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SPINOR MODULES FOR HAMILTONIAN LOOP GROUP SPACES

YIANNIS LOIZIDES, ECKHARD MEINRENKEN, AND YANLI SONG

Abstract. Let LG be the loop group of a compact, connected Lie group G. We show that
the tangent bundle of any proper Hamiltonian LG-space M has a natural completion TM to a
strongly symplectic LG-equivariant vector bundle. This bundle admits an invariant compatible
complex structure within a natural polarization class, defining an LG-equivariant spinor bundle
STM, which one may regard as the Spinc-structure of M. We describe two procedures for
obtaining a finite-dimensional version of this spinor module. In one approach, we construct
from STM a twisted Spinc-structure for the quasi-Hamiltonian G-space associated to M. In
the second approach, we describe an ‘abelianization procedure’, passing to a finite-dimensional
T ⊆ LG-invariant submanifold of M, and we show how to construct an equivariant Spinc-
structure on that submanifold.

1. Introduction

Let G be a compact, connected Lie group, with an invariant inner product · on g. We
take the loop group LG to be the Banach Lie group of G-valued loops of a fixed Sobolev class
s > 1

2 ; loops in this Sobolev range are continuous, and the group structure is given by pointwise
multiplication. The loop group acts by gauge transformations on the space A of connections
over the circle, given as g-valued 1-forms on S1 of Sobolev class s− 1.

λ.µ = Adλ µ− ∂λ λ−1, µ ∈ A, λ ∈ LG.

A proper Hamiltonian loop group space (M,ω,Φ) is a weakly symplectic Banach manifold M,
with an action of the loop group and a proper LG-equivariant moment map

Φ : M→ A
satisfying the moment map condition ι(ξM)ω = −d〈Φ, ξ〉 for ξ ∈ Lg, where the function 〈Φ, ξ〉
is defined by the pointwise inner product of Φ and ξ, followed by integration over S1.

The 2-form ω being weakly symplectic means that the bundle map ω" : TM→ T ∗M is injec-
tive, in contrast to strongly symplectic 2-forms for which it is required to be an isomorphism.
Our first result is

Theorem 1.1. The tangent bundle of any proper Hamiltonian loop group space M has a canon-
ically defined LG-equivariant completion TM, such that the 2-form ω extends to a strongly
symplectic 2-form on TM.

Roughly speaking, this completion TM is obtained by taking the Sobolev 1
2 completion in

orbit directions – note that this is precisely the borderline case where G-valued loops no longer
form a group.

To define a spinor module, the next step is to choose a compatible complex structure.
For finite-dimensional symplectic manifolds, the resulting spinor module does not depend on
the choice, up to isomorphism. In infinite dimensions, the situation is more delicate [32].
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We will consider equivalence classes of complex structures, where two complex structures are
equivalent if their difference is Hilbert-Schmidt. Such an equivalence class is sometimes called
a polarization.

Theorem 1.2. The bundle TM has a distinguished LG-invariant polarization. It admits a
global LG-invariant ω-compatible complex structure J within this polarization class, unique up
to homotopy.

The Riemannian metric on TM associated to J and ω defines a bundle of Clifford algebras,
Cl(TM), and using J one obtains a Z2-graded spinor bundle,

Cl(TM) ! STM.

For finite-dimensional Riemannian manifolds of even dimension, a Z2-graded spinor module
over the Clifford bundle is the same thing as a Spinc-structure; hence we may think of STM
as defining a Spinc-structure on M. Given a pre-quantum line bundle L →M, then one can
form a new Spinc-structure L ⊗ STM, and the action of a Spinc-Dirac operator of M should
formally describe the ‘quantization’ of M. In the case of moduli spaces of flat connections,
a technique for constructing pre-quantum line bundles L → M was explained in [34], in the
context of geometric quantization for Chern-Simons theory.

In practice, dealing with Dirac operators in infinite dimensions is too difficult, and one
prefers to work with suitable finite-dimensional counterparts. As shown in [2], every proper
Hamiltonian LG-space (M,ω,Φ) has an associated quasi-Hamiltonian G-space (M,ωM ,ΦM ),
with a group-valued moment map ΦM : M → G. In this paper, we will interpret this relation
using a correspondence diagram

N
p

!!!!
!!
!!
!! q

""
""

""
""

""

M M

Here N is a Banach manifold with an action of LG×G, where the G-action is principal with
quotient map p, and the LG-action is principal as well, with quotient map q. The idea is to
pull the spinor module STM back to N , and then push forward to M . For the second step,
one uses the spinor module for the Lie algebra of the loop group, in order to quotient out the
LG-orbit directions. This spinor module is equivariant with respect to a central extension of
the loop group LG by U(1), where the central circle acts non-trivially. Hence, the construction
does not quite give a spinor module over TM :

Theorem 1.3. The bundle q∗TM → N has an L̂G
spin
× G-equivariant Spinc-structure, with

associated spinor module

Cl(q∗TM) ! Sq∗TM .

Here L̂G
spin

is the spin central extension of the loop group. This Spinc-structure on q∗TM is
canonical, up to equivariant homotopy.

We think of Sq∗TM as a twisted Spinc-structure on M , in the spirit of Murray-Singer [29] and
Mathai-Melrose-Singer [21]. In the pre-quantized case, one uses the pre-quantum line bundle
L to define a new twisted Spinc-structure p∗L ⊗ Sq∗TM . The twisted Spincstructure may also
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be interpreted in terms of a G-equivariant Morita morphism from the Clifford bundle Cl(TM)
over M to a Dixmier-Douady bundle Aspin over G; see [3, 25].

Another finite-dimensional approach is the following abelianization procedure. Let T ⊆ G
be a maximal torus, with Lie algebra t, and fix a system of positive roots of (G,T ). The
integral lattice Λ ⊆ t can be regarded as a subgroup of LG, consisting of exponential loops,
while N(T ) ⊆ G is a subgroup of LG consisting of constant loops. The central extension of
LG restricts to the subgroup Λ!N(T ).

Suppose the moment map Φ : M → A is transverse to t. Then X = Φ−1(t) is a finite-
dimensional pre-symplectic manifold, with a Hamiltonian action of Λ× T , with an equivariant
moment map ΦX : X → t where Λ acts on t by translation.

Theorem 1.4. The LG-equivariant Spinc-structure on M determines a Spinc-structure

Cl(TX ) ! STX

on X , equivariant under the action of the spin-central extension of Λ!N(T ). Up to homotopy,
the spinor module STX depends only on the choice of positive roots.

In the pre-quantized case, one considers the Dirac operator associated to the new spinor
module L|X⊗STX ; it is equivariant for the action of a semi-direct product of T with a (different)
central extension Λ̂ of the lattice. In forthcoming work, we will show that the associated Dirac
operator over the non-compact manifold X has a well-defined T -equivariant index, with finite
multiplicities. This crucially depends on the Λ̂-equivariance. We will show furthermore how
to compute this index using localization for the norm-square of the moment map. In the case
of a compact Hamiltonian G-space, an analogous formula was proved by Paradan [31]. In the
loop group setting, the norm-square of the moment map has been used to prove a Kirwan
surjectivity theorem [7], and to study (twisted) Duistermaat-Heckman distributions [20].

The organization of this article is as follows. Section 2 starts with a review of spinor
modules in infinite dimensions, recalling the classical result that the isomorphism class of
such a spinor module defined by a complex structure depends on the polarization class of
the complex structure. Given a symplectic form, we show that any two compatible complex
structures in a given polarization class are homotopic within that polarization class. The
subsequent section 3 explains the relationship between Hamiltonian loop group spaces and
quasi-Hamiltonian spaces as a Morita equivalence. Section 4 constructs the spinor bundle
for a Hamiltonian loop group space, and Section 5 gives the twisted Spinc-structure for the
associated quasi-Hamiltonian space. Section 6 is concerned with the abelianization procedure
for the transverse case, along with a discussion of how to adjust this procedure for the possibly
non-transverse case. The final Section 7 explains how to generalize all these constructions to
the case of twisted loop groups (where the twist is by an automorphism κ ∈ Aut(G)) and the
associated κ-twisted quasi-Hamiltonian spaces.

Acknowledgements. We are grateful to Nigel Higson and Tudor Ratiu for helpful discussions.

2. Spinor modules in infinite dimensions

The theory of spinor modules for infinite-dimensional real Hilbert spaces H was developed
in the 1960s by Shale and Stinespring, Araki, and others. References for this section include
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the books by Plymen-Robinson [32] and Pressley-Segal [33]; see also Freed-Hopkins-Teleman
[14, Section 3.1].

In this section, we will review some of the theory, with its application to the construction of
the spin representation of the loop group. We will also need to discuss the setting where the
initial data given on H is a symplectic structure rather than a Riemannian metric, with the
latter depending on a choice of a compatible complex structure.

2.1. Notation. Recall that a topological vector space H is banachable (resp. hilbertable) if its
topology may be defined by a Banach norm (resp. Hilbert inner product) on H. We will use
the simpler terminology Banach space (resp. Hilbert space), keeping in mind that we do not
consider the norm (resp. Hilbert metric) to be part of the structure. For (real or complex)
Banach spaces H1,H2, we denote by B(H1,H2) the Banach space of continuous linear operators
from H1 to H2, and by K(H1,H2) the compact operators (the limits of finite rank operators).
If H1 = H2 = H we write B(H) and K(H) for the algebras of bounded and compact operators,
respectively. If H1,H2 are separable Hilbert spaces, we write BHS(H1,H2) ∼= H2⊗H∗

1 (using the
Hilbert space tensor product) for the space of Hilbert-Schmidt operators from H1 to H2, with
the notation BHS(H) if H1 = H2 = H. (This does not depend on the choice of metric, only on
the topology.) Introduce an equivalence relation on bounded operators A ∈ B(H), where

(1) A0 ∼ A1 ⇔ A0 −A1 ∈ BHS(H).

More generally, we have such an equivalence relation on the space B(H1,H2) of bounded linear
operators between possibly different Hilbert spaces.

Let J (H) ⊆ B(H) be the set of complex structures on H, that is, J2 = − id. Following
[14, 33] we define

Definition 2.1. A polarization of a real Hilbert space H is an equivalence class of complex
structures J ∈ J (H), using the equivalence relation (1). We denote by Jres(H) the set of
complex structures in the given polarization class.

2.2. Spinor modules. Let H be a separable real Hilbert space, and g a Riemannian metric
on H, in the strong sense that the map g" : H→ H∗ is an isomorphism. We denote by O(H) =
O(H, g) ⊆ B(H) the corresponding orthogonal group, and by Cl(H) = Cl(H, g) the Clifford
algebra, i.e. the complex algebra linearly generated by H, with relations

v1v2 + v2v1 = 2g(v1, v2), v1, v2 ∈ H.

Given an orthogonal complex structure J ∈ O(H) (that is, J preserves g and squares to − id),
the complexified Hilbert space splits as HC = H+ ⊕ H−, where H± are the ±

√
−1 eigenspaces

of J . The restricted orthogonal group Ores(H) consists of those orthogonal transformations
A ∈ O(H) that preserve the polarization, i.e., such that AJA−1 ∼ J . Let ∧H+ be the exterior
algebra over H+. Its Hilbert space completion

SH = ∧H+

has the structure of a Z2-graded unitary Cl(H)-module, where the Clifford action '(v) of
elements v ∈ H+ is by exterior multiplication and that of v ∈ H− is contraction. It will
be referred to as the spinor module defined by J . We sometimes write SH,J to indicate the
dependence on J .
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The following theorem summarizes results of Araki and Shale-Stinespring, see [32, Chapter
3]

Theorem 2.2 (Spinor modules in infinite dimensions).

(a) The spinor modules defined by two orthogonal complex structures J0, J1 are isomorphic
as ungraded Cl(H)-modules if and only if they define the same polarization, i.e. J0 ∼ J1.

(b) In this case, the space L = HomCl(H)(SH,J0 ,SH,J1) of intertwining operators is 1-
dimensional, and SH,J1 = L ⊗ SH,J0. For J0 ∼ J1, the kernel of J0 + J1 is even di-
mensional, and the parity of L coincides with the parity of 1

2 dimker(J0 + J1).

(c) An orthogonal transformation A ∈ O(H) admits a unitary implementer Â ∈ U(SH,J),

i.e. '(Av) = Ã'(v)Ã−1 for v ∈ H, if and only if A ∈ Ores(H). In this case, the
implementer is unique up to scalar.

Part (c) defines a central extension of the restricted orthogonal group Ores(H) by U(1); this
can be taken as a definition of the group Pinc(H) with respect to the choice of polarization.

We will also need the following addendum:

Proposition 2.3. Let W ⊆ H be a finite-dimensional subspace of even dimension, and H′ =
W⊥ its orthogonal space with respect to g. Let J, J ′ be orthogonal complex structures on H,H′.
Then

SW = HomCl(H′)(SH′ ,SH)

is non-trivial if and only if J ∼ J ′, and in this case it is a spinor module over Cl(W ).

In this statement, J ′ ∈ B(H′) is regarded as an operator on H, acting as zero on W .

Proof. Pick an auxiliary orthogonal complex structure JW on W . Then J ′′ = JW ⊕ J ′ is an
orthogonal complex structure on H = W ⊕ H′. Since J ′′ ∼ J ′ we have that SJ ′′ = SJW ⊗ SJ ′ ,
hence

HomCl(H′)(SH′,J ′ ,SH,J ′′) = SW,JW .

By Theorem 2.2, L = HomCl(H)(SH,J ′′ ,SH,J) is non-trivial if and only if J ∼ J ′′ ∼ J ′, and in
this case SH,J = SH,J ′′ ⊗ L, hence

SW = HomCl(H′)(SH′,J ′ ,SH,J) = SW,JW ⊗ L. "

We will need to understand the dependence on the metric. If H is finite-dimensional, then
any two metrics g0, g1 on H, with associated maps g"i : H → H∗ and g#i = (g"i )

−1, are related

by an isometry A = (g#1 ◦ g"0)1/2, in the sense that g1(Av,Aw) = g0(v,w). In the infinite-
dimensional case, we need further conditions to ensure that the square root is defined. Introduce
an equivalence relation on Riemannian metrics on H, by declaring that g0 ∼ g1 if and only if
g"0 ∼ g"1, i.e., the difference is Hilbert-Schmidt.

Lemma 2.4. Let g0, g1 be two Riemannian metrics on H, with g0 ∼ g1. Then the operator
C = g#1 ◦ g"0 has spectrum contained in the set of positive real numbers, and in particular has a
well-defined square root A = C1/2. We have that A ∼ I, and

g1(Av,Aw) = g0(v,w)

for all v,w ∈ H.
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Proof. Since g1(Cv,w) = g0(v,w) = g1(v,Cw) for all v,w ∈ H, the operator C is symmetric
with respect to g1. Furthermore, it is non-negative since g1(Cv, v∗) = g0(v, v∗) ≥ 0 for all
v ∈ HC. To show that 0 is not in the spectrum, let λ ∈ C, with λ 0= 1. Since g0 ∼ g1 ⇒ C ∼ I,
we have C−λI ∼ (1−λ)I, an invertible operator. Since Hilbert-Schmidt operators are compact,
this shows that C−λI is Fredholm of index zero, and hence is invertible if and only if its kernel
is zero. But if v ∈ HC is in the kernel, then Cv = λv, hence

λg1(v, v
∗) = g1(Cv, v∗) = g0(v, v

∗),

thus λ > 0 or v = 0. This shows spec(C) ⊆ (0,∞). It follows that the square root A = C1/2 is
defined. A is again a positive symmetric operator with respect to g1, and since C ∼ I we have
that A ∼ I. It satisfies g1(Av,Aw) = g1(Cv,w) = g0(v,w) as required. "

The isometry A : (H, g0)→ (H, g1) for g0 ∼ g1 extends to an isomorphism of Clifford algebras

A : Cl(H, g0)→ Cl(H, g1).

If J0 is a g0-orthogonal complex structure, and J1 is a g1-orthogonal complex structure, then
there exists an isomorphism of spinor modules SH,J0 → SH,J1 compatible with the isomorphism
of Clifford algebras if and only if J0 ∼ J1. Indeed, using A ∼ I the condition is equivalent
to J0 ∼ A ◦ J1 ◦ A−1, hence the claim follows from Theorem 2.2. Proposition 2.3 generalizes
similarly.

2.3. Compatible complex structures in infinite dimensions. Let H be a separable real
Hilbert space, with a (strongly) symplectic 2-form ω : H×H→ R. That is, ω is non-degenerate
in the sense that the associated map ω" : H → H∗ is an isomorphism. A complex structure J
on H is compatible with ω if

g(v,w) = ω(v, Jw)

is a Riemannian metric on H. Such a complex structure J is orthogonal with respect to g and
symplectic with respect to ω, and the choice of J makes H into a complex Hilbert space (cf.
Section 1.1 in [11]). We denote by J (H,ω) the set of ω-compatible complex structures.

Lemma 2.5. If J0, J1 ∈ J (H,ω), with corresponding Riemannian metrics g0, g1, then J0 ∼ J1
if and only if g0 ∼ g1.

Proof. We have J0 ∼ J1 if and only if g#1 ◦ g"0 = J−1
1 ◦ J0 ∼ I. But this means g"0 ∼ g"1. "

Given two J ’s in J (H,ω), there exists a real-linear automorphism A of H intertwining the
two resulting Hilbert space inner products. Equivalently, A preserves ω and intertwines the
two J ’s. This shows that J (H,ω) is a homogeneous space for the group Sp(H) of symplectic
transformations, with stabilizer at J ∈ J (H,ω) the corresponding unitary group UJ(H).

The restricted symplectic group Spres(H) consists of all A ∈ Sp(H) satisfying AJA−1 ∼ J ; it
is a Banach Lie group for the topology induced by

‖A‖J = ‖A‖+ ‖[J,A]‖HS ,

where ‖ − ‖ is the operator norm, and ‖ − ‖HS is the Hilbert-Schmidt norm with respect to
the Riemannian metric defining the Hilbert space structure ([33]). By the same argument as
above, Spres(H), acts transitively on the set Jres(H,ω) of compatible complex structures in the
given polarization class.
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The spaces J (H,ω) and Jres(H,ω) become Banach manifolds, such that the quotient maps

Sp(H)→ Sp(H)/UJ(H) ∼= J (H,ω), Spres(H)→ Spres(H)/UJ(H) ∼= Jres(H,ω)

are submersions. Similar to finite dimensions, polar decomposition gives a contraction of Sp(H)
(resp. Spres(H)) onto UJ(H), showing that J (H,ω) (resp. Jres(H,ω)) is contractible; we discuss
this briefly in Appendix A. The following gives an explicit path connecting two compatible
complex structures defining the same polarization class.

Theorem 2.6. Let ω be a symplectic structure on a real Hilbert space H, and let J0, J1 be two
compatible complex structures, defining the same polarization.

For all t ∈ [0, 1], the spectrum of Kt = (1 − t)J0 + tJ1 is contained in the set of non-zero
imaginary numbers. The operators

Jt = Kt (−K2
t )

−1/2

are well-defined compatible complex structures connecting J1 and J0 within the given polariza-
tion class.

Proof. Suppose λ ∈ C is in the spectrum of Kt, so that Kt − λI is not invertible. Unless
λ = ±

√
−1, the operator Kt − λI is a compact perturbation of an invertible operator J0 − λI;

hence it is non-invertible if and only of its kernel is non-zero. Let v ∈ HC be a non-zero element
in the kernel. Then ω(v∗, (Kt − λI)v) = 0, hence

(1− t)g0(v
∗, v) + tg1(v

∗, v) = λω(v∗, v).

For 0 ≤ t ≤ 1, the left hand side is > 0, hence so is the right hand side. On the other hand,
since ω is a real 2-form, ω(v∗, v) ∈

√
−1R. This shows that that the spectrum of Kt lies in the

set of non-zero imaginary numbers; hence −K2
t has spectrum in strictly positive real numbers.

It follows that Jt = Kt(−K2
t )

−1/2 are well-defined complex structures. To show that Jt ∼ J0,
it suffices to show that (−K2

t )
−1/2 ∼ I. But this follows because Rt := I +K2

t ∼ 0, and since

(−K2
t )

−1/2 − I = Rtf(Rt),

with f(x) = 1
x(

1√
1−x
−1), is the product of a Hilbert-Schmidt operator and a bounded operator.

"

The choice of an ω-compatible complex structure on H determines a spinor module SH. The
discussion above shows that equivalent compatible complex structures J0 ∼ J1 are homotopic
within their equivalence class, and that they determine a homotopy class of Hilbert-Schmidt
equivalent Riemannian metrics. Hence they give isomorphic (in fact, homotopic) spinor mod-
ules.

2.4. The spin representation of the loop group. Let G be a compact, connected Lie
group, and LG the space of G-valued loops of Sobolev class s. If s > 1

2 , then LG consists of
continuous loops, and is a Banach Lie group under pointwise multiplication, with Lie algebra
Lg the g-valued loops of Sobolev class s. We refer to LG for a fixed choice of s > 1

2 as the
loop group of G. The choice of an invariant inner product on g defines an LG-invariant weak
Riemannian metric g on Lg, given by the pointwise inner product followed by integration over
S1, using the standard volume form dt on S1. It extends to a (strong) Riemannian metric on
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the real Hilbert space Lg of square integrable loops (i.e., Sobolev class 0). Its complexification
has a triangular decomposition

LgC = (LgC)+ ⊕ gC ⊕ (LgC)−

given as the spans of positive, zero, and negative Fourier modes, respectively. Let J0 ∈ B(Lg)
be the operator whose complexification is equal to −

√
−1 on negative Fourier modes, 0 on zero

Fourier modes, and +
√
−1 on positive Fourier modes.

Remark 2.7. Equivalently,
J0 = ∂0/|∂0|,

where ∂0 is the unbounded skew-adjoint operator, given as the exterior derivative (we use the
standard volume form ∂t on S1 to identify 1-forms and functions). On the loop z 5→ X ⊗ zn in
LgC, for X ∈ gC and n ∈ Z, it is given by ∂0(X ⊗ zn) = 2πinX ⊗ zn . The kernel of ∂0 are the
constant loops, and |∂0|−1 denotes the inverse of |∂0| on g⊥ ⊆ Lg, extended by zero.

In order to have an actual complex structure, we consider the larger space Lg⊕ g, with the
complex structure J given as the sum of J0 with the standard complex structure (X,Y ) 5→
(−Y,X) on ker(J0)⊕ g = g⊕ g. Then J determines a Z2-graded spinor module

Cl(Lg⊕ g) ! SLg⊕g.

The operator J0 is not LG-invariant, but one can show (see e.g. [33]) that the polarization
class is preserved. Hence, the adjoint action defines a group homomorphism from LG into the
restricted orthogonal group, and so LG inherits a central extension from that of Ores(Lg⊕ g).
We let

(2) 1→ U(1)→ L̂G
spin
→ LG→ 1

be the opposite of this central extension of LG defined in this way; it will be referred to as
the spin-central extension of the loop group. We refer to the action on the dual spinor module
Hom(SLg⊕g,C) as the spin representation of the loop group. By definition, the central circle
in (2) acts with weight one. The spin representation of the loop group (or of its Lie algebra)
was described in Kac-Peterson [17], see also Araki [5].

Remark 2.8. For G simple and simply connected, the isomorphism classes of central extensions
of LG are indexed by their level k ∈ Z, corresponding to the k-th power of the basic central
extension L̂G. The level of the spin central extension is the dual Coxeter number h∨ of G. As
a L̂G-representation, it is a direct sum of irreducible representations of highest weight (ρ, h∨).
See Appendix B.

Remark 2.9. One can also consider the action of larger group LG ×G on Lg⊕ g; the central
extension of LG extends to the product. If G is simply connected, then the central extension

is trivial over G (with a unique trivialization), hence SLg⊕g has an action of L̂G
spin
×G.

3. Hamiltonian loop group spaces and quasi-Hamiltonian spaces

In this section we will recall the basic definitions for Hamiltonian loop group spaces and quasi-
Hamiltonian G-spaces. Improving on the discussion in [2], we will phrase the 1-1 correspondence
between such spaces as a Morita equivalence (see [38] for related ideas).
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3.1. The space of connections. Let G be a compact, connected Lie group, with Lie algebra
g. For fixed s ∈ R, denote by LG the Banach manifold of maps S1 → G of Sobolev class s. We
will assume s > 1

2 , so that LG consists of continuous loops, and is a Banach Lie group under
pointwise multiplication. Let A be the space of connections, given as g-valued 1-forms on S1

of Sobolev class s− 1. The loop group LG acts smoothly on the Banach manifold A by gauge
transformations:

λ · µ = Adλ(µ)− ∂λ λ−1, µ ∈ A, λ ∈ LG.

Here we are reserving the notation ∂ for the exterior derivative on S1; thus ∂λ λ−1 is the
pull-back of the right-invariant Maurer-Cartan form θR ∈ Ω1(G, g) under the map λ : S1 → G.
The generating vector fields ξA, ξ ∈ Lg for the gauge action are the covariant derivatives: At
µ ∈ A, we have that ξA|µ = ∂µξ where

∂µ = ∂ + adµ : Lg→ TµA.

Remark 3.1. To avoid the dependence on a Sobolev level, one could also work with Frechet man-
ifolds, and consider smooth loops and connections. See [30] for foundational results regarding
the smooth loop group.

3.2. The path fibration. Denote by PG the Banach manifold of all paths γ : R → G of
Sobolev class s, with the property that γ(t+1)γ(t)−1 is constant. The direct product LG×G
acts on PG by

((λ, g).γ)(t) = g γ(t)λ(t)−1.

The LG-action makes PG into a G-equivariant principal LG-bundle over G, with quotient
map q(γ) = γ(1)γ(0)−1, where the G-action on the base G is given by conjugation. This is
called the path fibration. On the other hand, the G-action makes PG into an LG-equivariant
principal G-bundle over the space of connections, with quotient map p : PG→ A, γ 5→ γ−1∂γ.
We arrive at the correspondence diagram

(3) PG
p

!!##
#
##
##
#

q

##
$$

$$
$$

$
$

A G

Remarks 3.2. (a) The bundle p : PG → A has a distinguished section, with image the
space PeG of based paths (i.e., paths with γ(0) = e). Note however that since this
trivialization of the bundle p : PG → A involves an evaluation map, it does not have
good properties for the Sobolev 1

2 completions to be considered later.
(b) The holonomy map Hol : A → G, taking the parallel transport of a connection around

S1, may be defined as the inclusion A→ PG followed by q. Note however that Hol ◦ p 0=
q. Indeed, for a connection µ = p(γ) we have that Hol(µ) = γ(0)−1γ(1) whereas
q(γ) = γ(1)γ(0)−1.

(c) The pull-back of the bundle q : PG → G under the exponential map exp: g → G is
canonically trivial; the trivializing section takes X ∈ g to the path t 5→ exp(tX).

The correspondence diagram (3) may be seen as a Morita equivalence of groupoids, between
the action groupoids [G/G] for the conjugation action and [A/LG] for the gauge action, with
PG as the equivalence bimodule. In particular, the stabilizer groups for the actions, as well as
the ‘transverse geometry’ to orbits, are isomorphic. To be precise, let γ ∈ PG, mapping to the
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elements µ = p(γ) ∈ A and a = q(γ) ∈ G. The projections from LG × G to the two factors
induce isomorphisms of the stabilizer groups,

(4) (LG)µ ←− (LG×G)γ −→ Ga,

The resulting isomorphismGa
∼= LGµ takes h ∈ Ga to the loop λ(t) = Adγ(t)−1 h. Furthermore,

there are slices

Vγ ⊆ PG for the LG×G-action at γ

Vµ ⊆ A for the LG-action at µ

Va ⊆ G for the G-action at a

invariant under the respective groups (4), in such way that p and q restrict to diffeomorphisms

(5) Vµ ←− Vγ −→ Va,

equivariant with respect to (4). Letting Ua ⊆ ga be a sufficiently small Ad(Ga)-invariant open
neighborhood of the origin, we may take

Vµ = {µ+Adγ−1(X ∂t)| X ∈ Ua}, Vγ = {exp(tX)γ(t)| X ∈ Ua}, Va = {exp(X)a| X ∈ Ua}.
The slice Vµ can also be written as

Vµ = {µ + ζ∂t| ζ ∈ Uµ}
where Uµ ⊆ Lgµ is the image of Ua under the isomorphism Lgµ ∼= ga. We will often use these
slices in conjunction with partitions of unity: Since G is compact, it is covered by finitely many
of the flow-outs G.Va of slices, and we may choose an associated G-invariant partition of unity.
Using the diagram (3), this determines finite open covers of PG and of A, along with invariant
partitions of unity.

Suppose now that the Lie algebra g comes with an Ad-invariant metric ·. Let θL, θR ∈
Ω1(G, g) denote the Maurer-Cartan-forms. The metric on g determines a bi-invariant Cartan
3-form η = 1

12θ
L · [θL, θL] ∈ Ω3(G), and its G-equivariant extension ηG(X) = η− 1

2(θ
L+θR) ·X

for X ∈ g. The 3-form η is closed, and ηG is equivariantly closed:

(d− ι(XG))ηG(X) = 0.

The metric also determines a certain LG×G-invariant 2-form . ∈ Ω2(PG), with the properties

d. = −q∗η, ι(ξPG). = p∗d〈µ, ξ〉, ι(XPG). = −q∗
(1
2
(θL + θR) ·X

)

for ξ ∈ Lg and X ∈ g. Letting evt : PG → G be the evaluation map, this 2-form is given by
(cf. Appendix C)

. =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R
)
∂t +

1

2
ev∗0 θ

L · ev∗1 θL.

See [4, 36] for a conceptual construction of this 2-form.

Remark 3.3. These formulas have a Dirac-geometric significance: The group G carries the
so-called Cartan-Dirac structure, and the total space of the action groupoid [G/G] is a quasi-
presymplectic groupoid integrating this Dirac structure (see [8, 38]) . On the other hand, A
carries an infinite-dimensional ‘Lie-Poisson’ Dirac structure [10], and [A/LG], with a certain
2-form, is its integration. The correspondence diagram (3) for the path fibration PG, together
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with the 2-form ., makes it a dual pair of Dirac manifolds, in the sense of [15], and also defines
a Morita equivalence of pre-symplectic groupoids, see [38, Proposition 4.26].

3.3. Hamiltonian loop group spaces. The invariant inner product · on g defines a pairing
between A and Lg, given by pointwise inner product followed by integration over S1.

Definition 3.4. [26] A Hamiltonian LG-space (M,ω,Φ) is a Banach manifold M, equipped
with a smooth action of LG, an invariant weakly symplectic 2-form ω, and a smooth LG-
equivariant map Φ : M→ A satisfying the moment map condition

ι(ξM)ω = −〈dΦ, ξ〉, ξ ∈ Lg.

It is called proper if the moment map Φ is proper.

The first examples of Hamiltonian LG-spaces are the coadjoint orbits O = LG ·µ ⊆ A, with
the 2-form given on generating vector fields by

ω((ξ1)O, (ξ2)O)|µ =

∫

S1
∂µξ1 · ξ2, ξ1, ξ2 ∈ Lg;

the moment map is the inclusion. Another natural example is the moduli space of flat con-
nections on surfaces with boundary. There are many other examples; some of these are best
understood from the correspondence with quasi-Hamiltonian spaces, which we discuss next.

3.4. Quasi-Hamiltonian spaces.

Definition 3.5. A quasi-Hamiltonian G-space (M,ωM ,ΦM ) is a (finite-dimensional) G-
manifold M with an invariant 2-form ωM and a G-equivariant smooth map ΦM : M → G
satisfying the following conditions:

(a) dωM = −Φ∗
Mη,

(b) ι(XM )ωM = −Φ∗
M(12 (θ

L + θR) ·X) for all X ∈ g
(c) ker(ωM) ∩ ker(TMΦ) = 0.

The first two conditions may be combined into a single requirement

(d − ι(XM ))ωM = −Φ∗
MηG(X),

stating that ωM is an equivariant primitive of −Φ∗
MηG.

Basic examples are the conjugacy classes C ⊆ G, with moment map the inclusion, and
the double D(G) = G × G, with moment map the group commutator. Other examples in-
clude SU(n) acting on an even-dimensional sphere S2n [16], and Sp(n) acting on quaternionic
projective spaces [12] or on quaternionic Grassmannians [18]. A full classification of such
multiplicity-free quasi-Hamiltonian spaces was obtained in the work of Knop [18], with many
new examples.

There is a correspondence between proper Hamiltonian LG-spaces M and quasi-Hamiltonian
G-spaces M , described by a diagram

(6) N
p

!!!!
!!
!!
!! q

""
""

""
""

""

M M
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Given M, the space N is the pullback of the bundle p : PG → A under the moment map Φ,
and M = N/LG. Conversely, given M , the space N is the pullback of the bundle q : PG→ G
under the moment map ΦM , and M = N/G. The 2-forms are related by

q∗ωM − p∗ω = Φ∗
N..

The correspondence may be used to define examples of Hamiltonian loop group spaces by
construction of the corresponding quasi-Hamiltonian spaces. For a coadjoint orbit O ⊆ A, the
associated quasi-Hamiltonian spaces is a conjugacy class C ⊆ G.

4. The spinor bundle for a Hamiltonian LG-space

Our construction of a spinor bundle starts out by showing that the weakly symplectic 2-
form of any proper Hamiltonian loop group space becomes strongly symplectic on a suitable
completion of the tangent bundle. The construction is particularly nice for the case of coadjoint
orbits; hence we will discuss this case first.

4.1. The spinor bundle over coadjoint loop group orbits. Let O ⊆ A be a coadjoint orbit
for the loop group. The weak symplectic form on O is given on tangent spaces TµO = Lg/Lgµ
by

(7) ω((ξ1)O, (ξ2)O)|µ =

∫

S1
∂µξ1 · ξ2, ξi ∈ Lg.

The topological dual space of Lg (consisting of g-valued loops of Sobolev class s) are g-valued
1-forms of Sobolev class −s, hence the dual space of TµO = Lg/Lgµ is the annihilator of Lgµ
inside the space of 1-forms of Sobolev class −s. But

(ωµ)
" : TµO → (TµO)∗, ξO|µ 5→ ∂µξ,

takes values in the subspace of 1-forms of Sobolev class s − 1. Since s > 1
2 , we have that

s− 1 > −s. This verifies that (ωµ)" is not onto. On the other hand, letting

Lg := L( 12 )
g

be the loops of Sobolev class 1
2 , we see that ωµ extends to a strongly symplectic bilinear form

on T µO = Lg/Lgµ = Lg⊥µ :

(8) ωµ : Lg
⊥
µ × Lg⊥µ → R

Here ⊥ stands for the orthogonal space relative to the (weak) metric on Lg. Hence, the bundle
TO becomes a strongly symplectic vector bundle over O. There is a canonical LG-invariant
ω-compatible complex structure on TO, given at µ by the LGµ-invariant complex structure

(9) Jµ = ∂µ/|∂µ| ∈ B(Lg⊥µ )

The resulting Riemannian metric on TO defines a Clifford bundle Cl(TO), and the complex
structure gives an LG-equivariant spinor module

Cl(TO) ! STO.

Remark 4.1. The bracket on Lg does not extend continuously to Lg; hence Lg does not become
a Banach Lie algebra. Similarly the G-valued loops of Sobolev class 1

2 are not a Banach Lie
group.
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4.2. The spinor bundle for proper Hamiltonian LG-spaces. We will now extend this
construction to arbitrary proper Hamiltonian LG-spaces. For any Banach manifold Q with a
proper LG-action, we let

TQ := (TQ× Lg)/ ∼
be the quotient space under the relation

(v + ξQ|q, 0) ∼ (v, ξ), v ∈ TqQ, ξ ∈ Lg ⊆ Lg,

where ξQ denotes the vector field on Q generated by ξ ∈ Lg. The properness assumption
implies that the action has finite-dimensional slices with compact stabilizer groups LGq, and
the definition amounts to replacing the orbit directions Tq(LG · q) = Lg/(Lg)q with Lg/(Lg)q.
In particular, TA is defined, and for every proper Hamiltonian LG-space M the bundle TM is
defined (since properness of the moment map implies properness of the action) . Equivariant
maps of Banach manifolds Q1 → Q2 with proper LG-actions define equivariant bundle maps
TQ1 → TQ2.

Theorem 4.2. Let (M,ω,Φ) be a proper Hamiltonian LG-space. Then

(a) the 2-form ω extends to a strongly symplectic form on TM,
(b) the bundle TM has a distinguished LG-invariant polarization, defining Jres(TM,ω),
(c) there exists a global LG-invariant compatible complex structure J ∈ Jres(TM,ω), within

this polarization class.

Proof. For every m ∈M, with image µ = Φ(m), we have a subspace of finite codimension

Lg⊥µ ⊆ TmM
embedded via the action map. On this subspace, we have the standard complex structure
Jµ defined in (9). This determines a polarization Jres(TmM), consisting of those complex
structures on TmM that differ from Jµ by a Hilbert-Schmidt operator.

We will use the symplectic cross-section theorem for Hamiltonian loop group actions [26,
Section 4.2]. Given m ∈ M with image µ = Φ(m), let Vµ ⊆ A be the slice through µ as
described in Section 3.2. Its pre-image Y = Φ−1(Vµ) is a finite-dimensional LGµ-invariant
symplectic submanifold of M. We have the LGµ-equivariant ω-orthogonal decomposition

(10) TM|Y = TY ⊕ (Y × Lg⊥µ ),

where the second summand is embedded by the generating vector fields. The weak symplectic
structure on {y}×Lg⊥µ for y ∈ Y is determined by the moment map condition, and is given by

ω((ξ1)M, (ξ2)M)|y =

∫

S1
∂νξ1 · ξ2, ξi ∈ Lg⊥µ

where ν = Φ(y) (cf. (7),(8)). This 2-form extends to a strongly symplectic form on {y}×Lg⊥µ ,
and so ω|Y extends to an LGµ-invariant strongly symplectic 2-form on

(11) TM|Y ∼= TY ⊕ (Y × Lg⊥µ ),

and by equivariance to an LG-invariant symplectic form on TM.
The summand Y ×Lg⊥µ in (11) has an LGµ-invariant compatible complex structure, given by

(9). By choosing an LGµ-invariant compatible complex structure on TY , we obtain an LGµ-
invariant compatible complex structure on TM|Y , hence an LG-invariant compatible complex
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structure JLG.Y on TM|LG.Y . Given another symplectic cross-section Y ′, the difference be-
tween JLG.Y , JLG.Y ′ over LG.Y ∩LG.Y ′ has finite rank; hence the corresponding Riemannian
metrics agree on a subbundle of finite codimension. Using a (finite) partition of unity as in
Section 3.2, these local definitions may be patched together, and we obtain an LG-invariant
compatible Riemannian metric and associated complex structure J on all of TM. By construc-
tion, this complex structure J on TmM, at any given m ∈M, with image µ = Φ(m), differs
from the complex structure Jµ on Lg⊥µ ⊆ TmM by a finite rank operator. In particular, it is
independent of the choices modulo Hilbert-Schmidt equivalence. "

Let g be the Riemannian metric on TM defined by ω and J . We obtain a Clifford bundle
with an LG-equivariant spinor module,

(12) Cl(TM) ! STM.

As explained in Section 2.3, two choices J0, J1 of compatible complex structures in the given
polarization class give rise to equivalent Riemannian metrics g0 ∼ g1, hence the Clifford algebras
are canonically identified. A homotopy between J0, J1 within the polarization class gives a
homotopy of spinor modules.

Remark 4.3. On a (finite-dimensional) Kähler manifold, one takes the spinor module for the
Dolbeault operator as STM := ∧(T ∗M)0,1. This is consistent with our conventions, since the
isomorphism g" : TM ∼= T ∗M given by the metric identifies (TM)+ = (TM)(1,0) ∼= (T ∗M)(0,1).

5. The twisted spin-c -structure for a quasi-Hamiltonian G-space

Having obtained the spinor module STM over the Hamiltonian LG-space M, we will use
it to construct the twisted Spinc-structure for the associated quasi-Hamiltonian G-space M .
Our strategy is to use the correspondence diagram (6) to ‘pull back’ the spinor bundle over M
under the projection p : N →M, and then ‘descend’ to M under the map q : N → M . This
will require the use of principal connections, obtained as pullbacks of principal connections
from the path fibration. As we will see, the appearance of a central extension of the loop group
will prevent us from actually descending the spinor module to M ; this is the reason why we
will not obtain an actual Spinc-structure on M , in general, but only a twisted Spinc-structure.
We will begin our discussion with the case that M is a coadjoint orbit, with M the associated
conjugacy class.

5.1. The twisted Spinc-structure for conjugacy classes. Let N ⊆ PG be an orbit for
the LG × G-action, and O = p(N ), C = q(N ) the corresponding coadjoint LG-orbit and
G-conjugacy class:

(13) N
p

$$%%
%%
%%
%% q

%%
&&

&&
&
&&

&

O C

Proposition 5.1 (Connections over orbits). The bundles p : N → O, q : N → C have distin-
guished invariant connections

α ∈ Ω1(N , g)LG×G, β ∈ Ω1(N , g)LG×G,

with continuous extensions to the completions, α : TN → g, β : TN → Lg.
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Proof. Let γ ∈ N be given, with µ = p(γ) ∈ O and a = q(γ) ∈ C. Let Rµ : Lg→ g be defined
by the composition

Rµ : Lg→ Lgµ ∼= ga ↪→ g

where the first map is the orthogonal projection. Note that this extends to the completion,
Rµ : Lg → g. The desired LG-invariant principal connection α on p : N → O is given by the
(LG×G)γ -equivariant map

αγ : TγN ≡ (Lg⊕ g)/(Lg⊕ g)γ → g, [(ξ,X)] 5→ X −Rµ(ξ).

This is well-defined, since X − Rµ(ξ) = 0 for (ξ,X) ∈ (Lg ⊕ g)γ , and it extends to a map on
the completion (given by the same formula, with R replaced by R). Similarly, let Sµ : g→ Lg
be the composition

Sµ : g→ ga ∼= Lgµ ↪→ Lg

where the first map is orthogonal projection. The desired G-invariant principal connection β
on q : N → C is given by the (LG×G)γ-equivariant map

βγ : TγN ≡ (Lg⊕ g)/(Lg⊕ g)γ → Lg, [(ξ,X)] 5→ ξ − Sµ(X).

Its extension to the completion is given by the same formula. "

For the following result, we will assume that G is simply connected. Then all central ex-
tensions of G by U(1) are trivial, and since Hom(G,U(1)) = {1} the trivialization is in fact
unique.

Theorem 5.2 (Twisted Spin-c structure of conjugacy classes). For every conjugacy class C ⊆ G
of a compact, simply connected Lie group G, there is a distinguished spinor module

Cl(q∗TC) ! Sq∗TC ,

equivariant under L̂G
spin
×G. Here q : N → C is the principal LG-bundle N ⊆ PG consisting

of all quasi-periodic paths with holonomy in C.

Proof. The connections α,β constructed above give LG×G-equivariant isomorphisms of TN
with p∗TO × g and q∗TC × Lg, respectively. Adding another copy of the trivial bundle N × g
(with the trivial action of G on g) we obtain LG×G-equivariant isomorphisms

p∗TO × (g⊕ g) ∼= TN × g ∼= q∗TC × (Lg⊕ g).

The LG-invariant symplectic structure, compatible complex structure, and associated Rie-
mannian metric on TO pull back to p∗TO; together with the standard complex structure and
given Riemannian metric on g⊕ g, these define a Riemannian metric and orthogonal complex
structure on TN × g. The corresponding LG×G-equivariant spinor module STN×g is simply

the tensor product of p∗STO with N × ∧gC. (The G-action does not preserve the complex
structure, but the central extension of G acting on the spinor module is uniquely trivialized.)

The (completed) tangent space to the fibers of q : N → C is a trivial bundle kerTq ∼= Lg, and
inherits a metric as a subbundle of TN . We will need an isometric isomorphism of kerTq =
N × Lg with N × Lg, where Lg has the L2-metric. At γ ∈ N , the splitting T γN ∼= TµO ⊕ g
given by α restricts to the isomorphism

Lg = ker T γq → T µO ⊕ ga, ξ 5→ (ξO(µ), −Rµ(ξ)).
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The resulting metric on Lg is the direct sum of the metric on T µO ∼= Lg⊥µ and the given metric
on Lgµ ∼= ga ⊆ g. Put differently, it is given by

(14) (ξ1, ξ2) 5→
∫

S1
Dµξ1 · ξ2

where Dµ is the first order pseudo-differential operator given by |∂µ| on Lg⊥µ and by the identity
on Lgµ. (We use the standard volume form on S1 to identify 1-forms with functions.) The
square root of Dµ gives an LGµ-equivariant isomorphism

D1/2
µ : Lg→ Lg

intertwining the two metrics, and the collection of these operators gives the desired LG × G-
isometric bundle isomorphism ker Tq → N × Lg. We may thus define a spinor module over
Cl(q∗TM) as

(15) Sq∗TC := HomCl(Lg⊕g)(SLg⊕g,STN×g).

It inherits an action of L̂G
spin
×G. "

The presence of the central extension prevents us from taking a quotient by LG to obtain a
spinor module over C itself; in this sense we think of Sq∗TC as a twisted Spinc-structure on C.
There are examples of conjugacy classes of simply connected compact Lie groups not admitting
ordinary Spinc-structures (let alone canonical ones). See [24, Example 4.6] and [19, Appendix
D] for further discussion.

5.2. Connections on PG. To extend this discussion to more general Hamiltonian loop group
spaces, we will need an LG-invariant connection α ∈ Ω1(PG, g) on the principal G-bundle
p : PG → A, as well as a G-invariant connection β ∈ Ω1(PG,Lg) on the principal LG-bundle
PG→ G, with the additional property that the bundle maps

α : TPG→ g, β : TPG→ Lg

extend to the completion TPG. This requires some care: As pointed out in Remark 3.2, the
principal bundle p : PG → A has a canonical trivialization PG → G, γ 5→ γ(0), but the
corresponding ‘trivial connection’ α does not extend to the completion. For example, at the
trivial path γ = e, this connection is αe : TePG→ g, ξ 5→ ξ(0), which does not extend.

Proposition 5.3 (Connections on the path fibration). The principal bundles p : PG→ A and
q : PG→ G have invariant principal connections

α ∈ Ω1(PG, g)LG×G, β ∈ Ω1(PG, Lg)LG×G,

with continuous extensions to the completions, α : TPG→ g, β : TPG→ Lg.

Proof. We first define a connection over an LG × G-invariant open neighborhood of a given
γ ∈ PG. Let µ = p(γ), a = q(γ), and let Vγ ⊆ PG, Vµ ⊆ A, Va ⊆ G be the slices described
in Section 3.2. Then

TPG|Vγ = (TVγ × (Lg⊕ g))/ ∼
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where the quotient is by the anti-diagonal inclusion of (Lg ⊕ g)γ . The completion TPG|Vγ

has a similar description, with Lg on the right hand side. Let Rµ, Sµ be as in the proof of
Proposition 5.1. The (LG×G)γ -equivariant map

(16) TPG|Vγ → g, [(v, ξ,X)] 5→ X −Rµ(ξ),

for v ∈ TVγ , ξ ∈ Lg, X ∈ g, extends to a map on the completions, given by the same formula.
It extends by equivariance to an LG-invariant connection for p : PG→ A over LG.Vγ ⊆ PG.

Similarly, the connection on q : PG→ G over LG.Vγ is given by the (LG×G)γ-equivariant
map

(17) TPG|Vγ → Lg, [(v, ξ,X)] 5→ ξ − Sµ(X).

It is well-defined, because ξ−Sµ(X) = 0 for (ξ,X) ∈ (Lg⊕ g)γ . Having thus constructed equi-
variant connections over flow-outs of cross-sections, we may use an LG×G-invariant partition
of unity, as in Section 3.2, to patch to global connections over all of PG. "

The connections α,β give LG×G-equivariant isomorphisms

p∗TA× g ∼= TPG ∼= q∗TG× Lg.

These have the useful property that for all γ ∈ PG, the tangent space TγVγ to the slice is
contained in the ‘horizontal space’ for the connection. In fact, there is an open neighborhood
of γ inside Vγ such that Tγ1Vγ is horizontal for all γ1 in that open neighborhood.

5.3. The twisted Spinc-structure for general quasi-Hamiltonian spaces. The construc-
tion for conjugacy classes generalizes to arbitrary compact quasi-Hamiltonian G-spaces. Unlike
the case of conjugacy classes, the construction depends on some choices, but these choices and
the resulting twisted Spinc-structure are unique up to homotopy.

Theorem 5.4. Let G be a compact simply connected Lie group, and M be a proper Hamiltonian
LG-space, with associated quasi-Hamiltonian G-space M . Consider the correspondence diagram
(6). Then there is a spinor module

Cl(q∗TM) ! Sq∗TM ,

equivariant with respect to the action of the spin-central extension of L̂G
spin
×G. The spinor

module is canonically defined, up to equivariant homotopy.

Proof. Pick an LG-invariant compatible complex structure J ∈ Jres(TM,ω), within the po-
larization class from Theorem 4.2, and let STM be its spinor module (12). As in the case of
orbits, we consider the splittings

p∗TM× (g⊕ g) ∼= TN × g ∼= q∗TM × (Lg⊕ g)

defined by α,β. We obtain a Riemannian metric and orthogonal complex structure on TN ×g,
and a spinor module

STN×g
∼= p∗STM ⊗ (N × ∧gC)

over Cl(TN ×g). To ‘descend’ under q, we need an LG×G-equivariant isometric isomorphism

ker(Tq) ∼= N × Lg
∼=−→ N × Lg.

The square root of the operator Dµ, µ = Φ(m) from the construction for orbits gives such
an isometric isomorphism pointwise, but the resulting bundle map is not smooth, due to the
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fact that rank of the kernel of ∂µ need not be constant. To get around this problem, choose
a strictly positive function χ ∈ C∞(R) such that χ(t) = |t| for t outside some interval (−ε, ε).
Then χ(∂µ) (defined using the functional calculus) differs from Dµ by a finite rank operator.
The collection of LGµ-equivariant isomorphisms

(18) χ(∂µ)
1/2 : Lg→ Lg,

defines an LG×G-equivariant bundle isomorphism

PG× Lg→ PG × Lg,

given at γ by (18) with µ = p(γ). Hence, by pull-back it gives an equivariant bundle isomor-
phism

(19) ker(Tq)→ N × Lg.

By Lemma 5.5 below, this bundle isomorphism (19) intertwines metrics, up to Hilbert-Schmidt
equivalence. The construction from Section 2.2 modifies it further to an equivariant isomor-
phism exactly intertwining the metrics. Hence, Cl(Lg⊕g) acts on STN×g, and applying Propo-
sition 2.3,

Sq∗TM := HomCl(Lg⊕g)(SLg⊕g,STN×g)

is a well-defined L̂G
spin
×G-equivariant spinor module over the Clifford algebra of q∗TM . The

choices made in the construction of the spinor module Sq∗TM are: the choice of an ω-compatible
complex structure on TM (within the equivalence class described in Theorem 4.2), of splittings
of the maps Tp and Tq as in Theorem 2.2, and of a cut-off function χ. All of these choices are
unique up to homotopy. "

It remains to prove:

Lemma 5.5. The bundle isomorphism (19) intertwines metrics, up to Hilbert-Schmidt equiv-
alence.

Proof. We argue locally, near any given point n ∈ N . Let γ = ΦN (n) and µ = Φ(m), let
Vγ ⊆ PG and Vµ ⊆ A be the slices through these points, as in Section 3.2, and denote by
Y = Φ−1(Vµ) ⊆M the symplectic cross-section through m = p(n).

By Lemma 2.5, any two choices of compatible complex structures on TM, within the polar-
ization class from Theorem 4.2, give rise to Hilbert-Schmidt equivalent metrics on TM. The
resulting metric on TN also depends on the choice of α; but the bundle map relating the
splittings TN ∼= TM × g from any two choices of α differs from the identity by a finite rank
bundle map; hence so do the g" maps. Hence, the Hilbert-Schmidt equivalence class of the
metric on TN is independent of the choices made. In particular, we may take the complex
structure J adapted to the cross-section Y (cf. the proof of Theorem 4.2), in the sense that it is
the sum of an LGµ-invariant compatible complex structure on TY and the standard complex
structure Jµ (cf. (9)) on Lg⊥µ . The resulting metric on the Lg⊥µ summand, at y ∈ Y with image
ν = p(y) ∈ Vµ, is given by

(20) (ξ, ζ) 5→ Dνξ · ζ.
We may furthermore assume that the connection α is defined as in the proof of Proposition 5.3,
using the map Rµ : Lg → g. At z ∈ Ψ−1(Vγ), with image point y ∈ Y , the splitting identifies
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T zN = T yM×g, the inclusion of ker(Tq)z = Lg→ T zN is given by ξ 5→ (ξM(y), Rµ(ξ)), and
the metric is therefore given by

(21) (ξ, ζ) 5→ gM(ξM, ζM)
∣∣
y
+Rµ(ξ) ·Rµ(ζ).

If ξ, ζ ∈ Lg⊥µ ⊆ Lg, the second term in (21) does not contribute, while the first term is given

by (20). We conclude that the given metric on ker(Tq)z = Lg differs from the metric (20) only
on a finite-dimensional subspace. On the other hand, the metric induced by (19) reads as

(22) (ξ, ζ) 5→ χ(∂ν)ξ · ζ
Since χ(∂ν) − Dν has finite rank everywhere, we conclude that the two metrics agree on a
subspace of finite codimension. "

5.4. The canonical line bundle. Since the Clifford bundle Cl(q∗TM) has finite rank, its
spinor module Sq∗TM has a well-defined canonical line bundle

K = HomCl(q∗TM)(Sq∗TM , S
op
q∗TM )→ N

where the superscript “op” signifies the opposite (or dual) Clifford module. This line bundle
is equivariant for the action of the spin-central extension, in such a way that the central circle
acts with weight −2. The bundle K restricts to an equivariant line bundle over M (using
the inclusion M ↪→ N defined by the inclusion A ↪→ PG as based paths). If the compact

Lie group G is simple and simply connected, with dual Coxeter number h∨, and letting L̂G
denote the basic central extension of its loop group, then K is L̂G-equivariant at level −2h∨.
The canonical line bundle over a Hamiltonian loop group space had been constructed in [27]
in terms of cross-sections. For the case of coadjoint orbits of the loop group, such line bundles
were first discussed in [13].

5.5. Morita morphisms. The action of L̂G
spin

on the Hilbert space SLg⊕g descends to an ac-
tion of LG on the algebra of compact operators, K(SLg⊕g). We define a G-equivariant Dixmier-
Douady bundle

A
spin = PG×LG K(SLg⊕g)

op → PG/LG = G

where the superscript stands for the opposite algebra. Suppose that (M,ω,Φ) is a proper
Hamiltonian LG-space, and consider the factorization

(23) STN×g
∼= Sq∗TM ⊗ (N × SLg⊕g).

of the spinor module over N . We may regard the LG×G-equivariant spinor module STN×g as
a bimodule, with Cl(q∗TM) acting by left multiplication and N × K(SLg⊕g)op acting by right
multiplication. Taking quotients by LG, this gives a G-equivariant Morita bimodule

Cl(TM) ! E # Φ∗
A
spin.

where E = STN×g/LG. In the terminology of [3], it is a Morita morphism

Cl(TM) &&'''

''

Aspin

''

M
Φ

&& G
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This Morita morphism was constructed in [3] using a completely different approach.

6. Abelianization

In this section, G is a compact, simply connected Lie group, with a fixed maximal torus T .
We show that if the moment map of a proper Hamiltonian LG-space is transverse to t∗ ⊆ A (as
a space of constant connections valued in the Lie algebra of the maximal torus), then the pre-
image X = Φ−1(t∗) inherits a T -equivariant Spinc-structure which is also equivariant under a
central extension of the lattice Λ ⊆ t. We will also explain how to deal with the non-transverse
case. Before discussing the infinite-dimensional setting, we will review the known construction
for Hamiltonian G-spaces.

6.1. The spinor module Sg/t. Let T ⊆ G be a maximal torus , with normalizer N(T ) and
Weyl group W = N(T )/T . We denote by R ⊆ t∗ be the (real) roots α of (G,T ), and let R+

be the set of of positive roots relative to some choice of Weyl chamber t+ ⊆ t. It determines
a T -invariant complex structure on g/t ∼= t⊥, in such a way that the +

√
−1 eigenspace n+ =

(g/t)+ ⊆ (g/t)C is the direct sum of the root spaces for the positive roots. Let

Sg/t = Cl(g/t)/Cl(g/t) n− ∼= ∧n+
be the associated T -equivariant spinor module over Cl(g/t). The N(T )-action on g/t does not
preserve the complex structure, hence does not give an action on the spinor module. The set
of ‘implementers’ of this action defines a central extension of N(T ) by U(1), with an action on
the spinor module such that the central circle acts with weight 1. Equivalently, this central
extension is the pull-back of the central extension

1→ U(1)→ Pinc(g/t)→ O(g/t)→ 1

under the action of N(T ) on g/t. The T -action on the spinor module defines a homomorphism

from T into this central extension; we will identify T with its image in N̂(T ). The following is
well-known.

Lemma 6.1. Let g ∈ N(T ), with lift ĝ ∈ N̂(T ). Then

(24) ĝ−1tĝ = tρ−wρ w−1(t),

where w ∈ W is the Weyl group element determined by g, and tρ−wρ ∈ U(1) is the image of t
under the homomorphism T → U(1) defined by the weight ρ− wρ.

Proof. Since the left hand side of (24) is a lift of g−1tg = w−1(t), it differs from the ‘canonical’
lift by a scalar. To determine this scalar, let us apply both sides to the ‘vacuum vector’ 1 ∈ ∧n+.
This element is annihilated by the Clifford action of all root vectors eα with α ∈ R−, hence
ĝ.1 is annihilated by all g.eα with α ∈ R−. These are the root vectors for the weights wα, and
the pure spinor line annihilated by these root vectors is spanned by the wedge product of root
vectors for roots β ∈ R+ such that w−1β ∈ R−. The weight for the action of t on this wedge
product is thus the sum over all positive roots β for which w−1.β is negative. But this is the
weight ρ−wρ. "

The spinor module has a Z2-grading Sev
g/t ⊕ Sodd

g/t , and the Z2-graded character

∆(t) = tr
(
t
∣∣
Sev
g/t

)
− tr

(
t
∣∣
Sodd
g/t

)
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is complex conjugate to the Weyl denominator:

∆(t)∗ =
∏

α∈R+

(1− t−α) =
∑

w∈W
(−1)l(w)twρ−ρ.

Remark 6.2. The structure group of the central extension N̂(T ) can be reduced to Z2, by
taking the pull-back of Pin(g/t) rather than Pinc(g/t). The embedding T → N̂(T ) does not
take values in this Z2-central extension. However, if G is simply connected, then ρ is a weight,
and one can use a new lift

ι : T → N̂(T ), t 5→ t̂ = t−ρ t

which takes values in Pin. Equation (24) shows that the image of this map is a normal subgroup,
resulting in a central extension of W by Z2 = ±1. See [28] for an explicit description of this
central extension in terms of generators and relations.

There is a similar discussion for the Clifford algebra over Lg/t (identified with the orthogonal
space to t inside Lg). This space has a complex structure whose +

√
−1 eigenspace is spanned

by n+ together with the subspace of LgC spanned by the positive Fourier modes. It defines a
T -equivariant spinor module

SLg/t = ∧(Lg/t)+

where the bar signifies a Hilbert space completion.
The action of the subgroup Λ ! N(T ) ⊆ LG, where Λ ⊆ t is the integral lattice embedded

as ‘exponential paths’, preserves t, hence also Lg/t. The latter action is by transformations in
the restricted orthogonal group Ores(Lg/t), hence we obtain a central extension of Λ !N(T )
consisting of all implementers of this action.

As before it is convenient to do computations using a basis of root vectors. There is an
action of T × S1 on LgC, where T acts by the adjoint action and S1 acts by rotating the loop.
The non-zero weights for this action are the affine roots Raff : all pairs (α, n), α ∈ R ∪ {0},
n ∈ Z where either n 0= 0, or n = 0 and α 0= 0. The subset Raff ,+ with either n > 0 or n = 0
and α ∈ R+ are the positive affine roots; the latter are the weights for the action of T × S1 on
(Lg/t)+. Let Raff ,− = −Raff ,+ denote the negative affine roots.

Since the T -action preserves the complex structure, the central extension is canonically trivial
over T , and given a lift ĝ of g ∈ Λ ! N(T ), where g maps to the affine Weyl group element
w ∈ Λ!W , we have

(25) ĝ−1tĝ = t
∑

′ α w−1(t),

where the sum
∑′ α is over all (α, n) ∈ Raff ,+ ∩ wRaff ,−.

If g is simple then ∑′
α = ρ− wρ.

Here wρ denotes the action of the affine Weyl group on t∗ at level the dual Coxeter number h∨;
in terms of the basic inner product B for g, the latter is generated by reflections in the affine
hyperplanes h∨H(α,n) where

H(α,n) = {ξ ∈ t∗|B(α, ξ) + n = 0}

and (α, n) ∈ Raff ,+.
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Remark 6.3. Let θ denote the highest root. Using the formula

h
∨ = 1 +B(ρ, θ)

for the dual Coxeter number, one finds immediately that ρ− wρ = −θ, for w the reflection in
h∨H(−θ,1). This verifies the formula

∑′ α = ρ−wρ for the additional generator w of the affine
Weyl group.

6.2. Abelianization for Hamiltonian G-spaces. In this section, we consider Hamiltonian
G-spaces (M,ω,Φ) whose moment map Φ : M → g∗ is transverse to t∗ = (g∗)T ⊆ g∗. Simple
examples of such spaces include M = T ∗G, with the G-action given by the cotangent lift of
the left-action of G on itself, or the regular coadjoint orbits O ⊆ g∗.

Remark 6.4. The paper [37] gives a classification of all multiplicity free Hamiltonian G-spaces
whose moment map is transverse to t∗. For example, every regular coadjoint orbit of U(3),
regarded as a Hamiltonian G = U(2)-space under the inclusion U(2)→ U(3) in the upper left
corner, is such a space.

The transversality assumption implies that the submanifold

X = Φ−1(t∗),

with the pull-backs ωX ,ΦX of the symplectic form and moment map, becomes a degenerate
Hamiltonian N(T )-space. Here degenerate refers to the fact that the 2-form ωX is no longer
symplectic; its has a non-trivial kernel at points x ∈ X for which Φ(x) is not regular (i.e., has
stabilizer larger than T ). There is a canonical N(T )-equivariant trivialization of the normal
bundle,

ν(M,X) ∼= X × g/t

coming from the bundle map ν(M,X) → ν(g∗, t∗) ∼= (T t∗)⊥ = t∗ × g/t induced by Φ. It
has a T -equivariant Spinc-structure from the complex structure on g/t, with associated spinor
module X × Sg/t.

On the other hand, the choice of a G-invariant compatible almost complex structure on M
defines a G-equivariant spinor module STM , and we obtain a T -equivariant spinor module for
X,

(26) STX = HomCl(g/t)(X × Sg/t,STM |X).

Here the metric on TX⊥ ∼= ν(M,X) induced by the metric on M may be different from that
coming from the isomorphism with X × g/t, but as explained in Section 2.2 there is a natural
isometric isomorphism relating the two metrics. .

Given a G-equivariant line bundle L → M , the equivariant indices of L|X ⊗ STX and of
L⊗ STM are related by the Weyl denominator:

(27) indexG(L⊗ STM)(t) =
indexT (L|X ⊗ STX)(t)∏

α∈R+
(1− t−α)

for all regular t ∈ T . In particular, the two equivariant indices carry the same information.

Remark 6.5. The T -equivariant index χ(t) = indexT (L|X ⊗ STX)(t) has the following transfor-
mation property.

χ(w−1.t) = (−1)l(w)twρ−ρχ(t).
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This follows one the one hand from the invariance properties of the Weyl denominator in (27),
while the left hand side is W -invariant.

Alternatively, it follows because the T -action on the spinor module STX , extends to an action
of the central extension of N(T ), see Section 6.1: If h ∈ N(T ) represents w, and ĝ lifts g, then

χ(w−1.t) = χ(twρ−ρ ĝ−1tĝ) = (−1)l(w)twρ−ρ χ(t).

Here the sign appears because g changes the orientation, and hence ĝ changes the parity of the
spinor module, by (−1)l(w).

Since the complex structure on g/t is not N(T )-equivariant, the spinor module STX is not
N(T )-equivariant. However, we obtain a central extension of N(T ) (given by implementers
for the action on Sg/t), and this central extension acts. This accounts for the fact that the
resulting index indexT (LX ⊗ STX) ∈ R(T ) is anti-invariant with respect to the shifted Weyl
group action.

In practice, the assumption that Φ is transverse to t∗ is rather strong. To make the abelian-
ization procedure work in general, one can use an N(T )-invariant tubular neighborhood U ⊆ g∗

of t∗, over which an ‘equivariant Bott element’ β (the K-theory counterpart of a Thom form)
is defined. Over Φ−1(U), one then takes the cup product of the K-homology class of Spinc-
structure, with the pull-back of β; this has a well-defined equivariant index. In the trans-
verse case, one can ‘integrate over the fibers’ and replace the K-cycle on Φ−1(U) with one on
X = Φ−1(t∗).

6.3. Abelianization for Hamiltonian LG-spaces. Our aim is to carry out a similar abelian-
ization approach for Hamiltonian loop group spaces, with moment maps taking values in A.
This works particularly well in the ‘transverse case’. Let Λ ⊆ t be the integral lattice (kernel
of the exponential map), with the natural action of N(T ) via the homomorphism to W . The
semi-direct product Λ!N(T ) acts on t via its homomorphism to the affine Weyl group Λ!W ,
that is, (5, h).µ = Adh µ − 5. The inclusion t → PG as exponential loops γ(t) = exp(tµ) is
equivariant relative to the homomorphism

Λ!N(T ) ↪→ LG×G, (5, h) 5→ (exp(t5)h, h).

Under the projection p : PG→ A, it descends to an equivariant inclusion t→ A, µ 5→ µ∂t as
‘constant connections’, and under q : PG→ G it descends to the standard inclusion T → G.

Proposition 6.6. For a proper Hamiltonian LG-manifold (M,ω,Φ), with correspondence di-
agram (6), the following are equivalent:

• the map Φ : M→ A is transverse to t ↪→ A,
• the map ΦM : M → G is transverse to T ↪→ G,
• the map ΦN : N → PG is transverse to t ↪→ PG.

Proof. Let µ ∈ t be given, corresponding to the exponential path γ(t) = exp(tµ), and let
n ∈ N with ΦN (n) = γ. Let Vγ be the slice at γ, and Yγ = (ΦN )−1(Vγ) ⊆ N the cross-section.
Note that Vγ contains an open neighborhood of γ inside the image of t ↪→ PG. Hence, by
equivariance, ΦN is transverse to t ↪→ PG at n if and only if its restriction ΦN |Yγ is transverse
to t at n. Similarly, the transversality of ΦM to t at p(n), and of ΦM to T at q(n), is equivalent
to a similar transversality conditions for the restriction to the cross-sections. Since p and q
define diffeomorphisms of the cross-sections Yp(γ) ← Yγ → Yq(γ), intertwining the moment
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maps and the inclusions of t resp, of T , we conclude that all three transversality conditions are
equivalent. "

Example 6.7. There is an interesting example, due to Woodward, of a multiplicity-free quasi-
Hamiltonian SU(3)-spaces, with moment map transverse to the maximal torus T . Its moment
polytope is a triangle, with vertices the mid-points of the edges of the alcove. See [23] or [20]
for a description of this space.

Proposition 6.8. Let (M,ω,Φ) be a proper Hamiltonian LG-space. If the moment map
Φ : M → A is transverse to the inclusion t ↪→ A, then the pre-image X = Φ−1(t) becomes a
(degenerate) Hamiltonian Λ!N(T )-manifold. The choice of positive roots for (G,T ) determines
a Spinc-structure on X , equivariant with respect to

Λ̂spin ! T

where the superscript indicates the central extension obtained by restriction from the spin central
extension of the loop group.

Proof. By the transversality condition, the pre-image X = Φ−1(T ) is a (degenerate) quasi-
Hamiltonian N(T )-manifold, while X = Φ−1(t) ⊆ M becomes a (degenerate) Hamiltonian
Λ!N(T )-manifold. We may also regard it as the submanifold X = Φ−1

N (t) ⊆ N .
The moment map ΦM and any choice of invariant Riemannian metric gives an N(T )-

equivariant decomposition TM |X ∼= TX ⊕ (X × g/t), hence

q∗TM |X = TX ⊕ (X × g/t)

Using the spinor bundle Sg/t defined by a system of positive roots, we obtain a spinor bundle,

STX = HomCl(X×g/t)(X × Sg/t,Sq∗TM |X ),

hence a Spinc-structure on X . "

Remark 6.9. From the proof, we see that the spinor module is actually equivariant for the
action of a central extension of Λ ! N(T ) whose restriction to N(T ) is the opposite of the
spin-central extension for its action on Sg/t.

Remark 6.10. In this argument, we used the twisted Spinc-structure on q∗TM constructed
earlier. Alternatively, one can also start out with STM. Similar to Section 5.3, one can
construct an Λ!N(T )-equivariant isometric isomorphism

TM = TX ⊕ Lg/t,

and then define STX = HomCl(X×Lg/t)(X × SLg/t, STM).

Remark 6.11. Given a pre-quantum line bundle L for M, one obtains a new Spinc-structure
on X , with spinor module STX ⊗ L, and an associated Dirac operator /∂. This Dirac operator
is equivariant with respect to T , as well as with respect to a spin-central extension of Λ. Using
the commutation relations between these two actions, we can show that the irreducible T -
representations appear with finite multiplicity in the (infinite-dimensional) kernel and cokernel
of /∂. Details will be given in a forthcoming paper.
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6.4. Thickenings. In the non-transverse case, the situation is slightly more complicated.
Choose ε > 0 so that the map

T × g/t ∼= ν(G,T )→ G, (t, ξ) 5→ t exp(ξ)

(where we identify g/t ∼= t⊥) restricts to a tubular neighborhood embedding

(28) T ×Bε(g/t) ↪→ G.

Using an LG×G-equivariant principal connection on PG→ G (for instance, the connection β
constructed in Section 5.2), this lifts uniquely to a tubular neighborhood embedding

(29) q−1(T )×Bε(g/t) ↪→ PG

in such a way that the corresponding Euler vector field on the image of (29) is the horizontal
lift of the Euler vector field on the image of (28). See [9] for the construction of tubular
neighborhoods in terms of Euler-like vector fields; the relevant infinite-dimensional techniques
can be found in [1]. Its composition with the inclusion t→ q−1(T ) ⊆ PG as exponential maps
defines a Λ !N(T )-equivariant embedding t × Bε(g/t) ↪→ PG, which fits into a commutative
diagram

(30) t×Bε(g/t) &&

''

PG

''

T ×Bε(g/t) && G

Since the upper map is transverse to the action of LG, the pre-image

Y = Φ−1
N (t×Bε(g/t)) ⊆ N

is a smooth finite-dimensional submanifold. We think of it as a thickened version of the possibly
singular space X = Φ−1

N (t) ∼= Φ−1(t). Projection to M gives an identification

Y/Λ ∼= Y := Φ−1
M (T ×Bε(g/t)) ⊆M,

an open neighborhood of X in M . The restriction of q∗STM to Y is a Λ̂spin ! T -equivariant
spinor bundle, defining a Spinc-structure on Y.

7. Twisted loop groups

Let κ ∈ Aut(G) be a Lie group automorphism. We take the κ-twisted loop group L(κ)G to
be the group of paths λ : R→ G of (local) Sobolev class s with the property λ(t+1) = κ(λ(t)).

Let P(κ)G consist of paths γ : R → G of Sobolev class s such that γ(t + 1) = aκ(γ(t)) for
some a ∈ G. The group G acts on P(κ)G by multiplication from the left, while L(κ)G acts
as multiplication by the inverse from the right. We will use the notation Gκ for the group G
regarded as a G-space under the κ-twisted conjugation action, g.a = gaκ(g)−1. Then P(κ)G
is a G-equivariant principal L(κ)G-bundle over Gκ, with quotient map q(γ) = γ(1)κ(γ(0))−1 .
Let A(κ) be the space of connection 1-forms on R of Sobolev class s − 1, with the property
µ(t+1) = κ(µ(t)). The group L(κ)G acts on this space by gauge transformations, and the map
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p : P(κ)G → A(κ), γ 5→ γ−1∂γ is an L(κ)G-equivariant principal G-bundle. We arrive at the
correspondence diagram,

(31) P(κ)G
p

((((
((
((
((
(

q

)))
))

))
))

))

A(κ) Gκ

giving a Morita equivalence of the action groupoids [A(κ)/L(κ)G] and [Gκ/G]. Given an Ad-
invariant metric on g that is also κ-invariant, we obtain an L(κ)G×G-invariant 2-form .(κ) ∈
Ω2(P(κ)G), with the properties d.(κ) = −q∗η, as well as

(32) ι(XPG).
(κ) = −1

2
q∗(θL · κ(X) + θR ·X), ι(ξPG).

(κ) = p∗〈dµ, ξ〉

for X ∈ g, ξ ∈ L(κ)g. It is given by the explicit formula (see Appendix C)

.(κ) =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R
)
∂t+

1

2
ev∗0 κ(θ

L) · ev∗1 θL.

Proper Hamiltonian L(κ)G-spaces are defined just as in the case of a trivial automorphism (see
Definition 3.4), replacing A with A(κ). Similarly, quasi-Hamiltonian G-spaces with Gκ-valued
moment maps [6, 22] are defined similar to Definition 3.5, but requiring equivariance with
respect to the κ-twisted conjugation action, and replacing the moment map condition by

ι(XM )ωM = −1

2
Φ∗
M (θL · κ(X) + θR ·X),

in accordance with (32). As before, one has a 1-1 correspondence between proper Hamiltonian
L(κ)G-spaces and quasi-Hamiltonian G-spaces with Gκ-valued moment maps, described by a

diagram M p←− N q−→M , similar to (6). Examples of such quasi-Hamiltonian spaces are the
twisted conjugacy classes C ⊆ Gκ; the corresponding L(κ)G-spaces are the coadjoint L(κ)G-
orbits O ⊆ A(κ). Here, the symplectic form on coadjoint orbits is given by the same expression
(7) as in the untwisted case, using that ∂µξ1 ·ξ2 for µ ∈ A(κ) and ξi ∈ L(κ)g is a periodic 1-form
on R. Further examples may be found in the context of twisted wild character varieties [6],
twisted moduli spaces of flat connections [22], and multiplicitity free quasi-Hamiltonian spaces
[18].

Remark 7.1. For most purposes, it is enough to consider one representative of automorphisms in
any given class in Aut(G)/ Inn(G). (See [22, Section 3.4].) Indeed, suppose κ̃ = Adh ◦κ for some
h ∈ G. Then the map Gκ→ Gκ̃, g 5→ gh−1 intertwines the κ-twisted conjugation action with
the κ̃-twisted conjugation action. Similarly, the choice of any σ ∈ P(κ)G with q(σ) = h defines
a group isomorphism L(κ)G → L(κ̃)G, λ 5→ Adσ λ. The map P(κ)G → P (κ̃)G, γ 5→ γσ−1,
is G-equivariant and intertwines the actions of L(κ)G and L(κ̃)G. The corresponding map
A(κ) → A(κ̃) is given by µ 5→ Adσ(µ)− ∂σσ−1. In this way, right multiplication by h−1 turns
a Gκ-valued moment map into a Gκ̃-valued moment map, and the gauge action of σ turns an
A(κ)-valued moment map into a A(κ̃)-valued moment map.

Given a proper Hamiltonian L(κ)G-space M, the construction of a spinor module STM
proceeds parallel to the case of κ = 1. We will be brief, providing details only where special
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aspects of the construction arise. We introduce the space L
(κ)

g of κ-twisted loops of Sobolev
class 1

2 , and use it to define a completion TM of the tangent bundle, on which the 2-form

becomes strongly symplectic. If O ⊆ A(κ) is a coadjoint orbit, then the completed tangent
bundle TO has a canonical L(κ)G-invariant compatible complex structure, given by the formula
(9). In the general case, we obtain a polarization class of L(κ)G-invariant compatible complex
structures J on TM. Up to isomorphism, the resulting L(κ)G-equivariant spinor bundle STM
is independent of the choice of J .

To obtain a twisted Spinc-structure for the associated quasi-Hamiltonian space (where ‘twist’
refers to the twisting ofK-theory, rather than to the automorphism κ of the twisted loop group),
we need LG×G-equivariant connections α,β on the two principal bundles in (31), in such way
that the corresponding vertical projections extend to the completions. Such connections are
obtained by the same method as in Section 5.2; see [22] for a discussion of slices for the twisted
conjugation action. As another ingredient, we need the spin representation of the twisted loop
group. Let L(κ)g be the κ-twisted loops of Sobolev class 0, with the Hilbert space inner product
given by integration over [0, 1] ⊆ R. The covariant derivative ∂0 with respect to 0 ∈ A(κ) is an
unbounded skew-adjoint operator on this Hilbert space, its kernel are the constant κ-twisted
loops, that is, elements of gκ. The spectral decomposition of ∂0 defines a complex structure
on (gκ)⊥ ⊆ L(κ)g; together with the standard complex structure on gκ ⊕ gκ we hence have a
complex structure on L(κ)g⊕ gκ, and an associated spinor module:

Cl(L(κ)g⊕ gκ) ! S
L(κ)g⊕gκ .

We obtain a central extension of L(κ)G by its map to the restricted orthogonal group; its
opposite will be called the spin-central extension of the twisted loop group L(κ)G.

Consider the principal bundles M p←− N q−→ M , obtained by pulling back (31) under the
respective moment maps, and equipped with the pull-backs of the connections α,β. We obtain
LG×G-equivariant isometric bundle isomorphisms

p∗TM× (g⊕ g) ∼= TN × g ∼= q∗TM × (L(κ)g⊕ g)

(using a trivial action on the second g copy). Here the second isomorphism is obtained by first

using β to identify TN × g with the bundle q∗TM × (L
(κ)

g⊕ g), and then using the method
from Section 5.3 to pass to L(κ)g, in such a way that metrics and actions are preserved. The
first isomorphism gives an equivariant spinor bundle

STN×g := p∗STM ⊗ (N × ∧gC)

Taking a ‘quotient’, we obtain a spinor module

q∗Cl(TM ⊕ g/gκ) ! Sq∗TM×g/gκ := HomCl(L(κ)g⊕gκ)

(
S
L(κ)g⊕gκ , STN×g

)
;

equivalently, we obtain a Spinc-structure on the bundle

(33) q∗TM × g/gκ → N ,

which is equivariant for the action of L̂(κ)G
spin
× G. The presence of the g/gκ factor is both

natural and convenient. In fact, quasi-Hamiltonian spaces with Gκ-valued moment maps can
be odd-dimensional; examples include the twisted conjugacy classes of SU(3) with κ defined
by the standard diagram automorphism. Using the cross-section theorems from [22], one finds
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that the parity of dimM coincides with that of dim g/gκ, hence q∗TM × g/gκ always has even
rank.

We define a G-equivariant Dixmier-Douady bundle over Gκ,

A
(κ),spin = P(κ)G×L(κ)G K(S

L(κ)g⊕gκ)
op → Gκ.

The reasoning from Section 5.5 gives a G-equivariant Morita morphism,

Cl(q∗TM × g/gκ) $$% A
(κ),spin.

The K-homology fundamental class of M lives in the G-equivariant twisted K-homology of M
with coefficients in Cl(q∗TM × g/gκ); taking a tensor product with a pre-quantization, and
pushing forward under the moment map as in [25] gives an element of twisted equivariant
K-homology of Gκ, at a suitable level.

For the abelianization procedure, we assume that G is simple and simply connected, and
(with no loss of generality, see Remark 7.1) that κ is given by a Dynkin diagram automorphism,
relative to some choice of maximal torus T and positive roots. Then κ preserves T ; let T κ be
the fixed point torus. Every κ-twisted conjugacy class meets T κ; similarly, every coadjoint orbit
of L(κ)G meets tκ ⊆ A(κ) (embedded as constant connections), and every orbit of L(κ)G × G
on P(κ)G meets tκ ⊆ P(κ)G (embedded as exponential paths).

Suppose M is a proper Hamiltonian L(κ)G-space whose moment map Φ : M → A(κ) is
transverse to tκ ⊆ A(κ). Equivalently, ΦN is transverse to tκ ⊆ P(κ)G, and ΦM is transverse
to T κ ⊆ Gκ. Then X = Φ−1(tκ) ∼= Φ−1

N (tκ) is a degenerate Hamiltonian Λκ !NG(T )κ-space,
while X = Φ−1

M (T κ) is a degenerate quasi-Hamiltonian NG(T )κ-space. We have TM |X =
TX ⊕ (X × g/tκ), and a similar decomposition for the pull-back to X ⊆ N . Consequently,

q∗TM |X ⊕ (X × g/gκ) = TX ⊕ (X × (g/tκ ⊕ g/gκ)),

We obtain a complex structure on g/tκ ⊕ g/gκ = gκ/tκ ⊕ g/gκ ⊕ g/gκ, by taking the standard
complex structure on g/gκ⊕g/gκ = g/gκ⊗R2, and the complex structure on gκ/tκ determined
by the positive roots. Together with the Spinc-structure on q∗TM |X ⊕ (X × g/gκ), this then
determines a Spinc-structure on X , equivariant under the action of the spin central extension
of Λκ!NG(T )κ ⊆ L(κ)G. The non-transverse case can be dealt with by a thickening procedure
similar to Section 6.4.

Remark 7.2. The Spinc-structure on X is equivariant for the spin-central extension of the full
subgroup of L(κ)G preserving tκ ⊆ A(κ). This is somewhat larger than Λκ !NG(T )κ. To see
this, let Tκ be the range of T → T, h 5→ f(h) := hκ(h)−1 given by the twisted conjugation
action on the group unit e. The subtorus Tκ is transverse to T κ, of complementary dimension;
hence Tκ ∩ T κ is a finite group. The twisted conjugation action of h ∈ T preserves T κ if

and only if f(h) ∈ Tκ ∩ T κ (in which case the action is translation by f(h)), and N (κ)
G (T κ)

(the subgroup of G whose action on Gκ preserves T κ) is generated by NG(T )κ together with

f−1(Tκ ∩ T κ). Accordingly, N (κ)
G (T κ)/T κ is a semi-direct product of W κ = NG(T )κ/T κ, with

the finite group T κ ∩ Tκ. In a similar fashion, the subgroup of L(κ)G preserving tκ ⊆ A(κ) is
generated by Λκ ! NG(T )κ, together with paths of the form λ(t) = h exp(tX) with X ∈ tκ

such that f(h) expT (X) = e. Letting Λ(κ) = exp−1
Tκ(Tκ ∩T κ) ⊆ tκ, the resulting transformation

group of tκ is W (κ)
aff = Λ(κ) ! W κ. (This is the Weyl group of the twisted affine Kac-Moody

algebra corresponding to L(κ)G.)
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Appendix A. Spaces of compatible complex structures

Recall the setup of Section 2.3: H is a real Hilbert space with inner product g, (strong)
symplectic structure ω, and complex structure J such that

g(v,w) = ω(v, Jw).

For A ∈ B(H), let A∗ denote the transpose of A with respect to g. The polar decomposition

A = RP, P = |A| =
√
A∗A, R = A|A|−1

leads to a contraction

At := RP t, t ∈ [0, 1]

of the space of invertible elements of B(H) onto the orthogonal group O(H). The following is
well-known.

Proposition A.1. The contraction t 5→ At restricts to a contraction of Sp(H) onto UJ(H).

Proof. Note that A ∈ Sp(H) implies A∗JA = J . In particular A∗ ∈ Sp(H), hence A∗A ∈ Sp(H).
Taking fractional powers of the equation JA∗AJ−1 = (A∗A)−1 shows that |A|t ∈ Sp(H) for all
t ∈ Q, hence for all t ∈ R by norm-closedness of Sp(H). Setting t = 1 shows that R = A|A|−1 ∈
O(H) ∩ Sp(H) = UJ(H). "

The contraction descends to the quotient, giving a contraction of J (H,ω) to a point.

Proposition A.2. The contraction t 5→ At restricts to a contraction of Spres(H) onto UJ(H).

Proof. Let A ∈ Spres(H) have polar decomposition A = RP . Since R ∈ UJ(H),

(34) [J,At] = R[J, P t].

Extend P complex-linearly to HC. The spectrum of P is a compact subset of (0,∞). Choose
a simple closed contour Γ contained in C \ (−∞, 0] and containing the spectrum of P . Then

P t =
1

2πi

∫

Γ
zt(z − P )−1dz,

where zt = et log(z) (branch cut along (−∞, 0]), hence

[J, P t] =
1

2πi

∫

Γ
zt(z − P )−1[J, P ](z − P )−1dz.

Taking Hilbert-Schmidt norms

‖[J, P t]‖HS ≤
1

2π

∫

Γ
|zt| · ‖(z − P )−1‖2‖[J, P ]‖HS |dz|

shows that ‖[J, P t]‖HS < ∞. By equation (34), At ∈ Spres(H) for t ∈ [0, 1]. Using similar
arguments one shows that (t, A) 5→ At is continuous with respect to the norm ‖ − ‖J =
‖ − ‖+ ‖[J,−]‖HS . "

Remark A.3. By Kuiper’s theorem, U(H) is contractible in the norm topology. Thus Sp(H)
and Spres(H) are contractible. For Sp(H), this and related results can be found in [35].
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Appendix B. Central extension of the loop group

Let G be a compact, connected Lie group, with Lie algebra g. Let Lpolg = g[z, z−1] ⊆ LgC

be the Lie algebra of Laurent loops. The choice of invariant metric · on g determines a central

extension L̂polg = Lpolg⊕ C, with bracket

[(ξ1, t1), (ξ2, t2)] =
(
[ξ1, ξ2], 2πi

∫

S1
dξ1 · ξ2

)
.

If G is simple and simply connected, then any invariant metric is a multiple of the basic inner
product. The multiple is a real number k called the level of the central extension. One knows
that the Lie algebra extension exponentiates to a Lie group extension by C× if and only if
k ∈ Z.

Let Lpolg = Lpolg+ ⊕ gC ⊕ Lpolg− be the triangular decomposition defined by the Fourier
modes. We obtain a representation of Cl(Lpolg) on

R = Cl(Lpolg)/Cl(Lpolg)Lpolg+
∼= Cl(g)⊗ ∧Lpolg−.

The adjoint action of Lpolg gives a Lie algebra homomorphism ξ 5→ adξ, Lpolg → o(Lpolg),
acting on Cl(Lpolg) by derivations. It turns out to be impossible to lift to a Lie algebra
morphism Lpolg→ Cl(Lpolg), ξ 5→ γ(ξ) ∈ Cl(Lpolg) with

(35) adξ(x) = [γ(ξ), x], x ∈ Cl(Lpolg).

However, it turns out that one can define γ(ξ) as operators on R, satisfying (35) but with

[γ(ξ), γ(ζ)] = γ([ξ, ζ]) + ψKP (ξ, ζ),

where ψKP is the Kac-Peterson cocycle [17]

ψKP (ξ, ζ) =
1

2
Resz=0B

kil

(
∂ξ

∂z
, ζ

)
=

1

4πi

∫

S1
Bkil(dξ, ζ)

and Bkil(ξ1, ξ2) = tr(adξ1 adξ2) is the Killing form on g. If g is simple, the Killing form is
related to the basic inner product by Bkil = −8π2h∨Bbasic; hence we obtain

ψKP (ξ, ζ) = 2πi h∨
∫

S1
Bbasic(dξ, ζ).

This verifies that the spin central extension of the loop group is at level the dual Coxeter
number.

Appendix C. The 2-form .

The 2-form . ∈ Ω2(PG) is given in terms of the evaluation map evs : PG→ G as follows,

. =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R
)
∂t+

1

2
ev∗0 θ

L · ev∗1 θL

Letting Aλ denote the action of λ ∈ LG on PG, we have

evt ◦Aλ = rλ(t)−1 ◦ evt,
where ra denotes right multiplication by a ∈ G. It is thus follows that the g-valued 1-forms
ev∗t θ

R are LG-invariant:
A∗

λ ev
∗
t θ

R = ev∗t r∗λ(t)−1θR = ev∗t θ
R.
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On the other hand, under the action of G by left multiplication, ev∗t θ
R transforms by the

adjoint action. Hence . is LG × G-invariant. The exterior differential of . is calculated by
integration by parts, similar to [2, Appendix A] and is given by

d. = ev∗0 η − ev∗1 η +
1

2
d
(
ev∗0 θ

L · ev∗1 θL
)
= −q∗η,

where we used q(γ) = γ1γ
−1
0 . Since evt intertwines the left-action on PG with that on G, we

have that XPG ∼evt −XR. Consequently, at γ ∈ PG,

ι(XPG). = −1

2
X · (γ∗1θR − γ∗0θR)−

1

2
Adγ−1

0
X · γ∗1θL +

1

2
Adγ−1

1
X · γ∗0θL

=
1

2
X ·

(
(γ1γ

−1
0 )∗θL − (γ0γ

−1
1 )∗θL

)

= −q∗
(1
2
X · (θL + θR)

)
.

On the other hand, for ξ ∈ Lg we have that ξPG ∼evt ξ
L
t . Therefore, at γ ∈ PG,

ι(ξPG). =
1

2

∫ 1

0

(
Adγt ξt ·

∂

∂t
γ∗t θ

R − γ∗t θR · ∂
∂t

Adγt ξt
)
∂t+

1

2
ξ(0) ·

(
γ∗1θ

L − γ∗0θL
)

=

∫ 1

0

(
ξt ·Adγ−1

t

∂

∂t
γ∗t θ

R
)
∂t = p∗d〈µ, ξ〉

where the last equality used

Adγ−1
t

∂

∂t
γ∗t θ

R = d(γ−1
t γ̇t).

In the presence of an automorphism κ, we define .(κ) ∈ Ω2(P(κ)G) as follows,

.(κ) =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R
)
∂t+

1

2
ev∗0 κ(θ

L) · ev∗1 θL.

A calculation similar to the above shows d.(κ) = −q∗η, and

ι(XPG).
(κ) = −q∗

(1
2
(κ(X) · θL +X · θR)

)
, ι(ξPG).

(κ) = p∗〈dµ, ξ〉.
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