove a formula for index(D) which is inspired by work of Ma and 
Zhang [37]. The index is expressed as a sum of contributions indexed by the components 
Zβ = Yβ ∩ φ−1(β) of Z = {vY = 0}:

index(D) =
∑

β∈W ·B
lim
t→∞

indexAPS(Dt ! Uβ). (2)

Each contribution is a limit (in R−∞(T )) as t → ∞, of the index of an Atiyah-Patodi-
Singer boundary value problem on a compact neighborhood Uβ of Zβ ∩X . The sum over 
β in (2) is infinite, converging in R−∞(T ). For the reader’s benefit we have provided a 
brief introduction to elliptic boundary value problems in Section 2, mostly following the 
recent references by Bär and Ballmann [7,6].

In Section 6 we follow a strategy similar to Ma-Zhang [36,37] and Braverman [12] to 
prove a formula for the contributions in (2) in terms of transversally elliptic operators. 
The end result is a formula in the spirit of Paradan [44]:

index(D) =
∑

β∈W ·B
index(σβ,θ ⊗ Sym(νβ)), (3)

where σβ,θ is a transversally elliptic symbol on the fixed-point set Yβ, and νβ is the 
normal bundle to Yβ in Y equipped with a ‘β-polarized’ complex structure. The formula 
(3) is sometimes called a ‘norm-square localization’ formula (or sometimes ‘non-abelian 
localization’ formula), because the set of non-trivial contributions are indexed by the 
components of the critical set of the norm-square of the moment map ‖ΦM‖2.

We remark that for a non-compact prequantized Hamiltonian G-space with proper 
moment map, the analogue of index(D) is not defined in general. In their proof of the 
Vergne conjecture, Ma-Zhang [35,37] showed that, nevertheless, the right-hand-side of 
(2) is well-defined. The resulting ‘quantization’ of M satisfies the [Q, R] = 0 Theorem 
and behaves functorially under restriction to subgroups. Thus one main difference in 
our setting is that for us, the global object index(D) is defined, and (2) becomes a 
theorem. Similar comments apply to the result of Paradan in [45], or of Hochs and the 
second author in [21]. Another difference in our setting is the presence of the Bott-Thom 
element; this changes little from a conceptual point of view, although it complicates the 
proofs.

As in the work of Paradan [44] on compact Hamiltonian G-spaces, the norm-square 
localization formula (3) leads to a new proof of the [Q, R] = 0 Theorem for Hamiltonian 
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loop group spaces, and we discuss this briefly in Section 6.4. We do not present a complete 
proof of the [Q, R] = 0 theorem here, as a couple of aspects would take us too far from our 
main focus. These include an inequality involving the data of the affine Lie algebra L̂g

and a slightly more refined local description of the spin-c structure S0 on Y. However the 
[Q, R] = 0 theorem follows from our main theorem, together with a relatively small part 
of [30] (or [32] in preparation). Perhaps the most important application of the [Q, R] = 0
theorem for Hamiltonian loop group spaces is to the Verlinde formula; for context, see 
for example Bismut-Labourie [10] for a symplectic approach to the Verlinde formulas, or 
the articles by Meinrenken [39,40] for the relationship with [Q, R] = 0 for Hamiltonian 
loop group spaces and quasi-Hamiltonian G-spaces.

The PhD thesis of the first author [30] (and the article [32] in preparation) give a very 
different proof of a version of (3) (the contributions are expressed rather differently), 
using combinatorial methods similar to Szenes and Vergne [54]. These references also 
contain some simple examples of (3) for G = SU(2), SU(3).

Acknowledgments We thank Eckhard Meinrenken and Nigel Higson for helpful dis-
cussions and encouragement. We thank the referee for their careful reading of the 
manuscript, and in particular for pointing out how to fix a gap in the proof of Proposi-
tion 6.10 in an earlier draft. Y. Song is supported by NSF grant 1800667.

Notation We often use the summation convention (repeated indices are summed over). 
If V is a Z2-graded vector bundle, then V + (resp. V −) denotes the even (resp. odd) 
graded subbundle. If D : C∞(M, V ) → C∞(M, V ) is an odd linear operator, then D±

denote the induced maps C∞(M, V ±) → C∞(M, V ∓). Unless stated otherwise, [a, b] will 
denote the graded commutator of the linear operators a, b. We use the Koszul sign rule 
for graded tensor products.

On a Riemannian manifold (M, g), g will often be used to identify TM + T ∗M . For 
a Hermitian vector bundle over M , the point-wise inner product (resp. norm) will be 
denoted 〈−, −〉 (resp. | − |), while the inner product (resp. norm) on the space of L2

sections for the Riemannian measure will be denoted (−, −)M (resp. ‖ − ‖M ). We will 
drop the subscript M when the underlying manifold is clear from the context.

If K is a compact Lie group with Lie algebra k, we write Irr(K) for the set of iso-
morphism classes of irreducible representations of K, and R(K) for the representation 
ring. The formal completion R−∞(K) = ZIrr(K) of R(K) consists of formal infinite linear 
combinations of irreducible representations π ∈ Irr(K) with coefficients in Z. A sequence 
of elements in R−∞(K) converges iff the coefficient of π converges, for each π ∈ Irr(K). 
Given a representation W of K and π ∈ Irr(K), Wπ + π ⊗ HomK(π, W ) denotes the 
π-isotypical subspace. Given a K-equivariant linear map A : W → V , Aπ denotes the 
map Wπ → Vπ obtained by restriction.

If K acts smoothly on a manifold M , E is a K-equivariant vector bundle, and ξ ∈ k, 
then LE

ξ : C∞(M, E) → C∞(M, E) denotes the differential operator obtained by differ-
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entiating the action of exp(tξ) on C∞(M, E) at t = 0. In case E = M×R, LE
ξ is a vector 

field on M that we denote ξM .
Throughout G will denote a fixed compact connected Lie group with Lie algebra g. 

Fix a choice of maximal torus T with Lie algebra t. The normalizer of T in G is denoted 
NG(T ), and the Weyl group W = NG(T )/T . The integral lattice is Λ = ker(exp: t → T )
and its dual Λ∗ = Hom(Λ, Z) + Irr(T ) is the (real) weight lattice. Fix an invariant inner 
product B on g, which we use to identify g + g∗.

2. Preliminaries on Dirac-type operators

In this section we briefly recall some definitions and results on elliptic boundary value 
problems, mostly following [7,6]. We also recall criteria for determining that a Dirac-type 
operator on a non-compact manifold is (K-)Fredholm, or has compact resolvent.

2.1. Elliptic boundary value problems

Let M be a complete Riemannian manifold with compact boundary and interior 
unit normal vector ν along ∂M . Let E, F be Hermitian vector bundles, and let 
D : C∞(M, E) → C∞(M, F ) be a first-order differential operator. The symbol of D
is the bundle map σD : T ∗M + TM → Hom(E, F ) defined by1

σD(df) = [D , f ].

Following Bär and Ballmann [7, Section 2.1], we will say that D is of Dirac type if its 
principal symbol satisfies the Clifford relations

σD(ξ)∗σD(η) + σD(η)∗σD(ξ) = 2〈ξ, η〉idE (4)

σD(ξ)σD(η)∗ + σD(η)σD(ξ)∗ = 2〈ξ, η〉idF

for all ξ, η ∈ T ∗M . This definition implies D is elliptic, and moreover that the composi-
tion

σD(ν)−1σD(ξ) ∈ End(E|∂M ), ξ ∈ T ∗(∂M) (5)

is skew-Hermitian (here T ∗(∂M) is identified with the annihilator of ν). A first-order 
essentially self-adjoint differential operator A : C∞(∂M, E) → C∞(∂M, E) with princi-
pal symbol (5) is called an adapted boundary operator for D . Since ∂M is compact and 
A is elliptic, A has compact resolvent and there is an orthonormal basis of L2(∂M, E)
consisting of smooth eigensections of A.

1 It is common to include a factor of √−1 in the definition. We are following the convention in [7].
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Let C∞
cc (M, E) denote the space of smooth sections of E with compact support in 

the interior of M . The formal adjoint of D is the unique first-order differential operator 
D∗ : C∞(M, F ) → C∞(M, E) such that

(Dw, v)L2(M,F ) = (w,D∗v)L2(M,E)

for all w ∈ C∞
cc (M, E), v ∈ C∞

cc (M, F ). Then σD∗(ξ) = −σD(ξ)∗. For compactly 
supported sections w ∈ C∞

c (M, E), v ∈ C∞
c (M, F ) (which may be non-zero on the 

boundary), integration by parts gives Green’s formula:

(Dw, v)L2(M,F ) = (w,D∗v)L2(M,E) − (σD(ν)w, v)L2(∂M,F ). (6)

The minimal extension Dmin is the closure (in the sense of unbounded operators on 
Hilbert spaces) of the operator with domain C∞

cc (M, E). The maximal extension Dmax
has domain the space of L2-sections e ∈ L2(M, E) such that there exists a section 
f ∈ L2(M, F ) with De = f in the sense of distributions (C∞

cc (M, F ) being the space of 
test sections).

Let L2
loc(M, E) denote the space of sections of E that are locally square-integrable 

(modulo sections vanishing almost everywhere), and let H1
loc(M, E) denote the space of 

sections e ∈ L2
loc(M, E) whose weak first covariant derivatives lie in L2

loc(M, E) as well. 
If M is compact then L2

loc(M, E) = L2(M, E) and H1
loc(M, E) = H1(M, E) is the usual 

Sobolev space. It is convenient to introduce the smaller domain

H1
D(M,E) = H1

loc(M,E) ∩ dom(Dmax).

On a manifold with non-empty boundary dom(Dmin) ! H1
D(M, E) ! dom(Dmax), see 

Bär and Ballmann [6] for a precise characterization and detailed discussion. By impos-
ing suitable boundary conditions one obtains extensions in between the minimal and 
maximal extensions.

In this article we will only need Atiyah-Patodi-Singer boundary conditions [5], which 
are defined as follows. Let

R∂M : H1
loc(M,E) → H1/2

loc (∂M,E)

denote the trace map, the continuous extension of the map given on smooth sec-
tions by restriction to the boundary. Given an adapted boundary operator A, let 
B<0(A) ⊂ H1/2(∂M, E) denote the closure of the subspace generated by the negative 
eigenspaces of A. The Atiyah-Patodi-Singer (APS) boundary value problem (D , B<0(A))
is the extension of D with domain

dom(D , B<0(A)) = {v ∈ H1
D(M,E)|R∂Mv ∈ B<0(A)}.

A short calculation using (4), (5) shows that
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A∨ = −σD(ν) ◦A ◦ σD(ν)−1 : C∞(∂M,F ) → C∞(∂M,F ),

is an adapted boundary operator for D∗. Let B≤0(A∨) ⊂ H1/2(∂M, F ) denote the closure 
of the subspace generated by the non-positive eigenspaces for A∨. Using Green’s formula, 
the Hilbert space adjoint of the operator (D , B<0(A)) is the extension (D∗, B≤0(A∨)) of 
D∗ with domain

dom(D∗, B≤0(A∨)) = {v ∈ H1
D∗(M,F )|R∂Mv ∈ B≤0(A∨)}.

2.2. Fredholm conditions and the splitting theorem

In this section we continue to assume that D is a Dirac-type operator on a complete 
Riemannian manifold with compact boundary. Following Bär and Ballmann, we say that 
D is coercive at infinity if there is a compact subset S ⊂ M and constant c > 0 such 
that

c‖v‖L2(M,E) ≤ ‖Dv‖L2(M,F ) (7)

for all v ∈ C∞
c (M \ S, E). More generally, suppose a compact Lie group K acts on M , 

E, F preserving the metrics and D is K-equivariant. For π ∈ Irr(K), we say that D
is (K, π)-coercive at infinity if Dπ is coercive, i.e. if there is a compact Sπ ⊂ M and 
constant cπ such that (7) holds for v ∈ C∞

c (M \Sπ, E)π. We say that D is K-coercive if 
D is (K, π)-coercive for each π ∈ Irr(K).

A K-equivariant bounded linear operator A : H → H ′ is K-Fredholm if the operator 
Aπ : Hπ → H ′

π is Fredholm for each π ∈ Irr(K). Such an operator has a K-index in 
R−∞(K), defined as

index(A) =
∑

π∈Irr(K)
index(Aπ)π.

Remark 2.1. We will also use the notation index(−) in closely related situations, and it 
should be clear from the context which interpretation is being used. If H is Z2-graded and 
A is an odd, possibly unbounded self-adjoint Fredholm operator, then index(A) denotes 
the index of A+ viewed as a bounded Fredholm operator from dom(A+) equipped with 
the graph norm, to H. This coincides with dim(ker(A+)) − dim(ker(A−)), the ‘graded 
dimension’ of ker(A).

In the non-equivariant case, the following result is Theorem 8.5 in [6], and the proof 
given there generalizes immediately to the equivariant case.

Theorem 2.2. Let M be a complete Riemannian manifold with compact boundary and 
D : C∞(M, E) → C∞(M, F ) a Dirac-type operator. Let K be a compact Lie group acting 
on M , E, F preserving the metrics. Suppose D is K-equivariant and A is a K-equivariant 
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adapted boundary operator. If D , D∗ are K-coercive then (D , B<0(A)) is a K-Fredholm 
operator.

We are now ready to state the splitting theorem for the special case of APS boundary 
conditions. In the non-equivariant case the statement below is Theorem 8.17 in [6], and 
the proof given there generalizes easily to the equivariant case. Splitting theorems of this 
general kind appear in many places in the literature. For but one other example (which 
allows even for families of operators), see Dai-Zhang [14].

Theorem 2.3. Let M be a complete Riemannian manifold without boundary, and 
D : C∞(M, E) → C∞(M, F ) a Dirac-type operator. Let K be a compact Lie group acting 
on M , E, F preserving the metrics, and assume D , D∗ are K-coercive. Let N ⊂ M be 
a compact K-invariant hypersurface with oriented normal bundle. Cut M along N to 
obtain a manifold M ′ with ∂M ′ = N1 1N2, where N1, N2 are two copies of N . Let D ′

denote the induced Dirac-type operator on M ′, acting between sections of the pullback 
bundles E′, F ′. Let A be a K-equivariant adapted boundary operator for D ′ along N1; 
then A 1 (−A) is an adapted boundary operator for D ′. Then we have the following 
equality in R−∞(K):

index(D) = index(D ′, B<0(A) 1B≤0(−A)). (8)

Remark 2.4. In (8), (D ′, B<0(A) 1B≤0(−A)) denotes the extension of D ′ with domain

{v ∈ H1
D′(M ′, E′)|RN1v ∈ B<0(A),RN2v ∈ B≤0(−A)}.

If the hypersurface N is such that N1, N2 are contained in distinct components of M ′, 
then the right hand side of (8) becomes the sum of two indices on the two components 
of M ′.

The following result on the discreteness of the spectrum for Schrödinger-type operators 
is well-known, cf. [53,28]. It is also closely related to the property of being ‘κ-coercive’ 
for all κ > 0 in [7, Corollary 5.6]. We described the proof of a slightly more general result 
in [34, Appendix B].

Proposition 2.5. Let M be a complete Riemannian manifold without boundary. Let D be 
an essentially self-adjoint Dirac-type operator acting on sections of a Hermitian vector 
bundle E. Let V be a continuous function which is proper and bounded below. Then 
D2 + V is essentially self-adjoint with discrete spectrum.

For certain arguments later on it will be convenient to work with inequalities between 
semi-bounded operators. If A is a self-adjoint operator on a Hilbert space H with domain 
dom(A) and spectrum in [1, ∞), then one defines an associated positive definite quadratic 
form
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qA(u1, u2) = (Au1, u2)

for all u1, u2 ∈ dom(A). The completion of dom(A) using the inner product qA is a 
Hilbert space dom(qA) which can be identified with dom(A1/2), and is known as the 
form domain of A (cf. [52, VIII.6]). Given self-adjoint operators A, B with spectrum in 
[1, ∞) one writes

A ≥ B

if

dom(qA) ⊂ dom(qB) and qA(v, v) ≥ qB(v, v) ∀v ∈ dom(qA)

(cf. [51, XIII.2, p.85]). Equivalently, A ≥ B if the inclusion mapping

(dom(qA), qA) ↪→ (dom(qB), qB)

is norm-decreasing. It is enough to check that for each v in a core for A, v ∈ dom(qB)
and qA(v, v) ≥ qB(v, v). More generally if A, B are self-adjoint operators with spectrum 
in [−c, ∞) for some c ≥ 0 then one writes A ≥ B if A + c + 1 ≥ B + c + 1.

The following result is a consequence of Proposition 2.5, cf. [34, Appendix B] for 
details.

Proposition 2.6. Let M , E, D, V be as in Proposition 2.5. Let K be a compact Lie group 
acting on M , E preserving the metrics, and assume D, V are K-equivariant. Let T be a 
K-equivariant self-adjoint operator on L2(M, E) with spectrum in (0, ∞), and suppose 
for some π ∈ Irr(K) we have Tπ ≥ (D2 + V )π. Then T−1

π is a compact operator.

Remark 2.7. Later on we study a complicated Dirac-type operator Dt and will obtain 
an inequality as in the proposition (with T = D2

t + 1 and D a simpler Dirac-type op-
erator) from a Bochner formula. The estimate (D2

t + 1)π ≥ (D2 + V )π implies Dt is 
(K, π)-coercive, and the proposition says moreover that (Dt)π has discrete spectrum.

3. A Dirac-type operator associated to a loop group space

In this section we briefly review the setup and results from [33,34], and begin to study 
a deformation of the operator under consideration.

3.1. Hamiltonian loop group spaces

Let LG denote the loops S1 = R/Z → G of some fixed Sobolev level s > 1
2 . Point-wise 

multiplication of loops makes LG into a Banach Lie group. The Lie algebra of LG is 
the space Lg = Ω0(S1, g) consisting of loops in g of Sobolev class s. We define the 
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smooth dual Lg∗ to consist of g-valued 1-forms on S1 of Sobolev level s − 1; the pairing 
between Lg, Lg∗ is given by the inner product, followed by integration over the circle. 
Lg∗ is regarded as the space of connections on the trivial principal G-bundle over S1, 
and carries a smooth, proper LG action by gauge transformations:

g · ξ = Adgξ − dgg−1, g ∈ LG, ξ ∈ Lg∗. (9)

The group G embeds in LG as the subgroup of constant loops. The integral lattice Λ
of G may be viewed as a subgroup of LG, by identifying λ ∈ Λ with the closed geodesic 
t 4→ exp(tλ).

Definition 3.1. A proper Hamiltonian LG-space (M, ωM, ΦM) is a Banach manifold M
equipped with a smooth proper action of LG, a weakly non-degenerate, LG-invariant 
closed 2-form ωM, and a smooth, proper, LG-equivariant map

ΦM : M → Lg∗

satisfying the moment map condition

ι(ξM)ωM = −d〈ΦM, ξ〉, ξ ∈ Lg.

For a more detailed discussion of Hamiltonian loop group spaces, see for example 
[42,1,11].

3.2. The global transversal Y of a Hamiltonian loop group space

Let ΦM : M → Lg∗ be a proper Hamiltonian LG-space. The based loop group ΩG

acts freely on Lg∗, and hence also on M. The quotient

p : M → M/ΩG =: M

is a compact finite-dimensional G-manifold, and is an example of a quasi-Hamiltonian 
G-space [1]. Since Lg∗/ΩG + G, M comes equipped with a group-valued moment map

Φ : M → G.

Let Bq(g/t) denote the ball of radius q > 0 centered at the origin in g/t. The normal-
izer NG(T ) acts on Bq(g/t) by the adjoint action. Using the inner product there is an 
NG(T )-equivariant identification g/t + t⊥, where t⊥ is the orthogonal complement of t
in g. There is an NG(T )-equivariant map

rT : T × Bq(g/t) = T × Bq(t⊥) → G, (t, ξ) 4→ t exp(ξ)



Y. Loizides, Y. Song / Journal of Functional Analysis 278 (2020) 108445 11

and for q sufficiently small it is a diffeomorphism onto a tubular neighborhood U of T
in G. Define the NG(T )-invariant open submanifold Y of M to be the pre-image:

Y = Φ−1(U).

Let Y be the Λ-covering space of Y defined as the fibre product Y ×U (t ×Bq(g/t)), using 
the map

rT ◦ (expT , id) : t × Bq(g/t) → U.

Thus Y = Y/Λ and we have a pullback diagram

Y
ΦY=(φ,φg/t)

π

t × Bq(g/t)

rT ◦(expT ,id)

Y
Φ|Y

U

(10)

The first component φ of the map ΦY defined by (10) is a moment map for the NG(T ) "
Λ-action (using t + t∗), and Y can be seen to be a degenerate Hamiltonian NG(T ) "
Λ-space.

Interestingly, Y can be embedded NG(T ) " Λ-equivariantly into the infinite dimen-
sional manifold M, such that

• the map obtained by composition Y ↪→ M 
p−→ M has image Y and coincides with 

the covering map π : Y → Y ;
• the image of Y in M is a small ‘thickening’ of the (possibly) singular closed subset

X = Φ−1
M (t)

where t ↪→ Lg∗ is embedded as constant connections;
• the image of Y in M intersects all the LG-orbits transversally.

In earlier work [33, Section 6.4] with E. Meinrenken, we showed how to construct such 
an embedding, depending on the choice of a connection on the principal ΩG-bundle 
Lg∗ → G.2 In [33] we referred to Y as a global transversal. One reason this perspective is 
useful is for the description of a canonical spin-c structure on Y, explained in the same 
article.

2 In [33] we actually worked with a slightly larger space PG (a principal G-bundle over Lg∗), which was 
desirable for certain purposes, although we have avoided discussing it here for simplicity. The embedding 
referred to here can be constructed by the same method.
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3.3. A 1st-order elliptic operator on Y

Redefining Y to be smaller if needed, one can construct a complete NG(T )-invariant 
Riemannian metric g on Y , such that Y has a cylindrical end

CylQ = Q× (1,∞),

where Q ⊂ Y is a compact NG(T )-invariant hypersurface, the complement Y \ CylQ is 
compact, and the metric

g|CylQ = dx2 + gQ,

where gQ is a metric on Q and x ∈ (1, ∞). This normal form can be constructed by be-
ginning with a slightly larger open subset Y ′ = Φ−1(U ′), where U ′ = rT (T × Bq′(g/t)), 
and then choosing Q to be the inverse image of a regular value q of the map 
|pr2 ◦ r−1

T ◦ Φ|Y ′ | : Y ′ → [0, q′). The metric g can be constructed by patching together 
a NG(T )-invariant metric on Y ′ with a cylindrical metric on a collaring neighborhood 
of Q using a partition of unity; cf. [34, Section 4.7.1] for further details. One can ar-
range that the vector field ∂x on Y extends continuously by 0 to a neighborhood of Y
in M .

The pullback of g to Y is a NG(T ) "Λ-invariant complete metric on Y. The Riemannian 
volume determines a measure on Y. Let Q, CylQ denote the inverse image under the 
quotient map Y → Y of Q, CylQ respectively. For convenience extend x : CylQ → (1, ∞)
to a smooth NG(T ) "Λ-invariant function x : Y → (0, ∞), such that x−1(1, ∞) = CylQ.

Let E = E+ ⊕ E− be a Z2-graded T × Λ-equivariant Hermitian vector bundle over 
Y such that E±|Q are trivial. Let θ ∈ C∞(Y, End(E)) be a bounded, odd, self-adjoint 
T × Λ-equivariant bundle endomorphism, such that θ2 = id on CylQ. Let

f : [0,∞) → [1,∞)

be a smooth, monotone non-decreasing function, equal to 1 on a neighborhood of [0, 1], 
such that

f(s) s→∞−−−−→ +∞ and f(s)−2f ′(s) s→∞−−−−→ 0. (11)

The composition f ◦x will serve as a kind of potential function on Y; to keep the notation 
from becoming overly cluttered we will continue to denote this composition just by f .

The product group T ×Λ sits as a subgroup of LG. Given a U(1) central extension of 
LG, we obtain a central extension of T ×Λ by restriction. Any central extension is trivial 
over the torus hence is of the form T " Λ̂, for some U(1) central extension Λ̂ of Λ. In any 
case, let T " Λ̂ be a U(1) central extension. We assume that there is a homomorphism 
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κ : Λ → Λ∗ satisfying 〈κ(λ), λ〉 > 0 ∀0 *= λ ∈ Λ,3 and such that for all t ∈ T , λ̂ ∈ Λ̂ we 
have the following commutation relation:

λ̂ t λ̂−1 t−1 = t−κ(λ). (12)

We comment on the role of this assumption in Remark 3.4 below.
The following summarizes some results from [34].

Theorem 3.2. Let T " Λ̂ be a central extension of T × Λ satisfying (12). Let S be a 
T " Λ̂-equivariant spinor module on Y, equipped with a Clifford connection. With E as 
above, let D denote the corresponding Dirac operator acting on sections of E := E⊗̂S. 
Let θ, f be as above with f satisfying the growth conditions (11). Then the Dirac-type 
operator

D = D + fθ⊗̂1 (13)

is T -Fredholm.

We will usually write fθ instead of fθ⊗̂1 when it should not cause confusion. In terms 
of a local orthonormal frame X1, ..., Xdim(Y), the Dirac operator D is

D(e⊗̂s) = (−1)deg(e)(∇E
Xn

e⊗̂c(Xn)s + e⊗̂c(Xn)∇S
Xn

s
)
,

the (−1)deg(e) appears because of the Koszul sign rule.

Remark 3.3 (Examples). In [33] we constructed a canonical L̂G-equivariant spinor mod-
ule S0 for the vector bundle p∗TM , where p : M → M = M/ΩG is the quotient map. 
The relevant central extension of LG here is the spin central extension (cf. [50,15]). If 
G is semisimple, the resulting central extension of T × Λ satisfies (12). Above we men-
tioned that Y embeds into M as a finite-dimensional submanifold such that the map 
obtained by composition Y ↪→ M 

p−→ M has image Y and coincides with the covering 
map π : Y → Y . Since Y is an open subset of M , it follows that the pullback of S0 to Y
is a T " Λ̂-equivariant spinor module for Y satisfying (12). For the quantization problem, 
one also wants to consider spinor modules obtained from S0 by twisting with auxiliary 
line bundles.

Remark 3.4 (On the role of the commutation relation). The commutation relation for 
the central extension that acts on the spinor module (12) plays a key role in [34] in 
showing that the operator (13) is T -Fredholm. We will see that it also has a role in the 
present article, stemming from Lemma 4.6. Looking ahead to Section 4, we will study 
a deformation Dt of D , and the commutation relation implies that one of the terms 

3 Such κ are in one-one correspondence with inner products on t which take integer values on Λ.
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appearing in the Bochner-type formula for D2
t goes to ∞ as one translates out to infinity 

in Y using the action of Λ. This observation plays a key role in the analysis of the 
deformation Dt in Sections 4, 5.

Remark 3.5 (On the index as a pairing in K-theory).

(a) The pair (E, θ) descend to Y , and represent a class [θ] ∈ K0
T (Y ). In [34], we showed 

that the Dirac operator DS for S → Y (set E = C) defines a class [DS ] in the 
analytic K-homology group KK(T " C0(Y ), C), and the operator in Theorem 3.2
was interpreted as a representative for the Kasparov product jT ([θ]) ⊗T!C0(Y ) [DS ].

(b) The map κ determines an action of Λ on Irr(T ) + Λ∗ by translations. The 
Λ̂-equivariance of D , together with (12) imply that index(D) ∈ R−∞(T ) = ZΛ∗

is invariant under this action.
(c) An important special case is for (E, θ) representing the pullback under φg/t of the 

Bott element for g/t + n−, in which case E is trivial with fibres ∧n−. In this case there 
is additional anti-symmetry under the Weyl group, and index(D) is anti-symmetric 
under a suitable action of the affine Weyl group, see [34] for details, and also Sec-
tion 6.4 for further discussion.

4. The deformation Dt

We use the inner product to identify t with t∗, hence φ can be viewed as a map Y → t. 
Choose a smooth bounded function

χ : [0,∞) → (0,∞)

such that, as r → ∞, rχ(r2) and rχ′(r) remain bounded while rχ(r) → ∞. For example, 
one can take

χ(r) = 1√
1 + r

.

Definition 4.1. Given χ as above, the corresponding taming map is

v : Y → t, v = χ(|φ|2) · φ.

Note that v is a bounded map by construction. The vector field generated by v, denoted 
vY , is defined by

vY |y = v(y)Y |y.

On the right-hand-side, v(y) ∈ t generates a vector field v(y)Y on Y that is then evaluated 
at y ∈ Y.
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Remark 4.2. The terminology ‘taming map’ was introduced by Braverman [12]. In his 
application, the taming map was required to satisfy certain growth conditions at infinity 
(and would not be bounded). The taming map here is closer to that used by Harada and 
Karshon [19].

One checks that

Z := {y ∈ Y|vY(y) = 0} =
⋃

β∈t
Yβ ∩ φ−1(β).

The set of β ∈ t+ such that Yβ ∩φ−1(β) *= ∅ is a discrete subset B ⊂ t+. We refer to the 
subsets

Zβ = Yβ ∩ φ−1(β), β ∈ W · B

as the ‘components’ of the vanishing locus Z (although they are not necessarily con-
nected).

Remark 4.3. Recall the (possibly singular) subset X = (φg/t)−1(0) ⊂ Y. If the tubular 
neighborhood U ⊃ T is chosen sufficiently small, then Yβ∩φ−1(β) *= ∅ ⇔ X β∩φ−1(β) *=
∅. Under the embedding Y ↪→ M, X is identified with Φ−1

M (t∗), hence X β ∩ φ−1(β) =
Mβ ∩ Φ−1

M (β). For β ∈ t+ we see that

Yβ ∩ φ−1(β) *= ∅ ⇔ G · (Mβ ∩ Φ−1
M (β)) *= ∅

and the latter subset of M is the component of the critical set of the norm-square of the 
moment map ‖ΦM‖2 labelled by β, cf. [31] for further discussion.

Definition 4.4. The deformation Dt of D is the family of Dirac-type operators

Dt = D + (1 + t)fθ⊗̂1 − it⊗̂c(vY), t ∈ R.

We will drop the ‘1⊗̂’ when it should not cause confusion; in this notation one should 
remember that the operators c(vY), θ graded commute.

4.1. Bochner formula for D2
t

Let vj denote the components of v with respect to an orthonormal basis ξj , j =
1, ..., dim(t) for t; these are smooth bounded R-valued functions on Y. We refer to 
det(S) = HomCliff(TY)(S∗, S) as the determinant line bundle of the spin-c structure 
S. The chosen connection on S determines a connection on det(S) in the usual way. We 
define the spin-c moment map µ : Y → t∗ by

2πi〈µ, ξ〉 = 1
2

(
Ldet(S)
ξ −∇det(S)

ξY

)
, ξ ∈ t. (14)
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(Note that the right-hand-side is an operator on C∞(Y, det(S)) which commutes with 
multiplication by functions, hence defines a section of End(det(S)) = Y × C.) Sim-
ilarly using the chosen connection on E we define a moment map (cf. [8]) µE ∈
t∗ ⊗ C∞(Y, End(E)) by

2πi〈µE , ξ〉 = LE
ξ −∇E

ξY , ξ ∈ t. (15)

Using the metric we identify TY + T ∗Y. If R is a Killing vector field and ∇ the Levi-
Civita connection, the bundle endomorphism ∇•R : X 4→ ∇XR is skew-adjoint with 
respect to the metric on TY, hence defines a section of the adjoint bundle so(TY). The 
latter is identified with a subbundle of Cliff(TY) (recall so(V ) + spin(V ) ⊂ Cliff(V ) for 
a Euclidean vector space V ), hence for R Killing we obtain a section c(∇•R) ∈ End(S). 
In terms of a local orthonormal frame X1, ..., Xdim(Y) we have

c(∇•R) = 1
4c(Xn)c(∇XnR).

The connection ∇E induces a connection ∇End(E) on End(E) satisfying ∇End(E)
X σ =

[∇E
X , σ] as sections of End(E), for all vector fields X and σ ∈ C∞(Y, End(E)). The 

covariant differential ∇End(E)θ defines a section of T ∗Y ⊗ End(E). It is convenient to 
write c(∇End(E)θ) for the section of End(E⊗̂S) obtained by applying the Clifford action 
c to the T ∗Y + TY part of the tensor ∇End(E)θ. In terms of the local frame

c(∇End(E)θ) = −∇End(E)
Xn

θ⊗̂c(Xn) ∈ End(E⊗̂S).

Proposition 4.5 (Bochner formula, cf. [55,21]). Let ξj be an orthonormal basis of t. The 
square of the deformed operator is given by

D2
t = D2

θ,t + t2|vY |2 + 4πt〈µ + µE , v〉 + 2itvjLE
ξj + itb (16)

where

b = −2vjc(∇•ξ
j
Y) − c(dvj)c(ξjY)

is a smooth bounded section of End(E), Dθ,t = D + (1 + t)fθ and

D2
θ,t = D2 + (1 + t)2f2θ2 + (1 + t)c(df)θ + (1 + t)fc(∇End(E)θ). (17)

Proof. We have

D2
t = D2

θ,t + t2|vY |2 − it[Dθ,t, c(vY)]. (18)

Since θ, c(vY) graded anti-commute, the cross-term simplifies to

[Dθ,t, c(vY)] = [D, c(vY)].
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Let X1, ..., Xdim(Y) be a local orthonormal frame. Then

[D, c(vY)] = [c(Xn), c(vY)]∇E
Xn

+ c(Xn)[∇E
Xn

, c(vY)]
= −2vj∇E

ξjY
+ c(Xn)c(∇XnvY)

= −2vj∇E
ξjY

+ c(Xn)
(
(∇Xnvj)c(ξjY) + vjc(∇Xnξ

j
Y)
)

= −2vj∇E
ξjY

+ c(dvj)c(ξjY) + 4vjc(∇•ξ
j
Y) (19)

and the expression in the last line holds globally.
Locally on Y we can choose a spin structure S(TY) and square-root det(S)1/2 such 

that locally S + S(TY) ⊗det(S)1/2. The Levi-Civita connection is torsion-free, implying 
the following identity of operators acting on vector fields:

∇X = LX + ∇•X.

If X is Killing, it follows that

∇S(TY)
X = LS(TY)

X + c(∇•X), (20)

where ∇S(TY) is the spin connection. Using the definitions of µ, µE we have

∇det(S)1/2

ξjY
= Ldet(S)1/2

ξj − 2πi〈µ, ξj〉, ∇E
ξjY

= LE
ξj − 2πi〈µE , ξ

j〉. (21)

Combining (20), (21)

∇E
ξjY

= LE
ξj − 2πi〈µ + µE , ξ

j〉 + c(∇•ξ
j
Y), (22)

and this expression holds globally. Combining equations (18), (19), (22) gives (16).
Using Λ-invariance and our assumption that the metric and action both take product 

forms on CylQ, it follows that c(ξjY), c(∇•ξ
j
Y) are bounded operators. Note that

dvj = 2χ′(|φ|2)φiφjdφi + χ(|φ|2)dφj .

The functions χ(|φ|2), χ′(|φ|2)φiφj are bounded according to the conditions on χ. The 
1-form dφj descends to Y . To show that it has bounded norm on Y , it suffices to consider 
its behavior on CylQ. Let Q′ ⊂ Q be a small open subset such that we have a local or-
thonormal frame X2, ..., Xdim(Y ) for gQ on Q′. Let X1 = ∂x, so that Xn, n = 1, ..., dim(Y )
is a local orthonormal frame for g on Y ′ = Q′ × (1, ∞) ⊂ Y . On Q′ × (1, ∞) we have

g)(dφj) = dφj(Xn)Xn.

The 1-form dφj extends smoothly to a neighborhood of the closure Y of Y in M , and 
the vector fields Xn extend continuously to the closure of Y ′ in M (in particular the 
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vector field ∂x on Y extends continuously by 0 to Y ). Since Y ⊂ M is compact it follows 
that dφj(Xn) is a bounded function on Y ′, hence g)(dφj) has bounded norm on Y . This 
proves b is bounded.

Equation (17) follows from

[D, fθ] = [D, f ]θ + f [D, θ] = c(df)θ + fc(∇End(E)θ). !

4.2. Fredholm property for Dt

The term 〈µ, v〉 in the Bochner formula will play a crucial role, owing to the following.

Lemma 4.6. Let W ⊂ Y be a compact subset, and W = π−1(W ) ⊂ Y. Then 〈µ, v〉|W is 
proper and bounded below. Consequently the sum 〈µ, v〉 + f is proper and bounded below 
on Y.

Proof. For the first claim, since the quotient W/Λ = W is compact, it suffices to show 

that 〈µ, v〉(λ.y) |λ|→∞−−−−−→ ∞ for each y ∈ Y. The commutation relations (12) imply 
µ(λ.y) = µ(y) + κ(λ). On the other hand φ(λ.y) = φ(y) + λ. Thus

〈µ, v〉(λ.y) = χ(|φ(y) + λ|2)
(
〈µ(y),φ(y)〉 + 〈µ(y) + κ∗φ(y),λ〉 + 〈κ(λ),λ〉

)
.

Our assumptions on χ imply that the first two terms in the brackets, when multiplied by 
χ(|φ(y) +λ|2), remain bounded as |λ| → ∞. Since κ was assumed to be positive definite, 
for large |λ| the third term behaves like a constant times χ(r2)r2, which goes to infinity 
as r = |λ| goes to infinity, again by our assumptions on χ.

For the second claim, consider the joint function (〈µ, v〉, f) : Y → R2. This map is 
proper, because for any compact subset K ⊂ R, W = f−1(K) is a subset of the type 
considered above, on which 〈µ, v〉 is proper. For any c ∈ R, the map (s, t) ∈ [c, ∞) ×
[c, ∞) 4→ s + t ∈ R is proper. Since 〈µ, v〉, f are both bounded below, and as the 
composition of proper maps is proper, it follows that 〈µ, v〉 + f is proper. !

Proposition 4.7. For t > 0, Dt is T -Fredholm.

Remark 4.8. The case t = 0, stated in Theorem 3.2, was proved in [34] using somewhat 
different methods from the proof for t > 0 below. We will make use of some positivity in 
the proof, so it is not clear what happens when t < 0. Note that, in contrast to the space 
of bounded Fredholm operators, the space of bounded T -Fredholm operators is not open 
in the norm topology, so it is possible that Dt is not T -Fredholm for any t < 0.

Proof. Fix t > 0 and λ ∈ Λ∗ + Irr(T ). We will show that (D2
t + 1)−1

λ is compact hence 
(Dt)λ has discrete spectrum, and a fortiori (Dt)λ is Fredholm. By Proposition 2.6 it 
suffices to prove an inequality of the form
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(D2
t )λ ≥ (D2 + V )λ (23)

for some T -invariant continuous potential V which is proper and bounded below.
We find a suitable V using equation (16). Notice that |vY |, |〈µE , v〉|, |θ|, |∇End(E)θ|

are all bounded globally on Y, using a combination of the facts that (1) v is bounded, 
(2) the metric g, as well as the sections µE, θ are Λ-invariant and are constant in the 
x-direction on CylQ. We conclude that equation (16) takes the form

D2
t = D2 + t2|vY |2 +(1+ t)2f2θ2 +4πt〈µ, v〉+(1+ t)fb1 +(1+ t)c(df)b2 +2itvjLE

ξj (24)

where b1, b2 are bounded (uniformly in t) sections of End(E); note here we have taken 
advantage of the fact that f ≥ 1 to hide the terms in (16) containing b, 〈µE , v〉 inside b1.

As in Tian-Zhang [55], a key observation is that, restricted to the λ-isotypic compo-
nent, the operators LE

ξj in (16) become bounded (in fact since T is abelian, they restrict 
to multiplication operators by a constant), so 2vjLE

ξj is bounded by a constant cλ (the 
supremum over y ∈ Y of 2|vj(y) · 2π〈λ, ξj〉| = 4π|〈λ, v(y)〉|).

Since θ is self-adjoint, θ2(y) is a non-negative endomorphism of E for each y ∈ Y; let 
ϑ2(y) be its smallest eigenvalue. Thus ϑ2 : Y → [0, ∞) is a continuous T × Λ-invariant 
function, equal to 1 on CylQ.

Define a potential

V = t2|vY |2 + 4πt〈µ, v〉 − tcλ + (1 + t)2f2ϑ2 − (1 + t)f |b1|− (1 + t)|df | · |b2|.

Using equation (24), V satisfies (23). It is clear that V is T -invariant, continuous. Note 
that |df | is bounded on Y \ CylQ, whereas on CylQ, |df | = |f ′(x)|. Since b1, b2 are 
bounded, it follows that there is a lower bound of the form

V ≥ t2|vY |2 + 4πt〈µ, v〉 − tcλ + (1 + t)f2((1 + t)ϑ2 − cf−2(f + |f ′|)
)
, (25)

for some constant c.
The growth condition (11) for f implies we can find s0 > 0 such that for s > s0

f(s)−2(f(s) + |f ′(s)|) < 1
2c

−1. (26)

Let K ⊂ Y be the subset where x ≤ s0. We consider V on each of the subsets K and 
Y \ K. On K the function t〈µ, v〉 is proper and bounded below by Lemma 4.6, while the 
other terms in (25) are bounded. Thus V |K is proper and bounded below.

Note that Y \K ⊂ CylQ. Since ϑ|CylQ = 1 and using (26), we obtain the simpler lower 
bound

V
∣∣
Y\K ≥ t2|vY |2 + 4πt〈µ, v〉 − tcλ + 1

2 (1 + t)f2, (27)
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which holds on Y \ K. By Lemma 4.6, the function 〈µ, v〉 + f is proper and bounded 
below on Y, and this easily implies that the right hand side of (27) is proper and bounded 
below. !

4.3. Continuity of the index

Let H be a Hilbert space and let a0, a be unbounded self-adjoint operators such that 
dom(a0) ∩ dom(a) is dense. Suppose the family of operators

at = a0 + ta, t ≥ 0

is essentially self-adjoint. The bounded transform of at is the bounded self-adjoint op-
erator b(at), where b(r) = r(1 + r2)−1/2. It is convenient to use the following criterion 
adapted from Nicolaescu [43, Proposition 1.6].

Lemma 4.9 ([43]). Let at = a0+ta, t ≥ 0 be a family of unbounded self-adjoint operators, 
as above. Suppose that for each t ≥ 0 the following conditions hold:

(a) at has a gap in its spectrum.
(b) dom(at) ⊂ dom(a)
(c) a2 ≤ C(a2

t + C ′) for some C, C ′ > 0.

Then the family of bounded transforms t 4→ b(at) is norm-continuous.

Remark 4.10. The third condition in Lemma 4.9 implies ‖aξ‖ ≤ C ′′(‖atξ‖ + ‖ξ‖
)

for 
some C ′′ > 0 and all ξ ∈ dom(at). If the operators at have a common core, then the 
estimate (c) (verified on elements of the common core) implies dom(at) ⊂ dom(a). If 
the operators at are Fredholm, then 0 is an isolated point of the spectrum, hence in 
particular at has a gap in its spectrum. Thus in this special case the criterion amounts 
to proving the estimate (c). If H is Z2 graded and the at are odd, then b(at) is an 
odd self-adjoint Fredholm operator with the same index as at. Norm-continuity of the 
bounded transform therefore implies index(at) is independent of t.

Proposition 4.11. For λ ∈ Irr(T ) fixed, the family of bounded operators t 4→ b(Dt)λ, t ≥ 0
is norm-continuous. Consequently index(Dt) = index(D) ∈ R−∞(T ).

Proof. Fix an isotypical component λ ∈ Irr(T ). We will prove the proposition by applying 
Lemma 4.9 and Remark 4.10 to the family of odd self-adjoint operators at = (Dt)λ
(these have a common core consisting of smooth compactly supported sections in the 
λ-isotypical subspace). The operator a = (fθ − ic(vY))λ. Since c(vY) is bounded we can 
ignore this term. Likewise since ‖θ‖ ≤ 1 we can replace θ with 1. Thus it suffices to prove 
that there are constants C, C ′ > 0 such that
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f2 ≤ C
(
(D2

t )λ + C ′). (28)

Using inequality (23) this amounts to showing

f2 ≤ C(V + C ′). (29)

It is convenient to make use of the subset K ⊂ Y introduced in the proof of Proposi-
tion 4.7. Since V is bounded below, while f is bounded on K, it is easy to ensure (29)
holds on K by taking C ′ ; 0. On Y \ K, using the lower bound (27), inequality (29)
would follow from

f2 ≤ C
(
4πt〈µ, v〉 − tcλ + 1

2 (1 + t)f2 + C ′).

As 〈µ, v〉 is bounded below, by taking C ′ ; 0 we can ensure 4πt〈µ, v〉 +C ′ > tcλ. Then 
taking C > 2(1 + t)−1 gives the result. !

Remark 4.12. In fact to just show invariance of the index, it is enough to verify the weaker 
result that the family of resolvents t 4→ (Dt ± i)−1

λ is norm-continuous, or equivalently 
that t 4→ (Dt)λ is continuous in the ‘gap topology’ on the space of closed unbounded 
operators (see Kato [25, Theorem IV.2.23]). That this is sufficient is an older result of 
Cordes and Labrousse [13] (see Kato [25, IV.5.17]). To prove norm-continuity of the 
resolvents, one can use

(Dt ± i)−1 − (Ds ± i)−1 = (Dt ± i)−1(Ds − Dt)(Ds ± i)−1

= (s− t)(Dt ± i)−1(fθ − ic(vY))(Ds ± i)−1,

and so it is enough to prove that (Dt ± i)−1
λ fθ is bounded. The latter follows from 

inequality (28) proved in Proposition 4.11.

Remark 4.13. Here is a slightly different perspective on Proposition 4.11, which avoids 
using Lemma 4.9 in favor of Hilbert C∗-module methods. Let H = C([0, 1], H) be the 
Hilbert C[0, 1]-module consisting of continuous functions [0, 1] → H. The family of self-
adjoint operators D = (Dt)t∈[0,1] defines an unbounded self-adjoint operator on H (this 
follows because the coefficients of Dt vary continuously, in fact smoothly). A ‘localization’ 
theorem of Pierrot [49, Theorem 1.18] (see also [22]) implies D defines a regular self-
adjoint operator on H; this means functional calculus for unbounded operators on Hilbert 
C∗-modules is available, hence F = b(D) is a bounded operator on H. To show that the 
index of Dt is independent of t ∈ [0, 1], it suffices to show that the pair (H, F ) defines a 
KK-theory homotopy, i.e. a KK-theory cycle for the pair of C∗-algebras (C∗(T ), C[0, 1]), 
cf. [20,24]. This amounts to showing that for each λ ∈ Irr(T ), the resolvents t 4→ (Dt±i)−1

λ

form a norm-continuous family of compact operators (cf. [20]), and we explained this al-
ready in Remark 4.12. This is a weaker result than Proposition 4.11, but still implies 
constancy of the index.
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5. The Ma-Zhang-type index formula

Our goal in this section is to ‘break up’ the index of D into contributions from each 
component of the vanishing locus Z. The basic tool we use for this is the splitting 
theorem for elliptic boundary value problems, see Theorem 2.3. Using methods of Ma 
and Zhang [37], we obtain a formula for index(D) ∈ R−∞(T ) as an infinite (but locally 
finite) sum of contributions labelled by the components Zβ of the vanishing locus. Each 
contribution can be described as the ‘limit’, as the parameter t → ∞, of the index 
of an Atiyah-Patodi-Singer (APS) [5] boundary value problem (Dt, Bt) on a compact 
neighborhood Uβ of Zβ ∩ X , where X = (φg/t)−1(0) ⊂ Y.

5.1. The splitting theorem and Dt

For each β ∈ W · B, choose a small closed ball Bβ ⊂ t centered on β, such that 
Bβ∩Bγ = ∅ for β *= γ. Recall that the intersection Zβ∩(Y\CylQ) = (Y\CylQ)β∩φ−1(β)
is compact. Let Uβ ⊂ φ−1(Bβ) be a compact T -invariant neighborhood of Zβ∩(Y\CylQ)
in Y such that Uβ is also a manifold with smooth boundary ∂Uβ = Nβ . By construction, 
for each y ∈ Nβ either |vY(y)| > 0 or θ2(y) = 1. Fix a regular value R > 0 of the function 
|φ| : Y → [0, ∞), and let

UR =
⋃

|β|<R

Uβ , NR = ∂UR, WR = Y \ UR.

For t > 0 the Dirac-type operator Dt is T -coercive (see Proposition 4.7). Choosing an 
adapted boundary operator A+

t for D+
t ! UR, we can apply the splitting theorem:

index(D) = index(Dt) = index(D+
t ! UR, B<0(A+

t )) + index(D+
t ! WR, B≤0(−A+

t )).
(30)

Remark 5.1. Note that in equation (30) we are allowing the boundary condition to 
depend on the parameter t. Thus the two summands on the right hand side are not
independent of t, although their sum is, by Proposition 4.11. One should compare the 
approach in Ma-Zhang [37], which involves a similar boundary condition depending on t.

Equation (30) is really an infinite collection of equations, one for each allowed choice of 
A+

t . For results below it is convenient to choose a particular adapted boundary operator. 
Let ν be an inward unit normal vector for UR along NR. For the Dirac operator D, we 
will use a canonical boundary operator A given along NR by the expression

A = σD(ν)−1D −∇E
ν + dim(NR)

2 h (31)

where σD(ν)−1 = −c(ν) and h is the mean curvature of NR, cf. Gilkey [16, p.142], Bär 
and Ballmann [7, Appendix A]. A useful property of this choice is that A anti-commutes 
with c(ν):
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Ac(ν) = −c(ν)A.

Let A+ (resp. A−) denote the restriction of A to sections of E+ (resp. E−), thus A−c(ν) =
−c(ν)A+. The operators A± are essentially self-adjoint (cf. the calculation on p. 25 of 
[7]), hence A+ is an adapted boundary operator for D+.

To obtain a ‘canonical’ boundary operator At for Dt, take the expression for 
σDt(ν)−1Dt along NR and simply replace σD(ν)−1D with A; thus

At = A + itc(ν)c(vY) − (1 + t)c(ν)fθ.

Since NR is T -invariant and vY lies in the tangent distribution to the orbits, c(ν), 
c(vY) anti-commute. The operators A±

t are again essentially self-adjoint, hence A+
t is an 

adapted boundary operator for D+
t ! UR, and defines an Atiyah-Patodi-Singer boundary 

problem (D+
t , B<0(A+

t )). Since

−σDt(ν) ◦A+
t ◦ σDt(ν)−1 = c(ν)A+

t c(ν) = A−
t ,

the Hilbert space adjoint is (D−
t , B≤0(A−

t )).

5.2. Dependence of the APS index on t

Proposition 5.2 (cf. [37], Proposition 1.1). Fix λ ∈ Irr(T ) + Λ∗. For t ; 0, (At)λ is 
invertible.

Proof. For the proof we temporarily suspend our convention regarding graded commu-
tators, and write {·, ·} for the anti-commutator, [·, ·] for the ordinary commutator. The 
calculation of A2

t is similar to the Bochner formula (17):

A2
t = A2 + t2|vY |2 + (1 + t)2f2θ2 + it{A, c(ν)c(vY)}− (1 + t){A, c(ν)fθ}

= A2 + t2|vY |2 + (1 + t)2f2θ2 + itc(ν)[−A, c(vY)] + (1 + t)c(ν)[A, fθ]

where in the second line we used {A, c(ν)} = 0. In terms of a local orthonormal frame 
X1 = ν, X2, ..., Xdim(Y) for Y the operator A is

A = −c(ν)
∑

n≥2
c(Xn)∇E

Xn
+ dim(NR)

2 h.

Using that c(vY) anti-commutes with c(ν) we have

[−A, c(vY)] = c(ν)
{∑

n≥2
c(Xn)∇E

Xn
, c(vY)

}
.

Arguing as in the proof of Proposition 4.7 we find that the anti-commutator in this 
expression is bounded on the λ-isotypical component (note that the argument is simpler 
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than Proposition 4.7, because NR is compact). Also, since NR is compact, the commu-
tator [A, fθ] is a bounded bundle endomorphism. Thus

A2
t = A2 + t2|vY |2 + (1 + t)2f2θ2 + (1 + t)S

where S is an operator which is bounded on the λ-isotypical component. The manifold 
UR was chosen such that at each point of y ∈ NR, either |vY(y)| > 0 or θ2(y) = 1; thus 
|vY |2 + f2θ2 is a strictly positive bundle endomorphism along NR. Taking t ; 0 we can 
ensure these terms dominate, hence (At)2λ is invertible. !

Corollary 5.3. Fix λ ∈ Irr(T ) + Λ∗. When t is sufficiently large, the summands 
index(D+

t ! UR, B<0(A+
t ))λ and index(D+

t ! WR, B≤0(−A+
t ))λ on the right hand side of 

(30) are separately independent of t.

Proof. By Remark 5.1 it is enough to prove this for index(D+
t ! UR, B<0(A+

t ))λ. For 
ease of reading, for the remainder of the proof we will omit ‘! UR’ from the notation. By 
Proposition 5.2, there is some tλ such that for all t ≥ tλ, the adapted boundary operator 
(At)λ is invertible. Thus the Hilbert space adjoint of (D+

t , B<0(A+
t ))λ is (D−

t , B<0(A−
t ))λ

(i.e. we may omit the 0-eigenspace), and so the index of (D+
t , B<0(A+

t ))λ is the index in 
the Z2-graded sense of the odd self-adjoint operator (Dt, B<0(At))λ.

We will prove that the index of the 2-parameter family (s, t) 4→ (Ds, B<0(At))λ, s ≥ 0, 
t ≥ tλ is independent of (s, t). First fix t and consider the dependence on s. By Lemma 4.9
and Remark 4.10, norm-continuity of the bounded transforms follows from an estimate 
of the form appearing in Lemma 4.9. But in this case the operator a = fθ − ic(vY) is 
bounded on the compact space UR, so the estimate holds.

Next fix s and consider the dependence on t ≥ tλ. The idea is that by continuity 
of the spectrum, invertibility of (At)λ for t ≥ tλ implies that the boundary condition 
B<0(At)λ varies ‘continuously’ with t, since no eigenvalues can cross 0. This in turn 
implies constancy of the index. A discussion of continuous families of boundary conditions 
can be found, for example, in Bär and Ballmann [6, Section 8.2]. Let P<0(At) denote 
the L2-orthogonal projection onto B<0(At), and let r ≥ 0. Since ∂UR is compact, the 
dense subspace dom(|At|r) ⊂ L2(∂UR, E) does not depend on t and defines the level r
Sobolev space H(r) = L2

r(∂UR, E). It follows from the spectral theorem that P<0(At)
induces a bounded linear operator P<0(At)(r) in H(r). According to a result in [6], it 
suffices to prove that the family t 4→ P<0(At)(r)λ , t ≥ tλ is norm-continuous with respect 
to the operator norm on B(H(r)

λ ) for r = 1/2. A short, self-contained proof of this fact 
(for arbitrary r) can be found in [26, Theorem 3.2]. !

By Corollary 5.3, it makes sense to define

indexAPS,β(D , v) = lim
t→∞

index(D+
t ! Uβ , B<0(A+

t ))

as well as
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indexAPS,R(D , v) = lim
t→∞

index(D+
t ! UR, B<0(A+

t )) =
∑

|β|<R

indexAPS,β(D , v), (32)

with the convergence being in R−∞(T ). Taking the limit t → ∞ of (30) we find

index(D) = indexAPS,R(D , v) + lim
t→∞

index(D+
t ! WR, B≤0(−A+

t )). (33)

5.3. Dependence of the APS index on R

Theorem 5.4 (compare [37] Theorem 2.1). The limit

lim
R→∞

lim
t→∞

index(D+
t ! WR, B≤0(−A+

t )) = 0

in R−∞(T ).

In part of the proof we will use a method we learned from [37, pp. 27–29].

Proof. Fix λ ∈ Λ∗ + Irr(T ). We will prove that when R is sufficiently large there is a 
constant tλ,R such that for t > tλ,R the inequality

‖Dts‖2 ≥ 1
2‖∇

Es‖2 + (t− tλ,R)‖s‖2

holds for all s ∈ C∞
c (WR, E)λ satisfying (s, Ats)NR ≥ 0. Hence when t > tλ,R both the 

kernel and cokernel of (D+
t ! WR, B≤0(−A+

t ))λ vanish separately (recall that the adjoint 
operator is (D−

t ! WR, B<0(−A−
t ))), which implies the result.

By Green’s formula,

‖Dts‖2 = (s,D2
t s)WR − (s, c(ν)Dts)NR (34)

where we have used that −ν is the inward unit normal vector for WR, and the skew-
adjointness of c(ν).

For the first term in (34) we use the lower bound (D2
t )λ ≥ (D2 + V )λ proved in 

Proposition 4.7, and the lower bound for the potential V in equation (25):

V ≥ t2|vY |2 + 4πt〈µ, v〉 − tcλ + (1 + t)f2((1 + t)ϑ− cf−2(f + |f ′|)
)
.

By (11), cf−2(f + |f ′|) is bounded globally on Y by some constant c′. Assume t > 1 so 
2t > t + 1, thus

t−1V ≥ t|vY |2 + 4π〈µ, v〉 − cλ + f2(tϑ2 − 2c′). (35)

We claim that for R and t sufficiently large we have V |WR ≥ t; indeed, we may verify 
this separately on CylQ, WR \ CylQ:
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(a) On CylQ, ϑ ≡ 1 and f ≥ 1, hence

t−1V ≥ 4π〈µ, v〉 − cλ + f2(t− 2c′).

Since 〈µ, v〉 is bounded below, for t ; 0 we will have t−1V ≥ 1.
(b) On WR \ CylQ, f = 1. Dropping the non-negative term ϑ2, we have

t−1V ≥ t|vY |2 + 4π〈µ, v〉 − cλ − 2c′.

On Y\CylQ the function 〈µ, v〉 is proper and bounded below. Hence the subset Kλ ⊂
Y\CylQ where 4π〈µ, v〉 ≤ cλ+2c′+1 is compact. By taking R sufficiently large—thus 
excising sufficiently many components of the vanishing locus Z ∩ (Y \ CylQ) from 
Y \ CylQ—say R > Rλ, we can arrange that vY does not vanish on Kλ ∩ WR. By 
compactness |vY | is bounded below by some positive constant on Kλ ∩ WR, hence 
taking t ; 0 (depending on R) we can ensure

t|vY |2 + 4π〈µ, v〉 − cλ − 2c′ ≥ 1.

We have thus shown that for R > Rλ and t sufficiently large (depending on R)

(s,D2
t s)WR ≥ (s,D2s)WR + (s, V s)WR ≥ (s,D2s)WR + t‖s‖2. (36)

Now consider the second term in (34). For the remainder of the proof we write ∇ in 
place of ∇E to make expressions a little cleaner. Along NR we have

−c(ν)Dts = Ats + ∇νs− dim(NR)
2 hs,

where h is the mean curvature of NR. By assumption (s, Ats)NR ≥ 0 hence, dropping 
this term,

−
(
s, c(ν)Dts

)
NR

≥
(
s,∇νs

)
NR

− dim(NR)
2 (s, hs)NR . (37)

To obtain an expression for (s, ∇νs), apply Green’s formula to the operator ∇ = ∇E on 
WR:

‖∇s‖2 = (s,∇∗∇s)WR − (σ∇(−ν)s,∇s)NR

= (s,∇∗∇s)WR + (ν ⊗ s,∇s)NR

= (s,∇∗∇s)WR + (s, ι(ν)∇s)NR

where in the last line ι(ν) denotes the contraction operator defined using the metric. 
Thus

(s,∇νs)NR = ‖∇s‖2 − (s,∇∗∇s)WR .
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By the Lichnerowicz-Weitzenbock formula,

D2 = ∇∗∇ + R

where R is a bundle endomorphism of E , depending on the metrics of E, S, TY and 
the choices of connections. Because these structures take a product form on CylQ and 
are Λ̂-invariant, R is bounded globally on Y by some constant r. Substituting these 
expressions in (37) we have

−
(
s, c(ν)Dts

)
NR

≥ ‖∇s‖2 − (s,D2s)WR − r‖s‖2 − dim(NR)
2 (s, hs)NR . (38)

Substituting (36), (38) into (34) yields, for R > Rλ and all t sufficiently large (de-
pending on R):

‖Dts‖2 ≥ ‖∇s‖2 − dim(NR)
2 (s, hs)NR + (t− r)‖s‖2.

As NR is compact, h is bounded above by a constant depending only on R. For any 
δ ∈ (0, 1) there is an estimate (cf. [17, Theorem 1.5.1.10])

‖s‖2
NR

≤ (1 + δ−1)‖s‖2
WR

+ δ‖∇s‖2
WR

Choosing δ to be sufficiently small we obtain an estimate of the form

‖Dts‖2 ≥ 1
2‖∇s‖2 + (t− tλ,R)‖s‖2

for some constant tλ,R. !

5.4. The ‘limit of APS index’ formula

By Theorem 5.4 we can take the limit as R → ∞ of (33):

index(D) = lim
R→∞

indexAPS,R(D , v) =
∑

β

indexAPS,β(D , v). (39)

For the second equality we have used (32). This is the Ma-Zhang-type ‘limit of APS index’ 
formula for index(D); it expresses the index as a sum of contributions indexAPS,β(D , v)
labelled by the components of the vanishing locus Z. Z has infinitely many components, 
but as a consequence of Theorem 5.4, the sum is locally finite, in the sense that for any 
fixed λ ∈ Irr(T ), indexAPS,β(D , v)λ = 0 for all but finitely many λ.

Remark 5.5. For a non-compact prequantized Hamiltonian G-space with proper moment 
map, the analogue of index(D) is not defined in general. In their proof of the Vergne 
conjecture, Ma-Zhang [35,37] showed that indexAPS(D , v), defined using a deformation 
and limits R, t → ∞ similar to above, is well-defined. The resulting ‘quantization’ of M
satisfies the [Q, R] = 0 Theorem and behaves functorially under restriction to subgroups.
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6. The Paradan-type index formula

In this section we explain how to express the ‘limit of APS index’ contributions 
indexAPS,β(D , v) as indices of transversally elliptic symbols, resulting in a formula sim-
ilar to that of Paradan [44] (see also [48]) in the compact case. We will be somewhat 
brief as our strategy follows along similar lines to Ma-Zhang [37, Section 1.4], [36]. Al-
though the situation is similar to [37], we cannot quite apply their results immediately: 
for example, the operator we consider has an additional zeroth order term (containing 
θ), requiring small modifications. Throughout this section β will be fixed, and we set 
U = Uβ , N = Nβ to simplify the notation.

6.1. A Braverman-type operator

Following the strategy of Ma-Zhang, the first step is to study a family of operators 
DM

t , t > 0 on an open manifold M ⊃ U of Braverman-type (cf. [12]), which extend 
Dt on U and such that indexAPS,β(D , v) = index(DM

t ) for all t > 0. The point is that 
we end up with the ordinary index (rather than a limit of indices) of a Dirac-type 
operator on M , and this is a little closer to the usual setting for transversally elliptic 
symbols.

Recall that U = Uβ ⊂ Y is a compact manifold with boundary ∂U = N . Let M be 
a relatively compact, collaring open neighborhood of U in Y, such that M ∩ Zγ = ∅ for 
γ *= β. There is a T -equivariant diffeomorphism

M + U
⋃

N

N × [0,∞)

such that the outward normal vector −ν = ∂r, r ∈ [0, ∞). By pullback from Y, we may 
consider E and S as T -equivariant vector bundles over M , and v, f , θ as smooth sections 
of the appropriate bundles over M .

Define a new metric gM on M by patching together the given metric on U∪NN×[0, 1)
(viewed as an open subset of Y) with a cylinder metric of the form dr2+gN on N×(0, ∞), 
using a partition of unity. Thus M becomes a complete manifold with cylindrical end 
N × (1, ∞), where the metric takes the form

gM |N×(1,∞) = dr2 + gN .

Similarly we define Hermitian metrics and compatible connections on E, S by patching 
together the given metrics and connections on U ∪N N × [0, 1) with metrics and connec-
tions on N × (0, ∞) that are independent of r. In this way we obtain a new (essentially 
self-adjoint) Dirac operator DM acting on sections of E over M , which extends the orig-
inal D on U ; note that this operator differs from the Dirac operator on Y, because we 
have modified the metric and connections on the collar neighborhood N × [0, ∞).
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Choose a smooth monotone function h : [0, ∞) → [1, ∞) such that h(r) = er for r ≥ 1
and h(r) = 1 for r ∈ [0, 1/2). View h as a function on N× [0, ∞) and extend it identically 
by 1 to M . Define

DM
t = DM

θ,t − ithc(vM ), DM
θ,t = DM + (1 + t)hfθ.

On U this agrees with the operator Dt.

Remark 6.1. Essentially we have attached a cylindrical end to U , and multiplied the 
zeroth order terms in Dt by the function h which blows up at infinity in M . It is not 
particularly important at this stage that h blows up exponentially, but this will be 
convenient in the next subsection.

Proposition 6.2. For t ≥ 1, the operator DM
t is T -Fredholm. For each λ ∈ Irr(T ), the 

family of bounded transforms t 4→ b(DM
t )λ is norm continuous.

Remark 6.3. The result holds for any t > 0, although we will not need this.

Proof. We go through the argument somewhat rapidly, as it is similar to (but easier 
than) the proofs of Propositions 4.7, 4.11. Using a Bochner formula for (DM

t )2 one finds

(DM
t )2 = (DM )2+t2h2|vM |2+(1+t)2h2f2θ2+(1+t)hb1+(1+t)c(dh)b2+2ithvjLE

ξj (40)

where b1, b2 are bundle endomorphisms. One verifies that b1, b2 are bounded (uniformly 
in t) using a combination of the facts that: (1) both f , df are bounded on M , (2) on the 
cylindrical end ξjM is tangent to N and is independent of r, (3) with respect to the metric 
gY on Y, the length of the vector ∂r goes to zero at ∂M ; consequently in an orthonormal 
frame (for M) adapted to the cylindrical end, the ∂r-component ∂rvj of the gradient of 
vj goes to zero at ∂M .

On the λ-isotypical component the Lie derivative 2vjLE
ξj is bounded by a constant cλ. 

Also θ2 ≥ ϑ2, where ϑ2(m) is the smallest eigenvalue of θ2(m). Define

V = t2h2|vM |2 + (1 + t)2h2f2ϑ2 − tcλh− (1 + t)h|b1|− (1 + t)|dh| · |b2|,

so (DM
t )2λ ≥ (D2 + V )λ. A small rearrangement (using also t ≥ 1) shows

V ≥ th2(t|vM |2 + tf2ϑ2 − c′λh
−2(h + |h′|)

)
(41)

for some constant c′λ.
By assumption |vM |2 +f2ϑ2 > 0 on N × [0, ∞) ⊂ M , and since the latter corresponds 

to a relatively compact subset of Y, |vM |2 + f2ϑ2 is bounded below by some constant 
ε > 0 on N × [0, ∞). There is an s0 > 0 such that s > s0 implies e−2s(2es) < ε

2(c′λ)−1. 
Let K = U ∪N N × [0, s0], a compact subset of M . Then V |K is proper and bounded 
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below. On M \ K = N × (s0, ∞), we have h = er where r ∈ (s0, ∞), and we obtain the 
simpler bound

V |M\K ≥ εt(t− 1
2)e2r. (42)

Since we assumed t ≥ 1, this shows V is also proper and bounded below on the closure 
of M \ K in M , and completes the proof that DM

t is T -Fredholm.
For the norm-continuity, as in Proposition 4.11 it suffices to prove an inequality of 

the form

(h2|vM |2 + h2f2θ2)λ ≤ C((DM
t )2 + C ′)λ

for some C, C ′ > 0 (which may depend on t). The function |vM |2 + f2|θ|2 is bounded on 
M by some constant c. Thus it suffices to find C, C ′ such that

ch2 ≤ C(V + C ′). (43)

This is easy to ensure on the compact set K where h is bounded by taking C, C ′ ; 0. 
On the other hand on M \ K, h = er and we may use (42), thus (43) is implied by

ce2r ≤ C
(
εt(t− 1

2)e2r + C ′)

which holds when C ′ ≥ 0 and C > 2cε−1. !

Applying the splitting theorem to the partition M = U ∪N

(
N × [0, ∞)

)
and using 

that the restriction of DM
t to U agrees with Dt, we have

index(DM
t ) = index(D+

t ! U,B<0(A+
t )) + index(DM,+

t ! N × [0,∞), B≤0(−A+
t )).

Proposition 5.2 showed that for each λ ∈ Irr(T ), (At)λ is invertible for t ; 0. Thus 
taking a limit as t → ∞, and using the fact that the left hand side is independent of 
t > 0, we obtain

index(DM
t ) = indexAPS,β(D , v) + lim

t→∞
index(DM,+

t ! N × [0,∞), B≤0(−A+
t )).

Proposition 6.4. limt→∞ index(DM,+
t ! N × [0, ∞), B≤0(−A+

t )) = 0.

Proof. The proof is analogous (but much easier) than Theorem 5.4; as in that case, we 
prove that there is a constant tλ such that for t > tλ the inequality

‖DN×[0,∞)
t s‖2 ≥ 1

2‖∇s‖2 + (t− tλ)‖s‖2

holds for all smooth compactly supported sections s ∈ C∞
c (N × [0, ∞), E)λ satisfying 

(s, Ats)N ≥ 0. Using Green’s formula, this involves finding lower bounds for a term from 
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the interior of N × [0, ∞) and a term from the boundary. The term from the interior 
N×(0, ∞) is handled using (41), noting that for t sufficiently large, the summands which 
are quadratic in t dominate, since |vM |2 + θ2 > 0 on N × [0, ∞). The term from the 
boundary is handled as in Theorem 5.4. !

Corollary 6.5. For all t ≥ 1 index(DM
t ) = indexAPS,β(D , v).

6.2. Deformation to a transversally elliptic operator

The next step is to describe a transversally elliptic operator on a compact manifold 
containing M with the same index as DM

t . We follow a strategy of Braverman [12, Section 
14]. The analytic details of this strategy were elaborated by Ma-Zhang [36].

Recall M = U ∪N N × [0, ∞), and r denoted the second projection N × [0, ∞) →
[0, ∞). The metrics and connections take a product form on the cylindrical end CylN =
N × (1, ∞). Introduce the new coordinate w = r−1 on N × (1

2 , ∞). In terms of w the 
cylindrical end of M is CylN = N × (0, 1), with w → 0 being at infinity in M , and

gM |CylN = dr2 + gN = w−4dw2 + gN , (44)

where gN is a Riemannian metric on N .
Let DM denote the double of M , a compact T -manifold constructed by gluing a 

second copy M ′ of M with reversed orientation along the cylindrical ends:

DM = M ∪CylN M ′.

The gluing identifies N × {w} ⊂ M with N × {1 − w} ⊂ M ′. The construction of DM

has a Z2 symmetry about the hypersurface w = 1
2 ; in particular it follows that the 

coordinate function w extends beyond M , and identifies a neighborhood of CylN in DM

with N × (−1, 2). Choose a T -invariant Riemannian metric gDM on DM that has a 
product form on CylN :

gDM |CylN = dw2 + gN = r−4dr2 + gN . (45)

Comparing (44), (45), the Riemannian volume elements are related by a Jacobian factor 
w−2 = r2 on CylN .

Considering the zeroth order term in DM
1 , we are led to consider the odd, self-adjoint 

bundle map:

ψ = 2fθ⊗̂1 − i⊗̂c(vM ). (46)

In terms of ψ, DM
1 = DM + hψ. We will write ψ+ (resp. ψ− = (ψ+)∗) when we wish to 

emphasize the component of ψ mapping E+ to E− (resp. E− to E+).
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Choose a vector bundle F on M such that V+ := E+⊕F is trivial, and let V− = E−⊕F , 
V = V+ ⊕ V−. The bundle endomorphism ψ of E extends to the bundle endomorphism 
ψ ⊕ idF of V. In order to simplify notation, when there is little risk of confusion we will 
denote this extended bundle endomorphism by ψ.

On CylN , ψ is invertible, hence ψ+ : V+ → V− restricts to an isomorphism over CylN . 
In particular the restriction of V− to CylN is trivial as well. Using the trivializations on 
CylN , we extend V and ψ trivially from M to DM . To keep the notation simple, we 
will continue to denote these extensions by V, ψ respectively. Thus V± ! M ′ have fixed 
trivializations, in terms of which ψ± ! M ′ become the identity map.

The operator DM on M acting on sections of E± extends to the operator DM ⊕ 0F
acting on sections of V± = E± ⊕ F , where 0F : F → F denotes the zero operator. In 
order to simplify notation we will denote this extended operator by DM . Consider the 
function ρ on M given by

ρ := h−1, ρ|CylN = h−1 = e−r = e−1/w.

It follows from the formula for ρ|CylN that ρ can be extended smoothly by 0 to DM . We 
continue to denote this extension by ρ.

Similar to Braverman [12, Section 14], we define a differential operator on DM that 
we will denote

ρDM,+,

as follows. Given s ∈ C∞(DM, V+), we first restrict to M ⊂ DM to obtain a section 
s|M ∈ C∞(M, V+), to which we can apply the operator DM,+ followed by multiplication 
by ρ|M . The result is a smooth section of V−|M , which we then extend by 0 to a section 
of V−.

Lemma 6.6. ρDM,+ defined above is a first order differential operator on DM with support 
contained in the closure of M in DM .

Proof. To prove the lemma it suffices to show that the differential operator DM,+ ! CylN
(recall CylN = N × (0, 1) in terms of the coordinate w) can be smoothly extended to a 
differential operator over N × (−1, 1) ⊂ DM . Since ρ vanishes identically on DM \M , 
the result follows.

It is convenient to use the ‘canonical’ adapted operator AN for DM along the hyper-
surface N × {1

2}, see equation (31). Since N × {1
2} is contained in the cylindrical end, 

on CylN we have an equality

DM = c(ν)∇E
ν + c(ν)AN

where ν = −∂r is the inward unit normal vector for the metric g on M used to define DM . 
Since AN is a differential operator on N , we may regard it as a differential operator on 
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N×(−1, 1) which is independent of w ∈ (−1, 1). Recall that the metrics and connections 
take a product form on CylN , so extend to N × (−1, 1). Since −∂r = w2∂w extends 
smoothly past w = 0, there is no difficulty in extending the operator ∇E

ν to N × (−1, 1). 
The endomorphism c(ν) satisfies c(ν)2 = −1, and is independent of w on CylN , so also 
extends. !

As ρDM,+ is a first-order differential operator, we may consider it as an unbounded 
Hilbert space operator with domain H1(DM, V+) ⊂ L2(DM, V+). Fix a T -equivariant 
invertible pseudo-differential operator R acting on sections of V+ over DM with symbol

σR(ξ) = 〈ξ〉−1 := (1 + |ξ|2DM)−1/2.

Similar to Braverman [12, Section 14] we define a continuous family t ∈ [0, 1] of zeroth 
order pseudodifferential operators on DM

Pt = (1 − t)ψ+ + tψ+R + ρDM,+R. (47)

Then Pt extends to a bounded linear operator L2(DM, V+) → L2(DM, V−).
Recall that a pseudo-differential operator P on a compact G-manifold X is called 

transversally elliptic if the support of the symbol σ(P ) (the subset of T ∗X where σ(P )
fails to be invertible) intersected with the conormal space to the orbits

T ∗
GX = {ξ ∈ T ∗X|〈ξ,αX〉 = 0, ∀α ∈ g}

is compact. References for transversally elliptic operators include [4,46].

Proposition 6.7. For t ∈ [0, 1) the operator Pt is transversally elliptic.

Proof. The symbol of Pt is a bundle map V+ → V− given by4

σPt(ξ) = (1 − t)ψ+ +
(
iρ⊗̂〈ξ〉−1c(ξ)

)
⊕ 0F . (48)

Outside M this equals (1 − t)ψ+, which is invertible for t *= 1. On M , ρ = h−1 and 
ψ = (2fθ⊗̂1 − i⊗̂c(vM )) ⊕ idF , thus

σPt(ξ)|M =
(
2(1 − t)fθ⊗̂1 + iρ⊗̂c

(
〈ξ〉−1ξ − (1 − t)hvM

))
⊕ idF .

The expression in the large brackets is a product symbol (see for example [9, p.56] for a 
discussion of products), and the support of a product symbol is the intersection of the 
supports of the two factors. Since vM is tangent to the orbit directions, the intersection 
of the support of

4 Here we revert to the more common convention for symbols, such that σDM (ξ) = ic(ξ).
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c
(
〈ξ〉−1ξ − (1 − t)hvM

)

with T ∗
TM (the conormal directions to the orbits) is the vanishing locus of vM (viewed 

as a subset of the zero section of T ∗
TM), and the latter intersects the support of (1 − t)fθ

in a closed subset of the compact set U . !

We remind the reader of some properties of the operator DM
1 on the cylindrical end, 

to be used in the proof of the next lemma. Recall from the proof of Proposition 6.2 that, 
on the λ-isotypical subspace, one has an inequality

(DM
1 )2λ ≥ ((DM )2 + V )λ (49)

where V is a potential function (depending on λ). Moreover there exists an r0 > 1, and 
constant V0 > 0 such that

V |N×[r0,∞) ≥ V0e
2r. (50)

Let

W = N × [r0,∞),

a compact manifold with boundary, and let

DW
1 = DM

1 |W

be the restriction of DM
1 to W . Hence

DW
1 = DW + erψ, DW = c(∂r)∂r + DN , (51)

where ψ is the self-adjoint bundle endomorphism introduced in (59), DW is the restriction 
of DM to W , and DN = −c(∂r)AN is a Dirac operator on N not depending on r. Recall 
M is a compact subset of Y and M ∩ Uγ = ∅ for γ *= β, so that ψ is invertible on the 
compact set M \ int(U) ⊃ W . It follows from this and ψ = ψ∗ that there are constants 
0 < cψ ≤ Cψ such that

c2ψ|v|2 ≤ 〈ψ2v, v〉 ≤ C2
ψ|v|2 (52)

for all v ∈ Vm and m ∈ W .
The square of DW

1 is given by

(DW
1 )2 = (DW )2 + [DW , erψ] + e2rψ2. (53)

The operator [DW , erψ] commutes with T -invariant functions, and moreover (49), (50)
imply
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([DW , erψ] + e2rψ2)λ ≥ V0e
2r. (54)

The next lemma is [36, Lemma 2.5] due to Ma and Zhang. It shows that solutions 
of DM

1 s = 0 decay very rapidly, as well as their first derivatives, as r → ∞ along the 
cylindrical end. For the convenience of the reader we have included a proof here, in the 
notation that we have established, closely following the argument in [36].

Lemma 6.8 ([36], Lemma 2.5). Let W = N × (r0, ∞) ⊂ M be as in the paragraph above. 
Let s be a smooth section of E over W and suppose e−rs ∈ L2(W, E)λ and DW

1 s = 0. 
Then

emrs, emr∂rs, emrDNs ∈ L2(W, E)λ

for all m ∈ R.

Remark 6.9. Once the square-integrability of emrs is in hand, the square-integrability 
of emr∂rs, emrDNs is obtained by ‘bootstrapping’ using DW s = −erψs, and indeed one 
could obtain the same result for higher derivatives of s as well in this way. Heuristically 
one might expect the behavior in Lemma 6.8 because if c *= 0 is a constant then the 
ODE a′(r) = cera(r) has solutions of the form a(r) = exp(cer); if c > 0 then emra(n)(r)
is not square-integrable on [0, ∞) for any m, whereas if c < 0 then emra(n)(r) is square-
integrable on [0, ∞) for every m.

Proof. Let w = w(r) ∈ C∞
c (R) be a non-negative function, which we view as a function 

on W . Using DW
1 s = 0 and since [DW , erψ] commutes with w and satisfies (54), we have

0 = ((DW
1 )2s, w2s) =

(
(DW )2s, w2s

)
+

(
([DW , erψ] + e2rψ2)ws,ws

)

≥ Re
(
(DW )2s, w2s

)
+ V0(e2rws,ws). (55)

We apply Green’s formula to the first term, and also use DWs = −erψs (twice), leading 
to

Re
(
(DW )2s, w2s

)
= Re(DW s, w2DW s + [DW , w2]s) + Bw

= Re(erψs, w2erψs− 2ww′c(∂r)s) + Bw

≥ c2ψ‖erws‖2 − 2Cψ‖er/2ws‖ · ‖er/2w′s‖ + Bw

where Bw is a boundary term, involving an integral over ∂W = N × {r0}; and in the 
last line we used ψ∗ψ ≥ c2ψ, the Cauchy-Schwartz inequality, |c(∂r)s| = |s| and |ψ| ≤ Cψ. 
Substituting this into (55), we have

0 ≥ (c2ψ + V0)‖erws‖2 − 2Cψ‖er/2ws‖ · ‖er/2w′s‖ + Bw. (56)
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Let χ : R → [0, 1] be a bump function with support contained in (r0 − 1, r0 + 1), and 
set χk(r) = χ(k−1(r− r0) + r0). As k → ∞, χk → 1 pointwise, and is centered about r0. 
We will view χk as functions on W . Let w(r) = emrχk(r). Then equation (56) becomes

0 ≥ (c2ψ +V0)‖e(m+1)rχks‖2 − 2Cψ‖e(m+1/2)rχks‖ · ‖e(m+1/2)r(mχk +χ′
k)s‖+Bw. (57)

The boundary term Bw does not depend on k, since χk equals 1 on a neighborhood of r0
for all k. If |e(m+1/2)rs| is square-integrable, then the middle term has a limit as k → ∞, 
so if this is the case, then the inequality (57) implies

lim
k→∞

‖e(m+1)rχks‖

exists, hence |e(m+1)rs| is square-integrable as well. By induction, |emrs| is square-
integrable for all m ∈ R.

Turning to the first derivatives, first note that since c(∂r)∂r, DN graded commute, 
Green’s formula gives an identity

‖DWα‖2 = ‖∂rα‖2 + ‖DNα‖2 + B′
α, (58)

for α smooth and compactly supported, where B′
α is a boundary term. Let w = w(r) ∈

C∞
c (R), and consider the equation:

−werψs = wDW s.

Taking the L2 norm-squared of both sides, we find

C2
ψ‖wers‖2 ≥ ‖wDW s‖2

≥ 1
2‖DW (ws)‖2 − ‖[DW , w]s‖2

= 1
2‖∂r(ws)‖

2 + 1
2‖DN (ws)‖2 + B′

ws − ‖[DW , w]s‖2

≥ 1
4‖w∂rs‖

2 + 1
2‖wDNs‖2 − 1

2‖w
′s‖2 + B′

ws − ‖[DW , w]s‖2,

where we used ‖a1 + a2‖2 ≥ 1
2‖a1‖2 − ‖a2‖2 in the second and fourth lines, and (58) in 

the third line. If we take w = χkemr as before, then the first part of the proof implies all 
terms in this expression other than those containing ∂rs, DNs are uniformly bounded in 
k as k → ∞ (and B′

ws does not depend on k as before). Consequently

‖emrDNs‖ = lim
k→∞

‖χke
mrDNs‖, ‖emr∂rs‖ = lim

k→∞
‖χke

mr∂rs‖

are both finite. !

Proposition 6.10 (cf. [12] Section 14.6, [36] Section 3). Sections in the kernel of P1 or 
P ∗

1 vanish identically outside M . For each λ ∈ Irr(T ), there are isomorphisms
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ker(P1)λ + ker(DM,+
1 )λ, coker(P1)λ = ker(P ∗

1 )λ + ker(DM,−
1 )λ.

Therefore P1 is T -Fredholm and

index(P1) = index(DM
1 ) ∈ R−∞(T ).

Proof. For t = 1

P1 = (ψ+ + ρDM,+)R

hence R induces an isomorphism between ker(P1) and ker(ψ+ + ρDM,+), where ψ+ +
ρDM,+ has domain H1(DM, V+). Let s ∈ ker(ψ+ +ρDM,+)λ, then s must vanish outside 
M , since outside M , ρ = 0 while ψ+ is invertible. On M we have

ψ+ + ρDM,+ = ρDM,+
1 ⊕ idF , (59)

hence the F -component of s vanishes and

ρDM,+
1 s = 0.

Since ρ > 0 on M , this implies

DM,+
1 s = 0,

that is, s lies in the kernel of the differential operator DM,+
1 . By elliptic regularity s is 

smooth. Moreover s is gDM -square integrable, hence by (45), r−1s|CylN is gM |CylN -square 
integrable. Applying Lemma 6.8, s is gM -square integrable, hence lies in dom(DM,+

1 ). 
This shows that there is an inclusion ker(ψ+ + ρDM,+)λ ↪→ ker(DM,+

1 )λ.
Conversely suppose s ∈ ker(DM,+

1 )λ. Let s̃ be the extension of s by 0 to DM . 
Lemma 6.8 shows that s̃ lies in the Sobolev space H1(DM, V+) = dom(ψ+ + ρDM,+), 
and hence in ker(ψ+ +ρDM,+) by (59). Combining this with the previous paragraph, we 
have identified ker(ψ+ + ρDM,+)λ with ker(DM,+

1 )λ.
The adjoint is

P ∗
1 = R(ψ− + DM,− ◦ ρ),

where the operator DM,− ◦ ρ is the adjoint of ρDM,+. Let s ∈ ker(P ∗
1 )λ. Since R is 

invertible, we must have

(ψ− + DM,− ◦ ρ)s = 0 (60)

in the sense of distributions. Similar to above s must vanish outside M , its F -component 
vanishes, and
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DM,−
1 (ρs) = 0.

By elliptic regularity, ρs|M is smooth. Since s is gDM -square-integrable, ρs|M is g-square 
integrable. Thus ρs|M ∈ ker(DM,−

1 )λ.
Conversely suppose s̃ ∈ ker(DM,−

1 )λ. Extending hs̃ by 0, we obtain a section s over 
DM . By Lemma 6.8, s ∈ H1(DM, V−). Since ρ|M = h−1,

DM,−
1 (ρhs̃) = DM,−

1 s̃ = 0

and this implies (60) holds in the sense of distributions, hence s ∈ ker(P ∗
1 )λ. This proves 

the map s 4→ ρs|M identifies ker(P ∗
1 )λ with ker(DM,−

1 )λ. !

Corollary 6.11. The T -index index(Pt) ∈ R−∞(T ) is independent of t ∈ [0, 1].

Proof. For each λ ∈ Λ∗, the restriction of Pt to the λ-isotypical component is a norm-
continuous family of Fredholm operators, hence the index is constant. !

6.3. Abelian localization and the Paradan-type formula

For a compact G-manifold X, the symbol σ(P ) of a transversally elliptic operator 
P : C∞(X, E) → C∞(X, F ) defines a class in K0

G(T ∗
GX); this class is given in terms of 

the ‘difference bundle construction’ cf. [3], and only depends on the bundles E, F and 
the behavior of σ(P ) away from the 0-section. If X is compact, then the index map

index : K0
G(T ∗

GX) → R−∞(G) (61)

is defined by realizing elements of K0
G(T ∗

GX) as symbols of transversally elliptic operators 
on X via the difference bundle construction, followed by taking the analytic index, see 
[4,46]. If X is non-compact, then the index map (61) is defined by first embedding X
into a compact G-manifold X ′, and choosing suitable representatives of K-theory classes 
which can be extended by the identity outside X. We did exactly this for X = M and 
the bundle morphism ψ′ (and hence also the symbol σP0 |M in equation (48)) near the 
beginning of Section 6.2, with the compact manifold X ′ being the double DM .

Let Ů = Ůβ denote the interior of U = Uβ . The restriction of the symbol of P0 to Ů
is a symbol σ0 given by

σ0(ξ) =
(
2fθ⊗̂1 + i⊗̂c(〈ξ〉−1ξ − vY)

)
⊕ idF ,

where the right hand side is viewed as a bundle map E+ ⊕ F → E− ⊕ F . This symbol 
defines a class in K0

T (T ∗
T Ů), and by the above discussion, its index is index(P0). Since 

the index depends only on the class in K0
T (T ∗

T Ů), we may drop the idF component (this 
represents the trivial element in K-theory), and we may use a (straight-line) homotopy 
to eliminate the factors 2f , 〈ξ〉. This leads to the following.
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Proposition 6.12. The symbol

σ̃β,θ(ξ) = θ⊗̂1 + i⊗̂c(ξ − vY)

on Ů = Ůβ is T -transversally elliptic and

index(σ̃β,θ) = index(P0) = indexAPS,β(D , v).

For β *= 0, let νβ = ν(Ů , ̊Uβ) be the normal bundle to the fixed-point set Ůβ . It 
inherits a metric by identifying νβ with the Riemannian orthogonal complement of T Ůβ. 
Let Tβ ⊂ T denote the subtorus obtained by taking the closure of expT (Rβ). Then Tβ

fixes Ůβ , so acts fibre-wise on the normal bundle νβ. We may choose a complex structure 
on νβ such that the complex Tβ-weights are β-polarized, i.e. for each complex weight α of 
the Tβ action on νβ one has 〈α, β〉 > 0. This condition determines the complex structure 
on νβ up to homotopy. Let ∧νβ (resp. Sym(νβ)) denote the complex exterior algebra 
(resp. complex symmetric algebra) bundle. Let νβ denote νβ equipped with the opposite 
complex structure; one has likewise ∧νβ and Sym(νβ).

The exterior algebra ∧νβ is a spinor module for the Euclidean vector bundle νβ → Ůβ . 
One has a short exact sequence

0 → T Ůβ → T Ů ! Ůβ → νβ → 0.

By the 2-out-of-3 property for spin-c structures, the spinor modules S for TŮ and ∧νβ
for νβ determine a Z2-graded spinor module Sβ for T Ůβ such that

Sβ ⊗ ∧νβ + S ! Ůβ . (62)

For the corresponding determinant line bundles, equation (62) implies

det(Sβ) = det(S) ⊗ det(νβ). (63)

There is a symbol σβ,θ on ŮTβ

β defined in a similar manner to σ̃β,θ:

σβ,θ(ξ) = θ⊗̂1 + i⊗̂cβ(ξ − vY), (64)

where cβ denotes Clifford multiplication for the spinor module Sβ, and the right hand 
side of (64) is viewed as a bundle map (E⊗̂Sβ)+ → (E⊗̂Sβ)−. The symbol σβ,θ defines 
a class in K0

T (T ∗
T Ů

β), so has an index.
The next proposition follows from an abelian localization theorem for transversally 

elliptic symbols due to Paradan [44, Theorem 5.8, Proposition 6.4] (see also [48]), building 
on results of Atiyah [4] and Berline-Vergne.

Proposition 6.13. index(σ̃β,θ) = index(σβ,θ ⊗ Sym(νβ)).
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Here index(σ ⊗ Sym(ν)) is defined as the sum over k ≥ 0 of index(σ ⊗ Symk(ν)), 
the index of the transversally elliptic symbol σ twisted by the finite dimensional vector 
bundle Symk(ν) (the kth symmetric power). As a corollary, we obtain a Paradan-type 
([44,48]) ‘norm-square localization’ formula for index(D).

Theorem 6.14. We have the following equality in R−∞(T )

index(D) =
∑

β

indexAPS,β(D , v) =
∑

β

index(σβ,θ ⊗ Sym(νβ)). (65)

The sum is over β ∈ t labelling components Zβ of the vanishing locus Z; in other words, 
the sum is over β ∈ t such that Zβ = Yβ ∩φ−1(β) *= ∅. This is an infinite discrete subset 
of t.

6.4. Remarks on the [Q, R] = 0 theorem for loop group spaces

In this section we briefly comment on the relation between Theorem 6.14 and the 
[Q, R] = 0 theorem for Hamiltonian loop group spaces. The relationship between 
Paradan-type formulas (as in (65)) and [Q, R] = 0 theorems goes back to the work 
of Paradan [44] (see also Paradan and Vergne [48]).

Throughout this section we assume G is simple and simply connected, and that the 
inner product on g is the basic inner product, the unique invariant inner product normal-
ized such that the squared lengths of the short co-roots is 2. The possible U(1) central 
extensions of LG are classified by an integer known as the level. Let L̂G denote the 
level 1 central extension, sometimes called the basic central extension. By restriction we 
obtain a central extension NG(T ) " Λ̂. It satisfies (12) with the homomorphism κ being 
the musical isomorphism induced by the basic inner product.

Let ΦM : M → Lg∗ be a proper Hamiltonian LG-space. A vector bundle E → M is 
said to be at level k ∈ Z if E is L̂G-equivariant and the central circle acts with weight k. 
A level k > 0 prequantum line bundle L → M is a line bundle at level k with invariant 
connection ∇L, where the first Chern form c1(∇L) = kωM, and ∇L satisfies Kostant’s 
condition (cf. [2]):

LL
ξ −∇L

ξM = 2πik〈ΦM, ξ〉, ξ ∈ Lg ⊕ 0 ⊂ L̂g.

In joint work with E. Meinrenken [33] we constructed a canonical spinor module S0 for 
Cliff(p∗TM), where p : M → M = M/ΩG is the quotient map; in [33] S0 was referred 
to as a ‘twisted spin-c structure’ for M . S0 is at level h∨, the dual Coxeter number of 
G. Let S = S0 ⊗ L, a spinor module for p∗TM at level k + h∨.

Recall that the ‘global transversal’ Y embeds NG(T ) " Λ-equivariantly into M (Sec-
tion 3.2), with Tp inducing an isomorphism TY + p∗TM |Y . Hence by restriction to Y we 
obtain an NG(T ) " Λ̂-equivariant spinor module for Y, that we also denote by S. Choos-
ing a compatible NG(T ) " Λ̂-invariant connection, we obtain a spin-c Dirac operator DS

acting on sections of S.
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Let n− ⊂ gC denote the sum of the negative root spaces of g, and let Bott(n−) =
[(∧n−, θ)] ∈ K0

T (g/t) denote the Bott-Thom element for g/t; here θ is an odd self-adjoint 
endomorphism of (g/t) ×∧n−, invertible away from the origin (cf. [34, Section 4.5]). We 
may choose θ so that the pullback via φg/t of the pair (∧n−, θ) satisfies the conditions 
of Section 3.3. Let D denote the Dirac operator acting on sections of ∧n−⊗̂S obtained 
by coupling DS to the Z2-graded bundle E = Y × ∧n−, and D the operator described 
in Theorem 3.2. According to the latter theorem, D is T -Fredholm.

With this setup, we may state a version of the [Q, R] = 0 Theorem for proper Hamil-
tonian LG-spaces. For simplicity suppose G acts freely on Φ−1

M (0), so that the reduced 
space Mred = Φ−1

M (0)/G is a smooth, finite-dimensional compact symplectic manifold 
with prequantum line bundle Lred = L|Φ−1

M (0)/G. Choose a compatible almost complex 
structure on Mred and let /∂ denote the Dolbeault-Dirac operator twisted by Lred acting 
on ∧T ∗

0,1Mred ⊗ Lred.

Theorem 6.15. Let ΦM : M → Lg∗ be a proper Hamiltonian LG-space, with level k > 0
prequantum line bundle L. Assume G acts freely on Φ−1

M (0). Let D , /∂ be the operators 
described above. Then index(D)0 = index(/∂).

Remark 6.16. There is a similar statement when 0 is a regular value of ΦM, in which case 
Mred is only an orbifold in general. There is also a statement when 0 is not necessarily 
a regular value of ΦM, involving a shift (partial) desingularization as in [41].

Let us reformulate Theorem 6.15 to highlight its similarity with other instances of the 
[Q, R] = 0 phenomenon. We define the ‘quantization’ of the finite-dimensional symplectic 
manifold Mred to be the ‘Riemann-Roch number’:

Q(Mred, Lred) = index(/∂) ∈ Z. (66)

Let Rk(G) denote the level k fusion ring (or Verlinde algebra), a finite rank Z-module 
(and ring) generated by the irreducible level k positive energy representations of L̂G (cf. 
[50], [40, Appendix D]). A positive energy representation is, in particular, a representation 
of the semi-direct product S1

rot"L̂G (S1
rot acts on LG by loop rotation, and this action lifts 

to an action on L̂G). Elements V ∈ Rk(G) have formal characters chV ∈ R−∞(S1
rot×T ), 

given by the Weyl-Kac character formula [50,23].
In [34, Section 4.5] we proved that index(D) ∈ R−∞(T ) is anti-symmetric for the 

ρ-shifted level (k + h∨) action of the affine Weyl group on Λ∗, given by

w •k+h∨ λ = w(λ + ρ) − ρ + (k + h∨)κ(η), w = (w, η) ∈ W " Λ = Waff ,

where recall κ : Λ → Λ∗ is the map induced by the musical isomorphism t → t∗ for the 
basic inner product.

Recall that by the Weyl character formula, characters of G are in 1-1 correspondence 
with ρ-shifted W -anti-symmetric characters of T . Likewise by the Weyl-Kac character 
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formula, the above Waff-anti-symmetry implies that there is a unique element of the level 
k fusion ring Q(M, L) ∈ Rk(G) such that

(
∆ · chQ(M, L)

)∣∣∣
q=1

= index(D) ∈ R−∞(T ) (67)

where ∆ =
∏

α∈Raff,+
(1 − e−α) is the Weyl-Kac denominator, and we restrict to q =

1 ∈ S1
rot. Partly motivated by this, in [34, Section 4.6] (combined with the result in [34, 

Section 4.7]), we took (67) as the definition of the quantization Q(M, L) of (M, L); see 
there for details.

The minimal irreducible positive energy representation of L̂G at level k is the one 
labelled by the highest weight (k, 0) ∈ N × Λ∗, cf. [50]. It follows from the Weyl-Kac 
formula that the multiplicity of the minimal irreducible representation in V ∈ Rk(G) is 
equal to the multiplicity of the trivial representation in ∆ · chV |q=1. Thus Theorem 6.15
is equivalent to:

Corollary 6.17. Let (M, L) be as in Theorem 6.15. Then Q(Mred, Lred) equals the mul-
tiplicity of the minimal level k irreducible positive energy representation in Q(M, L).

Remark 6.18. A result of [29] proves that the definition of the quantization of (M, L)
given here (or [34]) is equivalent to the definition of E. Meinrenken [40] (the latter ap-
proach is via q-Hamiltonian spaces, twisted K-homology, and the Freed-Hopkins-Teleman 
theorem). Thus Theorem 6.15 implies the [Q, R] = 0 Theorem for that definition as well. 
The latter theorem had been proven much earlier in [2] using symplectic cutting tech-
niques and detailed analysis of the fixed-point expressions (in fact in [2], Atiyah-Segal-
Singer fixed-point expressions were used as a make-shift definition of the quantization 
of (M, L), see [40] for further explanation).

The complete proof of Theorem 6.15 is not presented here, as it would take us too far 
from the main topics of this article. The missing arguments are either already explained 
in the literature, or will be explained in [32] (see also [30]). We settle for brief remarks 
on the main steps (1)–(4):

(1) A local [Q, R] = 0 result.
The transversally elliptic symbol σ0,θ is defined on a small open neighborhood Ů0 of 
Φ−1

M (0) in Y (viewing Y as a submanifold of M). For this reason, it is not too difficult to 
relate its index to the index of /∂ on the reduced space using, for example, a local normal 
form near Φ−1

M (0). By the cross-section theorem for Hamiltonian loop group spaces [42, 
Theorem 4.8], one has the same local normal forms for Ů0 available as in the case of a 
compact Hamiltonian G-space, hence this part of the argument is similar to the argument 
for compact Hamiltonian G-spaces explained in [48, Theorem 8.3, Proposition 12.5] or 
[44, Section 6],5 and leads to:

5 These papers also handle the singular case, which carries over to our setting as well.
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Proposition 6.19. index(/∂) = index(σ0,θ)0.

In other words, index(/∂) equals the multiplicity of the trivial representation in 
index(σ0,θ), the contribution of β = 0 in Theorem 6.14.

(2) A vanishing result when X β ∩ φ−1(β) = ∅.

Proposition 6.20. index(σβ,θ ⊗ Sym(νβ)) vanishes unless X β ∩ φ−1(β) *= ∅.

Proof. The Bott element Bott(n−) is supported at 0 ∈ g/t, so its pullback to Y is 
supported on X = (φg/t)−1(0). Recall σβ,θ is a product symbol (see (64)) of the pullback 
θ of the Bott symbol (supported on X ) with the symbol icβ(ξ − vY) (supported on 
Yβ ∩ φ−1(β)). The support of a product symbol is the intersection of the supports, so 
σβ,θ is supported on X β ∩ φ−1(β). If the latter is empty then the support of σβ,θ is 
empty, and the index vanishes. !

As a small aside, recall that X + Φ−1
M (t) ⊂ M, and moreover ΦM|X = φ|X . As β ∈ t

we have X β ∩φ−1(β) = Mβ ∩Φ−1
M (β). It follows from this that (W -orbits) of non-trivial 

contributions in (65) correspond to the components of the critical set of ‖ΦM‖2, cf. [27,
11,31].

(3) Bounds on the support of index(σβ,θ ⊗ Sym(νβ)) for β *= 0.
Let β *= 0. Since Tβ acts trivially on (Uβ)β , and because the weights of the Tβ ac-
tion on Sym(νβ) are β-polarized, it follows (cf. [44,48] for similar discussions) that the 
multiplicity function for index(σβ,θ ⊗ Sym(νβ)) is supported in a half-space of the form 
{ξ ∈ t|〈ξ, β〉 ≥ dβ}, where dβ is a constant given by

dβ = inf
α∈wt(∧n−⊗Sβ)

〈α,β〉, (68)

the infimum being taken over the set of complex weights for the action of Tβ on ∧n−⊗Sβ . 
One proves the following:

Theorem 6.21. For each β ∈ W · B such that X β ∩ φ−1(β) *= ∅, the constant dβ > 0.

This will be proved in detail in [32] (see also [30]); it relies on a more detailed local 
description of the spinor module S0 (to get an expression for the constant dβ), and a 
slightly subtle inequality involving the data of the affine Lie algebra L̂g. This inequality 
is perhaps the most interesting aspect of Theorem 6.21; it plays the same role as the 
‘magical inequality’ in [47].

(4) Conclusion.
By Proposition 6.20 and Theorem 6.21, index(σβ,θ ⊗ Sym(νβ))0 = 0 unless β = 0. 
Theorem 6.14 then gives index(D)0 = index(σ0,θ)0. Theorem 6.15 now follows from 
Proposition 6.19.
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