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Abstract
LetG be a connected, linear, real reductive Lie groupwith compact centre. Let K < G
be maximal compact. For a tempered representation π of G, we realise the restriction
π |K as the K -equivariant index of a Dirac operator on a homogeneous space of the
formG/H , for a Cartan subgroup H < G. (The result in fact applies to every standard
representation.) Such a space can be identified with a coadjoint orbit of G, so that we
obtain an explicit version of Kirillov’s orbit method for π |K . In a companion paper,
we use this realisation of π |K to give a geometric expression for the multiplicities
of the K -types of π , in the spirit of the quantisation commutes with reduction prin-
ciple. This generalises work by Paradan for the discrete series to arbitrary tempered
representations.
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1 Introduction

LetG be a connected, linear, real reductive Lie group with compact centre, and let g be
its Lie algebra. Let K < G be a maximal compact subgroup. Harish-Chandra showed
that a unitary irreducible representation π of G is determined by the corresponding
actions by K and g on the K -finite vectors in the representation space of π . This
means that, in a sense, half the information about π is contained in the restriction π |K .
The explicit form of this information consists of the multiplicities of the irreducible
representations of K in π |K ; i.e. the multiplicities of the K -types of π .

In this paper, we consider tempered representations π , and realise π |K as the equiv-
ariant index of a Dirac operator on a homogeneous space ofG. This is motivated by the
desire to realiseπ |K using an index, or a notion of geometric quantisation, that satisfies
Guillemin and Sternberg’s quantisation commutes with reduction principle. That prin-
ciple relates multiplicities of representations to the geometry of moment maps: in this
case, maps with values in k∗ that represent conserved quantities in classical mechan-
ics. If a representation is realised in this way, properties of the relevant moment map
have consequences to the general behaviour of multiplicities; for example yielding
criteria for them to equal 0 or 1. On a deeper level, the quantisation commutes with
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reduction principle is a beautiful relation between geometry and representation theory,
inspired by physics. It turns out that the relevant version of this principle here is the
Spinc-version, which applies more generally than the symplectic version.

In this paper we focus on the construction of representations using index theory that
is natural in the context of geometric quantisation and the quantisation commutes with
reduction principle. We then apply that principle to obtain a geometric expression for
multiplicities of K -types in [18].

Paradan [37] did all of this for the discrete series. This paper is inspired by his work,
and extends it to general tempered representations.

1.1 Background andmotivation

Kirillov’s orbit method is the idea that there should be a correspondence between
(some) unitary irreducible representations π of a Lie group G, and (some) orbits O
of the coadjoint action by G on the dual g∗ of its Lie algebra. See [45] for an account
of the orbit method for reductive groups. On an intuitive level, the correspondence
between orbitsO and representations π is that π = Q(O), the geometric quantisation
of O. It was Bott’s idea to define geometric quantisation as the equivariant index of
a Dirac operator. This idea was shown to be very successful in the literature on the
quantisation commutes with reduction problem. But defining such an index rigorously
is a challenge if G and O are noncompact.

A rigorous construction is essential for many applications, however. The scope for
applications of any form of the orbit method depends on the properties of the explicit
construction π = Q(O) that is used. It is very useful if Q(O) is the index of an
elliptic differential operator, because this opens up the possibility to apply powerful
techniques from index theory to study π . For example, if the index used satisfies a
fixed point formula, then this can be used to compute the global character of π . See
[19] for an application of this to discrete series representations. If the index satisfies
the quantisation commutes with reduction principle, then this can be used to express
the decomposition into irreducibles of the restriction of π to closed subgroups of G
in terms of the geometry of O.

Atiyah–Schmid [3], Parthasarathy [41] and Schmid [42] realised discrete series rep-
resentations as L2-kernels of Dirac operators on homogeneous spaces of G. Schmid’s
result fits directly into the orbit method framework. However, since kernels of Dirac
operators are used, rather than indices, one cannot apply index theory results, such as
fixed point formulas and the quantisation commutes with reduction principle, to these
realisations to obtain information about the discrete series. It is a subtle but important
point here that although the realisations in [3,41,42] can be written as kernels minus
cokernels (with one of these being zero, so the formal difference is well-defined), it
is not obvious if the operators involved are Fredholm in the appropriate sense. That
precludes the application of index-theoretic methods to analyse these representations.

Paradan [37] realised restrictions of discrete series representations π to K as K -
equivariant indices of Dirac operators on coadjoint orbits O. While his realisation
only applies to the restriction of π to K , his approach has the important advantage that
the index he used satisfies the quantisation commutes with reduction principle. This
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principle, proved by Paradan in this setting, implies a geometric expression for the
multiplicities of the K -types of π , as indices of Dirac operators on compact orbifolds.
These orbifolds are reduced spaces for the action by K on O. If p : g∗ → k∗ is the
restriction map, then the reduced space at ξ ∈ k∗ is

Oξ = (p−1(Ad∗(K )ξ) ∩ O)/K .

For discrete series representations π , Blattner’s formula, proved by Hecht–Schmid
[9], is an explicit combinatorial expression for multiplicities of K -types. This was
in fact used by Paradan to obtain his realisation of π |K , and the resulting geometric
multiplicity formula. But this geometric multiplicity formula has the advantage that it
allows one to draw conclusions about the K -types of π from the geometry of the cor-
responding coadjoint orbit. For example, about the question when their multiplicities
equal 0 or 1.

In this paper, we generalise Paradan’s construction to arbitrary tempered represen-
tations. Tempered representations are those unitary irreducible representations whose
K -finite matrix coefficients are in L2+ε(G), for all ε > 0. The set Ĝ temp of these
representations occurs in the Plancherel decomposition

L2(G) =
∫ ⊕

Ĝtemp

π ⊗ π∗ dµ(π)

of L2(G) as a representation of G × G. Here µ is the Plancherel measure. For this
reason, tempered representations are central to harmonic analysis. Furthermore, they
are used in the Langlands classification of admissible irreducible representations.

For general tempered representations, a multiplicity formula for K -types is espe-
cially valuable, because no explicit multiplicity formula exists yet in this generality.
There are algorithms to compute these multiplicities, see the ATLAS software pack-
age1 developed by du Cloux, van Leeuwen, Vogan andmany others; see also [1]. But it
is a challenge to draw conclusions about the general behaviour of multiplicities of K -
types from these algorithms. The main difficulty is that they involve representations of
disconnected subgroups, which cannot be classified via Lie algebra techniques. Also,
already for the discrete series, cancellation of terms in Blattner’s formula can make it
nontrivial to evaluate it, and for example to see when multiplicities equal zero.

The geometric multiplicity formula we deduce from the main result of this paper
in [18] allows us to use the geometry of coadjoint orbits to study multiplicities of
K -types. In that paper, we find relations to multiplicity-free restrictions, and for exam-
ple show that admissible representations of SU(p, 1), SO0(p, 1) and SO0(2, 2) have
multiplicity-free restrictions tomaximal compact subgroups. This can also be deduced
from Harish-Chandra’s subrepresentation theorem and was proved in work by Koorn-
winder [26], but it illustrates our result and the kind of geometry involved. The method
also imposes geometrically defined bounds on the region where nonzero multiplicities
occur, besides giving a precise geometric expression for those multiplicities.

1 See http://www.liegroups.org/software/.
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1.2 Themain result

Letπ be a tempered representation ofG. Themain result in this paper is Theorem 3.11,
a realisation of π |K as the K -equivariant index of a Dirac operator on G/H , for a
Cartan subgroup H < G. Since G/H is noncompact in general, the kernel of such an
operator is infinite-dimensional. This is desirable, since π is infinite-dimensional, but
it makes the definition of the index more involved than on a compact manifold. We
use index theory developed by Maxim Braverman [5].

Our construction involves a map

$ : G/H → k∗

of the form $(gH) = (Ad∗(g)ξ)|K , for a fixed ξ ∈ g∗, and where g ∈ G (see
Sect. 3.5). This is a moment map in the sense of symplectic geometry, although our
construction will take us into the more general almost complex or Spinc-setting. After
we identify k∗ ∼= k via an Ad(K )-invariant inner product, the map $ induces a vector
field v$ via the infinitesimal action by k on G/H .

We define a K -invariant almost complex structure J on G/H (see Sect. 3.4). This
induces a Clifford action c by T (G/H) on

∧
J T (G/H) (see Example 3.1). Here

∧
J

stands for the exterior algebra of complex vector spaces. Let D be a Dirac operator on∧
J T (G/H) (see Sect. 3.1). We write

∧±
J T (G/H) for the even and odd degree parts

of this bundle, respectively. As a special case of Theorem 2.9 in [5], we find that the
multiplicities m±

δ of irreducible representations δ of K in

ker(D − i f c(v$)) ∩ L2(
∧±

J T (G/H) ⊗ Lπ )

are finite, for a function f with suitable growth behaviour (see Sect. 3.1). Here Lπ →
G/H is a certain line bundle associated to π (see Sect. 3.5). This deformation of the
Dirac operator goes back to Tian–Zhang [43], who used it to give a proof ofGuillemin–
Sternberg’s quantisation commuteswith reduction conjecture. Thedifferencem+

δ −m−
δ

is independent of f andof the specificDirac operator D used.This allowsus to consider
the K -equivariant index

indexK (
∧

J T (G/H) ⊗ Lπ ,$) := ⊕
δ∈K̂ (m

+
δ − m−

δ )δ.

This index defines an element of the completionHomZ(R(K ),Z) of the representation
ring R(K ) of K . It equals indices defined and used by Paradan–Vergne [37,38,44] and
Ma–Zhang [30].

The main result in this paper, Theorem 3.11, states that this index equals π |K , up
to a sign.

Theorem 1.1 We have

π |K = ± indexK (
∧

J T (G/H) ⊗ Lπ ,$).

See Sect. 3.5 for the precise definition of the sign ±. In Sect. 3.7, we illustrate this
result by working out what it means for G = SL(2,R).
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1.3 Relation with geometric quantisation of coadjoint orbits

If the infinitesimal character χ of π is a regular element of ih∗, then Theorem 1.1 is
a direct realisation of π |K as the K -equivariant geometric quantisation of a coadjoint
orbit of G, as in the orbit method. Indeed, we may then take the map $ to be the
composition

$ : G/H
∼=−→ Ad∗(G)χ ↪→ g∗ → k∗. (1.1)

Then $ is the natural moment map in the symplectic sense for the action by K on the
coadjoint orbit Ad∗(G)χ . The line bundle Lπ is now such that

∧
J T (G/H) ⊗ Lπ is

the spinor bundle of a Spinc-structure with determinant line bundle

G ×H C2χ → G/H = Ad∗(G)χ ,

twisted by a one-dimensional representation of a finite Cartesian factor of H . In fact,
$ is a moment map in the Spinc-sense [39] for this Spinc-structure. Therefore, The-
orem 1.1 now states that π |K is the K -equivariant Spinc-quantisation [15,37,39] of
Ad∗(G)χ .

Index theory of Dirac operators deformed by the vector field v$, for a moment map
$, appears frequently and naturally in geometric quantisation. (There are at least two
other, but equivalent, definitions to the one we use here, used in [36,38,44] and [30],
respectively.) In the compact case, such deformations were used to prove quantisation
commuteswith reduction results [36,39,43]. In the noncompact case, they are also used
to define geometric quantisation [11,12,15,30,38,44]. So the use of deformed Dirac
operators in Theorem 1.1 is natural from the point of view of geometric quantisation.
A concrete consequence of this is that it allows us to apply the quantisation commutes
with reduction principle to compute the multiplicities of the K -types of π , as we do
in [18].

Paradan [37] has pointed out that Spinc-quantisation is the relevant notion of geo-
metric quantisation to use in a construction of tempered representations (discrete series
representations in his case) satisfying the quantisation commutes with reduction prin-
ciple. This means that one should view Ad∗(G)χ as a Spinc-manifold rather than
as a symplectic manifold. More specifically, the Spinc-version of the quantisation
commutes with reduction principle applies here, which we use in [18] to deduce a
geometric expression for the multiplicities of the K -types of π from Theorem 1.1.
Paradan and Vergne [39] showed that principle has a natural generalisation from the
symplectic setting to the Spinc-setting. The version we use in [18] is the result for
noncompact Spinc-manifolds proved in [15].

If χ is singular, then in the orbit method, π is associated to a nilpotent orbit (which
need not be the orbit through χ ). In this case, the first map in (1.1) is a fibre bundle. By
using G/H rather than this nilpotent orbit, we do not directly deal with the problem of
quantising nilpotent orbits, but we are able to use Theorem 1.1 to obtain a multiplicity
formula for K -types for all tempered representations in [18].
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1.4 Ingredients of the proof

There are several challenges in generalising Theorem 1.1 from discrete series repre-
sentations to arbitrary tempered representations.

1. The space G/H does not have a naturally defined G-invariant almost complex
structure.

2. We do not have an explicit result like Blattner’s formula to base the construction
on.

3. If T < K is a maximal torus and g = k⊕ s is a Cartan decomposition, then in the
discrete series case, we have a K -equivariant diffeomorphism G/T = K ×T s.
Such a “partial linearisation” is more complicated in the general case.

The last of these points takes most work to solve.
To deduce amultiplicity formula for K -types fromTheorem 1.1, there are twomain

challenges.

1. Paradan showed in [37] that one needs a version of the quantisation commutes with
reduction principle for noncompact Spinc-manifolds. He proved such a result in
the setting relevant to discrete series representations, but one needs a more general
version for arbitrary tempered representations.

2. It is unclear what coadjoint orbits, or what maps $, one should use in general, for
example for limits of the discrete series.

The first of these points was solved in [15]. There a general version of the quantisation
commutes with reduction principle was proved for noncompact Spinc-manifolds. This
was based on Paradan–Vergne’s result for compact Spinc-manifolds in [39,40]. The
result in [15] is an analogue of the result byMa–Zhang [30] for noncompact symplectic
manifolds in the more general Spinc-setting. The second point will be solved in [18].

The proof of Theorem 1.1 in this paper consists of 3 steps.

1. Prove that the right hand side of the equality in Theorem 1.1 equals an index on a
“partially linearised” space E that is K -equivariantly diffeomorphic to G/H . This
is done in Sect. 4; see Proposition 4.1.

2. Compute this index on E explicitly. This is done in Sects. 5 and 6; see Proposi-
tion 6.1.

3. Use that explicit expression to prove that the index on E equals π |K . This is done
in Sect. 7; see Proposition 7.6.

The second step is the most elaborate. One reason for this is that the arguments we use
involve deformations of Dirac operators that do not fit into the index theory developed
by Braverman. That means that we have to use homotopy arguments specifically
tailored to our situation, rather than the general cobordism invariance property of
Braverman’s index.

The representation theoretic input to our proof of Theorem 1.1 is:

• the part of Knapp and Zuckerman’s classification of tempered representation that
states that every tempered representation is basic (Corollary 8.8 in [23]);

• Blattner’s formula for multiplicities of K -types of (limits of) discrete series rep-
resentations [9].
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In fact, to be precise, Theorem 1.1 applies to all basic (or standard) representations
π (see Remark 3.12). The first of the above two ingredients is not necessary for the
proof of the result in that formulation.

Notation

The Lie algebra of a Lie group is denoted by the corresponding lower case Gothic
letter.We denote complexifications by superscriptsC. The dual of a finite-dimensional
vector space V will be denoted by V ∗. (Here V will usually be a Lie algebra, and the
notation stands for its dual as a real vector space.) The unitary dual of a group H will
be denoted by Ĥ . If H is an abelian Lie group and ξ ∈ h∗ satisfies the appropriate
integrality condition, then we write Cξ for the one-dimensional representation of H
with weight ξ .

In Sects. 3.1 and 3.2 and in Sect. 5, the letter M will denote a manifold. In the
rest of this paper, M is a subgroup of the group G. In Sect. 5, N is another manifold,
whereas N denotes a subgroup of G in the rest of this paper. (There is little risk of
confusion, because the group G does not play a role at all in the sections where M
and N are manifolds.) The Levi–Civita connection on a Riemannian manifold M will
be denoted by ∇T M .

2 Tempered representations

We start by reviewing the basic properties of tempered representations that we will
need, including a part of their classification by Knapp and Zuckerman [23–25].

Throughout this paper, except in Sect. 2.1, G will denote a connected, linear, real
reductive Lie groupwith compact centre ZG . (This is the class of groups forwhich tem-
pered representations were classified in [23–25].) Let K < G be a maximal compact
subgroup. Let θ be the corresponding Cartan involution, with Cartan decomposition
g = k⊕s. Let (−,−) be the K -invariant inner product on g defined by theKilling form
and θ . We transfer this inner product to the dual spaces g∗ and ig∗ where necessary.

A unitary irreducible representation π ∈ Ĝ is tempered if all of its K -finite matrix
coefficients belong to L2+ε(G) for all ε > 0. If Ĝ temp is the set of tempered represen-
tations of G, then we have the Plancherel decomposition

L2(G) =
∫ ⊕

Ĝtemp

π ⊗ π∗ dµ(π), (2.1)

as representations of G × G, where µ is the Plancherel measure. Tempered represen-
tations are important

1. to harmonic analysis, because of (2.1);
2. because they are used in the Langlands classification of all admissible representa-

tions [28]; see also e.g. Section VIII.15 in [21].
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2.1 Limits of discrete series

In this subsection and the next, we make different assumptions on G than in the rest
of this paper. (The contents of these subsections will later be applied to the subgroup
M < G in the Langlands decomposition P = MAN of a cuspidal parabolic subgroup
P < G.) Suppose G is a real linear Lie group, not necessarily connected. Let G0 < G
be the connected component of the identity element. We now assume that

1. g is reductive;
2. G0 has compact centre;
3. G has finitely many connected components;
4. if GC is the analytic linear Lie group with Lie algebra gC, and if Z(G) is the

centraliser of G in the full general linear matrix group containing G, then G ⊂
GCZ(G).

These assumptions imply those used by Harish-Chandra in [8], see Section 1 of [20].
In addition to the above assumptions, we suppose that G has a compact Cartan sub-

group T < K . Then it has discrete series and limits of discrete series representations.
We recall the classification of those representations, taking into account the fact that
G may be disconnected. We refer to Section 1 of [23] for details. See also Sections
IX.7 and XII.7 in [21] for the connected case.

Let RG = R(gC, tC) be the root system of (gC, tC). For a regular element λ ∈ it∗,
let ρλ be half the sum of the elements of RG with positive inner products with λ. Then
the discrete series of G0 is parametrised by the set of regular elements of λ ∈ it∗ for
which λ − ρλ is integral (i.e. lifts to a homomorphism eλ−ρλ : T → U(1)). For such
an element λ, let πG0

λ be the corresponding discrete series representation. For another
such element λ′, we have π

G0
λ

∼= π
G0
λ′ if and only if there is an element w of the Weyl

group NG0(T )/ZG0(T ) such that λ′ = wλ.
Let λ ∈ it∗ be as above. Let χ ∈ ẐG be such that

χ |T∩ZG = eλ−ρλ |T∩ZG . (2.2)

Then we have the well-defined representation π
G0
λ ! χ of G0ZG , given by

(π
G0
λ ! χ)(gz) = π

G0
λ (g)χ(z),

for g ∈ G0 and z ∈ ZG . Write

πG
λ,χ := IndGG0ZG

(π
G0
λ ! χ)

(Here and in the rest of this paper, Ind denotes normalised induction.) This is a discrete
series representation of G, and all discrete series representations of G are of this form.
Two such representations πG

λ,χ and πG
λ′,χ ′ are equivalent if and only if χ ′ = χ and

there is an element w ∈ NG(T )/ZG(T ) such that λ′ = wλ.
Now let λ ∈ it∗ be possibly singular, and choose a (non-unique) positive root

system R+
G ⊂ RG of roots having nonnegative inner products with λ. Let ρ be half

the sum of the elements of R+
G , and suppose that λ − ρ is integral.
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Let ν ∈ it∗ be regular and dominant with respect to R+
G . Let F−ν be the finite-

dimensional irreducible representation of gC with lowest weight −ν. Set

π
G0
λ,R+

G
:= pλ(π

G0
λ+ν ⊗ F−ν), (2.3)

where pλ denotes projection onto the subspace with infinitesimal character λ. If λ is
regular, then π

G0
λ,R+

G
= π

G0
λ . And even if λ is singular, the right hand side of (2.3) is

independent of ν. For singular λ, the representation π
G0
λ,R+

G
is a limit of discrete series

representation of G0.
Let λ and R+

G be as above. Let χ be a unitary irreducible representation of ZG ,
such that (2.2) holds. Write

πG
λ,R+

G ,χ
:= IndGG0ZG

(π
G0
λ,R+

G
! χ). (2.4)

The following result is Theorem 1.1 in [23].

Theorem 2.1 For λ, R+
G and χ as above, the representation πG

λ,R+
G ,χ

is

• nonzero if and only if (λ,α) -= 0 for all simple (with respect to R+
G) compact roots

α;
• irreducible and tempered in that case.

If two such representations πG
λ,R+

G ,χ
and πG

λ′,(R+
G )

′,χ ′ are nonzero, they are equivalent

if and only if χ ′ = χ , and there is an element w ∈ NG(T )/ZG(T ) such that λ′ = wλ

and (R+
G )

′ = wR+
G.

The limits of discrete series representations are the nonzero representations occurring
in the above theorem.

2.2 The Knapp–Zuckerman classification

We now return to the setting described at the start of this section. In particular, G is
connected, linear, real reductive, with compact centre. We state the part that we need
of Knapp and Zuckerman’s classification of tempered representations of G, in terms
of limits of discrete series representations of subgroups of G. At the same time, we
fix notation that will be used in the rest of this paper.

Let h ⊂ g be a θ -stable Cartan subalgebra. Set

• H := ZG(h);
• a := h ∩ s;
• A := the analytic subgroup of G with Lie algebra a;
• m := the orthogonal complement to a in Zg(a);
• M0 := the analytic subgroup of G with Lie algebra m;
• M := ZK (a)M0.
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The subgroup M may be disconnected. But importantly, it satisfies the assumptions
made on the group G in Sect. 2.1.

For β ∈ a∗, set

gβ := {X ∈ g; for all Y ∈ a, [Y , X ] = 〈β,Y 〉X}.

Consider the restricted root system

. := .(g, a) := {β ∈ a∗ \ {0}; gβ -= {0}}.

Fix a positive system .+ ⊂ .. Consider the nilpotent subalgebras

n± :=
⊕

β∈.+
g±β .

of g. We will write n := n+. Let N be the analytic subgroup of G with Lie algebra n.
Then P := MAN is a parabolic subgroup of G.

Let T < K be a maximal torus. Set

• KM := K ∩ M ;
• kM := k ∩ m;
• tM := kM ∩ t;
• TM := exp(tM ).

Then tM ⊂ m is a Cartan subalgebra, so M has discrete series and limits of discrete
series representations. That is to say, P is a cuspidal parabolic subgroup. In fact, all
cuspidal parabolic subgroups occur in this way.

If we write sM := m∩ s, then we obtain the Cartan decomposition m = kM ⊕ sM .
Set HM := H ∩ M . We have TM < HM . The converse inclusion does not hold in
general, since TM is connected, whereas HM may be disconnected. More explicitly,
Corollary 7.111 in [22] implies that

HM = TM ZM . (2.5)

In fact, HM = TM Z ′
M for a finite subgroup Z ′

M < ZM . So the Lie algebra of HM is
tM .

Let λ ∈ it∗M , R+
M ⊂ R(mC, tCM ), and χM ∈ ẐM be as in Sect. 2.1, with G replaced

by M and T by HM . Then we have the limit of discrete series representation πM
λ,R+

M ,χM

of M . Let ν ∈ ia∗. A basic representation of G is a representation of the form

IndGP (π
M
λ,R+

M ,χM
⊗ eν ⊗ 1N ),

where 1N is the trivial representation of N .

Theorem 2.2 (Knapp–Zuckerman) Every tempered representation of G is basic.
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This is Corollary 8.8 in [23]. In Theorem 14.2 in [24], Knapp and Zuckerman complete
the classification of tempered representations by showing which basic representations
are irreducible and tempered. (These are the ones with nondegenerate data and trivial
R-groups; see Sections 8 and 12 in [24] for details on these conditions).

The main result of this paper, Theorem 3.11, is formulated for tempered representa-
tions, but in fact applies more generally to all basic representations (see Remark 3.12).
The result is formulated for tempered representations, because of the special relevance
of those representations.

3 Indices of deformed Dirac operators

The main result in this paper is Theorem 3.11, which states that the restriction to K of
a tempered representation of G can be realised as the equivariant index of a deformed
Dirac operator on G/H , for a Cartan subgroup H < G. In this section, we review the
index theory we will use, and state the main result.

3.1 Deformed Dirac operators

Braverman [5] developed equivariant index theory for the deformations of Dirac oper-
ators on noncompact manifolds that we briefly discuss in this subsection. His index is
the same as the indices defined by Paradan andVergne [38,44] (see Theorem 5.5 in [5])
and Ma–Zhang [29] (see Theorem 1.5 in [29]). Its main applications have so far been
to geometric quantisation and representation theory, see e.g. [37]. The deformation of
Dirac operators (3.1) used by Braverman was introduced by Tian and Zhang [43] in
their analytic proof of Guillemin and Sternberg’s quantisation commutes with reduc-
tion problem (which was first proved by Meinrenken [32] and Meinrenken–Sjamaar
[33]; another proof was given by Paradan [36]).

In this subsection, we consider a complete Riemannian manifold M , on which a
compact Lie group K acts isometrically. (In this subsection and the next, M does not
denote a subgroup of G; in fact G does not play a role at all here.) Let S → M be a
Z2-graded, Hermitian, K -equivariant complex vector bundle. Let c : T M → End(S)
be a K -equivariant vector bundle homomorphism, called the Clifford action, such that
for all v ∈ T M ,

c(v)2 = −‖v‖2.

(Here K acts on End(S) by conjugation.) Then S is called a K -equivariant Clifford
module.

Example 3.1 In the setting we consider in the rest of this paper, M will have a K -
equivariant almost complex structure J , and we will use S = ∧

J T M ⊗ L , where
L → M is a line bundle and

∧
J T M is the complex exterior algebra bundle of T M

with respect to J . This has a natural Clifford action, given by

c(v)x = v ∧ x − v∗"x,
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where v ∈ TmM for some m ∈ M , x ∈ ∧
J TmM ⊗ Lm , v∗ ∈ T ∗

mM is dual to v

with respect to the Hermitian metric defined by J and the Riemannian metric, and "
denotes contraction (see e.g. page 395 in [4]). When dealing with vector bundles of
the form

∧
J T M ⊗ L , we will always use this Clifford action.

Let ∇ be a K -invariant, Hermitian connection on S such that for all vector fields v
and w on M ,

[∇v, c(w)] = c(∇T M
v w),

where ∇T M is the Levi–Civita connection on T M . If we identify T ∗M ∼= T M via the
Riemannian metric, we can view c as a vector bundle homomorphism

c : T ∗M ⊗ S → S.

The Dirac operator D associated to ∇ is the composition

D : /∞(S) ∇−→ /∞(T ∗M ⊗ S) c−→ /∞(S).

It is odd with respect to the grading on S; we denote its restrictions to even and odd
sections by D+ and D−, respectively.

If M is compact, then the elliptic operator D has finite-dimensional kernel. So it
has a well-defined equivariant index

indexK (D) := [ker(D+)] − [ker(D−)] ∈ R(K ),

where R(K ) is the representation ring of K , and square brackets denote equivalence
classes of representations of K . If M is noncompact, one can still define an equivariant
index, using a taming map.

Let ψ : M → k be an equivariant smooth map (with respect to the adjoint action
by K on k). Let vψ be the vector field on M defined by

vψ (m) = d
dt

∣∣∣∣
t=0

exp(−tψ(m)) · m,

for m ∈ M . The map ψ is called a taming map if the set of zeroes of the vector field
vψ is compact. The Dirac operator deformed by ψ is the operator

Dψ := D − ic(vψ ) (3.1)

on /∞(S). As for the undeformed operator, we denote the restrictions of Dψ to even
and odd sections by D+

ψ and D−
ψ , respectively.

To obtain a well-defined index, one needs to rescale the map ψ by a function with
suitable growth behaviour. Let $S ∈ End(S) ⊗ k∗ be given by

〈$S , Z〉 = ∇ZM − LZ , (3.2)
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for Z ∈ k. Here ZM is the vector field on M induced by Z via the infinitesimal action.
Let ∇T M be the Levi–Civita connection on T M . Consider the positive, K -invariant
function

h := ‖vψ‖ + ‖∇T Mvψ‖ + ‖〈$S ,ψ〉‖ + ‖ψ‖ + 1 (3.3)

on M . A nonnegative function f ∈ C∞(M)K is said to be admissible (for ψ and ∇)
if

f 2‖vψ‖2
‖d f ‖‖vψ‖ + f h + 1

(m) → ∞

as m → ∞ in M . It is shown in Lemma 2.7 in [5] that admissible functions always
exist.

Theorem 3.2 (Braverman) Suppose ψ is taming. Then for all admissible functions
f ∈ C∞(M)K , and all δ ∈ K̂ , the multiplicity m±

δ of δ in

ker(D±
f ψ ) ∩ L2(S)

is finite. The difference m+
δ − m−

δ is independent of f and ∇.

This is Theorem 2.9 in [5]. The fact that m+
δ − m−

δ is independent of f and ∇ is a
consequence of Braverman’s cobordism invariance result, Theorem 3.7 in [5]. This
cobordism invariance property also implies that the index is independent of the K -
invariant, complete Riemannian metric on M .

Let R̂(K ) be the abelian group

R̂(K ) :=





∑

δ∈K̂
mδδ;mδ ∈ Z




 .

It contains the representation ring R(K ) as the subgroup for which only finitely many
of the coefficients mδ are nonzero.

Definition 3.3 In the setting of Theorem 3.2, the equivariant index of the pair (S,ψ)

is

indexK (S,ψ) :=
∑

δ∈K̂
(m+

δ − m−
δ )δ ∈ R̂(K ).

This index was generalised to proper actions by noncompact groups in Theorem 3.12
in [14]. Earlier, this was done for sections invariant under the group action in [6,11].
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3.2 Properties of the index

As mentioned above, independence of the coefficients m+
δ − m−

δ of the choices of f
and ∇ follows from a cobordism invariance property. We will use the special case of
this result that we describe now. For j = 1, 2, let S j → M be a Clifford module, and
let ψ j : M → k be a taming map.

Definition 3.4 A homotopy between (S1,ψ1) and (S2,ψ2) is a pair (S,ψ), where

• S → M × [0, 1] is a Clifford module, such that

◦ S|M×[0,1/3[ = S1 × [0, 1/3[, including the Clifford actions by T M ;
◦ S|M×]2/3,1] = S2×]2/3, 1], including the Clifford actions by T M .

Let ∂t be the unit vector field of the component R in T (M × ]0, 1[) = T M ×R×
]0, 1[. Let c : T (M × ]0, 1[) → End(S|M×]0,1[) be the Clifford action. Then

◦ c(∂t )|M×[0,1/3[ =
√−1;

◦ c(∂t )|M×]2/3,1[ = −√−1.

• ψ : M × [0, 1] → k is a taming map, such that for all m ∈ M and t ∈ [0, 1],

ψ(m, t) =
{

ψ1(m) if t < 1/3;
ψ2(m) if t > 2/3.

Theorem 3.5 (Homotopy invariance) If (S1,ψ1) and (S2,ψ2) are homotopic, then

indexK (S1,ψ1) = indexK (S2,ψ2).

See Theorem 3.7 in [5].Wewill only apply this result in cases where either S1 = S2 or
ψ1 = ψ2. If (S1,ψ1) and (S2,ψ2) are homotopic, then if S1 = S2, we say thatψ1 and
ψ2 are homotopic. Similarly, if ψ1 = ψ2, then we say that S1 and S2 are homotopic.

Corollary 3.6 Suppose that S1 = S2, and that

(vψ1 , vψ2) ≥ 0.

Then ψ1 and ψ2 are homotopic, so that

indexK (S1,ψ1) = indexK (S2,ψ2).

Proof Let χ : R → [0, 1] be a smooth function such that χ(t) = 0 if t < 1/3 and
χ(t) = 1 if t > 2/3. For t ∈ [0, 1] and m ∈ M , set

ψ(m, t) := (1 − χ(t))ψ1(m)+ χ(t)ψ2(m).
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Then

‖vψt (m)‖2 = (1 − χ(t))2‖vψ1(m)‖2 + χ(t)2‖vψ2(m)‖2 + 2(1 − χ(t))χ(t)(vψ1, vψ2)

≥ (1 − χ(t))2‖vψ1(m)‖2 + χ(t)2‖vψ2(m)‖2.

This can only vanish if vψ1(m) = 0 or vψ2(m) = 0, so that ψ is a taming map. Hence
the claim follows from Theorem 3.5. 67

Another property of the index that we will use is excision.

Proposition 3.7 (Excision) Suppose that ψ is taming, and let U ⊂ M be a relatively
compact, K -invariant open subset, with a smooth boundary, outside which vψ does not
vanish. Consider a K -invariant Riemannian metric on TU for which U is complete,
and which coincides with the Riemannian metric on T M in a neighbourhood of the
zeroes of vψ . Also consider a compatible Clifford action by TU on S|U . Then

indexK (S|U ,ψ |U ) = indexK (S,ψ).

For a proof, see Lemma 3.12 and Corollary 4.7 in [5].

3.3 The discrete series case

We return to the setting described at the start of Sect. 2. One application of the index
theory of deformed Dirac operators was Paradan’s realisation in [37] of restrictions to
K of discrete series representations of G. The main result in this paper, Theorem 3.11,
is a generalisation of Paradan’s result to arbitrary tempered representations. The main
advantage of Paradan’ result is that it implies a geometric formula for multiplicities
of K -types of discrete series representations, Theorem 1.5 in [37]. We will use Theo-
rem 3.11 to obtain a generalisation of this multiplicity formula to arbitrary tempered
representations in a forthcoming paper [18].

Let us first state Paradan’s result. Suppose G is semisimple, and has a compact
Cartan subgroup T < K . Let λ ∈ it∗ be a regular element for which λ−ρλ is integral,
and let πG

λ be the corresponding discrete series representation. The coadjoint orbit

Ad∗(G)λ ∼= G/T

has a G-invariant complex structure J such that

TeT (G/T ) = g/t =
⊕

α∈R+
G

gCα (3.4)

as complex vector spaces. Let

∧
J T (G/T ) → G/T

be the corresponding Clifford module, as in Example 3.1.
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Let Cλ−ρλ be the one-dimensional representation of T with weight λ − ρλ, and
consider the line bundle

Lλ−ρλ := G ×T Cλ−ρλ → G/T .

Consider the map

$ : G/T = Ad∗(G)λ ↪→ g∗ → k∗ ∼= k,

where g∗ → k∗ is the restriction map, and the identification k∗ ∼= k is made via the
K -invariant inner product chosen earlier. This map is taming by Proposition 2.1 in
[35].

Theorem 3.8 (Paradan) We have

πG
λ |K = (−1)dim(G/K )/2 index(

∧
J T (G/T ) ⊗ Lλ−ρλ ,$). (3.5)

This is Theorem 5.1 in [37]. In fact, Paradan proves that the right hand side of (3.5)
equals (−1)dim(G/K )/2 times the right hand side of Blattner’s formula, as in Theorem
1.3 in [9]. The latter theorem therefore implies Theorem 3.8.

3.4 An almost complex structure

Nowwe drop the assumption thatG is semisimple and has a compact Cartan subgroup.
We consider a general tempered representation π of G, and write

π = IndGP
(
πM

λ,R+
M ,χM

⊗ eν ⊗ 1N
)

as in Theorem 2.2. Let H < G be the Cartan subgroup as in Sect. 2.2; we also use
the other notation from that subsection. We will realise the restriction π |K as the K -
equivariant index of a deformed Dirac operator on G/H (up to a sign). To do this,
we will use a K -equivariant almost complex structure on G/H . (If π belongs to the
discrete series, this is theG-invariant complex structure defined by (3.4), but in general
it is only K -invariant, and need not be integrable.) We have

g = k ⊕ sM ⊕ a ⊕ n.

Recalling that HM = H ∩M (see also (2.5)), we find an HM -invariant decomposition

g/h = k/tM ⊕ sM ⊕ n = k/kM ⊕ kM/tM ⊕ sM ⊕ n. (3.6)

The map from n− to k/kM , given by X 8→ 1
2 (X + θX) is an HM -equivariant linear

isomorphism. Using this, we find that, as a representation space of HM ,

g/h = m/tM ⊕ n− ⊕ n+. (3.7)
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As in the discrete series case, the positive root system R+
M for (mC, tCM ) determines

an Ad(HM )-invariant complex structure Jm/tM onm/tM such that, as complex vector
spaces,

m/tM =
⊕

α∈R+
M

mC
α .

Once and for all, we fix an element ζ ∈ a such that 〈β, ζ 〉 > 0 for all β ∈ .+.
Then the map

ad(ζ ) : n− ⊕ n+ → n− ⊕ n+

is invertible, with real eigenvalues. Set

Jζ := θ | ad(ζ )|−1 ad(ζ ) : n− ⊕ n+ → n− ⊕ n+.

Lemma 3.9 The map Jζ is an HM-invariant complex structure.

Proof The adjoint action by HM commutes with θ because HM < K . It commutes
with ad(ζ ), because HM < M < ZG(a). So the map Jζ is HM -equivariant. Let
β ∈ .+. The map ad(ζ ) preserves the spaces g±β , while the Cartan involution θ

interchanges them. Hence, if Xβ ∈ gβ ,

J 2ζ (Xβ) = Jζ (θXβ) = −Xβ .

Similarly, if X−β ∈ g−β , then

J 2ζ (X−β) = −Jζ (θX−β) = −X−β .

67

Let

Jg/h := Jm/tM ⊕ Jζ (3.8)

be the HM -invariant complex structure on g/h defined by Jm/tM and Jζ via the iso-
morphism (3.7).

Since Jg/h is not necessarily H -invariant, it does not extend to aG-invariant almost
complex structure onG/H in general. However, it does extend to a K -invariant almost
complex structure in a natural way.
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Lemma 3.10 There is a unique K -invariant almost complex structure J on G/H, such
that for all k ∈ K, X ∈ sM and Y ∈ n, the following diagram commutes:

Tk exp(X) exp(Y )HG/H J !! Tk exp(X) exp(Y )HG/H

TeHG/H = g/h

TeH k exp(X) exp(Y )

""

Jg/h
!! g/h = TeHG/H .

TeH k exp(X) exp(Y )

""
(3.9)

Proof If k, k′ ∈ K , X , X ′ ∈ sM and Y ,Y ′ ∈ n such that

k exp(X) exp(Y )H = k′ exp(X ′) exp(Y ′)H ,

then there are h ∈ HM and a ∈ A such that

k′ exp(X ′) exp(Y ′) = k exp(X) exp(Y )ha = kh exp(Ad(h−1)X) exp(Ad(h−1)Y )a.

Since the multiplication map

K × exp(sM ) × N × A → G (3.10)

is injective (indeed, a diffeomorphism), we must have a = e. So

TeHk′ exp(X ′) exp(Y ′) = TeHk exp(X) exp(Y ) ◦ TeHh.

Since TeHh : g/h → g/h is induced by Ad(h), it commutes with Jg/h. Since (3.10) is
a diffeomorphism, every element of G/H is of the form k exp(X) exp(Y )H for some
k ∈ K , X ∈ sM and Y ∈ n. Hence the map J is well-defined by commutativity of
(3.9). This defining property directly implies that J is K -invariant. 67

3.5 Tempered representations; themain result

In the notation of the previous subsection, we have the vector bundle

∧
J T (G/H) → G/H ,

with J as in Lemma 3.10. As in the discrete series case, this vector bundle has the
natural K -equivariant Clifford action of Example 3.1. Let ρM be half the sum of the
roots in R+

M . Consider the one-dimensional representation

Cλ−ρM ! χM

of HM . We extend it to a representation of H by letting A act trivially. This induces
the line bundle

Lλ−ρM ,χM
:= G ×H (Cλ−ρM ! χM ) → G/H .

123



116 P. Hochs et al.

Let ξ ∈ t∗M be any regular element that is dominant with respect to R+
M . We may,

and will, assume that the elements ζ ∈ a and ξ ∈ t∗M ∼= tM are chosen so that the
element ξ + ζ ∈ h is regular for the roots of (gC, hC). Define the map

$ : G/H → k∗ = k

by

$(gH) = Ad∗(g)(ξ + ζ )|k.

(Here we identify ζ ∈ awith the dual element in a∗ via the chosen inner product.) The
map $ is the moment map in the sense of symplectic geometry for the action by K on
the coadjoint orbit Ad∗(G)(ξ + ζ ). This map is taming for that action, by Proposition
2.1 in [35]. (This is true because ξ + ζ is a regular element, so Ad∗(G)(ξ + ζ ) is a
closed coadjoint orbit.)

Our main result is the following realisation of π |K . Recall that

π = IndGP
(
πM

λ,R+
M ,χM

⊗ eν ⊗ 1N
)
. (3.11)

Theorem 3.11 We have

π |K = (−1)dim(M/KM )/2 indexK
(∧

J T (G/H) ⊗ Lλ−ρM ,χM
,$

)
.

Note that if π belongs to the discrete series or limits of discrete series, then M = G,
H = T and n− = n+ = {0}. So if we take ξ = λ, then Theorem 3.11 reduces to
Theorem 3.8. The case of limits of discrete series was not treated in [37], because the
focus there was to obtain a multiplicity formula for K -types of the discrete series. But
the techniques used there apply directly to this case.

Remark 3.12 The only property of the representation π that we will use to prove The-
orem 3.11 is that it is of the form (3.11). This is true if π is tempered by Theorem 2.2.
Since the restriction to K of the representation on the right hand side of (3.11) is
independent of the parameter ν ∈ (aC)∗, even for non-imaginary ν, Theorem 3.11
in fact applies to every representation π equal to the right hand side of (3.11), for
ν ∈ (aC)∗; i.e. to every standard representation. By the Langlands classification of
admissible representations (see for example Theorem 14.92 in [21]), this implies that
the restriction to K of every admissible representation is a quotient of an index as in
Theorem 3.11.

Remark 3.13 The sign (−1)dim(G/K )/2 in Theorem 3.11 can be absorbed into the Clif-
ford module used. For example, under regularity conditions on λ and ν, one can
choose the Spinc-structure on G/H whose determinant line bundle is a prequantum
line bundle for a relevant coadjoint orbit. However, we prefer the explicit Clifford
module in Theorem 3.11. This also avoids references to symplectic geometry, since
Spinc-geometry is more relevant here. We discuss this in more detail in Sect. 3.6.
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3.6 Relation with the orbit method and geometric quantisation

In a companion paper [18], we use Theorem 3.11 together with a Spinc-quantisation
commutes with reduction result, Theorem 3.10 in [15], to obtain a geometric formula
for the multiplicities of the K -types of π . Note that in Theorem 3.11, there is a
large amount of freedom in choosing the elements ξ ∈ t∗M and ζ ∈ a. To obtain the
multiplicity formula in [18], we will need to make more specific choices.

Consider the element

η := (λ + ν)/i ∈ h∗.

Then, modulo a factor i , η is the infinitesimal character of π . Suppose that η is a
regular element of h∗. We will see in Section 2.2 of [18] that a natural choice is to take
ξ = λ and ζ dual to ν/i . Then $ is the map

G/H
∼=−→ Ad∗(G)η ↪→ g∗ → k∗. (3.12)

This is a moment map in the symplectic sense for the action by K on the coadjoint
orbit Ad∗(G)η.

However, to obtain a multiplicity formula for the K -types of π from Theorem 3.11
via the quantisation commutes with reduction principle, it is better to use a Spinc-
approach to geometric quantisation. Indeed, already in the case of the discrete series,
the natural complex structure on Ad∗(G)η = Ad∗(G)λ = G/T is not compatible
with the natural symplectic form, and the line bundle Lλ−ρM ,χM

= G ×T Cλ−ρ

is not a prequantum line bundle for that symplectic structure. See Section 1.5 of
[37]. For this reason, it is useful that, for these choices of ξ and ζ , the map $ is
a moment map in the Spinc-sense, for the Spinc-structure with the spinor bundle∧

J T (G/H) ⊗ Lλ−ρM ,χM
in Theorem 3.11. This is shown in Proposition 2.4 and

Lemma 4.5 in [18]. The quantisation commutes with reduction principle was shown
to have a natural place in Spinc-geometry by Paradan and Vergne [40].

The Clifford module
∧

J T (G/H)⊗ Lλ−ρM ,χM
used in Theorem 3.11 corresponds

to a K -equivariant Spinc-structure. ThemanifoldG/H does not admit aG-equivariant
Spinc-structure in general, because the action by G on G/H is not proper if H is
noncompact. Indeed, the manifold then does not even admit aG-invariant Riemannian
metric. In the context of the orbit method, the Spinc-structure with spinor bundle

∧
J T (G/H) ⊗ Lλ−ρM ,χM

⊗ (G ×H Cν)

on G/H ∼= Ad∗(G)η is a natural one to use. This is K -equivariantly isomorphic to
the Spinc-structure with spinor bundle

∧
J T (G/H) ⊗ Lλ−ρM ,χM

in Theorem 3.11,
and we leave out the factor (G ×H Cν) to simplify our arguments. See Lemma 4.5 in
[18]. (Including that factor would lead to a factor Cν in Proposition 7.1 below, which
is trivial as a representation of HM so would not change that result.)

The use of index theory of Dirac operators deformed by vector fields induced by
moment maps (known as Kirwan vector fields), as in Theorem 3.11, is quite common
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and natural in geometric quantisation. Already in the compact case, such deforma-
tions were used to prove that quantisation commutes with reduction in [36,43]. In the
noncompact case, such deformed Dirac operators are not just used to prove this result,
but also to define geometric quantisation. This was done in Vergne’s conjecture [44]
for actions by compact groups on noncompact symplectic manifolds, and its general-
isation and proof by Ma and Zhang [30] and later by Paradan [38] (and even later in
[16]). In Vergne’s conjecture and Paradan’s proof, and in Ma and Zhang’s proof, two
different but equivalent definitions of the equivariant index of deformed Dirac opera-
tors were used to the one we use here. The same deformed Dirac operators were used
to prove that quantisation commutes with reduction for actions by compact groups on
noncompact Spinc-manifolds in [15], and for proper actions by noncompact groups
in [11,12,17,31].

If η is not regular, then the map (3.12) is still a moment map in the Spinc-sense,
but the first arrow is a fibre bundle rather than a diffeomorphism. In this case, the map
(3.12) does not have the properties that the map $ needs to have for Theorem 3.11
to hold. In [18], we will deform the map $ in Theorem 3.11 to a taming, proper
Spinc-moment map to obtain a geometric expression for multiplicities of K -types of
π .

In representation theory, such representations with singular parameters are viewed
as being associated to nilpotent coadjoint orbits. Via the deformation we use in the
singular case, we lose the link with this aspect of the orbit method, but we gain a
geometric formula for multiplicities of K -types.

3.7 Example: G = SL(2,R)

To illustrate Theorem 3.11, we work out the case where G = SL(2,R) and K =
SO(2). This group G has three kinds of tempered representations: the (holomorphic
and antiholomorphic) discrete series, the limits of the discrete series, and the (spherical
and nonspherical) unitary principal series.

3.7.1 The discrete series

To realise the restrictions of the discrete series to K , we take H = T = SO(2), so

M = G. Let α be the root that maps
(
0 −1
1 0

)
to 2i . Let n ∈ {1, 2, 3, . . .}, and let

D±
n be the discrete series representation with Harish-Chandra parameter λ = ±nα/2.

Then ρM = ρλ = ±α/2. We take ξ = λ. In this case a = {0}, so ζ = 0. Then the
map $ is defined by $(gT ) = Ad∗(g)λ|k, for g ∈ G. This is the identification of
G/T with the elliptic orbit Ad∗(G)λ, followed by restriction to k. We may use the
orbit through any positive multiple of λ here, but this choice will turn out to be the
relevant one for the computation of multiplicities of K -types.

Then the complex structure Jg/t is determined by the isomorphism g/t ∼= gC±α =
CE±α, where

Eα = 1
2

(
1 −i
−i −1

)
; E−α = 1

2

(
1 i
i −1

)
.
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The torus T acts on this space with weight ±α. We will write Cl for the unitary
irreducible representation of the circle with weight l ∈ Z. Then g/h = C±2, and∧

Jg/hg/h = C0 ⊕ C±2.

We have ZM = ZG = {±I } ⊂ T , so we have to take χM = eλ−ρM |ZM . Then

Cλ−ρM ! χM ∼= Cλ−ρM = C±(n−1),

via the map z1 ⊗ z2 8→ z1z2. So the line bundle Lλ−ρM ,χM
equals

Lλ−ρM ,χM
= G ×T C±(n−1).

Theorem 3.11 now states that

D±
n |K = − indexK

(
G ×T (C±(n−1) ⊕ C±(n+1)),$

)
.

3.7.2 Limits of discrete series

For the limits of the discrete series D±
0 , we also have H = T = SO(2) and M = G.

Now λ = 0 and R+
M = {±α}. We cannot take ξ = λ = 0, so we take ξ = ±α/2 (we

can replace this element by any positive multiple). As before, we have ζ = 0, so for all
g ∈ G, we have $(gT ) = Ad∗(g)ξ . This is the identification of G/T with the elliptic
orbit±Ad∗(G)α/2, followed by restriction to k. Note that this is the same orbit as the
one used for D±

1 ; this shift will be important in [18]. Now we have ρM = ±α/2, so,
analogously to the discrete series case,

Lλ−ρM ,χM
= G ×T C∓1.

Theorem 3.11 therefore yields

D±
0 |K = − indexK (G ×T (C∓1 ⊕ C±1),$) .

3.7.3 The principal series

For the unitary principal series P±
iν , where ν ≥ 0 for the spherical principal series P+

iν
and ν > 0 for the nonspherical principal series P−

iν , we have

H =
{(

x 0
0 x−1

)
; x -= 0

}
.

Then M = HM = {±I }. Now

g/h ∼= n− ⊕ n+,
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where n± = RE±, with

E− =
(
0 0
1 0

)
; E+ =

(
0 1
0 0

)
.

Now tM = 0, so ξ = 0. We take ζ =
(
1 0
0 −1

)
. Then for all g ∈ G, $(gH) =

Ad∗(g)ζ |k. This is the identification of G/H with the hyperbolic orbit Ad∗(G)ζ ,
followed by restriction to k. Note that we use the same orbit for all principal series
representations.

Furthermore,

ad(ζ )E± = ±2E±

and θE± = −E∓. So with respect to the basis {E+, E−}, the complex structure Jζ
has the matrix

Jζ =
(

0 1
−1 0

)
.

The almost complex structure J on G/H is given by

J (TeHlk exp(Y )X) = TeHlk exp(Y ) Jζ X ,

for k ∈ SO(2), Y ∈ n+ and X ∈ n− ⊕ n+.
Let χ± be the representations of HM onC defined by χ±(−I ) = ±1. We now have

λ = ρM = 0, so

Lλ−ρM ,χ± = G ×H χ±,

where H acts on χ± via

(
x 0
0 x−1

)
8→ χ±(sgn(x)I ).

This number equals 1 for χ+, and sgn(x) for χ−. By Theorem 3.11, we have

P±
iν |K = indexK (

∧
J T (G/H) ⊗ (G ×H χ±),$).

3.7.4 Explicit computation of the indices for SL(2,R)

The proof of Theorem 3.11 simplifies considerably in the example G = SL(2,R).
Some important points are still present, however: a partial linearisation of the space
G/H , and the role of differential operators on vector spaces with index 1. We give a
brief outline of the proof for SL(2,R) to illustrate these points. In particular, we give
explicit computations of the relevant indices in this case.
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In the case of (limits of) discrete series representations, the proof of Theorem 3.11
is a variation on the proof of Theorem 5.1 in [37]. For the representation D+

n , with
n ∈ {0, 1, 2, . . .}, the first step in this proof is to show that

indexK (
∧

J G/T ⊗ Lλ−ρM ,χM
,$) = indexK (

∧
CTC ⊗ C±(n−1),$

E ), (3.13)

where K acts on C by rotation with weight 2, and $E : C → so(2) ∼= R is the
constant map with value ±1. Here we use that G/T is isomorphic to C as a complex
K -manifold, where K acts on C by rotation with weight 2. The index on the right
hand side of (3.13) was computed in Lemma 6.4 in [2] (see also Lemma 5.7 in [36]
and the bottom of page 841 in [37]), and equals

−
∞⊕

j=0

C±(n+2 j+1).

Apart from the minus sign, this is the well-known decomposition of D+
n |K . The minus

sign is the factor (−1)dim(M/KM )/2 in this case.
For the principal series representation P±

iν , the space G/H is isomorphic to the
cylinder C/Z as a complex K -manifold, where K acts on C/Z by double rotations of
the cylinder in the direction R/Z. We will see that

indexK (
∧

J T (G/H) ⊗ Lλ−ρM ,χM
,$) = indexK (

∧
CT (C/Z) ⊗ χ±, $̃),

where for x, y ∈ R, we have $̃(x + Z + iy) = y ∈ so(2). As a special case of
Proposition 5.1, we will see that the index on the right hand side equals the L2-kernel
of the operator

(
0 − ∂

∂ y + y
∂
∂ y + y 0

)

on
(
L2(C/Z) ⊗ C2 ⊗ χ±

){±I }. This kernel equals

(
L2(R/Z) ⊗ C · (y 8→ e−y2/2) ⊗ χ±

){±I } ∼= (L2(K ) ⊗ χ±)KM

= IndGMAN (χ± ⊗ eiν ⊗ 1N )|K
= P±

iν |K .

Since K acts on R/Z by rotations with weight 2, one also finds directly that

(
L2(R/Z) ⊗ C · (y 8→ e−y2/2) ⊗ χ±

){±I }
=

{⊕
j∈Z C2 j for χ+;⊕
j∈Z C2 j+1 for χ−.

This is the usual decomposition of P±
iν |K . (Note that now (−1)dim(M/KM )/2 = 1.)
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4 Linearising the index

In the rest of this paper, we prove Theorem 3.11. The first main step in this proof
is to show that the index that appears there equals the index of an operator on a
partially linearised version of the spaceG/H , see Proposition 4.1 below. This partially
linearised space E is the total space of a vector bundle over the compact space K/HM .
It will then be shown that the relevant index on E equalsπ |K , up to a sign, in Sects. 5–7,
see Proposition 7.6. That will finish the proof of Theorem 3.11.

We continue using the notation and assumptions of Sects. 3.4 and 3.5.

4.1 The linearised index

Consider the action by HM on K × (sM ⊕ n) given by

h · (k, X + Y ) = (kh−1,Ad(h)(X + Y )),

for h ∈ HM , k ∈ K , X ∈ sM and Y ∈ n. Let

E := K ×HM (sM ⊕ n)

be the quotient space of this action. This is the partial linearisation of G/H that we
will use. (Wewill see in Lemma 4.2 that E is K -equivariantly diffeomorphic toG/H .)

For X ∈ sM and Y ∈ n, we have

T[e,X+Y ]E = k/tM ⊕ sM ⊕ n,

via the map

(U + tM , V +W ) 8→ d
dt

∣∣∣∣
t=0

[exp(tU ), X + Y + t(V +W )], (4.1)

for U ∈ k, V ∈ sM and W ∈ n. (We spell this out explicitly here, because another
identification will also be used in Sect. 4.3.) Using this identification and the first
equality in (3.6), we obtain

T[e,X+Y ]E = g/h. (4.2)

On this space, we defined the HM -invariant complex structure Jg/h in (3.8). We will
write J E for the K -invariant almost complex structure on E that corresponds to Jg/h
via the identification (4.2).

Consider the map $E : E → k given by

$E [k, X + Y ] = Ad(k)
(
ξ − | ad(ζ )|−1 ad(ζ )Ys

)
,
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where k ∈ K , X ∈ sM , Y ∈ n, ζ is as in Sect. 3.4, ξ is as in Sect. 3.5, and Ys :=
1
2 (Y − θY ) is the component of Y in s. We will see in Lemma 4.11 that this map is
taming,

Let V be a finite-dimensional representation space of HM . (Later, we will take
V = Cλ−ρM ! χM .) We extend it to a representation of H by letting A act trivially.
Then we obtain the associated vector bundles

LV := G ×H V → G/H ;
LE
V := K ×HM (sM ⊕ n × V ) → E .

The linearisation result for the index in Theorem 3.11 is the following.

Proposition 4.1 We have

indexK (
∧

J T (G/H) ⊗ LV ,$) = indexK
(∧

J E T E ⊗ LE
V ,$

E)
.

4.2 Linearising G/H

Consider the map

4̃ : K × (sM ⊕ n) → G/H

defined by

4̃(k, X + Y ) = k exp(X) exp(Y )H ,

for k ∈ K , X ∈ sM and Y ∈ n.

Lemma 4.2 The map 4̃ descends to a well-defined, K -equivariant diffeomorphism

4 : E ∼=−→ G/H .

Proof One checks directly that for k ∈ K , X ∈ sM , Y ∈ n and h ∈ HM ,

4̃(kh−1,Ad(h)(X + Y )) = 4̃(k, X + Y ).

So 4̃ indeed descends to a map 4 : E → G/H . That map is K -equivariant by
definition. To see that 4 is surjective, we use the fact that the multiplication map
(3.10) is a diffeomorphism. If k ∈ K , X ∈ sM , Y ∈ n and a ∈ A, then

k exp(X) exp(Y )aH = 4[k, X + Y ],

so 4 is indeed surjective. If k, k′ ∈ K , X , X ′ ∈ sM and Y , Y ′ ∈ n satisfy

4[k, X + Y ] = 4[k′, X ′ + Y ′],
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then there are h ∈ HM and a ∈ A such that

k′ exp(X ′) exp(Y ′) = k exp(X) exp(Y )ha = kh exp(Ad(h−1)X) exp(Ad(h−1)Y )a,

so we must have a = e, and [k′, X ′ + Y ′] = [k, X + Y ]. Hence 4 is injective. 67

Remark 4.3 Lemma 4.2 is an explicit form of a special case of Theorem 4.1 in [34].

4.3 Linearising almost complex structures

The K -invariant almost complex structures J E and 4∗ J on E are different, but we
will show that they are homotopic in a suitable sense.

Let X ∈ sM and Y ∈ n. The complex structures on T[e,X+Y ]E defined by 4∗ J and
J E correspond to Jg/h via two different identifications

ϕX+Y
0 ,ϕX+Y

1 : g/h = T[e,0]E
∼=−→ T[e,X+Y ]E . (4.3)

The map ϕX+Y
0 is the inverse of the map (4.1), whereas ϕX+Y

1 is defined by commu-
tativity of the diagram

T[e,0]E
ϕX+Y
1 !!

T[e,0]4
##

T[e,X+Y ]E

T[e,0]4
##

TeHG/H
TeH exp(X) exp(Y )

!! Texp(X) exp(Y )HG/H .

With respect to these two maps, we have

J E
[e,X+Y ] = ϕX+Y

0 Jg/h(ϕ
X+Y
0 )−1;

(4∗ J )[e,X+Y ] = ϕX+Y
1 Jg/h(ϕ

X+Y
1 )−1.

(4.4)

Lemma 4.4 We have

indexK
(
4∗(

∧
J T (G/H) ⊗ LV ),4

∗$
)
= indexK (

∧
J E T E ⊗ LE

V ,4
∗$).

Proof For X ∈ sM , Y ∈ n and t ∈ [0, 1], we define the linear isomorphism

ϕX+Y
t : T[e,0]E

∼=−→ T[e,X+Y ]E
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by commutativity of the diagram

T[e,0]E
ϕX+Y
t !!

ϕ
t(X+Y )
1

##

T[e,X+Y ]E

T[e,t(X+Y )]E T[e,0]E .

ϕX+Y
0

""

ϕ
t(X+Y )
0

$$

(Note that for t = 0, 1, this definition agrees with the definitions of ϕX+Y
0 and ϕX+Y

1
above.) Define the K -invariant almost complex structure Jt on E by the property that

(Jt )[e,X+Y ] = ϕX+Y
t Jg/h(ϕX+Y

t )−1.

Then by (4.4), we have J0 = J E and J1 = 4∗ J . Using this family of almost complex
structures, we obtain a homotopy in the sense of Definition 3.4 between

(
∧

4∗ J T E ⊗ LE
V ,4

∗$) and (
∧

J E T E ⊗ LE
V ,4

∗$).

Since 4∗LV = LE
V and

4∗∧
J T (G/H) = ∧

4∗ J T E,

the claim follows from Theorem 3.5. 67

4.4 Linearising tamingmaps

To prove Proposition 4.1, it remains to construct a homotopy between the tamingmaps
4∗$ and $E . We will do this in a number of stages.

First, for t ∈ [0, 1], we consider the map $t
1 : E → k, defined by

$t
1[k, X + Y ] = Ad(k)(ξ + t[Yk, ξ ] + [Ys, ζ ]), (4.5)

where k ∈ K , X ∈ sM , Y ∈ n, Yk = 1
2 (Y + θY ) ∈ k, and Ys = 1

2 (Y − θY ) ∈ s.
For Z ∈ k, let Z E be the vector field on E given by the infinitesimal action by Z . In
several places, we will use the fact that for all such X and Y ,

Z E ([e, X + Y ]) = (Zt⊥M
+ tM ,−[ZtM , X + Y ]) ∈ k/tM ⊕ sM ⊕ n

= T[e,0]E ∼= T[e,X+Y ]E, (4.6)

where the last identification is made via the map ϕX+Y
0 in (4.3). Furthermore, we write

Z = ZtM + Zt⊥M
, where ZtM ∈ tM and Zt⊥M

∈ t⊥M .

Proposition 4.5 The vector field v$0
1 on E vanishes at the same points as the vector

field 4∗v$. In a neighbourhood of the set of these points, the taming maps $0
1 and

4∗$ are homotopic in the sense of Definition 3.4.
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The proof of this proposition is based on Lemmas 4.6–4.10. In the arguments below,
we will use the K -invariant Riemannian metric on E induced by the inner product on
g and the identification ϕX+Y

0 in (4.3). As noted in Sect. 3.1, Braverman’s index is
independent of the Riemannian metric used, as long as it is complete and K -invariant.
So we are free to use the Riemannian metric most suited to our purposes.

Lemma 4.6 For all X ∈ sM and Y ∈ n,

v$t
1([e, X + Y ]) = (t[Yk, ξ ] + [Ys, ζ ] + tM , [X + Y , ξ ]) .

Proof By ad-invariance of the Killing form B, we have for all X ∈ tM ,

−B([Ys, ζ ], X) = B(Ys, [X , ζ ]) = 0,

so [Ys, ζ ] ∈ t⊥M . We also have [Yk, ξ ] ∈ t⊥M . So the claim follows from (4.5) and (4.6).
67

Lemma 4.7 There is a constant C > 0 such that for all t ∈ [0, 1], X ∈ sM and Y ∈ n,

‖v$t
1([e, X + Y ])‖ ≥ C‖X‖.

Proof Note that [X , ξ ] ∈ sM . Furthermore, since the adjoint action by HM commutes
with A, it preserves the spaces gβ , and hence n. So [Y , ξ ] ∈ n. Since the elements
[X , ξ ] and [Y , ξ ] lie in different subspaces of g, Lemma 4.6 implies that there is a
constant C1 > 0 such that for all X and Y as above,

‖v$t
1([e, X + Y ])‖ ≥ ‖[X + Y , ξ ]‖ ≥ C1‖[X , ξ ]‖. (4.7)

Now X ∈ sM ⊥ a and also X ∈ s ⊥ tM . So X ⊥ h, which means that it lies in the
sum of the root spaces of (gC, hC). Write

X =
∑

α∈R(gC,hC)

Xα,

where Xα ∈ gCα . Since [X , ζ ] = 0, we have

‖[X , ξ ]‖2 = ‖[X , ξ + ζ ]‖2

=
∑

α∈R(gC,hC)

|〈α, ξ + ζ 〉|2‖Xα‖2

≥ min
α∈R(gC,hC)

|〈α, ξ + ζ 〉|2
∑

α∈R(gC,hC)

‖Xα‖2

= min
α∈R(gC,hC)

|〈α, ξ + ζ 〉|2‖X‖2.

Since the element ξ + ζ ∈ h is regular, the factor minα∈R(gC,hC) |〈α, ξ + ζ 〉|2 is
positive. Together with (4.7), this implies the claim. 67

123



A geometric realisation of tempered representations... 127

Lemma 4.8 There is a constant C > 0 such that for all t ∈ [0, 1], X ∈ sM and Y ∈ n,

‖v$t
1([e, X + Y ])‖ ≥ C‖Y‖.

Proof By Lemma 4.6, we have

‖v$t
1([e, X + Y ])‖ ≥ ‖t[Yk, ξ ] + [Ys, ζ ]‖. (4.8)

Since tM and a commute, there is a simultaneous weight space decomposition of gC

for the adjoint action by these algebras. (This is just a different way of writing the root
space decomposition of gC with respect to h = tM ⊕a.) The set of nonzero weights of
the action by a is .. Let 6 ⊂ it∗M be the set of weights of tM . For β ∈ . and δ ∈ 6,
let gCβ,δ be the corresponding weight space. Write

Y =
∑

β∈.+, δ∈6

Yβ,δ,

with Yβ,δ ∈ gCβ,δ . Then, since θgCβ,δ ⊂ gC−β,δ , we have

[Yk, ξ ] =
1
2

∑

β∈.+, δ∈6

[Yβ,δ + θYβ,δ, ξ ] = −1
2

∑

β∈.+, δ∈6

〈δ, ξ 〉(Yβ,δ + θYβ,δ).

Similarly,

[Ys, ζ ] =
1
2

∑

β∈.+, δ∈6

[Yβ,δ − θYβ,δ, ζ ] = −1
2

∑

β∈.+, δ∈6

〈β, ζ 〉(Yβ,δ + θYβ,δ).

So for all t ∈ [0, 1],

‖t[Yk, ξ ] + [Ys, ζ ]‖2 =
∑

β∈.+, δ∈6

|t〈δ, ξ 〉 + 〈β, ζ 〉|2
∥∥∥∥
1
2
(Yβ,δ + θYβ,δ)

∥∥∥∥
2

≥ min
β∈.+, δ∈6

|t〈δ, ξ 〉 + 〈β, ζ 〉|2
∑

β∈.+, δ∈6

∥∥∥∥
1
2
(Yβ,δ + θYβ,δ)

∥∥∥∥
2

= min
β∈.+, δ∈6

|t〈δ, ξ 〉 + 〈β, ζ 〉|2‖Yk‖2.

Now for all β and δ as above, we have 〈δ, ξ 〉 ∈ iR, while 〈β, ζ 〉 ∈ R. So

|t〈δ, ξ 〉 + 〈β, ζ 〉| ≥ |〈β, ζ 〉| > 0,

by assumption on ζ . Therefore, (4.8) implies that there is a constant C1 > 0 such that
for all t ∈ [0, 1], X ∈ sM and Y ∈ n,

‖v$t
1([e, X + Y ])‖ ≥ C1‖Yk‖.
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The projection map 1
2 (1 + θ) : n → k is injective. So there is a constant C2 > 0

such that for all Y ∈ n, ‖Yk‖ ≥ C2‖Y‖. This completes the proof. 67

Lemma 4.9 There is a constant C > 0 such that for all Z ∈ k, X ∈ sM and Y ∈ n,

‖Z E ([e, X + Y ])‖ ≤ C(1+ ‖X + Y‖)‖Z‖.

Proof By (4.6), we have

‖Z E ([e, X + Y ])‖2 = ‖Zt⊥M
‖2 + ‖[ZtM , X + Y ]‖2.

For a constant C1 > 0, this is at most equal to

‖Zt⊥M
‖2 + C1‖ZtM ‖2‖X + Y‖2 ≤ (1+ C1)(1+ ‖X + Y‖2)‖Z‖2.

67

Lemma 4.10 We have

4∗$([e, X + Y ]) = $1
1([e, X + Y ])+O(‖X + Y‖2).

as X + Y ∈ sM ⊕ n goes to 0.

Proof We have

4∗$([e, X + Y ]) = (exp(X) exp(Y )(ξ + ζ )) |k

=
∞∑

l,m=0

1
l!m! (ad(X)

l ad(Y )m(ξ + ζ ))|k

= (ξ + ζ )|k + [X , ξ + ζ ]|k + [Y , ξ + ζ ]|k +O(‖X + Y‖2).

Now (ξ + ζ )|k = ξ , [X , ξ + ζ ]|k = [X , ζ ] = 0, and

[Y , ξ + ζ ]|k = [Yk, ξ ] + [Ys, ζ ].

67

Proof of Proposition 4.5 ByLemmas4.7 and4.8, the vector fieldv$t
1 vanishes precisely

at the set K ×HM {0} ⊂ E . Themap$ is a moment map for the action by K onG/H =
Ad∗(G)(ξ + ζ ) with respect to the Kirillov–Kostant symplectic form. Therefore, the
vector field v$ is the Hamiltonian vector field of the function 1

2‖$‖2. By Proposition
2.1 in [37], this vector field therefore vanishes precisely at the set {kH ; k ∈ K } ⊂
G/H . So v4∗$ = 4∗v$ vanishes at the set

4−1({kH ; k ∈ K }) = K ×HM {0}.
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Let C1 > 0 be as the constant C in Lemma 4.9. Then by Lemma 4.10, we have for
all X ∈ sM and Y ∈ n,

‖v$1
1([e, X + Y ]) − v4∗$[e, X + Y ]‖

≤ C1(1+ ‖X + Y‖)‖$1
1([e, X + Y ]) − 4∗$([e, X + Y ])‖

= O(‖X + Y‖2),
(4.9)

as X + Y → 0. By Lemmas 4.7 and 4.8, there is a constant C2 > 0 such that for all
t ∈ [0, 1], X ∈ sM and Y ∈ n,

‖v$t
1([e, X + Y ])‖ ≥ C2‖X + Y‖.

Together with (4.9), this implies that in a small enough neighbourhood of K ×HM {0}
in E , we have

(v$1
1 , v4∗$) ≥ 0.

Corollary 3.6 implies that $1
1 and 4∗$ are homotopic in this neighbourhood. Lem-

mas 4.7 and 4.8 imply that $0
1 and $1

1 are homotopic, so the claim follows. 67

4.5 Proof of Proposition 4.1

We prove Proposition 4.1 by combining the earlier results in this section with a last
homotopy of taming maps.

Lemma 4.11 The map $E is taming, and homotopic to the map $0
1 defined in (4.5).

Proof For t ∈ [0, 1], consider the map $E
t : E → k defined by

$E
t ([k, X + Y ]) = Ad(k)(ξ − | ad(ζ )|−t ad(ζ )Ys).

Then $E
0 = $0

1 and $E
1 = $E .

Since | ad(ζ )|−t ad(ζ )Ys ⊥ tM for all t , we have by (4.6),

‖v$E
t ([e, X + Y ])‖2 =

∥∥(
| ad(ζ )|−t ad(ζ )Ys + tM , [X + Y , ξ ]

)∥∥2

≥ ‖| ad(ζ )|−t ad(ζ )Ys‖2.

If we write Y = ∑
β∈.+ Yβ , with Yβ ∈ gβ , then

‖| ad(ζ )|−t ad(ζ )Ys‖2 =
∑

β∈.+

|〈β, ζ 〉|2
|〈β, ζ 〉|2t

∥∥∥∥
1
2
(Yβ + θYβ)

∥∥∥∥
2

≥ min
β∈.+

|〈β, ζ 〉|2
|〈β, ζ 〉|2t ‖Yk‖

2.
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As in the proof of Lemma 4.8, we conclude that there is a constant C1 > 0 such that
for all X and Y as above,

‖v$E
t ([e, X + Y ])‖ ≥ C1‖Y‖.

Exactly as in the proof of Lemma 4.7, we also find a constant C2 > 0 such that for all
such X and Y ,

‖v$E
t ([e, X + Y ])‖ ≥ C2‖X‖.

Hence the vector field v$E
t vanishes precisely at the set K ×HM {0}. So $E

t is taming
for all t , and the claim follows. 67

Proof of Proposition 4.1 Successively applying Lemmas 4.2, 4.4, Propositions 3.7
and 4.5, and finally Lemma 4.11, we find that

indexK (
∧

J T (G/H) ⊗ LV ,$) = indexK
(
4∗(

∧
J T (G/H) ⊗ LV ),4

∗$
)

= indexK (
∧

J E T E ⊗ LE
V ,4

∗$)

= indexK (
∧

J E T E ⊗ LE
V ,$

0
1)

= indexK
(∧

J E T E ⊗ LE
V ,$

E
)
.

67

5 Indices on fibred products

In Sect. 6, we will explicitly compute the right hand side of the equality in Proposi-
tion 4.1, see Proposition 6.1. This involves a general result about indices of deformed
Dirac operators on certain fibred product spaces, Proposition 5.1. Our goal in this
section is to prove this result. In this section and the next, we will need to consider
more general deformations of Dirac operators than in (3.1) in some places.

5.1 The result

Let K ′ < K be a closed subgroup. Let N be a complete Riemannian manifold with an
isometric action by K ′. Let M := K ×K ′ N . Let S → M be a K -equivariant Clifford
module. Let ψ : M → k be a taming map for the action by K on M . Then we have
the index

indexK (S,ψ) ∈ R̂(K ).

We assume that the Riemannian metric on M is induced by a K ′-invariant Riemannian
metric on N and a K ′-invariant inner product on k. As noted below Theorem 3.2, the
choice of the Riemannian metric does not influence the index.
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A Clifford connection ∇ on a vector bundle S → M with a Clifford action c by
definition satisfies

[∇v, c(w)] = c(∇T M
v w),

for al vector fields v and w, where ∇T M is the Levi–Civita connection. Let ∇N be
a K ′-invariant Hermitian Clifford connection on S|N → N . Let DN be the Dirac
operator

DN : /∞(S|N ) ∇N

−−→ /∞(T ∗N ⊗ S|N ) c−→ /∞(S|N ). (5.1)

The vector field vψ restricts to a section of T M |N , so we have the endomorphism
c(vψ )|N of S|N . For any K ′-invariant, nonnegative function f ∈ C∞(N )K

′
, consider

the operator

DN
fψ := DN − i f c(vψ )|N (5.2)

on /∞(S|N ).
Proposition 5.1 If f is admissible, then the operator DN

f ψ is Fredholm on every K ′-
isotypical component of L2(S|N ). So it has a well-defined index

indexK ′(DN
fψ ) ∈ R̂(K ′).

Furthermore, for any δ ∈ K̂ , the multiplicities m±
δ of δ in the spaces (L2K ⊗

kerL2(DN
f ψ )

±)K
′
are finite, and we have

indexK (S,ψ) = (L2(K ) ⊗ indexK ′(DN
fψ ))

K ′
.

Remark 5.2 Roughly speaking, Proposition 5.1 plays the role in this paper that Theo-
rem 4.1 in [2] plays in [37].

5.2 A connection

To prove Proposition 5.1, we consider the connection ∇M on S defined by the proper-
ties that it is K -invariant, and for all X ∈ h⊥ ⊂ k, n ∈ N , v ∈ TnN and s ∈ /∞(S),

(∇M
XM
n +v

s)[e, n] := (LXs)([e, n])+ (∇N
v s|N )(n). (5.3)

Consider the projections

pK/H : K × N → K/H ;
pN : K × N → N ;
pM : K × N → M .
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Let ∇T (K/H) and ∇T N be the Levi–Civita connections on T (K/H) and T N , respec-
tively. Then the Levi–Civita connection ∇T M on T M satisfies

p∗
M∇T M = p∗

K/H∇T (K/H) + p∗
N∇T N . (5.4)

(See Lemma 3.4 in [13].)

Lemma 5.3 The relation (5.3) indeed defines a well-defined, K -invariant, Hermitian
Clifford connection ∇M on S.
Proof Every tangent vector in T[e,n]M can be represented in a unique way as XM

n +v,
with X and v as above. To show that the K -invariant extension is well-defined, we note
that ∇M as defined above is H -invariant. Indeed, ∇N is H -invariant by assumption,
while for all h ∈ H , Tnh(XM

n ) = (Ad(h)X)Mhn , and

LAd(h)X = hLXh−1.

To verify the Leibniz rule, note that for all ϕ ∈ C∞(M),

(LXϕs)([e, n])+ (∇N
v ϕs|N )(n)

= ϕ(n)
(
(LXs)([e, n])+ (∇N

v s|N )(n)
)
+ (XM ( f )([e, n])+ v( f )(n))s([e, n]).

The property that ∇M is Hermitian follows from the facts that ∇N is, and that the
metric on S is K -invariant.

It remains to show that ∇M is a Clifford connection. Let X , Y ∈ h⊥, and let v and
w be vector fields on N . The space of vector fields on M is isomorphic to the subspace

/∞(K × N , p∗
N T N ⊕ p∗

K/HT (K/H))H ⊂ /∞(K × N , p∗
N T N ⊕ p∗

K/HT (K/H)).

We work in the larger space on the right hand side, where we have the elements p∗
Nv

and p∗
Nw. Connections on vector bundles on M define operators on this larger space

via the pullback along pM . Let s ∈ /∞(S). Since LX commutes with c(p∗
Nw) and

p∗
N∇N

v commutes with c(Y M ), we have

([
∇M
XM+p∗

N v
, c(Y M + p∗

Nw)
]
s
)
|N = ([LX , c(Y M )]s)|N + [∇N

v , c(w)](s|N ).
(5.5)

Now∇N is a Clifford connection, so by (5.4), [∇N
v , c(w)] = c(∇T M

v w). Furthermore,
equivariance of the Clifford action implies that

[LX , c(Y M )] = c([X ,Y ]M ).

Now by (5.4), [X ,Y ]M = ∇T M
XM Y M , so we conclude that the right hand side of (5.5)

equals

(
c
(
∇T M
XM Y M

)
s
)
|N + c

(
∇T M
v w

)
(s|N ) =

(
c
(
∇T M
XM+v

(
Y M + p∗

Nw
))

s
)
|N .
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Here we used that ∇T M
XM w = ∇T M

v Y M = 0. 67

5.3 Estimates for Dirac operators

Let DM be the Dirac operator on /∞(S) associated to ∇M . Write

DM
f ψ := DM − i f c(vψ ),

for a nonnegative function f ∈ C∞(M)K = C∞(N )H . Note that

S = K ×H (S|N ), (5.6)

via the map [k, x] 8→ k · x for all k ∈ K and x ∈ S|N . So

/∞(S) = (C∞(K ) ⊗ /∞(S|N ))H . (5.7)

Let {X1, . . . , Xl} be an orthonormal basis of h⊥. Then, with respect to the decompo-
sition (5.7), we have

DM − 1 ⊗ DN =
l∑

j=1

c(XM
j )LX j . (5.8)

For δ ∈ K̂ , we denote the δ-isotypical subspace of L2(S) by L2(S)δ .

Lemma 5.4 For every δ ∈ K̂ ,

(a) the operator DM − 1 ⊗ DN is bounded on L2(S)δ (with norm depending on δ);
(b) there is a constant Cδ > 0 such that for all f ∈ C∞(M)K , we have on L2(S)δ ,

−Cδ(1+ f ‖vψ‖)
≤ DM

f ψ (D
M − 1 ⊗ DN )+ (DM − 1 ⊗ DN )DM

f ψ

≤ Cδ(1+ f ‖vψ‖).

Proof Let δ ∈ K̂ . We use (5.8). Note that LX j is bounded on L2(S)δ , with norm
depending on δ. For each j , because X j ∈ h⊥, and the Riemannian metric is of the
form mentioned on page 35, we have

‖c(XM
j )‖ = ‖XM

j ‖ = ‖(X j , 0)‖ = ‖X j‖,

which is constant. So part (a) follows.
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For part (b), we note that K -invariance of DM
f ψ implies that

DM
f ψ (D

M − 1 ⊗ DN )+ (DM − 1 ⊗ DN )DM
fψ

=
l∑

j=1

(
DM

f ψc(X
M
j )+ c(XM

j )D
M
f ψ

)
LX j . (5.9)

Now for every j , LX j is bounded on L2(S)δ , while

DM
f ψc(X

M
j )+ c(XM

j )D
M
f ψ = DMc(XM

j )+ c(XM
j )D

M − 2i f (vψ , XM
j ).

By a straightforward computation (see (1.26) in [43] and Lemma 9.2 in [5]), we have
for any local orthonormal frame {e1, . . . , edim(M)} of T M , and any j ,

DMc(XM
j )+ c(XM

j )D
M = i

∑

j

c(e j )c
(
∇T M
e j XM

j

)
− 2i(LX j + 〈$S , X j 〉),

with $S as in (3.2).
Now for every j , we have 〈$S , X j 〉 = 0 by definition of ∇M in (5.3). And

|(vψ , XM
j )| ≤ ‖vψ‖

by definition of the Riemannian metric used. Finally, we claim that ‖∇T M XM
j ‖ is

bounded. Indeed, recall the form (5.4) of the Levi–Civita connection on a fibred
product space like M . Let $T (K/H) ∈ End(T (K/H))⊗ k∗ be such that for all Z ∈ k,

〈$T (K/H), Z〉 = ∇T (K/H)
Z+h − LZ . (5.10)

We have for all k ∈ K and n ∈ N ,

XM
j (kn) = (Ad(k)X j , 0) ∈ h⊥ ⊕ TnN ∼= TknM .

So for all w ∈ T N , we have

∇T M
w XM

j = (p∗
N∇T N )wXM

j = 0.

And for all Z ∈ k, and n ∈ N ,

(
∇T M
ZM XM

j

)
(n) =

(
(LZ + 〈$S , Z〉)XM

j

)
(n) = ([Z , X j ] + 〈$S , Z〉)X j , 0).

This is constant in n, so we find that ‖∇T M XM
j ‖ is indeed bounded.

By combining the above arguments, we find that the claim in part (b) is true. 67
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5.4 Proof of Proposition 5.1

For t ∈ [0, 1], consider the operator

Dt, f ψ := DM
f ψ + t(1 ⊗ DN − DM ).

on /∞(S). We view it as an unbounded operator on L2(S).

Lemma 5.5 If f ∈ C∞(M)K is admissible, then for all t ∈ [0, 1], the operator D2
t, f ψ

has discrete spectrum on every K -isotypical subspace of L2(S).

Proof We have

D2
t, f ψ =

(
DM

f ψ

)2
+ t2(1 ⊗ DN − DM )2

−t
(
DM

f ψ (D
M − 1 ⊗ DN )+ (DM − 1 ⊗ DN )DM

f ψ

)
.

Let δ ∈ K̂ . Braverman shows in the proof of Theorem 2.9, on page 22 of [5], there is
a constant Cδ

1 > 0 such that for all f ∈ C∞(M)K , we have on L2(S)δ ,

(DM
fψ )

2 ≥ (DM )2 + f 2‖vψ‖2 − Cδ
1(‖d f ‖‖vψ‖ + f h),

with h as in (3.3). Using Lemma 5.4, we let Cδ
2 be the norm of DM − 1 ⊗ DN on

L2(S)δ , and Cδ
3 as the constant Cδ in part (b) of that lemma. Then we find that on

L2(S)δ , all f ∈ C∞(M)K , and all t ∈ [0, 1],

D2
t, f ψ ≥ (DM )2 + f 2‖vψ‖2 − Cδ

1(‖d f ‖‖vψ‖ + f h) − Cδ
2 − Cδ

3(1+ f ‖vψ‖)
≥ (DM )2 + f 2‖vψ‖2 − Cδ(‖d f ‖‖vψ‖ + f h + 1),

for Cδ := Cδ
1 + Cδ

2 + Cδ
3. If f is admissible, then the function

f 2‖vψ‖2 − Cδ(‖d f ‖‖vψ‖ + f h + 1)

goes to infinity as its argument goes to infinity in M . This implies the claim. 67

Proof of Proposition 5.1 Fix δ ∈ K̂ . Suppose f ∈ C∞(M)K is admissible. Then by
Lemma 5.5, the operator

Dt, f ψ

Dt, f ψ + i

defines a Fredholm operator on L2(S)δ for every t ∈ [0, 1]. This path of bounded
operators is continuous in the operator norm, because (5.8) is bounded on L2(S)δ . So
the operators DM

f ψ = D0, f ψ and D1, fψ on L2(S)δ have finite-dimensional kernels,
and the same index.
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Because of the form of the isomorphism (5.6) and K -equivariance of ψ and the
Clifford action, the operator c(vψ ) on/∞(S) corresponds to the operator 1⊗c(vψ )|N
on (C∞(K ) ⊗ /∞(S|N ))H . So D1, f ψ = 1 ⊗ DN

fψ . This operator is Fredholm on

L2(S)δ ∼= δ ⊗ (δ∗ ⊗ L2(S|N ))H

and equals 1δ ⊗ 1δ∗ ⊗ DN
fψ on this space. Now

(δ∗ ⊗ L2(S|N ))H =
⊕

δ′∈Ĥ
[δ|H : δ′]L2(S|N )δ′ .

So the operator DN
f ψ is Fredholm on L2(S|N )δ′ , and therefore has a well-defined

equivariant index in R̂(H). Furthermore,

indexK (D1, f ψ ) =
(
L2(K ) ⊗ indexH (DN

f ψ )
)H

.

67

Remark 5.6 A variation on this proof of Proposition 5.1 is to note that Lemma 5.5
implies that the operator Dt, f ψ defines a class in the K -homology of the group C∗-
algebra C∗K , for all t ∈ [0, 1].

If N is compact (so we may take f = 0), then Proposition 5.1 is a consequence of
homotopy invariance of the index of transversally elliptic operators.

6 Computing the linearised index

In this section, we prove an explicit expression for the right hand side of the equality
in Proposition 4.1.

Let R+
n ⊂ R+

M be the set of noncompact positive roots of (mC, tCM ). Then, as
complex vector spaces, we have

sM =
⊕

α∈R+
n

Cα.

Define

(∧
JsM

sM
)−1

:=
⊗

α∈R+
n

∞⊕

n=0

Cnα ∈ R̂(HM ).

This notation is motivated by the equality

(∧
JsM

sM
)−1

⊗ ∧
JsM

sM = C,
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the trivial representation of HM . Let ρM
n be half the sum of the roots in R+

n .

Proposition 6.1 We have

indexK
(∧

J E T E ⊗ LE
V ,$

E )

= (−1)dim(M/KM )/2
(
L2(K ) ⊗ C2ρM

n
⊗

(∧
JsM

sM
)−1

⊗ ∧
JkM /tM

kM/tM ⊗ V
)HM

.

In Sect. 7, we will use this proposition to complete the proof of Theorem 3.11.

6.1 A constant admissible function

We will apply Proposition 5.1 and then use a further decomposition of the resulting
index to prove Proposition 6.1. This decomposition is possible because the constant
function 1 turns out to be admissible in our setting. We prove this in the current
subsection.

LetW1 andW2 be finite-dimensional representation spaces of a group H . Consider
the H -equivariant vector bundle

W1 × W2 → W1.

Let ∇W2 be the connection on this bundle defined by

∇W2
v s = T s(v)

for all vector fields v on W1 and all s ∈ C∞(W1,W2). Here T s denotes the derivative
of s. Explicitly, at a vector w1 ∈ W1, we have

(T s(v))(w1) = Tw1s(v(w1)) ∈ Ts(w1)W2 = W2.

By a straightforward computation, this connection is H -invariant.
Now we take

W1 = sM ⊕ n;
W2 =

∧
J E T[e,0]E ⊗ V ,

and consider the H -invariant connection ∇
∧

J E T[e,0]E⊗V on

(sM ⊕ n) × ∧
J E T[e,0]E ⊗ V =

(∧
J E T E ⊗ LE

V

)
|sM⊕n → sM ⊕ n,

defined as above. (We identify sM ⊕ n with {[e, X + Y ]; X ∈ sM ,Y ∈ n} ⊂ E .) Let
∇E be the connection on

∧
J E T E ⊗ LE

V induced by ∇
∧

J E T[e,0]E⊗V as in (5.3).

Proposition 6.2 The constant function 1 on E is admissible for the connection ∇E

and the taming map $E .
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The claim is that the function

‖v$E ‖2

‖$E‖ + ‖v$E ‖ + ‖∇T Ev$E ‖ + ‖〈$
∧

J E T E⊗LE
V ,$E 〉‖ + 1

(6.1)

goes to infinity as its argument goes to infinity in M . Here $
∧

J E T E⊗LE
V is as in (3.2).

By (4.6) and the definition of $E , we have for all X ∈ sM and Y ∈ n,

v$E
([e, X + Y ]) =

(
| ad(ζ )|−1 ad(ζ )Ys + tM ,−[ξ, X + Y ]

)
. (6.2)

Lemma 6.3 We have
∥∥∥
(
∇T Ev$E

)
([k, X + Y ])

∥∥∥ = O(‖X + Y‖)

as X + Y → ∞ in sM ⊕ n.

Proof Recall the expression (5.4) for ∇T E , which we now apply with H = HM and
N = sM ⊕ n. Also recall the definition (5.10) of $T (K/H) ∈ End(T (K/HM )) ⊗ k∗.
Since v$E

is K -invariant, we have for all Z ∈ k, and all X ∈ sM and Y ∈ n,
(
p∗
K/HM

∇K/HM
Z+tM

v$E
)
([e, X + Y ]) = 〈$T (K/H), Z〉v$E

([e, X + Y ]).

Hence
∥∥∥
(
p∗
K/HM

∇K/HM v$E
)
([e, X + Y ])

∥∥∥ = O
(∥∥∥v$E

([e, X + Y ])
∥∥∥
)
= O(‖X + Y‖)

as X + Y → ∞ in sM ⊕ n.
For X ∈ sM and Y ∈ n, we have

∇sM⊕n
X+Y = X + Y ,

where on the right hand side, X andY are viewed as differential operators onC∞(sM⊕
n). Since (6.2) is linear in X and Y , this implies that (p∗

sM⊕n∇sM⊕nv$E
)([e, X +Y ])

is linear in X and Y . 67
Lemma 6.4 The function ‖〈$

∧
J E T E⊗LE

V ,$E 〉‖ is constant.

Proof If Z ∈ tM , then for all s ∈ /∞(
∧

J E T E ⊗ LE
V ),

((
∇

∧
J E T E⊗LE

V
Z E − LZ

)
s
)
|sM⊕n = ∇ZsM⊕n(s|sM⊕n) − LZ (s|sM⊕n).

Now for X ∈ sM and Y ∈ n, we have

LZ s([e, X + Y ]) = d
dt

∣∣∣∣
t=0

exp(t Z)s([e, exp(−t Z)(X + Y )])

= ad(Z)(s([e, X + Y ]))+
(
T (s|sM⊕n)(ZsM⊕n)

)
(X + Y ).
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So, for Z ∈ tM ,
〈
$

∧
J E T E⊗LE

V , Z
〉
= ad(Z).

If Z ∈ t⊥M , then the left hand side of this equality equals 0. We conclude that for all
X ∈ sM and Y ∈ n,

〈
$

∧
J E T E⊗LE

V ,$E
〉
([e, X + Y ]) = ad(ξ),

which is constant in X and Y . 67
Proof Proposition 6.2 By Lemmas 4.7 and 4.8, there is a constant C > 0 such that for
all X ∈ sM and Y ∈ n,

∥∥∥v$0
1([e, X + Y ])

∥∥∥ ≥ C(‖X‖ + ‖Y‖).

The proofs of these lemmas also directly show that this estimate holdswith$0
1 replaced

by $E . Furthermore, we have

‖$E ([e, X + Y ])‖ = O(‖X + Y‖)

as X + Y → ∞ in sM ⊕ n. Together with Lemmas 6.3 and 6.4, these estimates imply
that (6.1) goes to infinity as its argument goes to infinity. 67

6.2 Indices on vector spaces

The starting point of the proof of Proposition 6.1 is an application of Proposition 5.1.
Note that sM is a complex subspace of m/tM with respect to the complex structure
Jm/tM ; let JsM be the restriction of Jm/tM to sM . Consider the trivial vector bundle

sM × ∧
JsM

sM → sM .

We view this bundle as a nontrivial HM -vector bundle. The constant map$sM : sM →
tM with value ξ is a taming map for the action by HM on sM . Therefore, we have the
equivariant index

indexHM (sM × ∧
JsM

sM ,$sM ) ∈ R̂(HM ).

Next, consider the trivial vector bundle

n × ∧
Jζ (n

− ⊕ n+) → n.

(Recall that n = n+; we use the notation n+ where this space appears in the direct
sum with n−.) This bundle is also a nontrivial HM -vector bundle. We write c ◦ Jζ for
the endomorphism of this bundle give by
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c ◦ Jζ (Y ) = c(JζY ),

for Y ∈ n. Here c denotes the Clifford action by n− ⊕ n+ on
∧

Jζ (n
− ⊕ n+) as in

Example 3.1. Note that for Y ∈ n, the vector JζY ∈ n− does not lie in the tangent
space TYn. Hence Y 8→ JζY is not a vector field on n, so the endomorphism c ◦ Jζ is
not of the type of the deformation term in (3.1). Let {Y1, . . . ,Ys} be an orthonormal
basis of n. Consider the Dirac operator

Dn :=
s∑

j=1

Y j ⊗ c(Y j )

on

/∞(n × ∧
Jζ (n

− ⊕ n+)) = C∞(n) ⊗ ∧
Jζ (n

− ⊕ n+).

The operator

Dn − ic ◦ Jζ (6.3)

is not of the form (3.1), but we will see in Lemma 6.7 that it has a well-defined
HM -equivariant index (which is actually just the trivial representation of HM ).

Proposition 6.5 The L2-kernel of the operator (6.3) is finite-dimensional, and

indexK
(∧

J E T E ⊗ LE
V ,$

E)

=
(
L2(K ) ⊗ indexHM (sM × ∧

JsM
sM ,$sM ) ⊗ indexHM (D

n − ic ◦ Jζ )

⊗∧
JkM /tM

kM/tM ⊗ V
)HM

,

where JkM/tM is the restriction of Jm/tM to the complex subspace kM/tM ⊂ m/tM.

We will prove this proposition in the rest of this section. But first, we show how it
allows us to prove Proposition 6.1.

Lemma 6.6 We have

indexHM (sM × ∧
JsM

sM ,$sM ) = (−1)dim(M/KM )/2C2ρM
n

⊗
(∧

JsM
sM

)−1
,

where ρM
n is half the sum of the elements of R+

n .

Proof See the bottom of page 841 in [37], and also Lemma 5.7 in [36]; these in turn
are based on Proposition 6.2 in [2]. In the notation of those references, we use the
positive expansion of the inverse, because (ξ,α) > 0 for all α ∈ R+

n . 67

In Sect. 6.4, we will compute the index on n that occurs in Proposition 6.5, and
reach the following conclusion.
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Lemma 6.7 We have

indexHM (D
n − ic ◦ Jζ ) = C,

the trivial representation of HM.

Combining Proposition 6.5 and Lemmas 6.6 and 6.7, we conclude that Proposi-
tion 6.1 is true.

6.3 Decomposing the index on E

Let us prove Proposition 6.5. In Proposition 5.1, we take H = HM , N = sM ⊕n, S =∧
J E T E , and ψ = $E . By Proposition 6.2, we may take f = 1 in Proposition 5.1.

That proposition then implies that

indexK
(∧

J E T E ⊗ LE
V ,$

E
)
=

(
L2(K ) ⊗ indexHM (D

sM⊕n
$E )

)HM
, (6.4)

with DsM⊕n
f $E as in (5.2), defined with respect to the connection ∇

∧
J E T[e,0]E⊗V as in

Sect. 6.1. The operator DsM⊕n
$E acts on sections of the vector bundle

(∧
J E T E ⊗ LE

V

)
|sM⊕n

= (sM ⊕ n) ×
(∧

JsM
sM ⊗ ∧

Jζ (n
− ⊕ n+) ⊗ ∧

JkM /tM
kM/tM

)
⊗ V

=
(
sM × ∧

JsM
sM

)
!

(
n × ∧

Jζ (n
− ⊕ n+)

)
⊗ ∧

JkM /tM
kM/tM ⊗ V .

Here ! denotes the exterior tensor product of vector bundles, we use graded tensor
products everywhere, and, as before, we identify

sM ⊕ n ∼= {[e, X + Y ]; X ∈ sM , Y ∈ n} ⊂ E .

In terms of this decomposition, (6.2) implies that for all X ∈ sM and Y ∈ n,

c(v$E
)(X + Y )

= c(−[ξ, X ]) ⊗ 1∧
Jζ
(n−⊕n+) ⊗ 1∧

JkM /tM
kM/tM ⊗ 1V

+1∧
JsM

sM ⊗
(
c(−[ξ,Y ])+ c(| ad(ζ )|−1 ad(ζ )Ys)

)
⊗ 1∧

JkM /tM
kM/tM ⊗ 1V .

(6.5)

Here we used the fact that the element

| ad(ζ )|−1 ad(ζ )Ys ∈ t⊥M
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induces a term in k/tM orthogonal to kM , hence in the space k/kM that is identified
with n−. So the Clifford action by this vector only acts nontrivially on

∧
Jζ (n

− ⊕n+),
and trivially on

∧
JsM

sM .

Define the map vn : n → n− ⊕ n+ by

vn(Y ) = −[ξ, Y ] + | ad(ζ )|−1 ad(ζ )Ys,

for Y ∈ n. Then (6.5) becomes

c(v$E
)(X + Y )

= c(v$sM (X)) ⊗ 1∧
Jζ
(n−⊕n+) ⊗ 1∧

JkM /tM
kM/tM ⊗ 1V

+1∧
JsM

sM ⊗ c(vn(Y )) ⊗ 1∧
JkM /tM

kM/tM ⊗ 1V .

(Recall that $sM is the constant map with value ξ .)
Let {X1, . . . , Xr } be an orthonormal basis of sM . Let DsM be the Dirac operator

DsM :=
r∑

j=1

X j ⊗ c(X j )

on

/∞(sM × ∧
JsM

sM ) = C∞(sM ) ⊗ ∧
JsM

sM .

Then for the choice of the connection on (
∧

J E T E ⊗ LE
V )|sM⊕n that we made at the

start of Sect. 6.1, the deformed Dirac operator DsM⊕n
$E as in (5.2) equals

DsM⊕n
$E

=
(
DsM − ic(v$sM )

)
⊗ 1∧

Jζ
(n−⊕n+) ⊗ 1∧

JkM /tM
kM/tM ⊗ 1V

+1∧
JsM

sM ⊗
(
Dn − ic(vn)

)
⊗ 1∧

JkM /tM
kM/tM ⊗ 1V . (6.6)

Lemma 6.8 The index indexHM (D
n − ic(vn)) is well-defined, so is its tensor product

with indexHM (sM × ∧
JsM

sM ,$sM ), and we have

indexHM (D
sM⊕n
$E )

= indexHM (D
n − ic(vn)) ⊗ indexHM (sM × ∧

JsM
sM ,$sM ) ⊗ ∧

JkM /tM
kM/tM ⊗ V .

Proof Because the tensor products in (6.6) are graded, we have
(
DsM⊕n

$E

)2
=

(
DsM − ic(v$sM )

)2 ⊗ 1∧
Jζ
(n−⊕n+) ⊗ 1∧

JkM /tM
kM/tM ⊗ 1V

+1∧
JsM

sM ⊗
(
Dn − ic(vn)

)2 ⊗ 1∧
JkM /tM

kM/tM ⊗ 1V .
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Since all operators occurring here are nonnegative, this implies that

ker(DsM⊕n
$E ) = ker(DsM − ic(v$sM )) ⊗ ker(Dn − ic(vn)) ⊗ ∧

JkM /tM
kM/tM ⊗ V .

Here the kernels are L2-kernels, and the equality includes gradings. 67
To prove Proposition 6.5, we will show that we may replace Dn − ic(vn) by

Dn − ic ◦ Jζ in the above result. Consider the map ṽn : n → n− ⊕ n+ given by

ṽn(Y ) = | ad(ζ )|−1 ad(ζ )Ys,

for Y ∈ n.

Lemma 6.9 Let Y ∈ n. Under the identification

T[e,Y ]E ∼= T[e,0]E = sM ⊕ n− ⊕ n+ ⊕ kM/tM

via the map ϕY
0 in (4.3), we have

ṽn(Y ) = JζY .

Proof Let Y ∈ n. Since ad(ζ ) anticommutes with θ , we have

| ad(ζ )|−1 ad(ζ )Ys = 1
2
(1+ θ)| ad(ζ )|−1 ad(ζ )Y = 1

2
(1+ θ)θ JζY = 1

2
(1+ θ)JζY .

The identification n− ∼= k/kM is made via the map 1
2 (1+ θ), so the claim follows. 67

Proposition 6.10 The multiplicities of all irreducible representations of HM in the
L2-kernels of the operators

Dn − ic(vn) and Dn − ic(ṽn) (6.7)

are finite, and we have

indexHM (D
n − ic(vn)) = indexHM (D

n − ic(ṽn)) ∈ R̂(HM ).

This proposition will be proved in Sect. 6.5.

Proof of Proposition 6.5 By (6.4) and Lemma 6.8, we have

indexK
(∧

J E T E ⊗ LE
V ,$

E
)

=
(
L2(K ) ⊗ indexHM (sM × ∧

JsM
sM ,$sM ) ⊗ indexHM (D

n − ic(vn))

⊗∧
JkM /tM

kM/tM ⊗ V
)HM

.

By Lemma 6.9, we have c(ṽn) = c ◦ Jζ , so the proposition follows from Proposi-
tion 6.10. 67
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6.4 The index on n

The proof of Lemma 6.7 is a direct computation on a vector space. Let e0 and e1 be
the generators of the complex exterior algebra

∧
CC = C ⊕ C in degrees 0 and 1,

respectively. The Clifford action c byC on
∧

CC as in Example 3.1 now has the form

c(z)e0 = ze1;
c(z)e1 = −z̄e0,

for z ∈ C. Let c ◦ i be the endomorphism of the trivial bundle R × ∧
CC → R given

by

(c ◦ i)(x) = c(i x)

for x ∈ R. Consider the Dirac operator

DR := c(1)
d
dx

on C∞(R,
∧

CC).

Lemma 6.11 The kernel of the operator DR − ic ◦ i intersected with L2(R,
∧

CC) is
one-dimensional, and spanned in degree zero by the function

x 8→ e−x2/2.

Proof Let s ∈ C∞(R,
∧

CC), andwrite s = s0e0+s1e1, for (complex-valued) s0, s1 ∈
C∞(R). The equation (DR − ic ◦ i)s = 0 then becomes

s′
0 + xs0 = 0;
s′
1 − xs1 = 0.

This is to say that there are complex constants a and b such that for all x ∈ R,

s0(x) = ae−x2/2;
s1(x) = bex

2/2.

67

Lemma 6.11 directly generalises to higher dimensions. Let n ∈ N, and consider
the endomorphism c ◦ i of the trivial bundle

Rn × ∧
CCn → R, (6.8)
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given by c ◦ i(x) = c(i x), for x ∈ Rn . Let {v1, . . . , vn} be the standard basis of Rn ,
with corresponding coordinates (x1, . . . , xn). Consider the Dirac operator

DRn :=
n∑

j=1

c(v j )
∂

∂x j

onC∞(Rn,
∧

CCn).We now also consider an isometric action by a compact Lie group
H on Rn (with the Euclidean metric), and suppose this action lifts to the bundle (6.8)
so that c is H -invariant.

Lemma 6.12 The kernel of the operator DRn − ic ◦ i intersected with L2(Rn,
∧

CCn)

is one-dimensional in even degree, zero-dimensional in odd degree, and the action by
H on this kernel is trivial.

Proof It follows from Lemma 6.11 that ker(DRn − ic ◦ i) ∩ L2(Rn,
∧

CCn) is one-
dimensional, spanned in degree zero by the function

x 8→ e−‖x‖2/2.

Since H acts isometrically, this function is H -invariant. 67

Proof of Lemma 6.7 Via a complex-linear isomorphism n− ⊕n+ ∼= Cs mapping n+ to
Rs , the operator Dn− ic◦ Jζ corresponds to the operator DRn − ic◦ i in Lemma 6.12.
That lemma therefore implies that the kernel of the operator Dn − ic ◦ Jζ intersected
with L2(n,

∧
Jζ n

− ⊕n+) is one-dimensional in even degree, zero-dimensional in odd
degree, and the action by HM on this kernel is trivial. 67

Remark 6.13 From a higher viewpoint, Lemma 6.7 is a special case of Bott periodicity.
Indeed, the operator Dn − ic ◦ Jζ is of Callias-type [7,27]. Therefore, it is Fredholm,
and by Proposition 2.18 in [7] or Lemma 3.1 in [27], its index is the Kasparov product
of the classes

[Dn] ∈ KKH (C0(n),C) and

[ic ◦ Jζ ] ∈ KKH (C,C0(n)).

The latter class is the Bott generator, and the fact that the index of Dn − ic ◦ Jζ is the
trivial representation of HM means that [Dn] is the inverse of that class.

6.5 Proof of Proposition 6.10

Wecannot directly apply Theorem 3.5 to prove Proposition 6.10, because the operators
involved are not of the kind considered in Sect. 3.1. (The deformation terms are not
given by Clifford multiplication by vector fields on n.) So we need slightly modified
arguments.

Let ‖ · ‖n be the norm function on n.
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Lemma 6.14 We have

(Dn − ic ◦ Jζ )2 ≥ (Dn)2 + ‖ · ‖2n − dim(n).

Proof By a direct computation, we have

(DR − ic ◦ i)2 = − d2

dx2
+

(
x2 − 1 0

0 x2 + 1

)
≥ − d2

dx2
+ x2 − 1,

with respect to the basis {e0, e1} of
∧

CC. By factorising DRn − ic ◦ i , we deduce that

(DRn − ic ◦ i)2 ≥ −
n∑

j=1

∂2

∂x2j
+ ‖x‖2 − n.

67

For t ∈ [0, 1], set

vt := tvn + (1 − t)ṽn.

Define the map ξn : n → n− ⊕ n+ by

ξn(Y ) = −[ξ, Y ],

for Y ∈ n.

Lemma 6.15 We have for all t ∈ [0, 1], for any orthonormal basis {Y1, . . . ,Ys} of n,

(Dn − ic(vt ))2 = (Dn − ic ◦ Jζ )2 + t2‖ξn‖2 − i t
∑

j

c(Y j )c(Y j (ξ
n))+ 2i tLξ .

Proof By Lemma 6.9, we have for all Y ∈ n,

vt (Y ) = tξn(Y )+ JζY .

So

(Dn − ic(vt ))2 = (Dn − ic ◦ Jζ )2 + t2‖ξn‖2 − i t
(
(Dn − ic ◦ Jζ )c(ξn)

+c(ξn)(Dn − ic ◦ Jζ )
)
.

Now if Y ∈ gβ , for β ∈ .+, then JζY ∈ g−β , whereas ξn(Y ) ∈ gβ . Since the adjoint
action by a is symmetric, it follows that JζY ⊥ ξn(Y ). So

(c ◦ Jζ )c(ξn)+ c(ξn)(c ◦ Jζ ) = 0.
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Hence

(Dn − ic ◦ Jζ )c(ξn)+ c(ξn)(Dn − ic ◦ Jζ ) = Dnc(ξn)+ c(ξn)Dn.

Let {Y1, . . . ,Ys} be an orthonormal basis of n. Then by a direct computation,

Dnc(ξn)+ c(ξn)Dn =
∑

j

c(Y j )c(Y j (ξ
n)) − 2Lξ .

67

Lemma 6.16 For all δ ∈ K̂ , there is a constant Cδ > 0 such that on L2(n,
∧

Jζ (n
− ⊕

n+))δ , we have for all t ∈ [0, 1],

(Dn − ic(vt ))2 ≥ (Dn)2 + ‖ · ‖2n + t2‖ξn‖2 − Cδ.

Proof By Lemmas 6.14 and 6.15, we have for all t ∈ [0, 1],

(Dn − ic(vt ))2 ≥ (Dn)2 + ‖ · ‖2n − dim(n)+ t2‖ξn‖2

−i t
∑

j

c(Y j )c(Y j (ξ
n))+ 2i tLξ .

On isotypical components, the Lie derivative Lξ is bounded. And for all j ,

c(Y j )c(Y j (ξ
n)) ≥ −‖Y j (ξ

n)‖.

Since ξn = − ad(ξ) is a linear map from n to itself, its derivatives are constant. 67

Proof of Proposition 6.10 Fix δ ∈ K̂ . Let Cδ be as in Lemma 6.16. For t ∈ R, set
Dt := Dn − ic(vt ). This operator is essentially self-adjoint by a finite propagation
speed argument, see e.g. Proposition 10.2.11 in [10]. Also, it is K -equivariant, so it
preserves isotypical components. Hence the operator

Ft :=
Dt

Dt + iCδ
∈ B(L2(n,

∧
Jζ (n

− ⊕ n+))δ)

is well-defined. This operator is Fredholm for all t by Lemma 6.16. It has the same
kernel as Dt , so the claim follows if we prove that the path t 8→ Ft is continuous in
the operator norm.

To prove this, we first show that c(ξn)(Dt + iCδ)
−1 is bounded. Let Cξ > 0 be a

constant such that

‖ξn‖ ≤ Cξ‖ · ‖n.

(Explicitly, we can take Cξ = |〈α, ξ 〉| for the root α of (gC, hC) for which this
number is maximal.) Let s ∈ /∞

c (n,
∧

Jζ (n
− ⊕ n+))δ . Then by Lemma 6.16 and
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self-adjointness of Dt ,

‖c(ξn)s‖2L2 ≤ C2
ξ ‖‖ · ‖ns‖2L2 ≤ C2

ξ (‖Dts‖2L2 + Cδ‖s‖)2L2 = C2
ξ ‖(Dt + iCδ)s‖2L2 .

In other words,

‖c(ξn)(Dt + iCδ)
−1(Dt + iCδ)s‖2L2 ≤ C2

ξ ‖(Dt + iCδ)s‖2L2 .

Since (Dt + iCδ) is invertible, every element of L2(n,
∧

Jζ (n
− ⊕n+))δ is of the form

(Dt + iCδ)s for some s ∈ (Dt + iCδ)s. So we conclude that c(ξn)(Dt + iCδ)
−1 is

indeed bounded, with norm at most C2
ξ .

Now let t1, t2 ∈ R. Then

Ft1 − Ft2 = Cδ(t2 − t1)(Dt1 + iCδ)
−1c(ξn)(Dt2 + iCδ)

−1.

By the above argument, the operator

(Dt1 + iCδ)
−1c(ξn)(Dt2 + iCδ)

−1

is bounded uniformly in t1 and t2. We conclude that the path t 8→ Ft is indeed
continuous in the operator norm. 67

7 Rewriting !|K

In this section, we rewrite the restricted representation π |K as follows. Let ρM
c and

ρM
n be half the sums of the compact and noncompact roots in R+

M , respectively.

Proposition 7.1 We have

π |K =
(
L2(K ) ⊗

(∧
JsM

sM
)−1

⊗ ∧
JkM /tM

kM/tM ⊗ Cλ−ρM
c +ρM

n
! χM

)HM

.

Together with Propositions 6.1 and 4.1, this will allow us to prove Theorem 3.11 in
Sect. 7.2.

7.1 Rewriting Blattner’s formula

In this section only, suppose that G is a Lie group satisfying the assumptions made
in Sect. 2.1. In particular, we suppose that G has discrete series and limits of discrete
series representations.

Paradan gave the following reformulation of Blattner’s formula.
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Lemma 7.2 (Paradan) Let πG0
λ,R+

G
be a discrete series or limit of discrete series repre-

sentation of the connected group G0, with parameters (λ, R+
G ) as in Sect. 2.1. Then

π
G0
λ,R+

G
|K0 =

(
L2(K0) ⊗ (

∧
Jss)

−1 ⊗ ∧
Jk/tk/t ⊗ Cλ−ρc+ρn

)T
.

For discrete series representations, this is Lemma 5.4 in [37]. The proof given there
extends directly to limits of discrete series, because Blattner’s formula applies to those
representations as well. (See the bottom of page 131 and the top of page 132 in [9].)

We will need a generalisation of this result to disconnected groups. Let

πG
λ,R+

G ,χ
= IndGG0ZG

(π
G0
λ,R+

G
! χ) (7.1)

be a discrete series or limit of discrete series representation of G, as in (2.4).

Proposition 7.3 We have

πG
λ,R+

G ,χ
|K =

(
L2(K ) ⊗ (

∧
Jss)

−1 ⊗ ∧
Jk/tk/t ⊗ Cλ−ρc+ρn ! χ

)T ZG
. (7.2)

Proof Note that

πG
λ,R+

G ,χ
|K = IndGG0ZG

(
π
G0
λ,R+

G
! χ

)
|K

= IndKK0ZG

((
π
G0
λ,R+

G
! χ

)
|K0ZG

)

= IndKK0ZG

((
π
G0
λ,R+

G

)
|K0 ! χ

)
.

Consider the element

V := (
∧

Jss)
−1 ⊗ ∧

Jk/tk/t ⊗ Cλ−ρc+ρn ∈ R̂(T ).

then by Lemma 7.2, and by Lemma 7.5 below, we have

IndKK0ZG

((
π
G0
λ,R+

G
|
)

K0

! χ

)

= IndKK0ZG

(
IndK0

T (V ) ! χ
)

= IndKK0ZG

(
IndK0ZG

T ZG
(V ! χ)

)

= IndKT ZG
(V ! χ),

which is the right hand side of (7.2). 67

Remark 7.4 Note that ZG acts on s and k/t trivially, hence the character e2ρn is equal
to the trivial character when restricted to T ∩ ZG . Therefore eλ−ρc+ρn = eλ−ρ when
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restricted to T ∩ ZG and the right hand side of (7.2) makes sense given the condition
(2.2) on χ .

Lemma 7.5 For all V ∈ R̂(T ), we have

IndK0
T (V ) ! χ = IndK0ZG

T ZG
(V ! χ). (7.3)

Proof Since K0/T ∼= K0ZG/T ZG , it can be shown that the restrictions of the repre-
sentations on both sides of (7.3) to K0 are equal to IndK0

T (V ). Since ZG commutes
with all elements in K0, the restrictions of the representations on both sides to ZG are
equal to χ . The lemma follows. 67

7.2 Proof of Theorem 3.11

We are now prepared to prove Proposition 7.1 and Theorem 3.11. First, we consider
the setting of Proposition 7.1. We have

π |K = IndGP
(
πM

λ,R+
M ,χM

⊗ eν ⊗ 1N
)
|K =

(
L2(K ) ⊗ πM

λ,R+
M ,χM

)KM
.

By Proposition 7.3, this equals

(
L2(K ) ⊗

(
L2(KM ) ⊗ (

∧
JsM

sM )−1 ⊗ ∧
JkM /tM

kM/tM ⊗ Cλ−ρM
c +ρM

n
! χM

)TM ZM
)KM

=
(
L2(K ) ⊗ (

∧
JsM

sM )−1 ⊗ ∧
JkM /tM

kM/tM ⊗ Cλ−ρM
c +ρM

n
! χM

)TM ZM
.

Proposition 7.1 now follows from (2.5).
Combining Propositions 6.1 and 7.1, we obtain a realisation of π |K as an index on

E .

Proposition 7.6 In Proposition 4.1, if we take V = Cλ−ρM ! χM, then

π |K = (−1)dim(M/KM )/2 indexK
(∧

J E T E ⊗ LE
V ,$

E)
.

By combining this with Proposition 4.1, we conclude that Theorem 3.11 is true.
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