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A GEOMETRIC FORMULA FOR MULTIPLICITIES OF K-TYPES

OF TEMPERED REPRESENTATIONS

PETER HOCHS, YANLI SONG, AND SHILIN YU

Abstract. Let G be a connected, linear, real reductive Lie group with com-
pact centre. Let K < G be compact. Under a condition on K, which holds
in particular if K is maximal compact, we give a geometric expression for the
multiplicities of the K-types of any tempered representation (in fact, any stan-
dard representation) π of G. This expression is in the spirit of Kirillov’s orbit
method and the quantisation commutes with reduction principle. It is based on
the geometric realisation of π|K obtained in an earlier paper. This expression
was obtained for the discrete series by Paradan, and for tempered representa-
tions with regular parameters by Duflo and Vergne. We obtain consequences
for the support of the multiplicity function, and a criterion for multiplicity-free
restrictions that applies to general admissible representations. As examples,
we show that admissible representations of SU(p, 1), SO0(p, 1), and SO0(2, 2)
restrict multiplicity freely to maximal compact subgroups.
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1. Introduction

1.1. Background and motivation. Let G be a connected, linear, real reduc-
tive Lie group with compact centre. Let K < G be a maximal compact sub-
group. A tempered representation of G is a unitary irreducible representation whose
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K-finite matrix coefficients are in L2+ε(G) for all ε > 0. The set Ĝtemp of these
representations features in the Plancherel decomposition

L2(G) =

∫ ⊕

Ĝtemp

π ⊗ π∗ dµ(π)

as a representation of G×G, where µ is the Plancherel measure. Tempered represen-
tations are also important because they are used in the Langlands classification [28]
of admissible irreducible representations.

The restriction π|K of a tempered representation π to K is determined by the
multiplicities of all irreducible representations of K in π|K , i.e., the multiplicities
of the K-types of π. This restriction contains a good deal of information about
π. For example, if π has real infinitesimal character, then Vogan showed that it is
determined by its lowest K-type (see [47, Theorem 8.1]).

If π belongs to the discrete series, then Blattner’s formula (proved by Hecht
and Schmid [12] and later also in [7]) is an explicit combinatorial expression for the
multiplicities of the K-types of π. For general tempered representations, there exist
algorithms to compute these multiplicities. See, for example, the ATLAS software
package1 and its documentation [1]. This involves representations of disconnected
subgroups of G, which cannot be classified via Lie algebra methods. That is one
of the reasons why it is a challenge to deduce general properties of multiplicities of
K-types of tempered representations from such algorithms. Another reason is the
cancellation of terms, which already occurs in Blattner’s formula. That can make
it hard, for example, to determine which multiplicities are zero.

Paradan [36] gave a geometric expression for the multiplicities of the K-types
of discrete series representations π. This was based on a version of the quantisa-
tion commutes with reduction principle for a certain class of noncompact Spinc-
manifolds, and a geometric realisation of π|K based in turn on Blattner’s for-
mula and index theory of transversally elliptic operators. The main result in this
paper, Theorem 2.7, is a generalisation of Paradan’s result to arbitrary tempered
representations. (In fact, it applies more generally to standard representations.)
This generalisation is now possible because a quantisation commutes with reduc-
tion result for general noncompact Spinc-manifolds proved recently by the first two
authors of this paper [15]. Theorem 2.7 can in fact be generalised to more general
compact subgroups K < G; see Corollary 2.8. For tempered representations with
regular parameters, the multiplicity formula was proved by Duflo and Vergne [9] via
very different methods. Our result has applications to multiplicity-free restrictions
of admissible representations.

1.2. The main result. In Theorem 2.7, we use a homogeneous space of the form
G/H, for a Cartan subgroup H < G (depending on π). This can be identified with
a coadjoint orbit Ad∗(G)ν ⊂ g∗ through a regular element ν (depending on π) of
the dual of the Lie algebra h of H. (The Lie algebra of a Lie group is denoted
by the corresponding lowercase Gothic letter.) First, assume that π is induced
from a discrete series representation of a factor M in a cuspidal parabolic subgroup
MAN < G. Then G/H ∼= Ad∗(G)ν. Consider the map

Φ : G/H
∼=−→ Ad∗(G)ν → k∗.

1See http://www.liegroups.org/software/.
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K-TYPE MULTIPLICITIES OF TEMPERED REPRESENTATIONS 8555

This is a moment map in the sense of symplectic geometry, although we will need to
work with the more general Spinc-geometry. This is also why we use the notation
G/H rather than Ad∗(G)ν.

Let δ be an irreducible representation of K, and let η be its highest weight for
a maximal torus T < K and a fixed positive root system for (k, t). Let ρK be half
the sum of these positive roots. Via Spinc-quantisation, the representation δ corre-
sponds to the coadjoint orbit Oδ := Ad∗(K)(η + ρK)/i ⊂ k∗; see, for example, [39]
(note that η+ρK is the infinitesimal character of δ). The reduced space (G/H)Oδ is

(G/H)Oδ := Φ−1(Oδ)/T.

This is a compact space, and if (η + ρK)/i is a regular value of Φ, then it is an
orbifold. In that case, it has a Spinc-structure, induced by a given K-equivariant
Spinc-structure on G/H (depending on π). The index of the corresponding Spinc-
Dirac operator is denoted by

index((G/H)Oδ) ∈ Z.

This can be computed via Kawasaki’s index theorem [17, formula (7)]. If (η+ρK)/i
is a singular value of Φ, then Paradan and Vergne [41] showed how to still define
this index in a meaningful way, essentially by replacing (η + ρK)/i with a nearby
regular value; see Subsection 2.1. Our main result, Theorem 2.7, is the following.

Theorem 1.1. We have

[π|K : δ] = ± index((G/H)Oδ).

See Section 2 for precise definitions of the sign ±, for the dependence on π of H,
ν and the Spinc-structure on G/H, and for the definition of the index on the right-
hand side. In fact, Theorem 1.1 applies more generally to standard representations
π; see Remark 2.9.

If π is not induced from a discrete series representation of M , then its infini-
tesimal character is singular. In this case, the natural map G/H → Ad∗(G)ν is a
fibre bundle. We then use a different map Φ to define reduced spaces (see Subsec-
tion 2.2 for details.). This map depends on choices made, but the end result does
not: Theorem 1.1 still holds in this case.

Theorem 1.1, and the results that follow, is in fact true for more general compact
subgroups K < G: it is sufficient if the map Φ is proper. (This is true if K is
maximal compact; see [34, (1.3)].) See Corollary 2.8. Duflo and Vargas showed that
in the case of a discrete series representation π, properness of Φ with K replaced
by a possibly noncompact, closed, reductive subgroup H < G is equivalent to the
restriction of π to H being admissible (i.e., decomposing into irreducibles with finite
multiplicities); see [8, Proposition 4].

In the case where π is induced from the discrete series, Duflo and Vergne
[9] proved a multiplicity formula for its K-types analogous to Theorem 1.1. The
parametrisation part of the orbit method used by Duflo and Vergne to prove their
result is the one described in [6, Section III]. The geometric/representation theo-
retic input is Kirillov’s character formula, proved by Rossmann [42]; see also [45].
Our approach to proving Theorem 1.1 is based on the geometric realisation of π|K
in [16] and allows us to prove it in general, i.e., even for tempered representations
induced from limits of the discrete series. Furthermore, our result has applications
to multiplicity-free restrictions of general admissible representations.
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Theorem 1.1 allows us to use the geometry of G/H, or of the coadjoint orbit
Ad∗(G)ν, to draw conclusions about the general behaviour of the multiplicities of
the K-types of π. One such conclusion is about the support of the multiplicity
function of the K-types of π.

Corollary 1.2. All K-types of π have highest weights in the set

iΦ(G/H) ∩ it∗ − ρK .

In fact, these highest weights lie even in the relative interior of this set; see
Corollary 2.11.

Applications of Theorem 1.1 to multiplicity-free restrictions are described in
Subsection 1.4.

1.3. The orbit method and quantisation commutes with reduction. Theo-
rem 1.1 is directly related to Kirillov’s orbit method and Guillemin and Sternberg’s
quantisation commutes with reduction principle [11]. Indeed, if a representation π
of G is associated to a coadjoint orbit OG

π ⊂ g∗, and an irreducible representation
δ of a closed subgroup G′ < G is associated to a coadjoint orbit OG′

δ ⊂ h∗, then
according to this principle, one expects that

(1.1) [π|G′ : δ] = Q
(
(OG

π ∩ p−1(OG′

δ ))/G′),

where p : g∗ → h∗ is the restriction map and Q denotes some notion of geomet-
ric quantisation. In fact, a result of this form by Heckman [13] for compact Lie
groups was inspiration for Guillemin and Sternberg to develop the idea that quan-
tisation commutes with reduction. The equality (1.1) is also related to the role that
the Corwin–Greenleaf multiplicity function plays in the study of multiplicity-free
restrictions (see below).

In the setting of Theorem 1.1, suppose that the infinitesimal character χ of π is
a regular element of ih∗. Then it was shown in [16] that

π|K = QK(OG
π ),

where OG
π = Ad∗(G)χ, where QK stands for a natural notion of K-equivariant

geometric quantisation of noncompact Spinc-manifolds [15,30,36,37,46]. If H = K
and δ ∈ K̂ has highest weight η (hence infinitesimal character η + ρK), then,
as we mentioned above, OK

δ = Ad∗(K)(η + ρK) for a Spinc-version of geometric
quantisation [39]. Then Theorem 1.1 is precisely the equality (1.1), where Q is
given by the index of Spinc-Dirac operators.

We have mentioned Spinc-quantisation several times so far. Paradan showed
in [36] that it is natural to use a Spinc-version of geometric quantisation to obtain
multiplicities of K-types of representations of G, rather than the symplectic version.
Paradan and Vergne showed in [41] that the quantisation commutes with reduction
principle has a natural extension to the Spinc-setting. This was generalised to a
result for noncompact Spinc-manifolds in [15] (see Theorem 3.4), which we will use
to prove Theorem 1.1.

If the infinitesimal character χ is singular, then the link between Theorem 1.1
and the orbit method is less direct. Rather than using nilpotent coadjoint orbits
in that case, we use G/H as a desingularisation, which allows us to still obtain an
expression for multiplicities of K-types.
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1.4. Multiplicity-free restrictions. The problem of determining when the
restriction of an irreducible representation π of G to a closed subgroup G′ is
multiplicity-free is the subject of active research by a large community of mathe-
maticians. This restriction π|G′ is called multiplicity-free if the only G′-equivariant
endomorphisms of the representation space of π are the scalar multiples of the iden-
tity operator. If G′ is compact, as it is in our setting, then this precisely means
that every irreducible representation has multiplicity 1 in π|G′ . We just mention
a few results on multiplicity-free restrictions here that are particularly relevant
to our approach. See, for example, [25] and the references given there for more
information.

Many results about multiplicity-freeness apply to noncompact simple groups
G of Hermitian type. This means that G/K is a Hermitian symmetric space,
or equivalently, k has nonzero centre. For such groups, π is said to be of scalar
type if the +i eigenspace of the action by a fixed central element of k on the
space of K-finite vectors is one-dimensional. In this setting, Kobayashi proved
that π has multiplicity-free restriction to any subgroup G′ such that (G, G′) is a
symmetric pair. See [23], and also [25, Theorem A]. There are many other results
on multiplicity-free restrictions; two of many possible references are [24, 43].

Theorem 1.1 implies a geometric sufficient condition for the restriction of π to
K to be multiplicity-free: this is the case when (G/H)Oδ is a point. In fact, one
can then determine explicitly which multiplicities equal 1 and which equal 0.

Corollary 1.3. If (η+ ρK)/i is a regular value of Φ and (G/H)Oδ is a point, then
[π|K : δ] ∈ {0, 1}. The condition in Corollary 5.1 determines precisely when the
value 0 or 1 is taken.

If (η+ρK)/i is not necessarily a regular value of Φ, but (G/H)(Ad∗(K)(η+ρK+ε)/i)

is a point for all ε close enough to 0, then we still have [π|K : δ] ∈ {0, 1}.

There is in fact a version of Corollary 1.3 for general admissible representations;
see Corollary 5.4. By applying this version, we find that the restriction to K of
every admissible representation is multiplicity-free in the examples where G is one
of the groups

• SU(p, 1),
• SO0(p, 1) or SO0(2, 2).

This is worked out in Section 5; see Corollary 5.16. For SU(p, 1) and SO0(p, 1),
this was shown by Koornwinder [27]. (In a related result for SU(p, 1), van Dijk and
Hille showed that the tensor product of a holomorphic discrete series representation
and the corresponding antiholomorphic discrete series representation decomposes
multiplicity freely; see [5, Section 12].) For G = SL(2, C) and SL(2, R), all reduced
spaces are points so that all tempered representations have multiplicity-free restric-
tions to K, as is well known. We work out the case G = SL(2, R) in detail in
Subsection 5.2. Then we recover the well-known multiplicities of K-types of the
tempered representations of SL(2, R). For SL(2, R), we show how Corollary 1.3
does not just imply multiplicity-freeness but allows us to compute precisely which
representations occur.

As mentioned above, for many results on multiplicity-free restrictions, the group
G is assumed to be of Hermitian type. The groups SO0(p, 1) and SO0(2, 2) are not
of Hermitian type and can therefore not be treated via such results. Furthermore,
we do not assume the representation π to be of scalar type.
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Links between multiplicity-free restrictions and the orbit method were investi-
gated in [2,4,8,26,33]. A key role here is played by the Corwin–Greenleaf multiplic-
ity function n. For a closed subgroup G′ < G and coadjoint orbits OG′ ∈ (g′)∗/G′

and OG ∈ g∗/G, this function takes the value

n(OG, OG′
) = #

(
OG ∩ p−1(OG′

)/G′),
where p : g∗ → h∗ is the restriction map. Corwin and Greenleaf showed that this
function gives multiplicities of restrictions of unitary irreducible representations
if G is nilpotent (see [4, Theorem 4.8]). Then Kirillov’s orbit method classifies
unitary irreducible representations as geometric quantisations of coadjoint orbits.
In general, if π is associated to OG, then (1.1) suggests that the restriction π|G′

should be multiplicity-free if n(OG, OG′
) ≤ 1 for all coadjoint orbits OG′

of G′.
A precise conjecture was formulated by Kobyashi and Nasrin [26], and proved for
G′ = K by Nasrin [33].

We conjecture the condition for multiplicity-free restrictions in Corollary 1.3 to
be necessary, as well as sufficient.

Conjecture 1.4. Let H < G be a θ-stable Cartan subgroup. Suppose that every
tempered representation induced from the cuspidal parabolic subgroup correspond-
ing to H restricts multiplicity freely to K. Then all reduced spaces for all maps
Φ : G/H → k∗ corresponding to those representations are points.

Evidence for this conjecture is given under Conjecture 5.5.

1.5. Ingredients of the proof. The proof of Theorem 1.1 is based on three in-
gredients.

(1) A realisation of π|K as a K-equivariant index of a deformed Dirac operator
on G/H. This was done in [16, Theorem 3.11]. That result involves index
theory of deformed Dirac operators developed by Braverman [3].

(2) A general quantisation commutes with reduction result for noncompact
Spinc-manifolds. This is [15, Theorem 3.10]. For compact Spinc-manifolds,
this was proved by Paradan and Vergne [39–41]. For noncompact symplectic
manifolds, the analogous result was proved by Ma and Zhang [30], after a
conjecture by Vergne [46]. See also [37].

(3) One needs to show that the second ingredient can be applied to the first,
by using the freedom one has in the deformation of the Dirac operator on
G/H to choose the particular deformation that yields the desired result.
This requires some work and occupies a large part of this paper.

Notation 1.5. The Lie algebra of a Lie group is denoted by the corresponding low-
ercase Gothic letter. We denote complexifications by superscripts C. The unitary
dual of a group H will be denoted by Ĥ. If H is an abelian Lie group and ξ ∈ h∗ sat-
isfies the appropriate integrality condition, then we write Cξ for the one-dimensional
representation of H with weight ξ.

In Subsections 2.1, 3.1, and 4.4, the letter M denotes a manifold. In the rest of
this paper, it denotes a subgroup of G.

2. The multiplicity formula

The main result of this paper is a multiplicity formula for K-types of tempered
representations, Theorem 2.7, and its extension, Corollary 2.8. This is a geometric
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formula in terms of indices on reduced spaces for the action by a maximal compact
subgroup on a homogeneous space of the group in question.

2.1. Indices on reduced spaces. Let M be a complete Riemannian manifold,
on which a compact Lie group K acts isometrically. Let J be a K-invariant al-
most complex structure on M . We write

∧
JTM for the complex exterior algebra

bundle of TM , viewed as a complex bundle via J . Let L → M be a Hermitian,
K-equivariant line bundle. The vector bundle

(2.1)
∧

JTM ⊗ L → M

is the spinor bundle of the Spinc-structure on M defined by J and L; see, e.g., [10,
Proposition D.50] or [29, page 395]. In this paper, we will work only with Spinc-
structures induced by almost complex structures and line bundles, as in this case.

The determinant line bundle associated to the Spinc-structure with spinor
bundle (2.1) is

Ldet =
∧dim(M)/2

J TM ⊗ L⊗2 → M.

Let ∇ be a K-invariant, Hermitian connection on Ldet. The corresponding moment
map is the map Φ : M → k∗ such that, for all X ∈ k,

(2.2) 2i〈Φ, X〉 = LX −∇XM .

Here 〈Φ, X〉 ∈ C∞(M) is the pairing of Φ and X, LX is the Lie derivative with
respect to X of smooth sections of Ldet, and XM is the vector field on M induced
by X; our sign convention is that for m ∈ M ,

XM (m) =
d

dt

∣∣∣∣
t=0

exp(−tX)m.

The origin of the term “moment map” is that, by Kostant’s formula, Φ is a moment
map in the symplectic sense if the curvature of ∇ is −i times a symplectic form
on M .

If ξ ∈ k∗, then the reduced space at ξ is the space

(2.3) Mξ := Φ−1(ξ)/Kξ,

where Kξ is the stabiliser of ξ with respect to the coadjoint action. If ξ is a
regular value of Φ, then Kξ acts on the smooth submanifold Φ−1(ξ) ⊂ M with
finite stabilisers. Then Mξ is an orbifold. In our setting, the map Φ will be proper
so that Mξ is compact. We will express multiplicities of K-types of tempered
representations as indices of Dirac operators on reduced spaces. For reduced spaces
at regular values of the moment map, these are indices in the orbifold sense. For
reduced spaces at singular values, one applies a small shift to a nearby regular
value; see Definition 2.3 below.

The indices on reduced spaces that we will use were constructed in [41, Subsec-
tions 5.1 and 5.2] for general Spinc-structures. We review this construction here, for
Spinc-structures induced by almost complex structures and line bundles as above.
The construction is done in three steps. First, one realises a given reduced space
as a reduced space for an action by a torus. For actions by tori, indices on reduced
spaces at regular values of the moment map can be defined directly. For singular
values, one applies a shift to a nearby regular value.

We suppose from now on that the action by K on M has abelian stabilisers.
(This is true in our application of what follows.)
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Let T < K be a maximal torus. Fix an open Weyl chamber C ⊂ t, and let ρK

be half the sum of the corresponding positive roots. Let ξ ∈ t∗ be dominant with
respect to C. Then ξ + ρK/i ∈ C. We will always identify k ∼= k∗ via the inner
product equal to minus the Killing form. Let Y ⊂ M be a connected component
of Φ−1(C). Consider the map

ΦY := Φ|Y − ρK/i : Y → t∗.

Set
Yξ := Φ−1

Y (ξ)/T.

Let q : Φ−1
Y (ξ) → Yξ be the quotient map. Let tY ⊂ t be the generic (i.e., minimal)

stabiliser of the infinitesimal action by t on Y . The image of ΦY is contained in an
affine subspace I(Y ) ⊂ t∗ parallel to the annihilator of tY .

Lemma 2.1 (Paradan and Vergne). If ξ is a regular value of ΦY : Y → I(Y ),
then Yξ is an orbifold, and for every integral element η ∈ I(Y ), there is an orbifold
Spinc-structure on Yξ, with spinor bundle Sη

Y,ξ → Yξ determined by
(∧

JTM ⊗ L
)
|Φ−1

Y (ξ) = q∗Sη
Y,ξ ⊗C

∧
Ck/t ⊗C

(∧
C(t/tY ⊗R C)

)
⊗C Cη.

Here k/t is viewed as a complex vector space isomorphic to the sum of the positive
root spaces corresponding to C, and

∧
C denotes the exterior algebra of complex

vector spaces.

This is [41, Lemma 5.2].
Suppose that Φ is a proper map. Then Yξ is compact. In the setting of

Lemma 2.1, we write
index(Sη

Y,ξ) ∈ Z
for the orbifold index [17] of a Spinc-Dirac operator on the bundle Sη

Y,ξ. This can
be evaluated in terms of characteristic classes on Yξ via Kawasaki’s index theorem;
see [17, formula (7)].

Theorem 2.2 (Paradan and Vergne). The integer index(Sξ
Y,ξ+ε) is independent of

ε ∈ I(Y ) such that ξ + ε is a regular value of ΦY : Y → I(Y ) for ε small enough.

This result is [41, Theorem 5.4]. It allows us to define

index(Sξ
Y,ξ) := index(Sξ

Y,ξ+ε),

for ε as in Theorem 2.2.
Finally, we have

Mξ+ρK/i =
∐

Y

Yξ,

where Y runs over the connected components of Φ−1(C).

Definition 2.3. The index of the Spinc-Dirac operator on the reduced space
Mξ+ρK/i is the integer

index(Mξ+ρK/i) =
∑

Y

index(Sξ
Y,ξ),

where Y runs over the connected components of Φ−1(C). If Mξ+ρK/i = ∅, then we
set index(Mξ+ρK/i) = 0.

Such an index on a reduced space may be viewed as the Spinc-quantisation of
that space; see [41, Definition 5.5].
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2.2. Tempered representations, almost complex structures, and moment
maps. Let G be a connected, linear, real reductive Lie group with compact centre.
Let K < G be maximal compact, and let θ be a compatible Cartan involution. A
tempered representation of G is an irreducible unitary representation whose K-finite
matrix coefficients are in L2+ε(G) for all ε > 0. These are the representations that
occur in the Plancherel decomposition of L2(G). Let π be a tempered representation
of G.

Tempered representations were classified by Knapp and Zuckerman. See [20–22]
or [18, Chapter XIV] for details, or [16, Subsection 2.3] for a brief overview of
the parts relevant to us here. In this classification, one parametrises π as follows.
Let P = MAN be the Langlands decomposition of a cuspidal parabolic subgroup
P < G. Let H < G be the θ-stable Cartan subgroup with noncompact part A.
Write h = tM ⊕ a, with tM ⊂ m. Then tM is a Cartan subalgebra of m. Set
TM := exp(tM ). Recall that we use minus the Killing form, which we denote by
(−,−), to identify k∗ ∼= k. Let λ ∈ it∗M , and let R+

M be a system of positive roots
for (mC, tCM ) such that, for all α ∈ R+

M , we have (α,λ) ≥ 0. Let ρM be half the sum
of the elements of R+

M . Suppose that λ − ρM is integral. Let ZM be the centre of
M . Let χM be a one-dimensional representation of ZM such that

χM |TM∩ZM = Cλ−ρM |TM∩ZM .

Then we have the well-defined representation Cλ−ρM ! χM of HM = TMZM . One
has the discrete series or limit of discrete series representation πM

λ,R+
M ,χM

associated

to these data; see [20, page 397]. (For singular λ, πM
λ,R+

M ,χM
is a limit of discrete

series representation if it is nonzero.) Let ν ∈ ia∗. For suitable λ, R+
M , and χM as

above, we have

(2.4) π = IndG
MAN (πM

λ,R+
M ,χM

⊗ eν ⊗ 1N ).

This is [20, Corollary 8.8].
We will use the K-invariant almost complex structure J on G/H defined in [16,

Subsection 3.4]. This was defined via the decomposition

(2.5) g/h ∼= m/tM ⊕ n− ⊕ n+,

where n+ = n and n− = θn+. On m/tM , we have the complex structure Jm/tM
such

that, as complex vector spaces,

m/tM =
⊕

α∈R+
M

mC
α.

Let Σ be the set of nonzero weights of the adjoint action by a on g. For β ∈ Σ,
let gβ ⊂ g be the corresponding weight space. Let Σ+ ⊂ Σ be the set of positive
weights such that

n =
⊕

β∈Σ+

gβ.

Let ζ ∈ a be an element for which 〈β, ζ〉 > 0 for all β ∈ Σ+. Then the map

Jζ := θ| ad(ζ)|−1 ad(ζ) : n− ⊕ n+ → n− ⊕ n+

is an HM -invariant complex structure (see [16, Lemma 3.9]). Let Jg/h be the
complex structure on g/h defined by Jm/tM

and Jζ via (2.5). Then J is the K-
invariant almost complex structure on G/H such that, for all k ∈ K, X ∈ sM , and
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Y ∈ n, the following diagram commutes:

Tk exp(X) exp(Y )HG/H
J !! Tk exp(X) exp(Y )HG/H

TeHG/H = g/h

TeHk exp(X) exp(Y )

""

Jg/h

!! g/h = TeHG/H.

TeHk exp(X) exp(Y )

""

(See [16, Lemma 3.10].)
Consider the line bundle

Lλ−ρM ,χM
:= G ×H Cλ−ρM ! χM → G/H

(where we extend λ− ρM ∈ it∗M to h by setting it equal to zero on a). The vector
bundle

(2.6)
∧

JT (G/H) ⊗ Lλ−ρM ,χM
→ G/H

is a spinor bundle of the form (2.1).
The positive systems R+

M and Σ+ determine a set R+
G of positive roots α of

(gC, hC) that satisfy

(2.7) (α|a = 0 and α|tM ∈ R+
M ) or (α|a 0= 0 and α|a ∈ Σ+).

Let ρG be half the sum of the elements of R+
G. Set

(2.8) ξ := λ/i ∈ t∗M .

Proposition 2.4. There is a K-invariant, Hermitian connection on the deter-
minant line bundle corresponding to (2.6) whose moment map Φ : G/H → k∗ is
given by

Φ(gH) = (Ad∗(g)(ξ + ζ))|k.

If the infinitesimal character χ of π is regular, then ζ can be chosen such that
ξ+ ζ = χ in Proposition 2.4; see Subsection 2.4. Then Φ is the moment map in the
symplectic sense action by K on the coadjoint orbit Ad∗(G)χ.

2.3. The main result. We initially formulate the multiplicity formula for the
K-types of π in two cases separately: the case where π is induced from a discrete
series representation of M , and the case where it is induced from a limit of discrete
series representation of M ; see Theorems 2.5 and 2.6. Then we combine these
statements into the main result of this paper, Theorem 2.7. We also formulate a
generalisation, Corollary 2.8, where K is not required to be a maximal compact
subgroup.

Note that the π is induced from a discrete series representation of M—i.e.,
πM
λ,R+

M ,χM
belongs to the discrete series of M—precisely if ξ is regular, whereas π is

induced from a limit of discrete series representation of M precisely if ξ is singular.
Fix a set of positive roots of (kC, tC) compatible with R+

M . Let ρK be half the

sum of these positive roots. Let δ ∈ K̂, and let η ∈ it∗ be its highest weight. Then
δ corresponds to the coadjoint orbit Oδ := Ad∗(η + ρK) through its infinitesimal
character η + ρK via Spinc-quantisation [39].

If ξ ∈ t∗M is regular, it has positive inner products with all roots in R+
M . Then

we can and will choose ζ such that ξ + ζ is regular for the roots of (gC, hC). In this
case, let

(G/H)Oδ = Φ−1(Oδ)/K = Φ−1((η + ρK)/i)/T
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be the reduced space at (η + ρK)/i, as in (2.3), for the moment map Φ of Proposi-
tion 2.4. Let

index((G/H)Oδ) ∈ Z
be the index of the Spinc-Dirac operator on this space, as in Definition 2.3. Recall
that

π = IndG
MAN (πM

λ,R+
M ,χM

⊗ eν ⊗ 1N ).

We set KM := K ∩ M .

Theorem 2.5 (Multiplicity formula, regular case). Suppose that π is induced from
a discrete series representation of M . For all δ ∈ K̂ with highest weight η, the
multiplicity of δ in π|K is

[π|K : δ] = (−1)dim(M/KM )/2 index((G/H)Oδ).

If ξ ∈ t∗M is singular, choose any ξ̃ ∈ t∗M with positive inner products with the
positive roots in R+

M , and choose ζ such that ξ̃ + ζ is regular. Define the map
ψ : G/H → k∗ by

ψ(gH) = (Ad∗(g)(ξ̃ + ζ))|k
for g ∈ G. Let vψ be the vector field on G/H defined by

vψ(gH) =
d

dt

∣∣∣∣
t=0

exp(−tψ(gH))gH

for all g ∈ G. Next, we choose a nonnegative function τ ∈ C∞(G/H)K that grows
fast enough, as in Lemma 4.11. That lemma implies that the map Φτ : G/H → k
given by

(2.9) 〈Φτ , X〉 = 〈Φ, X〉 + τ · (vψ, XG/H),

for X ∈ k, is a proper moment map. In this case, we set

(G/H)Oδ = (Φτ )−1((η + ρK)/i)/T.

Again, let
index((G/H)Oδ) ∈ Z

be the index of the Spinc-Dirac operator on this space.

Theorem 2.6 (Multiplicity formula, singular case). Suppose that π is induced from
a limit of discrete series representation of M . For all δ ∈ K̂ with highest weight η,
the multiplicity of δ in π|K is

[π|K : δ] = (−1)dim(M/KM )/2 index((G/H)Oδ).

Theorem 2.6 in fact also applies if π is induced from a discrete series representa-
tion of M so that it generalises Theorem 2.5. Indeed, if ξ is regular, then we may
take ξ̃ = ξ and τ = 0. Then Φτ = Φ is proper by [34, (1.1)], taming by [34, Proposi-
tion 2.1], and trivially homotopic to ψ = Φ. Hence in the regular case, these choices
of τ and ψ satisfy the conditions in Lemma 4.11, and the equality in Theorem 2.6 is
Theorem 2.5. The combination of these theorems is the main result of this paper.

Theorem 2.7 (Multiplicity formula for K-types of tempered representations). For
any tempered representation π of G, and all δ ∈ K̂, with highest weight η, the
multiplicity of δ in π|K is

[π|K : δ] = (−1)dim(M/KM )/2 index((G/H)Oδ).
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In other words,

π|K = (−1)dim(M/KM )/2
⊕

δ∈K̂

index((G/H)Oδ)δ.

If π belongs to the discrete series, then this multiplicity formula is [36, The-
orem 2.5]. The absence of the sign (−1)dim(M/KM )/2 = (−1)dim(G/K)/2 in that
result is due to a different definition of reduced spaces and the relevant indices
on them (see Remark 2.10). Our proof of Theorem 2.7 is based on a generalisa-
tion of the methods in [36], combined with Braverman’s index theory described in
Subsection 3.1. Via a completely different method, Duflo and Vergne [9] proved
Theorem 2.7 in the regular case, where πM

λ,R+
M ,χM

belongs to the discrete series.

Duflo and Vergne used Kirillov’s character formula, proved by Rossmann [42]; see
also [45]. This formula is based on deep results of Harish-Chandra and others. Our
approach uses a geometric realisation of π|K instead, and in addition covers the
singular case.

Theorem 2.7 can in fact be generalised to more general compact subgroups of
G, using a functoriality result by Paradan [38]. Let K < G now be any compact
subgroup, not necessarily maximal. Let K ′ < G be a maximal compact subgroup
containing K.

Let Φτ be as above for the action by K ′ on G/H, where we take τ = 0, so
Φτ = Φ, in the regular case. Suppose that the composition

(2.10) ΦK : G/H
Φτ

−−→ (k′)∗
p−→ k∗

is proper, where p is the restriction map. (This is true if K ′ = K as in Theorem 2.7.)
The multiplicity formula by Duflo and Vergne [9] for tempered representation in-
duced from the discrete series holds for restrictions to compact subgroups K with
this property. Let T be a maximal torus of K. For an irreducible representation
δ ∈ K̂ with highest weight η, we write OK

δ := Ad∗(η + ρK) and

(G/H)K
OK

δ
:= Φ−1

K (OK
δ )/K = Φ−1

K (ξ)/Kξ.

This allows us to state the most general multiplicity formula in this paper.

Corollary 2.8. The restriction of π to K is admissible, and we have

π|K = (−1)dim(M/K′
M )/2

⊕

δ∈K̂

index((G/H)K
Oδ

)δ.

Remark 2.9. In fact, Corollary 2.8 applies to every representation π of the form (2.4)
with ν ∈ (aC)∗ possibly nonimaginary, i.e., to every standard representation. This
includes the tempered representations by [20, Corollary 8.8].

Remark 2.10. The sign (−1)dim(M/KM )/2 in Theorems 2.5–2.7 and Corollary 2.8
is a consequence of an implicit choice of orientations on reduced spaces. We work
with almost complex (or Spinc-structures), and the sign (−1)dim(M/KM )/2 results
from using orientations induced by these structures. The sign is not present if one
uses symplectic orientations, but we found it more natural to use the orientations
corresponding to the almost complex structures used throughout this paper.
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2.4. Coadjoint orbits. Theorem 2.7 and Corollary 2.8 are instances of the Spinc-
version of the quantisation commutes with reduction principle. Indeed, we will
see in Theorem 3.5, which is the main result in [16], that one can view π|K as
the geometric quantisation in the Spinc-sense of the action by K on G/H, with
the given almost complex structure and line bundle. If the infinitesimal character
χ of π is regular, then G/H is isomorphic to the coadjoint orbit Ad∗(G)χ as K-
equivariant Spinc-manifolds. Now Φ is the natural projection of this orbit onto k∗.
See [16, Section 3.6] for this relation with the orbit method. This Φ is the moment
map for the natural symplectic form on this orbit.

Nevertheless, one needs a Spinc-version of the quantisation commutes with re-
duction principle ([15, Theorem 3.10]; see Theorem 3.4) rather than the symplectic
version ([30, Theorem 0.1]; see also [37, Theorem 1.4]). This is because the almost
complex structure J is not compatible with the Kostant–Kirillov symplectic form
on the coadjoint orbit Ad∗(G)χ; also, Lλ−ρM ,χM

is not a prequantum line bundle
for this symplectic form. See [36, Subsection 1.5]. The bundle L2(λ−ρM ),χ2

M
is a

K-equivariant prequantum line bundle for the coadjoint orbit Ad∗(G)2χ, however;
i.e., the spinor bundle (2.6) is a Spinc-prequantisation of the orbit Ad∗(G)χ. See
Remark 4.8. In the compact case, the Spinc-version of the quantisation commutes
with reduction principle was proved by Paradan and Vergne [39–41]. Because we
view G/H as a Spinc-manifold (or an almost complex manifold) in this paper rather
than as the symplectic manifold Ad∗(G)χ that it equals if χ is regular, we use the
notation G/H rather than a notation that emphasises the link with coadjoint orbits.

In the orbit method, representations with singular parameters correspond to
nilpotent orbits. If χ is singular, then we use the manifold G/H rather than such a
nilpotent orbit. Through this desingularisation, the link with quantising nilpotent
orbits is absent in our approach, but this approach does allow us to obtain the
multiplicity formula in Theorem 2.7 and Corollary 2.8.

Theorem 2.7 and Corollary 2.8 allow us the deduce properties of the behaviour of
the K-type multiplicities of π from the geometry of the coadjoint orbit Ad∗(G)(ξ+ζ)
if ξ is regular. In general, such properties can be deduced from the geometry of
the map Φ : G/H → k∗. An immediate consequence is the following fact about the
support of the multiplicity function of the K-types of π. By the relative interior
or relative boundary of a subset of the affine space I(Y ) parallel to the annihilator
of tY containing the image of ΦY , we mean the interior or boundary as a subset
of I(Y ).

Corollary 2.11. Let K be as in Corollary 2.8. All K-types of π have highest
weights in the relative interior of iΦ(G/H) ∩ it∗ − ρK .

Proof. Let δ ∈ K̂ have highest weight η. If (η+ρK)/i is not in the image of Φ, then
Corollary 2.8 implies that the multiplicity [π|K : δ] is zero because (G/H)(η+ρK)/i

is empty, and so are reduced spaces at elements close enough to (η+ ρK)/i. If (η+
ρK)/i lies on the relative boundary of the image of Φ, then [π|K : δ] is zero because
the reduced space at some element close to (η + ρK)/i is empty. See [41, comment
below Definition 5.5]. "
Remark 2.12. In the regular case, the map Φ is a moment map in the symplectic
sense. So then the set iΦ(G/H)∩it∗−ρK containing the support of the multiplicity
function is a convex polytope. This polytope is noncompact if G is; i.e., it is the
intersection of a collection of half-spaces.
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Remark 2.13. Even in the case of the discrete series, it is nontrivial to determine
the support of the multiplicity function from Blattner’s formula. This is because
of cancellations occurring in that formula.

Applications of Theorem 2.7 and Corollary 2.8 to multicplicity-free restrictions
are discussed in Section 5.

3. Ingredients of the proof

3.1. Quantisation commutes with reduction. Consider the setting of Subsec-
tion 2.1. Let ψ : M → k be a smooth, K-equivariant map. It induces a vector field
vψ, given by

vψ(m) =
d

dt

∣∣∣∣
t=0

exp(−tψ(m))m,

for all m ∈ M . The map ψ is called taming if the set of zeros of vψ is compact.
The Clifford action c by TM on

∧
JTM is given by

c(v)x = v ∧ x − v∗#x
for m ∈ M , v ∈ TmM , and x ∈

∧
JTmM . Here v∗ ∈ T ∗M is dual to v with respect

to the Hermitian metric defined by the Riemannian metric and J , and # denotes
contraction. Let ∇̃ be a K-invariant, Hermitian connection on

∧
JTM ⊗ L such

that, for all vector fields v, w on M ,

[∇̃v, c(w)] = c(∇TM
v w),

where ∇TM is the Levi-Civita connection. Such a connection always exists; one is
induced by the connections ∇ on Ldet and ∇TM on TM ; see, e.g., [29, Proposi-
tion D.11]. After we identify T ∗M ∼= TM via the Riemannian metric, the Clifford
action c induces a map

c : T ∗M ⊗
∧

JTM ⊗ L →
∧

JTM ⊗ L.

This allows us to define the Dirac operator D as the composition

D : Γ∞(
∧

JTM ⊗ L)
∇̃−→ Γ∞(T ∗M ⊗

∧
JTM ⊗ L)

c−→ Γ∞(
∧

JTM ⊗ L).

Let f ∈ C∞(M)K be nonnegative. The Dirac operator deformed by fψ is the
operator

D − ifc(vψ)

on the space Γ∞
L2(

∧
JTM ⊗L) of square-integrable smooth sections of

∧
JTM ⊗L.

For a nonnegative function χ ∈ C∞(M)K , we say that the function f is χ-admissible
if, outside a compact set,

f2

‖df‖ + f + 1
≥ χ.

For any such function χ, there exist χ-admissible functions; see [14, Lemma 3.10].
Braverman’s index theory [3] for deformed Dirac operators is based on the following
result.

Theorem 3.1 (Braverman). If ψ is taming, then there is a nonnegative function
χ ∈ C∞(M)K such that, for all χ-admissible functions f and all irreducible repre-
sentations δ of K, the multiplicities m+

δ and m−
δ of δ in the kernel of D − ifc(vψ)

restricted to even and odd degree forms, respectively, is finite. The difference
m+

δ − m−
δ is independent of f and ∇.
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See [3, Theorem 2.9] for a more general result.
We write R̂(K) for the abelian group

R̂(K) =
{⊕

δ∈K̂

mδδ; mδ ∈ Z
}

.

In other words, R̂(K) contains formal differences of possibly infinite-dimensional
representations of K, in which all irreducible representations have finite multiplic-
ities.

Definition 3.2. In the setting of Theorem 3.1, the equivariant index of the pair
(
∧

JTM ⊗ L,ψ) is

indexK(
∧

JTM ⊗ L,ψ) =
⊕

δ∈K̂
(m+

δ − m−
δ )δ ∈ R̂(K).

A property of this index is invariance under homotopies of taming maps. Two
taming maps ψ0,ψ1 : M → k are homotopic if there is a taming map ψ : M ×
[0, 1] → k such that, for all m ∈ M , we have ψ(m, t) = ψ0(m) if t ∈ [0, 1/3[, and
ψ(m, t) = ψ1(m) if t ∈ ]2/3, 1].

Theorem 3.3 (Braverman). If ψ0 and ψ1 are homotopic taming maps, then

indexK(
∧

JTM ⊗ L,ψ0) = indexK(
∧

JTM ⊗ L,ψ1).

This is a special case of cobordism invariance of the index [3, Theorem 3.7].
In [15], it was proved that the index of Definition 3.2 satisfies a Spinc-version of

the quantisation commutes with reduction principle of Guillemin and Sternberg [11].
This followed results for compact symplectic manifolds [31, 32] (see also [35, 44]),
for noncompact symplectic manifolds [30] (see also [37]), and for compact Spinc-
manifolds [41] (see also [39, 40]). The interpretation of the K-equivariant index of
a Dirac operator deformed by a vector field such as vΦ as a geometric quantisation
goes back to [15, 30, 36, 37, 46].

Theorem 3.4. In the setting of Theorem 3.1, take ψ = Φ, the moment map of a
K-invariant, Hermitian connection on Ldet. Suppose that Φ is taming and proper,
and that the generic stabiliser of the action by K on M is abelian. For δ ∈ K̂, let
Oδ = Ad∗(K)(η + ρK)/i be the corresponding regular admissible orbit (where η is
the highest weight of δ). Then

m+
δ − m−

δ = index(MOδ).

In other words,

indexK(
∧

JTM ⊗ L,Φ) =
⊕

δ∈K̂
index(MOδ )δ.

This is a special case of [15, Theorem 3.10]. In that theorem, it was not assumed
that Φ is taming, that the generic stabiliser is abelian, or that the Spinc-structure
is induced by an almost complex structure and a line bundle.

3.2. A realisation of tempered representations restricted to K. As in Sub-
section 2.2, let π be a tempered representation of G, and write

π = IndG
MAN (πM

λ,R+
M ,χM

⊗ eν ⊗ 1N )

as in (2.4). Let H be the corresponding Cartan subgroup. In [16], we realised the
restriction of π to K as an equivariant index in the sense of Definition 3.2 of a
deformed Dirac operator on G/H. We briefly review the construction here.
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Consider the spinor bundle (2.6) and the map Φ of Proposition 2.4, but now
for any elements ξ ∈ t∗M and ζ ∈ a∗ such that (α, iξ) > 0 for all α ∈ R+

M , and
ξ + ζ ∈ h∗ is regular for the roots of (gC, hC). Then the map Φ is taming by [34,
Proposition 2.1].

Theorem 3.5. We have

π|K = (−1)dim(M/KM )/2 indexK

(∧
JT (G/H) ⊗ Lλ−ρM ,χM

,Φ
)
.

This is [16, Theorem 3.10]. It is the last ingredient of the proof of Theorem 2.7.
Theorem 3.5 in fact applies more generally to every standard representation π;
see [16, Remark 3.12].

Proof of Theorem 2.7. Let δ ∈ K̂. Let ξ be as in (2.8). First, suppose that ξ is
regular, and choose ζ such that ξ+ ζ ∈ h∗ is regular for the roots of (gC, hC). Then
Theorem 3.5 states that

[π|K : δ] = (−1)dim(M/KM )/2
[
indexK

(∧
JT (G/H) ⊗ Lλ−ρM ,χM

,Φ
)

: δ
]
.

By Proposition 2.4, the map Φ is a moment map for this specific choice of ξ. It
is proper by [34, (1.1)] and taming, as we saw above. So Theorem 3.4 implies the
claim.

If ξ is singular, let ψ : G/H → k∗ be given by

ψ(gH) = Ad∗(g)(ξ̃ + ζ)|k,

for ξ̃ ∈ t∗M such that (α, iξ̃) > 0 for all α ∈ R+
M , and ζ ∈ a∗ such that ξ + ζ ∈ h∗ is

regular for the roots of (gC, hC). Let Φτ : G/H → k be as in Lemma 4.11. Then Φτ

is a taming, proper moment map, and, by that lemma and Theorem 3.5,

indexK

(∧
JT (G/H) ⊗ Lλ−ρM ,χM

,Φτ
)

= indexK

(∧
JT (G/H) ⊗ Lλ−ρM ,χM

,ψ
)

= (−1)dim(M/KM )/2π|K .

In the first equality, we used Theorem 3.3. The claim again follows from Theo-
rem 3.4. "

Proof of Corollary 2.8. Applying Theorem 2.7 and [38, Theorem 1.1], we obtain

π|K = (−1)dim(M/K′
M )/2

( ⊕

δ′∈K̂′

index((G/H)K′

OK′
δ′

)δ′
)∣∣∣

K

= (−1)dim(M/K′
M )/2

⊕

δ∈K̂

index((G/H)K
OK

δ
)δ. "

It remains to prove Proposition 2.4 and to show how to handle the singular case;
see Lemma 4.11. This is done in the next section.

4. A Spinc-moment map on G/H

4.1. Spinc-structures on linearised homogeneous spaces. As an intermediate
step in the proof of Proposition 2.4, we will use a K-equivariant partial linearisation
of the space G/H that was introduced in [16, Subsection 4.2]. Let g = k⊕ s be the
Cartan decomposition defined by θ. Write m = kM ⊕ sM , with kM ⊂ k and sM ⊂ s.
Let HM := H ∩M . Then HM may be disconnected, but its Lie algebra is tM . Let

E := K ×HM (sM ⊕ n)
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be the quotient of K × (sM ⊕ n) be the action by HM defined by

h · (k, X + Y ) = (kh−1, Ad(h)(X + Y ))

for h ∈ HM , k ∈ K, X ∈ sM , and Y ∈ n. Lemma 4.2 in [16] states that the map
Ψ : E → G/H defined by

Ψ([k, X + Y ]) = k exp(X) exp(Y )H,

for k ∈ K, X ∈ sM , and Y ∈ n, is a well-defined, K-equivariant diffeomorphism.
In this sense, E is a partial linearisation of G/H.

For every X ∈ sM and Y ∈ n, we have the linear isomorphism

(4.1) T[e,X+Y ]E
∼=−→ k/tM ⊕ sM ⊕ n = g/h

defined by

(U + tM , V + W ) 3→ d

dt

∣∣∣∣
t=0

[exp(tU), X + Y + t(V + W )]

for U ∈ k, V ∈ sM , and W ∈ n. Let JE be the K-invariant almost complex structure
on E corresponding to the complex structure Jg/h (defined in Subsection 2.2) via the
isomorphism (4.1). The almost complex structure Ψ∗J on E corresponding to J via
Ψ differs from JE because it corresponds to Jg/h via a different isomorphism (4.1).
This is worked out in [16, Subsection 4.3], where it it also shown that Ψ∗J and JE

are K-equivariantly homotopic.

Lemma 4.1. We have a complex, tM -equivariant isomorphism

n+ ⊕ n− =
⊕

α∈RG,α|a∈Σ+

Cα|tM
.

Proof. Fix λ ∈ Σ+. Then

gλ =
( ⊕

α∈RG,α|a=λ

gC
α

)
∩ g.

For every α ∈ RG, we have θgC
α = gC

−ᾱ. Since ad(ζ) preserves gC
α, this implies that

Jζg
C
α = gC

−ᾱ.

Note that
g−λ =

( ⊕

α∈RG,α|a=λ

gC
−ᾱ

)
∩ g.

Here we used the fact that α|a takes values in R, so α|a = ᾱ|a. So

gλ ⊕ g−λ =
( ⊕

α∈RG,α|a=λ

gC
α ⊕ gC

−ᾱ

)
∩ g,

where every term on the right-hand side is preserved by Jζ .
Let us determine the weight of tM on gC

α⊕gC
−ᾱ for α ∈ RG. For Y ∈ tM , Xα ∈ gC

α,
and X−ᾱ ∈ gC

−ᾱ, we have

ad(Y )(Xα + X−ᾱ) = 〈α, Y 〉Xα − 〈α, Y 〉X−ᾱ.

Since 〈α, Y 〉 ∈ iR, this equals

〈α, Y 〉(Xα + X−ᾱ).

So tM acts on gC
α ⊕ gC

−ᾱ with weight α|tM .
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We therefore obtain a complex, tM -equivariant isomorphism

n+ ⊕ n− =
⊕

λ∈Σ+

gλ ⊕ g−λ

∼=
⊕

λ∈Σ+

⊕

α∈RG,α|a=λ

Cα|tM

=
⊕

α∈RG,α|a∈Σ+

Cα|tM
.

Here we used that the space (gC
α⊕gC

−ᾱ)∩g is complex one-dimensional and preserved
by Jζ and tM . "
Lemma 4.2. The group TM acts trivially on the highest exterior power of n−⊕n+.

Proof. By Lemma 4.1, the group TM acts on the highest exterior power of n− ⊕ n+

with infinitesimal weight

(4.2)
∑

α∈RG,α|a∈Σ+

α|tM .

If α ∈ RG satisfies α|a ∈ Σ+, then also ᾱ ∈ RG and ᾱ|a = αa ∈ Σ+. And
ᾱ|tM = −α|tM . Hence the sum (4.2) consists of pairs of terms (α|tM , ᾱ|tM ) that
cancel. "
Lemma 4.3. As a complex representation of TM , the space g/h decomposes as

g/h =
⊕

α∈R+
G

Cα|tM
.

Its highest exterior power equals C2ρM as a representation of TM .

Proof. We have a complex, TM -invariant decomposition

g/h ∼= m/tM ⊕ n− ⊕ n+ =
( ⊕

β∈R+
M

mC
β

)
⊕ n− ⊕ n+.

So by definition (2.7) of R+
G, the first claim follows from Lemma 4.1, and the second

from Lemma 4.2. "
Consider the spinor bundle ∧

JE TE → E

of the Spinc-structure defined by JE . Let LE
det be its determinant line bundle. Let

p : E → K/HM be the natural projection.

Lemma 4.4. We have an isomorphism of complex, K-equivariant line bundles

LE
det

∼= p∗(K ×HM C2ρM ).

Proof. Lemma 4.3 implies that

LE
det

∼= p∗(K ×HM C2ρM ! χ),

where χ is the representation of ZM in the highest complex exterior power of g/h.
And ZM acts trivially on m/tM . It also acts trivially on the highest exterior power
of n− ⊕ n+, analogously to Lemma 4.2. "
Remark 4.5. In Lemma 4.4, the fact that ZM acts trivially on the highest exterior
power of n− ⊕ n+ is not necessary in what follows.
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4.2. Line bundles.

Lemma 4.6. The determinant line bundle of the Spinc-structure on G/H with
spinor bundle (2.6) is

G ×H (C2λ ! χ2
M ).

Proof. The almost complex structures J and Ψ∗JE are K-equivariantly homotopic
(see [16, proof of Lemma 4.3]). Hence the induced Spinc-structures have equivari-
antly isomorphic determinant line bundles. By Lemma 4.4, the determinant line
bundle corresponding to Ψ∗JE is

Ψ∗p
∗(K ×HM C2ρM ) → G/H.

One can check directly that this line bundle is K-equivariantly isomorphic to
G ×H C2ρM . Therefore, the determinant line bundle of the Spinc-structure in the
statement of the lemma is

Ldet = G ×H (C2ρM ⊗ C2
λ−ρM ! χ2

M ) = G ×H (C2λ ! χ2
M ). "

Lemma 4.7. Let σ ∈ it∗M be integral. Let ζ ∈ ia∗, and set

Lζ := G ×H Cσ+ζ .

Then there is a K-equivariant isomorphism of line bundles Lζ
∼= G ×H Cσ.

Proof. The multiplication map defines a diffeomorphism

K × exp(sM ) × N × A ∼= G.

Define the map
Ξ : G × Cσ+ζ → G × Cσ

by
Ξ(khna, z) = (khna, eζ(a)z)

for k ∈ K, h ∈ exp(sM ), n ∈ N , a ∈ A, and z ∈ Cσ+ζ . We claim that this is
map is H-equivariant, and that the induced map Lζ → G×H Cσ is a K-equivariant
isomorphism of line bundles.

To show that Ξ is H-equivariant, let t ∈ TM and a0 ∈ A. Then for an element
(khna, z) ∈ G × Cσ+ζ as above,

(ta0) · (khna, z) =
(
khna(ta0)

−1, eσ(t)eζ(a0)z
)

=
(
(khnt−1)aa−1

0 , eσ(t)eζ(a0)z
)
.

The adjoint action by TM preserves the restricted root spaces of the system
Σ = Σ(g, a) because this action commutes with ad(a). So this action preserves
n. Furthermore, since TM ⊂ KM , this action also preserves sM . So if h = exp(X)
and n = exp(Y ), then

khnt−1 = kt−1 exp(Ad(t)X) exp(Ad(t)Y ) ∈ K exp(sM )N,

Therefore,

Ξ
(
(khnt−1)aa−1

0 , eσ(t)eζ(a0)z
)

=
(
(khnt−1)aa−1

0 , eζ(aa−1
0 )eσ(t)eζ(a0)z

)

=
(
khna(ta0)

−1, eσ(t)eζ(a)z
)

= (ta0) · Ξ(khna, z).

Since Ξ is H-equivariant, it indeed descends to a map Lζ → G×H Cσ. This map
is immediately seen to be a K-equivariant isomorphism of line bundles. "
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Remark 4.8. Lemmas 4.6 and 4.7 imply that the determinant line bundle of the
K-equivariant Spinc-structure with spinor bundle (2.6) is K-equivariantly isomor-
phic to

G ×H C2(ξ+ζ) ! χ2
M → G/H,

with ξ and ζ as in Proposition 2.4. That is to say, modulo the representation χM

of group ZM , the map Φ is the symplectic moment map for the action by K on the
coadjoint orbit Ad∗(G)(ξ + ζ), while the Spinc-structure with spinor bundle (2.6)
is a K-equivariant Spinc-prequantisation of this coadjoint orbit. If the infinitesimal
character χ of π is regular, then we may take ζ to be the component of χ in a∗ so
that ξ + ζ = χ.

4.3. Proof of Proposition 2.4. We start with a general, well-known comment
about moment maps on homogeneous spaces. For now, let G be any Lie group,
and let H < G be a possibly disconnected, closed subgroup. Let Cσ be a one-
dimensional unitary representation of H, with differential σ ∈ ih∗. Consider the
line bundle

Lσ := G ×H Cσ → G/H.

Then Γ∞(Lσ) ∼= (C∞(G)⊗Cσ)H . Let V ⊂ g be an H-invariant subspace such that
g = h ⊕ V . Extend σ linearly to g by setting it equal to zero on V .

Lemma 4.9. For X ∈ g and s ∈ (C∞(G) ⊗ Cσ)H , set

(∇X+hs)(e) := L−X(s)(e) − 〈σ, X〉s(e).

Here L is the left regular representation. This extends to a well-defined G-invariant
connection on Lσ. The associated moment map Φσ : G/H → g∗ is given by

Φσ(gH) = Ad∗(g)σ/2i.

Proof. To see that ∇ is well-defined, note that if s ∈ (C∞(G) ⊗ Cσ)H and X ∈ h,
then RXs = 〈σ, X〉s, with R being the right regular representation. So at e,

L−X(s)(e) − 〈σ, X〉s(e) = RX(s)(e) − 〈σ, X〉s(e) = 0.

The moment map Φσ satisfies

2i〈Φσ, X〉s(e) = (LX −∇XG/H )s(e).

Now note that, with respect to the identification TeHG/H = g/h,

XG/H
eH =

d

dt

∣∣∣∣
t=0

exp(−tX)H = −X + h.

Hence
(LX −∇XG/H )s(e) = (LX −∇−X+h)s(e) = 〈σ, X〉s(e).

So Φσ(e) = σ/2i, and the claim about Φσ follows by G-equivariance. "

Importantly, even if H is disconnected—so the representation Cσ of H is not
determined by σ—Lemma 4.9 still gives us a connection with the desired moment
map. This means we can apply it to the representation C2λ+iζ !χ2

M of the Cartan
subgroup H.

Proof of Proposition 2.4. By Lemmas 4.6 and 4.7, we have K-equivariant iso-
morphisms of line bundles

Ldet
∼= G ×H C2λ ! χ2

M
∼= G ×H C2(λ+iζ) ! χ2

M .
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Let ∇ be the connection of Lemma 4.9 on the line bundle on the right-hand side;
we use the same notation for the connection on Ldet corresponding to ∇ via the
above isomorphism. The moment map for the action by K on G/H associated to ∇
is the map Φ2(λ+iζ) in Lemma 4.9, composed with restriction to k. This is precisely
the map Φ in Proposition 2.4. "
Remark 4.10. In the proof of Proposition 2.4, we used Lemma 4.7 to replace 2λ
with 2(λ+ iζ). The reason for introducing the extra term in Proposition 2.4 is that
the moment map Φ is taming if λ + iζ is regular.

4.4. The singular case. If ξ + ζ is singular, then the moment map of Proposi-
tion 2.4 is not necessarily proper or taming. But then we can still find a proper, tam-
ing Spinc-moment map such that the associated index equals (−1)dim(M/KM )π|K .

Consider a general setting, where M is a complete Riemannian manifold with
an action by a compact Lie group K, and Φ : M → k is the moment map for a
connection ∇ on a line bundle (defined as in (2.2)), and ψ : M → k is a taming
map. For τ ∈ C∞(M)K , define the connection

∇τ := ∇ + 2iτ (vψ,−).

Let Φτ be the associated moment map.

Lemma 4.11. For τ large enough, the map Φτ is proper, taming, and homotopic
to ψ as taming maps.

Proof. Let {X1, . . . , Xn} be an orthonormal basis of k. Then

vΦ
τ

= vΦ + τwψ,

where

wψ :=
n∑

j=1

(vψ, XM
j )XM

j .

Let m ∈ M , and suppose that vψ(m) 0= 0. The definition of wψ is independent of the
basis of k, so we may suppose that X1, . . . , Xd ∈ km and Xd+1, . . . , Xn ∈ k⊥m. Since
{XM

d+1(m), . . . , XM
n (m)} is a basis of the subspace Tm(K · m) ⊂ TmM containing

vψ(m), we have

wψ(m) =
( n∑

j=1

(vψ, XM
j )XM

j

)
(m) =

( n∑

j=d+1

(vψ, XM
j )XM

j

)
(m) 0= 0.

So wψ vanishes exactly at the points where vψ vanishes.
Now note that

‖vΦ
τ

‖ ≥ τ‖wψ‖ − ‖vΦ‖.
Let U be a relatively compact, K-invariant neighbourhood of the vanishing set
of vψ. Choose τ so that, outside U , τ‖wψ‖ > ‖vΦ‖. Then vΦ

τ
does not vanish

outside U .
To show that Φτ is homotopic to ψ, first note that, by the previous arguments,

the vector field
tvΦ + τwψ

is nonzero outside U for all t ∈ [0, 1]. Hence Φτ is homotopic to the taming map
Φτ − Φ. And

(vΦ
τ−Φ, vψ) = (τwψ, vψ) = τ

n∑

j=1

(vψ, XM
j )2.
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If τ ≥ 0, then this is nonnegative. This implies that Φτ −Φ is homotopic to ψ (this
is elementary; see, for example, [16, Corollary 3.5]).

Finally, by adding a function θ as in [15, Subsection 5.1] to τ , we can ensure that
the resulting moment map is proper, as well as taming, and homotopic to ψ. "
Remark 4.12. In [15, Proposition 5.1], it was shown how to replace a taming moment
map by a proper, taming moment map, without changing the corresponding indices.
(This was the last step in the proof of Lemma 4.11.) In Lemma 4.11, we show how
to replace any taming map by a proper, taming moment map without changing the
index. The additional step here is to replace any taming map by a taming moment
map that is homotopic to it.

5. Multiplicity-free restrictions

Throughout this section, K < G is a compact subgroup satisfying the condition
of Corollary 2.8. That is, the map ΦK in (2.10) is proper. In particular, what follows
is true if K is a maximal compact subgroup, as we will assume from Subsection 5.2
onwards. We will omit the subscript K from ΦK and write Φ := ΦK from now on.
We will also write (G/H)ξ := (G/H)K

ξ for ξ ∈ t∗.

Recall that if ξ ∈ t∗M , defined in (2.8), is regular for the roots of (mC, tCM ), then
Φ is simply the projection of the coadjoint orbit Ad∗(G)(ξ + ζ) onto k∗:

(5.1) Φ(gH) = (Ad∗(g)(ξ + ζ))|k
If ξ is singular, then Φ is as in (2.9), with τ being as in Lemma 4.11.

5.1. Reduced spaces that are points. In the setting of Corollary 2.8, we obtain
multiplicities equal to 0 or 1 if the reduced space (G/H)(η+ρK)/i is a single point.
Indeed, the orbifold index on (G/H)(η+ρK)/i then lies in {−1, 0, 1}. It takes only
these values because, up to a sign, it is the dimension of the trivial part of a
one-dimensional representation of a finite group. We can make this more explicit
using [41, expression (5.36)] for indices on reduced spaces that are points.

Let C ⊂ t∗ be the open positive Weyl chamber. Set Y := Φ−1(C). Set ΦY :=
Φ|Y − ρK . Let δ ∈ K̂ have highest weight η. Then

(G/H)(η+ρK)/i = Yη/i := Φ−1
Y (η/i)/T.

Let tY ⊂ t be the generic stabiliser of the infinitesimal action by t on Y . Let
I(Y ) ⊂ t∗ be the affine space parallel to the annihilator of tY , containing the image
of ΦY . Let TY < T be the subtorus with Lie algebra tY (note that this subgroup
is connected). Fix g0H ∈ Φ−1

Y (η/i), and let Γ < T/TY be its stabiliser. This is a
finite group.

Corollary 5.1.

(a) Suppose that η/i is a regular value of ΦY : Y → I(Y ), and that Φ−1(η/i +
ρK)/K is a point. Then

[π|K : δ] =

{
1 if Γ acts trivially on Cλ−η−ρM ! χM ,

0 otherwise.

(b) If η/i is not necessarily a regular value of ΦY but Φ−1(η/i + ρK + ε)/K is
a point for all ε ∈ I(Y ) close enough to zero, then we still have

[π|K : δ] ∈ {0, 1}.
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Proof. First, note that for any σ ∈ t∗, by construction Φ−1(σ + ρK) is a single
K-orbit if and only if Φ−1

Y (ξ) is a single T -orbit.
We have

T (G/H)|Y = TY ⊕ (Y × k/t).

By the two-out-of-three lemma, we have a spinor bundle SY,η → Y such that

(5.2)
(∧

JT (G/H) ⊗ Lλ−ρM ,χM
⊗ C−η

)
|Y = SY,η ⊗

∧
Ck/t.

Here the complex structure on k/t is the one defined by the positive compact roots.
Let Vη be the one-dimensional representation of Γ such that, as representations
of Γ,

(5.3) (SY,η)g0H =
∧

CTg0HY ⊗ Vη,

for some Γ-invariant complex structure on Tg0HY . This Vη exists since (SY,η)g0H

and
∧

CTg0HY are irreducible, Γ-equivariant modules over the Clifford algebra of
Tg0HY ; see also [41, end of Section 5.1]. Then [41, (5.36)] states that

(5.4) index((G/H)(η+ρK)/i) = index(Yη) = dim V Γ
η .

Now by (5.2) and (5.3),
∧

Jg0H
(Tg0HG/H) ⊗ Cλ−η−ρM ⊗ χM =

∧
C(Tg0HG/H) ⊗ Vη.

Here on the right-hand side, the complex structure on Tg0HG/H is defined by the
complex structures on Tg0HY and k/t via the isomorphism Tg0HG/H ∼= Tg0HY ⊕k/t.
This may be a different complex structure from Jg0H . We conclude that Vη equals
Cλ−η−ρM ⊗ χM or its dual. So the claim follows from (5.4) and Corollary 2.8. "

Remark 5.2. We have implicitly used that Φ−1
Y (η) is connected because it is a single

T -orbit.

Example 5.3. If G = SL(2, C), then one can check that all reduced spaces are
points. This is compatible with the fact that the multiplicities of the K-types of
the principal series of SL(2, C) are 1.

We work out the example G = SL(2, R) in detail in Subsection 5.2, and we
discuss the groups SU(p, 1), SO0(p, 1), and SO0(2, 2) in Subsection 5.5.

Corollary 5.1 implies a criterion for multiplicity-free restrictions of general ad-
missible representations. Let π be an irreducible admissible representation of G.
By the Langlands classification, π is a quotient of an induced representation as
on the right-hand side of (2.4), where now ν ∈ (aC)∗ may be nonimaginary. Let
Φ : G/H → k∗ be the corresponding moment map as in Proposition 2.4.

Corollary 5.4. Let δ ∈ K̂ with highest weight η. Suppose that Φ−1(η + ρK)/K is
a point if η/i is a regular value of ΦY , or Φ−1(η + ρK + ε)/K is a point for all η
small enough if η/i is a singular value of ΦY . Then [π|K , δ] ∈ {0, 1}.

In particular, if all reduced spaces for Φ are points, then π restricts multiplicity
freely to K.

Proof. Corollary 2.8, and hence Corollary 5.1, applies to any standard represen-
tation π; see Remark 2.9. So under the conditions stated, π|K is a quotient of a
multiplicity-free representation and hence is multiplicity-free itself. "

We end this subsection with a conjecture that is a partial converse to Corol-
lary 5.1.
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Conjecture 5.5. Let H < G be a θ-stable Cartan subgroup. Let P = MAN < G
be a cuspidal parabolic subgroup corresponding to H (so that A is the noncompact
part of H). Then all tempered representations π induced from P restrict multiplicity
freely to K if and only if all reduced spaces for all maps Φ : G/H → k∗ corresponding
to such representations are points.

The “if” part of this conjecture follows from Corollary 5.1. Evidence for the “only
if” part is the following. Let δ ∈ K̂ have highest weight η. Let H, π, and Φ be as
in the conjecture. If the reduced space (G/H)η+ρK is smooth, the Atiyah–Singer
index theorem and Theorem 2.7 imply that

[π|K : δ] = (−1)dim(M/KM )/2

∫

(G/H)η+ρK

e
1
2 c1(L

η+ρK

det )Â((G/H)η+ρK ).

Here Lη+ρK

det → (G/H)η+ρK is induced by the determinant line bundle on G/H
from Lemma 4.6. If (G/H)η+ρK is not a point, then the right-hand side depends

on c1(L
η+ρK

det ). Then one expects that number to vary with π and δ, and hence not
to equal 1 for all π and δ.

Remark 5.6. In some other work about multiplicity-free restrictions, for exam-
ple, [23], it is assumed that G is of Hermitian type, and that the representation
π in question is of scalar type. We do not make these assumptions in Corollar-
ies 5.1 and 5.4. In Subsection 5.5, we work our examples for the groups SO0(p, 1)
and SOo(2, 2) that are not of Hermitian type (in addition to the group SU(p, 1),
which is).

5.2. Example: G = SL(2, R). If G = SL(2, R) and K = SO(2), then Theorem 2.7
implies the usual multiplicity formulas for the K-types of tempered representations
of SL(2, R). This example illustrates the essential point that indices on reduced
spaces that are points may be zero (as in Corollary 5.1) because these indices are
orbifold indices.

5.2.1. The discrete series. Consider the holomorphic discrete series representation
D+

n of G = SL(2, R) for n ∈ {1, 2, 3, . . .}. Then H = T = SO(2), M = G, and
λ = nα/2, where α ∈ it∗ is the root mapping ( 0 −1

1 0 ) to 2i. So ρG = ρM , and
ξ = nα/2i. This element is regular, so Φ is the projection of G/T ∼= G · ξ onto k∗.

Let δl = Cl be the irreducible representation of K = SO(2) with weight l ∈ Z;
i.e., Cl = Clα/2. If l ≤ n, then by Corollary 2.11,

[D+
n : δl] = 0.

If l > n, then lα/2i is a regular value of Φ, and Φ−1(lα/2i) is a circle, acted on by
T = SO(2) by rotations with weight 2. Now tY = {0}, so TY = {I} and Γ = {±I} in
Corollary 5.1. Since ZM ⊂ TM = T , we have Cλ−ρM ⊗ χM = Cλ−ρM = C(n−1)α/2.
Hence Γ acts trivially on

Cλ−η−ρM ⊗ χM = Cn−l−1

precisely if n − l is odd. We conclude that

[D+
n : δl] =

{
1 if l = n + s for a positive odd integer s,

0 otherwise.
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In the same way, we find that, for the antiholomorphic discrete series represen-
tation D−

n ,

[D−
n : δl] =

{
1 if l = −n − s for a positive odd integer s,

0 otherwise.

See [37, Example 2.21] for a symplectic version of the computation of indices on
reduced spaces in this example.

5.2.2. Limits of discrete series. Consider the limit of discrete series representation
D+

0 . Then, as in the discrete series case, H = T = SO(2) and M = G. But
now λ = 0, which is singular. So we have to use the taming moment map from
Lemma 4.11. Taking ψ(gT ) = (Ad∗(g)α/2i)|k, we have, for all τ ∈ C∞(G/T )K ,

ΦX = Φτ
X = τ · (vψ, XG/T ).

Let ϕ : G/T → [1,∞[ be the function such that, for all g ∈ G,

ψ(gT ) = ϕ(gT )α/2i.

Then

Φτ = τϕ‖(α/2i)G/T‖2α/2i.

The factor ‖(α/2i)G/T ‖2 only vanishes at the point eT . So we can choose τ so that
Φτ = fα/2i for a surjective, proper, K-invariant map f : G/T → [0,∞[ whose level
sets are circles. (In fact, we may take τ ≡ 1.) Then Φτ is K-invariant, proper,
taming, homotopic to ψ, and surjective onto the closed Weyl chamber containing
α. For all integers l ≥ 1, lα/2i is a regular value of Φτ , and (Φτ )−1(lα/2i) is a
circle, acted on by T = SO(2) with rotations with weight 2. So in the same way as
for the discrete series, we find that

[D+
0 : δl] =

{
1 if l is a positive odd integer,

0 otherwise.

And analogously,

[D−
0 : δl] =

{
1 if l is a negative odd integer,

0 otherwise.

5.2.3. The principal series. Consider the spherical principal series representation
P+

iν for ν ≥ 0. We now have

H =
{(x 0

0 x−1

)
; x 0= 0

}
,

M = {±I}, λ = 0, and χM = χ+, the trivial representation of M . Now tM = 0, so
ξ = 0. For any nonzero ζ ∈ a, the element ξ + ζ = ζ is regular. So Φ : G/H → k∗ is
the projection map of the hyperbolic coadjoint orbit G/H ∼= G·ζ onto k∗. Therefore,
for all l ∈ Z, Φ−1(lα/2i) is a circle, on which T = SO(2) acts by rotations with
weight 2. Also, lα/2i is a regular value of Φ.

In Corollary 5.1, we have

Cλ−η−ρM ⊗ χM |Γ = C−l ⊗ χ+|Γ = C−l|Γ.
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The group Γ = {±I} acts trivially on this space precisely if l is even. Hence

[P+
iν : δl] =

{
1 if l is even,

0 otherwise.

For a nonspherical principal series representation P−
iν (with ν > 0), we have

χM = χ−, the nontrivial representation of ZM = M . Hence

Cλ−η−ρM ⊗ χM |Γ = C−l ⊗ χ−|Γ = C−l+1|Γ.

Now Γ = {±I} acts trivially on this space precisely if l is odd. Hence

[P−
iν : δl] =

{
1 if l is odd,

0 otherwise.

5.3. Multiplicity-freeness via dimension counts. Corollary 5.1 implies a
dimension-counting criterion for the restriction of any admissible representation
to K to be multiplicity-free. Let π be an admissible representation. By the Lang-
lands classification of admissible representations and the fact that any tempered
representation is a subrepresentation of a representation induced from a discrete
series representation, π is a subrepresentation of a quotient of a representation of
the form

π̃ := IndG
MAN (πM

λ,χM
⊗ eν ⊗ 1N ),

for a cuspidal parabolic MAN < G, where πM
λ,χM

belongs to the discrete series of

M , and ν ∈ (aC)∗ may be nonimaginary. Let Φ : G/H → k∗ be the moment map
from Proposition 2.4 for this situation. We write dim(im(Φ)) for the dimension of
the relative interior of im(Φ).

Corollary 5.7. If

(5.5) dim(im(Φ)) = dim(G) − rank(G) − dim(T ),

then [π|K : δ] ∈ {0, 1} for all δ ∈ K̂.
In particular, if im(Φ) has nonempty interior in k∗ and

dim(G) ≤ rank(G) + dim(T ) + dim(K),

then [π|K : δ] ∈ {0, 1} for all δ ∈ K̂.

Proof. For a map Φ as in the corollary, the condition (5.5) implies that the reduced
space Φ−1(σ)/T is zero-dimensional for every σ in the relative interior of im(Φ).
Since ξ ∈ t∗M is regular, Φ is a moment map in the symplectic sense, so Φ−1(σ)/T
is connected for such σ, and hence a point. So by Corollary 5.1(b), which applies to
representations like π̃, that representation restricts multiplicity freely to K. Hence
so does π. "

In Subsection 5.5, we show that admissible representations of SU(p, 1), SO0(p, 1),
and SO0(2, 2) with regular infinitesimal characters have multiplicity-free restrictions
to maximal compact subgroups. This is based on Corollary 5.7 and techniques for
computing the dimension of the image of Φ developed in Subsection 5.4.
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From now on, suppose that K < G is a maximal compact subgroup. The
condition

dim(G) ≤ rank(G) + dim(T ) + dim(K)

in Corollary 5.7 holds for the following classical semisimple groups:

• SL(2, C),
• SO(n, C) for n ≤ 4,
• SL(2, H),
• SL(2, R),
• SO∗(4),
• SU(p, 1) for all p,
• SO0(p, 1) for all p, and
• SO0(2, 2).

So for these groups, any admissible representation for which im(Φ) has nonempty
interior in k∗ has multiplicity-free restriction to a maximal compact subgroup. To
determine the dimension of the image of Φ, we use the equality

dim(im(Φ)) = dim(K/T ) + dim(im(Φ) ∩ t).

5.4. Computing the dimension of im(Φ). The following proposition is a tool
to compute dim(im(Φ) ∩ t).

Let hc ⊂ g be a maximally compact, θ-stable Cartan subalgebra. Let R+
n ⊂

R(gC, hC
c ) be a choice of positive, imaginary, noncompact roots. For every α ∈ R+

n ,
let Eα ∈ gC

α be any nonzero vector. Let Ēα be its complex conjugate with respect
to the real form g, and set Hα := [Eα, Ēα].

Proposition 5.8. Let h ⊂ g be any θ-stable Cartan subalgebra. Suppose that
Φ : G/H → k is given by

Φ : G/H ∼= Ad(G)(ξ + ζ) ↪→ g → k

for ξ ∈ t ∩ h and ζ ∈ a = h ∩ p such that ξ + ζ ∈ h is regular. Then im(Φ) ∩ t
contains the convex hull of the set

⋃

α∈R+
n

ξ + IαiHα,

where for all α ∈ R+
n , the set Iα equals either R, [0,∞) or (−∞, 0].

We will use Lemmas 5.9 and 5.11 below to prove Proposition 5.8.

Lemma 5.9. Consider the map

Φ : G/H ∼= Ad(G)(ξ + ζ) ↪→ g → k,

for ξ ∈ t∩ h and ζ ∈ a = h∩ p, such that ξ + ζ ∈ h is regular. Suppose that there is
a set of roots S ⊂ R(gC, hC), and for every α ∈ S, that there are X±α ∈ gC

±α such
that

• Xα + X−α ∈ g,
• Xα − X−α ∈ t,
• ηα := [Xα, X−α] ∈ a, and
• 〈α, ηα〉 > 0.

Then im(Φ) ∩ t contains

ξ + spanR{(Xα − X−α);α ∈ S}.
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Proof. Fix α ∈ R(gC, hC), and fix X±α ∈ gC
±α. Write ηα := [Xα, X−α]. One proves

by induction that, for every positive integer j,

ad(Xα + X−α)2j(ξ + ζ) = 2j〈α, ξ + ζ〉〈α, ηα〉j−1ηα,

ad(Xα + X−α)2j+1(ξ + ζ) = −2j〈α, ξ + ζ〉〈α, ηα〉j(Xα − X−α).

Suppose that 〈α, ηα〉 > 0. Then the above equalities imply that, for all t ∈ R,

Ad(exp(t(Xα + X−α)))(ξ + ζ)

= ξ + ζ +
〈α, ξ + ζ〉
〈α, ηα〉

ηα

∞∑

j=1

1

(2j)!
t2j2j〈α, ηα〉j

− 〈α, ξ + ζ〉(Xα − X−α)
∞∑

j=0

1

(2j + 1)!
t2j+12j〈α, ηα〉

= ξ + ζ

+ 〈α, ξ + ζ〉
(cosh(t

√
2〈α, ηα〉) − 1

〈α, ηα〉
ηα −

sinh(t
√

2〈α, ηα〉)√
2〈α, ηα〉

(Xα − X−α)
)
.

(5.6)

Suppose that α ∈ S, and let X±α be as in the lemma. Then, using (5.6) and the
fact that both sides of this equality lie in g (so the component of the right-hand
side in ig is zero), we find that

Φ(exp(t(Xα + X−α))H) = ξ −
sinh(t

√
2〈α, ηα〉)√

2〈α, ηα〉
(Xα − X−α) ∈ t.

So
ξ + R(Xα − X−α) ∈ im(µ) ∩ t.

And since Φ is a moment map in the symplectic sense, its image intersected with t
is convex. "

Example 5.10. If G = SL(2, R), ξ = 0, ζ = ( 1 0
0 −1 ), h = a = Rζ, 〈α, ζ〉 = 2,

S = {α}, and

Xα =

(
0 1
0 0

)
, X−α =

(
0 0
1 0

)
,

then Xα − X−α ∈ t, ηα = ζ ∈ a, and Lemma 5.9 states that im(Φ) contains the
line Rζ and is therefore surjective.

Lemma 5.11. Consider the map

Φ : G/H ∼= Ad(G)(ξ + ζ) ↪→ g → k,

for ξ ∈ t∩ h and ζ ∈ a = h∩ p, such that ξ + ζ ∈ h is regular. Suppose that there is
a set of roots S ⊂ R(gC, hC), and for every α ∈ S, there are X±α ∈ gC

±α such that

• Xα + X−α ∈ p,
• ηα := [Xα, X−α] ∈ it, and
• 〈α, ηα〉 > 0.

Then im(Φ) ∩ t contains the convex hull of
⋃

α∈S

(
ξ + R≥0〈α, ξ〉ηα

)
.
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Proof. As in the proof of Lemma 5.9, we find that, for all t ∈ R,

Φ(exp(t(Xα + X−α))H) = cosh(ad(t(Xα + X−α)))ξ + sinh(ad(t(Xα + X−α)))ζ

= ξ +
〈α, ξ〉
〈α, ηα〉

(
cosh(t

√
2〈α, ηα〉) − 1

)
ηα

− 〈α, ζ〉√
2〈α, ηα〉

sinh(t
√

2〈α, ηα〉)(Xα − X−α).

(5.7)

The left-hand side and the first term on the right hand side lie in g; hence so does
the second term on the right-hand side. But

Xα − X−α =
1

〈α, ηα〉
[ηα, Xα + X−α] ∈ ig.

And 〈α, ζ〉 ∈ R, so the second term on the right-hand side of (5.7) lies in ig∩g = {0}.
We conclude that

Φ(exp(t(Xα + X−α))H) = ξ +
〈α, ξ〉
〈α, ηα〉

(
cosh(t

√
2〈α, ηα〉) − 1

)
ηα ∈ t.

So

ξ + R≥0〈α, ξ〉ηα ⊂ im(Φ) ∩ t.

The claim again follows by convexity of im(Φ) ∩ t. "

Example 5.12. If G = SL(2, R), ξ = ( 0 −1
1 0 ), ζ = 0, h = t = Rξ, 〈α, ξ〉 = 2i,

S = {α}, and

Xα =
1

2

(
1 −i
−i −1

)
, X−α =

1

2

(
1 i
i −1

)
,

then Xα +X−α ∈ p, ηα = −iξ ∈ it, and Lemma 5.11 states that im(Φ) contains the
half-line [1,∞)ξ. (In this case, we actually find that im(Φ) equals that half-line.)

Proof of Proposition 5.8. For every α ∈ R+
n , the element Hα = [Eα − Ēα, Eα +

Ēα]/2 is imaginary, and it lies in hC
c and in [pC, pC] ⊂ kC. Hence Hα ∈ it. Therefore,

applying Lemma 5.11 with S = R+
n , Xα = Eα, and X−α = Ēα shows that the claim

holds for h = hc.
Now fix α ∈ R+

n . Consider the Cayley transform

cα := Ad
(
exp(

π

4
(Ēα − Eα))

)
.

(For the properties of Cayley transforms that we use, see, for example, [19, Sec-
tion VI.7].) Set h1 := cα(hc) ∩ g, and set

Xα := icα(Eα),

X−α := −icα(Ēα).

These elements lie in root spaces for h1. They satisfy

(1) Xα + X−α = i(Eα − Ēα) ∈ g,
(2) Xα − X−α = icα(Eα + Ēα) = −iHα ∈ t, and
(3) [Xα, X−α] = cα(Hα) = Eα + Ēα ∈ h1 ∩ p.

Hence Lemma 5.9 implies that, with Φ as in the proposition for h = h1,

ξ + iRHα ∈ im(Φ) ∩ t.
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As in the first paragraph of this proof, by applying Lemma 5.11 with S = R+
n \{α},

we find that ⋃

α∈R+
n \{α}

ξ + IαiHα ⊂ im(Φ) ∩ t,

with Iα equal to [0,∞) or (−∞, 0]. If ξ + ζ is regular, then Φ is a moment map
in the symplectic sense, so its image intersected with t is convex. Hence the claim
follows for h = h1.

Continuing in this way, removing noncompact, imaginary roots until there are
none left, one proves the claim for all θ-stable Cartan subalgebras. "

5.5. Examples: SU(p, 1), SO0(p, 1), and SO0(2, 2).

Lemma 5.13. Let G = SU(p, q). Let H < G be a θ-stable Cartan subgroup, and
let µ ∈ h be regular. The image of the map

Φ : G/H ∼= Ad(G)µ ↪→ g → k

has nonempty interior.

Proof. Let Hc < G be the compact Cartan of diagonal elements. Then a choice of
positive imaginary noncompact roots of (gC, hC

c ) is

R+
n = {αjk; 1 ≤ j ≤ p, p + 1 ≤ k ≤ p + q},

where αjk maps the diagonal matrix with entries (t1, . . . , tp+q) to tj − tk. A root
vector in gC

αjk
is the matrix Ejk win a 1 in position (j, k) and zeros in the other

positions. The complex conjugation of Ejk with respect to the real form su(p, q) is
Ekj . And

[Ejk, Ekj ] = hjk,

where hjk is the diagonal matrix with entry with 1 in the jth position and −1 in
the kth position, and zeros everywhere else. Together, these span ihc. So Propo-
sition 5.8 implies that im(Φ) ∩ t has nonempty interior in t so that im(Φ) has
nonempty interior in k. "

Lemma 5.14. Let G = SO0(p, q), with p and q even. Let H < G be a θ-stable
Cartan subgroup, and let µ ∈ h be regular. The image of the map

Φ : G/H ∼= Ad(G)µ ↪→ g → k

has nonempty interior.

Proof. Write p = 2r, q = 2s, and l = r+s. Consider the compact Cartan subgroup
Hc = SO(2)l < G. For j = 1, . . . , l, let hj ∈ Hc be the matrix with a block
X = ( 0 −1

1 0 ) as the jth 2 × 2 block on the diagonal, and zeros everywhere else. For
j, k = 1, . . . , l with j < k, define positive roots α±

jk by

〈α±
jk, hj〉 = i,

〈α±
jk, hk〉 = ±i,

and 〈α±
jk, hm〉 = 0 for all other m. Then

R+
n = {α±

jk; 1 ≤ j ≤ r, r + 1 ≤ k ≤ l}
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is a choice of positive, noncompact, imaginary roots. A root vector for α±
jk is the

matrix Eα±
jk

with a 2 × 2 block

Y± =
1

2

(
1 ∓i
−i ∓1

)

as the 2× 2 block in position (j, k) and a block −Y T
± in position (k, j) if we divide

n × n matrices into l × l blocks of size 2 × 2. And

[Eα±
jk

, Ēα±
jk

] = i(hj ± hk).

The set

{hj ± hk; 1 ≤ j ≤ r, r + 1 ≤ k ≤ l}
spans hc. So Proposition 5.8 implies that im(Φ) ∩ t has nonempty interior in t so
that im(Φ) has nonempty interior in k. "

Lemma 5.15. Let G = SO0(p, 1). Let H < G be a θ-stable Cartan subgroup, and
let µ ∈ h be regular. The image of the map

Φ : G/H ∼= Ad(G)µ ↪→ g → k

has nonempty interior.

Proof. Write p = 2l or p = 2l + 1 depending on the parity of p. Set

A :=
{(cosh(t) sinh(t)

sinh(t) cosh(t)

)
; t ∈ R

}
.

Consider the maximal torus T = SO(2)l of K = SO(p). A maximally compact
Cartan subgroup of G is Hc = T if p is even, and Hc = T × A if p is odd.

For j = 1, . . . , l, let hj be the matrix whose jth 2 × 2 block on the diagonal is
( 0 −1

1 0 ), and with all other entries zero. Consider the root αj of (gC, hC
c ) given by

〈αj , hj〉 = i, 〈αj , hk〉 = 0 if k 0= j, and, if p is odd, αj |a = 0. A root vector for αj

is the matrix

Eαj =





0 · · · · · · 0
...

...
−i
1

...
...

0 · · · i −1 · · · 0





,

where the two nonzero entries in the last column are in rows 2j−1 and 2j, and the
two nonzero entries in the bottom row are in columns 2j − 1 and 2j. So αj is an
imaginary, noncompact root. The matrices [Eαj , Ēαj ] = −2ihj , where j = 1, . . . , l,
span it. Proposition 5.8 implies that im(Φ) ∩ t has nonempty interior in t so that
im(Φ) has nonempty interior in k. "

Combining Corollary 5.7 and Lemmas 5.13–5.15 with the list of groups in Sub-
section 5.3, we obtain the following consequence of Theorem 2.7.

Corollary 5.16. If G = SU(p, 1), G = SO0(p, 1), or G = SO0(2, 2), then any ad-
missible representation of G has multiplicity-free restriction to a maximal compact
subgroup.
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Koornwinder [27] proved the cases G = SU(p, 1) and G = SO0(p, 1). We give
a geometric explanation of this fact here, include the case G = SO0(2, 2), and
also include a geometric criterion that determines which multiplicities equal 1 (see
Corollary 5.1). Using Proposition 5.8, one can investigate the groups listed at the
start of this section in a similar way.

Note that SU(p, q) is of Hermitian type (meaning that G/K is a Hermitian
symmetric space), but SO0(p, 1) and SO0(2, 2) are not. Therefore, Corollary 5.16
illustrates the fact that our method applies beyond the Hermitian case considered,
for example, in [23]. Furthermore, SO0(p, 1) has no discrete series for p odd, so we
find that the method yields nontrivial results for such groups as well.
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