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A GEOMETRIC FORMULA FOR MULTIPLICITIES OF K-TYPES
OF TEMPERED REPRESENTATIONS

PETER HOCHS, YANLI SONG, AND SHILIN YU

ABSTRACT. Let G be a connected, linear, real reductive Lie group with com-
pact centre. Let K < G be compact. Under a condition on K, which holds
in particular if K is maximal compact, we give a geometric expression for the
multiplicities of the K-types of any tempered representation (in fact, any stan-
dard representation) 7 of G. This expression is in the spirit of Kirillov’s orbit
method and the quantisation commutes with reduction principle. It is based on
the geometric realisation of 7|k obtained in an earlier paper. This expression
was obtained for the discrete series by Paradan, and for tempered representa-
tions with regular parameters by Duflo and Vergne. We obtain consequences
for the support of the multiplicity function, and a criterion for multiplicity-free
restrictions that applies to general admissible representations. As examples,
we show that admissible representations of SU(p, 1), SOg(p, 1), and SO¢(2,2)
restrict multiplicity freely to maximal compact subgroups.
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1. INTRODUCTION

1.1. Background and motivation. Let G be a connected, linear, real reduc-
tive Lie group with compact centre. Let K < G be a maximal compact sub-
group. A tempered representation of G is a unitary irreducible representation whose
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K-finite matrix coefficients are in L**¢(G) for all € > 0. The set G’tcmp of these
representations features in the Plancherel decomposition

52

L*(G) = / 7@ du(r)
Gtemp

as a representation of G x G, where p is the Plancherel measure. Tempered represen-

tations are also important because they are used in the Langlands classification [28]

of admissible irreducible representations.

The restriction 7|k of a tempered representation 7w to K is determined by the
multiplicities of all irreducible representations of K in 7|k, i.e., the multiplicities
of the K-types of m. This restriction contains a good deal of information about
m. For example, if 7 has real infinitesimal character, then Vogan showed that it is
determined by its lowest K-type (see [47, Theorem 8.1]).

If © belongs to the discrete series, then Blattner’s formula (proved by Hecht
and Schmid [12] and later also in [7]) is an explicit combinatorial expression for the
multiplicities of the K-types of w. For general tempered representations, there exist
algorithms to compute these multiplicities. See, for example, the ATLAS software
packag and its documentation [1]. This involves representations of disconnected
subgroups of GG, which cannot be classified via Lie algebra methods. That is one
of the reasons why it is a challenge to deduce general properties of multiplicities of
K-types of tempered representations from such algorithms. Another reason is the
cancellation of terms, which already occurs in Blattner’s formula. That can make
it hard, for example, to determine which multiplicities are zero.

Paradan [36] gave a geometric expression for the multiplicities of the K-types
of discrete series representations 7. This was based on a version of the quantisa-
tion commutes with reduction principle for a certain class of noncompact Spin®-
manifolds, and a geometric realisation of 7|k based in turn on Blattner’s for-
mula and index theory of transversally elliptic operators. The main result in this
paper, Theorem [2.7] is a generalisation of Paradan’s result to arbitrary tempered
representations. (In fact, it applies more generally to standard representations.)
This generalisation is now possible because a quantisation commutes with reduc-
tion result for general noncompact Spin“-manifolds proved recently by the first two
authors of this paper [15]. Theorem 2.7] can in fact be generalised to more general
compact subgroups K < Gj; see Corollary 2.8l For tempered representations with
regular parameters, the multiplicity formula was proved by Duflo and Vergne [9] via
very different methods. Our result has applications to multiplicity-free restrictions
of admissible representations.

1.2. The main result. In Theorem 2.7] we use a homogeneous space of the form
G/H, for a Cartan subgroup H < G (depending on 7). This can be identified with
a coadjoint orbit Ad*(G)v C g* through a regular element v (depending on 7) of
the dual of the Lie algebra § of H. (The Lie algebra of a Lie group is denoted
by the corresponding lowercase Gothic letter.) First, assume that 7 is induced
from a discrete series representation of a factor M in a cuspidal parabolic subgroup
MAN < G. Then G/H = Ad*(G)v. Consider the map

®: G/H = Ad*(G)v — E*.

1See http://www.liegroups.org/software/.
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This is a mmoment map in the sense of symplectic geometry, although we will need to
work with the more general Spin®-geometry. This is also why we use the notation
G/H rather than Ad*(G)v.

Let § be an irreducible representation of K, and let  be its highest weight for
a maximal torus 7' < K and a fixed positive root system for (€, t). Let p® be half
the sum of these positive roots. Via Spin“-quantisation, the representation § corre-
sponds to the coadjoint orbit O := Ad*(K)(n + p)/i C €*; see, for example, [39]
(note that n+ pX is the infinitesimal character of 6). The reduced space (G/H)o, is

(G/H)o, == ®7'(0s)/T.

This is a compact space, and if (n + p)/i is a regular value of ®, then it is an
orbifold. In that case, it has a Spin®-structure, induced by a given K-equivariant
Spin®-structure on G/H (depending on 7). The index of the corresponding Spin®-
Dirac operator is denoted by

index((G/H)o,) € Z.

This can be computed via Kawasaki’s index theorem [17, formula (7)]. If (n+p%) /i
is a singular value of ®, then Paradan and Vergne [41] showed how to still define
this index in a meaningful way, essentially by replacing (1 + p’)/i with a nearby
regular value; see Subsection 2.1l Our main result, Theorem 2.7] is the following.

Theorem 1.1. We have
[Tk : 0] = £index((G/H)o,).

See Section [2 for precise definitions of the sign =+, for the dependence on 7 of H,
v and the Spin®-structure on G/H, and for the definition of the index on the right-
hand side. In fact, Theorem [L.1] applies more generally to standard representations
m; see Remark [2.91

If 7 is not induced from a discrete series representation of M, then its infini-
tesimal character is singular. In this case, the natural map G/H — Ad*(G)v is a
fibre bundle. We then use a different map ® to define reduced spaces (see Subsec-
tion [2.2] for details.). This map depends on choices made, but the end result does
not: Theorem [L.1] still holds in this case.

Theorem [L.1] and the results that follow, is in fact true for more general compact
subgroups K < G: it is sufficient if the map ® is proper. (This is true if K is
maximal compact; see [34] (1.3)].) See Corollary 2.81 Duflo and Vargas showed that
in the case of a discrete series representation 7, properness of ® with K replaced
by a possibly noncompact, closed, reductive subgroup H < G is equivalent to the
restriction of 7 to H being admissible (i.e., decomposing into irreducibles with finite
multiplicities); see [8, Proposition 4].

In the case where 7 is induced from the discrete series, Duflo and Vergne
[9] proved a multiplicity formula for its K-types analogous to Theorem [L.I] The
parametrisation part of the orbit method used by Duflo and Vergne to prove their
result is the one described in [6, Section III]. The geometric/representation theo-
retic input is Kirillov’s character formula, proved by Rossmann [42]; see also [45].
Our approach to proving Theorem [L.1]is based on the geometric realisation of 7|x
in [16] and allows us to prove it in general, i.e., even for tempered representations
induced from limits of the discrete series. Furthermore, our result has applications
to multiplicity-free restrictions of general admissible representations.
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Theorem [L1] allows us to use the geometry of G/H, or of the coadjoint orbit
Ad*(G)v, to draw conclusions about the general behaviour of the multiplicities of
the K-types of m. One such conclusion is about the support of the multiplicity
function of the K-types of .

Corollary 1.2. All K-types of m have highest weights in the set
i®(G/H) Nit* — pk.

In fact, these highest weights lie even in the relative interior of this set; see

Corollary 2.11]
Applications of Theorem [I.1] to multiplicity-free restrictions are described in
Subsection [L.4]

1.3. The orbit method and quantisation commutes with reduction. Theo-
rem [LTlis directly related to Kirillov’s orbit method and Guillemin and Sternberg’s
quantisation commutes with reduction principle [11]. Indeed, if a representation 7
of G is associated to a coadjoint orbit OF C g*, and an irreducible representation
0 of a closed subgroup G’ < G is associated to a coadjoint orbit Ogl C b*, then
according to this principle, one expects that

(1.1) 7l = 6] = Q((OS Np~ (0" /G"),

where p: g* — bh* is the restriction map and ) denotes some notion of geomet-
ric quantisation. In fact, a result of this form by Heckman [13| for compact Lie
groups was inspiration for Guillemin and Sternberg to develop the idea that quan-
tisation commutes with reduction. The equality (L.I)) is also related to the role that
the Corwin—Greenleaf multiplicity function plays in the study of multiplicity-free
restrictions (see below).

In the setting of Theorem [L.I] suppose that the infinitesimal character x of = is
a regular element of ¢h*. Then it was shown in [16] that

Tk = QK (0F),

where O¢ = Ad*(G)y, where Qg stands for a natural notion of K-equivariant
geometric quantisation of noncompact Spin“-manifolds [15[301[36,[3746]. If H = K
and § € K has highest weight 7 (hence infinitesimal character n 4+ pX), then,
as we mentioned above, OF = Ad*(K)(n + p¥) for a Spin®-version of geometric
quantisation [39]. Then Theorem [L1] is precisely the equality (1], where @ is
given by the index of Spin®-Dirac operators.

We have mentioned Spin®-quantisation several times so far. Paradan showed
in [36] that it is natural to use a Spin®-version of geometric quantisation to obtain
multiplicities of K-types of representations of GG, rather than the symplectic version.
Paradan and Vergne showed in [41] that the quantisation commutes with reduction
principle has a natural extension to the Spin®-setting. This was generalised to a
result for noncompact Spin“-manifolds in [15] (see Theorem [B.4), which we will use
to prove Theorem [L.1]

If the infinitesimal character x is singular, then the link between Theorem [l
and the orbit method is less direct. Rather than using nilpotent coadjoint orbits
in that case, we use G/H as a desingularisation, which allows us to still obtain an
expression for multiplicities of K-types.
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1.4. Multiplicity-free restrictions. The problem of determining when the
restriction of an irreducible representation m of G to a closed subgroup G’ is
multiplicity-free is the subject of active research by a large community of mathe-
maticians. This restriction m|g is called multiplicity-free if the only G’-equivariant
endomorphisms of the representation space of 7 are the scalar multiples of the iden-
tity operator. If G’ is compact, as it is in our setting, then this precisely means
that every irreducible representation has multiplicity 1 in 7|g. We just mention
a few results on multiplicity-free restrictions here that are particularly relevant
to our approach. See, for example, [25] and the references given there for more
information.

Many results about multiplicity-freeness apply to noncompact simple groups
G of Hermitian type. This means that G/K is a Hermitian symmetric space,
or equivalently, £ has nonzero centre. For such groups, 7 is said to be of scalar
type if the +i eigenspace of the action by a fixed central element of ¢ on the
space of K-finite vectors is one-dimensional. In this setting, Kobayashi proved
that 7 has multiplicity-free restriction to any subgroup G’ such that (G,G’) is a
symmetric pair. See [23], and also [25, Theorem A]. There are many other results
on multiplicity-free restrictions; two of many possible references are [241/43].

Theorem [Tl implies a geometric sufficient condition for the restriction of 7 to
K to be multiplicity-free: this is the case when (G/H)p; is a point. In fact, one
can then determine explicitly which multiplicities equal 1 and which equal 0.

Corollary 1.3. If (n+ p)/i is a regular value of ® and (G/H)o, is a point, then
[m|x : 0] € {0,1}. The condition in Corollary B.1] determines precisely when the
value 0 or 1 is taken.

If (n+p™) /i is not necessarily a regular value of ®, but (G/H) (aa* (i) (n+p& +¢) /i)
is a point for all € close enough to 0, then we still have [r|x : 6] € {0,1}.

There is in fact a version of Corollary [1.3]for general admissible representations;
see Corollary 5.4l By applying this version, we find that the restriction to K of
every admissible representation is multiplicity-free in the examples where G is one
of the groups

* SU(p, 1),
e SOg(p,1) or SOy(2,2).

This is worked out in Section [B} see Corollary 5.16] For SU(p,1) and SOg(p, 1),
this was shown by Koornwinder [27]. (In a related result for SU(p, 1), van Dijk and
Hille showed that the tensor product of a holomorphic discrete series representation
and the corresponding antiholomorphic discrete series representation decomposes
multiplicity freely; see [B, Section 12].) For G = SL(2,C) and SL(2,R), all reduced
spaces are points so that all tempered representations have multiplicity-free restric-
tions to K, as is well known. We work out the case G = SL(2,R) in detail in
Subsection [5.2l Then we recover the well-known multiplicities of K-types of the
tempered representations of SL(2,R). For SL(2,R), we show how Corollary [L.3]
does not just imply multiplicity-freeness but allows us to compute precisely which
representations occur.

As mentioned above, for many results on multiplicity-free restrictions, the group
G is assumed to be of Hermitian type. The groups SOg(p, 1) and SOg(2,2) are not
of Hermitian type and can therefore not be treated via such results. Furthermore,
we do not assume the representation 7 to be of scalar type.
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Links between multiplicity-free restrictions and the orbit method were investi-
gated in [2)41[8,1261/33]. A key role here is played by the Corwin—Greenleaf multiplic-
ity function n. For a closed subgroup G/ < G and coadjoint orbits O € (g')*/G’
and OY € g*/G, this function takes the value

n(0%,09) = #(0% np 1 (09)/d"),

where p: g* — b* is the restriction map. Corwin and Greenleaf showed that this
function gives multiplicities of restrictions of unitary irreducible representations
if G is nilpotent (see [4, Theorem 4.8]). Then Kirillov’s orbit method classifies
unitary irreducible representations as geometric quantisations of coadjoint orbits.
In general, if 7 is associated to O, then (LI) suggests that the restriction |gr
should be multiplicity-free if n(OF, OF") < 1 for all coadjoint orbits OF of G
A precise conjecture was formulated by Kobyashi and Nasrin [26], and proved for
G’ = K by Nasrin [33].

We conjecture the condition for multiplicity-free restrictions in Corollary [L.3] to
be necessary, as well as sufficient.

Conjecture 1.4. Let H < G be a 0-stable Cartan subgroup. Suppose that every
tempered representation induced from the cuspidal parabolic subgroup correspond-
ing to H restricts multiplicity freely to K. Then all reduced spaces for all maps
®: G/H — ¥ corresponding to those representations are points.

Evidence for this conjecture is given under Conjecture [5.5

1.5. Ingredients of the proof. The proof of Theorem [L.1]is based on three in-
gredients.

(1) A realisation of 7|k as a K-equivariant index of a deformed Dirac operator
on G/H. This was done in [16, Theorem 3.11]. That result involves index
theory of deformed Dirac operators developed by Braverman [3].

(2) A general quantisation commutes with reduction result for noncompact
Spin“-manifolds. This is [15, Theorem 3.10]. For compact Spin°-manifolds,
this was proved by Paradan and Vergne [39H41]. For noncompact symplectic
manifolds, the analogous result was proved by Ma and Zhang [30], after a
conjecture by Vergne [46]. See also [37].

(3) One needs to show that the second ingredient can be applied to the first,
by using the freedom one has in the deformation of the Dirac operator on
G/H to choose the particular deformation that yields the desired result.
This requires some work and occupies a large part of this paper.

Notation 1.5. The Lie algebra of a Lie group is denoted by the corresponding low-
ercase Gothic letter. We denote complexifications by superscripts C. The unitary
dual of a group H will be denoted by H. If H is an abelian Lie group and £ € h* sat-
isfies the appropriate integrality condition, then we write C¢ for the one-dimensional
representation of H with weight &.

In Subsections 2.1] B.1] and [4.4] the letter M denotes a manifold. In the rest of
this paper, it denotes a subgroup of G.

2. THE MULTIPLICITY FORMULA

The main result of this paper is a multiplicity formula for K-types of tempered
representations, Theorem 2.7] and its extension, Corollary 2.8] This is a geometric
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formula in terms of indices on reduced spaces for the action by a maximal compact
subgroup on a homogeneous space of the group in question.

2.1. Indices on reduced spaces. Let M be a complete Riemannian manifold,
on which a compact Lie group K acts isometrically. Let J be a K-invariant al-
most complex structure on M. We write A ;7M for the complex exterior algebra
bundle of TM, viewed as a complex bundle via J. Let L — M be a Hermitian,
K-equivariant line bundle. The vector bundle

(2.1) A, TM @ L — M

is the spinor bundle of the Spin®-structure on M defined by J and L; see, e.g., [10]
Proposition D.50] or [29, page 395]. In this paper, we will work only with Spin®-
structures induced by almost complex structures and line bundles, as in this case.

The determinant line bundle associated to the Spin®-structure with spinor

bundle [2.1)) is
Laet = NPT N @ 182 5 M.

Let V be a K-invariant, Hermitian connection on Lge;. The corresponding moment
map is the map ®: M — £* such that, for all X € ¢,

(2.2) 2i(®, X) = Lx — Vu.

Here (®,X) € C°(M) is the pairing of ® and X, Lx is the Lie derivative with
respect to X of smooth sections of Lqet, and X is the vector field on M induced
by X our sign convention is that for m € M,

d
XM(m) = 7 exp(—tX)m.
t=0

The origin of the term “moment map” is that, by Kostant’s formula, ® is a moment
map in the symplectic sense if the curvature of V is —i times a symplectic form

on M.
If £ € £, then the reduced space at £ is the space
(2.3) Mg := ®71(€)/Ke,

where K¢ is the stabiliser of ¢ with respect to the coadjoint action. If £ is a
regular value of @, then K¢ acts on the smooth submanifold ®~1(£) € M with
finite stabilisers. Then M¢ is an orbifold. In our setting, the map ® will be proper
so that M, is compact. We will express multiplicities of K-types of tempered
representations as indices of Dirac operators on reduced spaces. For reduced spaces
at regular values of the moment map, these are indices in the orbifold sense. For
reduced spaces at singular values, one applies a small shift to a nearby regular
value; see Definition [2.3] below.

The indices on reduced spaces that we will use were constructed in |41, Subsec-
tions 5.1 and 5.2] for general Spin®-structures. We review this construction here, for
Spin®-structures induced by almost complex structures and line bundles as above.
The construction is done in three steps. First, one realises a given reduced space
as a reduced space for an action by a torus. For actions by tori, indices on reduced
spaces at regular values of the moment map can be defined directly. For singular
values, one applies a shift to a nearby regular value.

We suppose from now on that the action by K on M has abelian stabilisers.
(This is true in our application of what follows.)
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Let T < K be a maximal torus. Fix an open Weyl chamber C C t, and let p®
be half the sum of the corresponding positive roots. Let & € t* be dominant with
respect to C. Then ¢ + pX /i € C. We will always identify £ = £ via the inner
product equal to minus the Killing form. Let Y C M be a connected component
of ®71(C). Consider the map

By :=B|y — pf/i: Y — .
Set
Ye i= @, (€)/T.
Let g: @;1(5) — Y be the quotient map. Let ty C t be the generic (i.e., minimal)

stabiliser of the infinitesimal action by t on Y. The image of ®y is contained in an
affine subspace I(Y') C t* parallel to the annihilator of ty.

Lemma 2.1 (Paradan and Vergne). If £ is a regular value of ®y: Y — I(Y),
then Ye is an orbifold, and for every integral element n € I(Y'), there is an orbifold
Spin‘-structure on Ye, with spinor bundle 8;7,)5 — Y¢ determined by

(ANJTM @ L)|g-1¢) = 0" Sy¢ @c Nct/t@c (Ac(t/ty ®r C)) ®c Cy.

Here t/t is viewed as a complex vector space isomorphic to the sum of the positive
root spaces corresponding to C, and /. denotes the exterior algebra of complex
vector spaces.

This is [41 Lemma 5.2].

Suppose that ® is a proper map. Then Y¢ is compact. In the setting of
Lemma 2.1} we write

index(Sy. ) € Z

for the orbifold index [17] of a Spin°-Dirac operator on the bundle Sy . This can
be evaluated in terms of characteristic classes on Y, via Kawasaki’s 1ndex theorem;
see [17, formula (7)].
Theorem 2.2 (Paradan and Vergne). The integer indeX(Sf,’nge) is independent of
e € I(Y) such that &+ € is a regular value of @y : Y — I(Y) for € small enough.

This result is [41l Theorem 5.4]. It allows us to define
indeX(Sf/ )= 1ndex(8§,75+€),

for € as in Theorem [2.2]
Finally, we have

My prc i = HY57
%

where Y runs over the connected components of ®~1(C).

Definition 2.3. The index of the Spin®-Dirac operator on the reduced space
Mg¢ ki is the integer
index (M, ,x /) = Z indeX(Sf,’g)7
Y
where Y runs over the connected components of ®~(C). If Mg, x ;; = 0, then we
set index(M¢, ,x ;) = 0.

Such an index on a reduced space may be viewed as the Spin-quantisation of
that space; see [41, Definition 5.5].
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2.2. Tempered representations, almost complex structures, and moment
maps. Let G be a connected, linear, real reductive Lie group with compact centre.
Let K < G be maximal compact, and let 6 be a compatible Cartan involution. A
tempered representation of G is an irreducible unitary representation whose K-finite
matrix coefficients are in L?>T¢(@) for all € > 0. These are the representations that
occur in the Plancherel decomposition of L?(G). Let 7 be a tempered representation
of G.

Tempered representations were classified by Knapp and Zuckerman. See [20H22)
or [18, Chapter XIV] for details, or [16l Subsection 2.3] for a brief overview of
the parts relevant to us here. In this classification, one parametrises 7 as follows.
Let P = M AN be the Langlands decomposition of a cuspidal parabolic subgroup
P < G. Let H < G be the #-stable Cartan subgroup with noncompact part A.
Write b = ty; @ a, with t3; € m. Then t;; is a Cartan subalgebra of m. Set
Ty := exp(tar). Recall that we use minus the Killing form, which we denote by
(=, =), to identify & = €. Let A € it};, and let R}, be a system of positive roots
for (m®, t§,) such that, for all @ € R};, we have (a, \) > 0. Let p™ be half the sum
of the elements of RIT/[. Suppose that A — p™ is integral. Let Zy; be the centre of
M. Let xa be a one-dimensional representation of Z,; such that

X]\/I‘TMQZ]\/[ = (C)\fplw |T]uﬁZ]u'

Then we have the well-defined representation Cy_,m X xas of Hyy = Ty Zp. One

has the discrete series or limit of discrete series representation 771”1%+ N associated
Ay XM
M

is a limit of discrete
MR X

series representation if it is nonzero.) Let v € ia*. For suitable A, RL, and yps as
above, we have

(2.4) 7 =Tnd§, 4 n(

to these data; see [20, page 397]. (For singular A\, =

M v
us e 1n).
)\7RL;XM ® ® N)

This is |20, Corollary 8.8].
We will use the K-invariant almost complex structure J on G/H defined in [16]
Subsection 3.4]. This was defined via the decomposition

(2.5) g/b=m/tyy &n” @nt,

where nt =nand n~ = fn*. On m/ty;, we have the complex structure Jy, /¢, such
that, as complex vector spaces,

m/ty = @ mg.
a€RY;

Let X be the set of nonzero weights of the adjoint action by a on g. For g € X,
let g C g be the corresponding weight space. Let ¥t C X be the set of positive
weights such that

n= D o

pexSt
Let ¢ € a be an element for which (8,¢) > 0 for all 8 € . Then the map
Je = 0lad(¢)| " ad(¢): n” @nt =0T @nt

is an Hjps-invariant complex structure (see [16, Lemma 3.9]). Let Jy/5 be the
complex structure on g/h defined by Jy /¢, and J; via ([2.5). Then J is the K-
invariant almost complex structure on G/H such that, for all k € K, X € s, and
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Y € n, the following diagram commutes:
Ty exp(X) cxp(Y)HG/H # Ty exp(X) cxp(Y)HG/H
Terkexp(X) exp(Y)T TTer exp(X) exp(Y)
T.aG/H =g/ o g/b=TeuG/H.
a/b
(See [16, Lemma 3.10].)
Consider the line bundle
LA*PMJ(M =G XH (C)\,pM X XM — G/H

(where we extend A\ — pM € it} to h by setting it equal to zero on a). The vector
bundle

(2.6) A,T(G/H)® Ly_ i, — G/H

is a spinor bundle of the form (2.1]).
The positive systems RL and X7 determine a set RJCS of positive roots « of
(g%, bC) that satisfy

(2.7) (alg =0 and al,, € Ri;) or (als #0 and al, € £1).
Let p& be half the sum of the elements of Rg';. Set
(2.8) E:=)Ni €ty

Proposition 2.4. There is a K-invariant, Hermitian connection on the deter-
minant line bundle corresponding to (2.6) whose moment map ®: G/H — € is
given by

®(gH) = (Ad"(9)(§ + O))le-

If the infinitesimal character y of 7 is regular, then ¢ can be chosen such that
£+ ¢ = x in Proposition 2.4} see Subsection[2.4l Then ® is the moment map in the
symplectic sense action by K on the coadjoint orbit Ad*(G)y.

2.3. The main result. We initially formulate the multiplicity formula for the
K-types of w in two cases separately: the case where 7 is induced from a discrete
series representation of M, and the case where it is induced from a limit of discrete
series representation of M; see Theorems [2.5] and 2.6l Then we combine these
statements into the main result of this paper, Theorem [2.71 We also formulate a
generalisation, Corollary 2.8] where K is not required to be a maximal compact
subgroup.

Note that the 7 is induced from a discrete series representation of M—i.e.,

7riw R belongs to the discrete series of M—precisely if £ is regular, whereas 7 is
SRy Xxm

induced from a limit of discrete series representation of M precisely if £ is singular.

Fix a set of positive roots of (¢, %) compatible with R},. Let p be half the
sum of these positive roots. Let § € K , and let n € it* be its highest weight. Then
§ corresponds to the coadjoint orbit Os := Ad*(n + pX) through its infinitesimal
character n + p¥ via Spin°-quantisation [39].

If £ € t}, is regular, it has positive inner products with all roots in R]T/[. Then
we can and will choose ¢ such that & + ¢ is regular for the roots of (g&, h®). In this
case, let

(G/H)o, = @71(0s)/K = o7 ((n+ p™)/i)/T
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be the reduced space at (1 + p’)

tion [2.4] Let

/i, as in ([2.3]), for the moment map ® of Proposi-

index((G/H)op,) € Z
be the index of the Spin®-Dirac operator on this space, as in Definition [2.3] Recall
that
W:Ind%AN( M ®6V®1N).

WA,RL,XM
We set Ky := KN M.

Theorem 2.5 (Multiplicity formula, regular case). Suppose that 7 is induced from
a discrete series representation of M. For all § € K with highest weight n, the
multiplicity of 0 in 7|k is

7|k 2 0] = (—1)EmM/ K /2 index((G/H) o, ).

If ¢ € t}, is singular, choose any §~ € t3, with positive inner products with the
positive roots in R};, and choose ¢ such that £ + ( is regular. Define the map
v: G/H — ¢ by .

P(gH) = (Ad™(g)(§ + O))le
for g € G. Let v¥ be the vector field on G/H defined by

d
v (gH) = 7| exp(=tv(gH))gH
t=0

for all g € G. Next, we choose a nonnegative function 7 € C°°(G/H)X that grows
fast enough, as in Lemma 4111 That lemma implies that the map ®7: G/H — ¢
given by
(2.9) (BT, X) = (®,X) 47 (v¥, XC/H),
for X € ¢, is a proper moment map. In this case, we set

(G/H)o; = (®7)H((n+ p)/i)/T.
Again, let

index((G/H)op,) € Z

be the index of the Spin®-Dirac operator on this space.

Theorem 2.6 (Multiplicity formula, singular case). Suppose that  is induced from
a limit of discrete series representation of M. For all § € K with highest weight n,
the multiplicity of § in |k is

7|k : 8] = (= 1)ImM/Ea)/2 index((G/H) o,).-

Theorem [2.6]in fact also applies if 7 is induced from a discrete series representa-
tion of M so that it generalises Theorem [2.5] Indeed, if £ is regular, then we may
take £ = £ and 7 = 0. Then ®” = & is proper by [34] (1.1)], taming by [34, Proposi-
tion 2.1], and trivially homotopic to ©» = ®. Hence in the regular case, these choices
of 7 and 1 satisfy the conditions in Lemma [4.11] and the equality in Theorem [2.6]is
Theorem 2.5] The combination of these theorems is the main result of this paper.

Theorem 2.7 (Multiplicity formula for K-types of tempered representations). For
any tempered representation m of G, and all § € K, with highest weight n, the
multiplicity of § in |k is

(7|5 2 0] = (—1)EmM/ K /2 index((G/H) o, ).-
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In other words,

7l = (1) ImM/E0/2 (B index((G/H) o, )0.
seK

If = belongs to the discrete series, then this multiplicity formula is [36, The-
orem 2.5]. The absence of the sign (—1)3m(M/Kan)/2 — (_1)dim(G/K)/2 in that
result is due to a different definition of reduced spaces and the relevant indices
on them (see Remark 2.1I0). Our proof of Theorem 2.7 is based on a generalisa-
tion of the methods in [36], combined with Braverman’s index theory described in
Subsection B.Il Via a completely different method, Duflo and Vergne [9] proved
Theorem 2.7] in the regular case, where Wﬁ‘\ffR+ s belongs to the discrete series.
Duflo and Vergne used Kirillov’s character forjrwnula, proved by Rossmann [42]; see
also [45]. This formula is based on deep results of Harish-Chandra and others. Our
approach uses a geometric realisation of 7|k instead, and in addition covers the
singular case.

Theorem 2.7 can in fact be generalised to more general compact subgroups of
G, using a functoriality result by Paradan [38]. Let K < G now be any compact
subgroup, not necessarily maximal. Let K/ < G be a maximal compact subgroup
containing K.

Let ®7 be as above for the action by K’ on G/H, where we take 7 = 0, so
®7 = @, in the regular case. Suppose that the composition

(2.10) Dt G/H 25 () L e

is proper, where p is the restriction map. (This is true if K/ = K as in Theorem[2.7])
The multiplicity formula by Duflo and Vergne [9] for tempered representation in-
duced from the discrete series holds for restrictions to compact subgroups K with
this property. Let T be a maximal torus of K. For an irreducible representation
§ € K with highest weight 7, we write OK := Ad*(n + p¥) and

(G/H) g = PR (OF) K = P (€)/ Ke.
This allows us to state the most general multiplicity formula in this paper.

Corollary 2.8. The restriction of m to K is admissible, and we have

7k = (=132 (B index((G/H)E, ).
ek

Remark 2.9. In fact, Corollary 2.8 applies to every representation 7 of the form (2.4])
with v € (a®)* possibly nonimaginary, i.e., to every standard representation. This
includes the tempered representations by [20, Corollary 8.8].

Remark 2.10. The sign (—1)3™(M/Kx)/2 in Theorems Z.5HZT and Corollary 2.8
is a consequence of an implicit choice of orientations on reduced spaces. We work
with almost complex (or Spin‘-structures), and the sign (—1)3™M/Kn)/2 yesults
from using orientations induced by these structures. The sign is not present if one
uses symplectic orientations, but we found it more natural to use the orientations
corresponding to the almost complex structures used throughout this paper.
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2.4. Coadjoint orbits. Theorem [2.7]and Corollary 2.8 are instances of the Spin®-
version of the quantisation commutes with reduction principle. Indeed, we will
see in Theorem [B.5] which is the main result in [16], that one can view 7|x as
the geometric quantisation in the Spin°-sense of the action by K on G/H, with
the given almost complex structure and line bundle. If the infinitesimal character
x of 7 is regular, then G/H is isomorphic to the coadjoint orbit Ad*(G)x as K-
equivariant Spin®-manifolds. Now @ is the natural projection of this orbit onto €*.
See [16] Section 3.6] for this relation with the orbit method. This ® is the moment
map for the natural symplectic form on this orbit.

Nevertheless, one needs a Spin-version of the quantisation commutes with re-
duction principle ([15, Theorem 3.10]; see Theorem B.4]) rather than the symplectic
version ([30, Theorem 0.1]; see also [37, Theorem 1.4]). This is because the almost
complex structure J is not compatible with the Kostant—Kirillov symplectic form
on the coadjoint orbit Ad*(G)y; also, Ly_pnm y,, is not a prequantum line bundle
for this symplectic form. See [36, Subsection 1.5]. The bundle Lyy_,u) 2, is a
K-equivariant prequantum line bundle for the coadjoint orbit Ad*(G)2x, however;
i.e., the spinor bundle (2.6) is a Spin‘-prequantisation of the orbit Ad*(G)x. See
Remark [4.8] In the compact case, the Spin®-version of the quantisation commutes
with reduction principle was proved by Paradan and Vergne [39H41]. Because we
view G/ H as a Spin°-manifold (or an almost complex manifold) in this paper rather
than as the symplectic manifold Ad*(G)x that it equals if x is regular, we use the
notation G/H rather than a notation that emphasises the link with coadjoint orbits.

In the orbit method, representations with singular parameters correspond to
nilpotent orbits. If x is singular, then we use the manifold G/H rather than such a
nilpotent orbit. Through this desingularisation, the link with quantising nilpotent
orbits is absent in our approach, but this approach does allow us to obtain the
multiplicity formula in Theorem R.7] and Corollary 2.8

Theorem [2.7]and Corollary 2.8 allow us the deduce properties of the behaviour of
the K-type multiplicities of 7 from the geometry of the coadjoint orbit Ad*(G)(£+<)
if £ is regular. In general, such properties can be deduced from the geometry of
the map ®: G/H — ¢*. An immediate consequence is the following fact about the
support of the multiplicity function of the K-types of w. By the relative interior
or relative boundary of a subset of the affine space I(Y") parallel to the annihilator
of ty containing the image of ®y, we mean the interior or boundary as a subset
of I(Y).

Corollary 2.11. Let K be as in Corollary 2.8 All K-types of m have highest
weights in the relative interior of i®(G/H) Nit* — pX.

Proof. Let § € K have highest weight 7. If (n+p%) /i is not in the image of ®, then
Corollary 2.8 implies that the multiplicity [r|x : d] is zero because (G/H )4 ,x) /i
is empty, and so are reduced spaces at elements close enough to (n+ p)/i. If (n+
p%) /i lies on the relative boundary of the image of ®, then [r|x : ] is zero because

the reduced space at some element close to (1 + p€)/i is empty. See [41, comment
below Definition 5.5]. O

Remark 2.12. In the regular case, the map ® is a moment map in the symplectic
sense. So then the set i®(G/H)Nit* — pX containing the support of the multiplicity
function is a convex polytope. This polytope is noncompact if G is; i.e., it is the
intersection of a collection of half-spaces.
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Remark 2.13. Even in the case of the discrete series, it is nontrivial to determine
the support of the multiplicity function from Blattner’s formula. This is because
of cancellations occurring in that formula.

Applications of Theorem 2.7 and Corollary 2.8 to multicplicity-free restrictions
are discussed in Section [Bl

3. INGREDIENTS OF THE PROOF

3.1. Quantisation commutes with reduction. Consider the setting of Subsec-
tion 2.1l Let v: M — € be a smooth, K-equivariant map. It induces a vector field
v¥, given by

v¥(m) exp(—ttp(m))m,

"t

for all m € M. The map 1 is called taming if the set of zeros of v* is compact.
The Clifford action ¢ by TM on A ;TM is given by

cv)r=vAz—v iz
forme M,v € T,,M, and x € \ ;T,,, M. Here v* € T*M is dual to v with respect
to the Hermitian metric defined by the Riemannian metric and J, and J denotes

contraction. Let V be a K-invariant, Hermitian connection on A ;TM ® L such
that, for all vector fields v, w on M,

Vo, c(w)] = (VM w),

where VM ig the Levi-Civita connection. Such a connection always exists; one is
induced by the connections V on Lge; and V™ on TM; see, e.g., [29) Proposi-
tion D.11]. After we identify T*M = TM via the Riemannian metric, the Clifford
action ¢ induces a map

c:T"MaN,TM®L— \,TM L.

This allows us to define the Dirac operator D as the composition
D:T®(\,TM ® L) V5 T°(T*M @ \,TM @ L) 5 T>(\,TM © L).

Let f € C>®°(M)%X be nonnegative. The Dirac operator deformed by fi is the
operator
D —ife(v?)
on the space I'%% (A ;7M ® L) of square-integrable smooth sections of A ;7M & L.
For a nonnegative function y € C°°(M)¥, we say that the function f is x-admissible
if, outside a compact set,
2

T

ldfll +f +1
For any such function x, there exist y-admissible functions; see [14, Lemma 3.10].
Braverman’s index theory [3] for deformed Dirac operators is based on the following
result.

Theorem 3.1 (Braverman). If ¢ is taming, then there is a nonnegative function
X € C(M)E such that, for all x-admissible functions f and all irreducible repre-
sentations § of K, the multiplicities m;' and myg of 6 in the kernel of D — ife(v?)
restricted to even and odd degree forms, respectively, is finite. The difference
mgr —my is independent of f and V.
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See [3, Theorem 2.9] for a more general result.
We write R(K) for the abelian group

]:Z(K) = {@ mgd;mg € Z}.

sek

In other words, R(K ) contains formal differences of possibly infinite-dimensional
representations of K, in which all irreducible representations have finite multiplic-
ities.

Definition 3.2. In the setting of Theorem [B.I] the equivariant index of the pair
(A, TM ® L) is

indexx (A ,TM @ L,v) = P

A property of this index is invariance under homotopies of taming maps. Two
taming maps g, 1: M — £ are homotopic if there is a taming map ¥: M X
[0,1] — ¢ such that, for all m € M, we have (m,t) = ¢o(m) if t € [0,1/3], and
Y(m,t) =Y (m) if t € ]2/3,1].

Theorem 3.3 (Braverman). If 1) and 11 are homotopic taming maps, then
indexg (A, TM ® L,vo) = indexg (A ;TM & L,1).

This is a special case of cobordism invariance of the index [3, Theorem 3.7].

In [15], it was proved that the index of Definition [3.2] satisfies a Spin“-version of
the quantisation commutes with reduction principle of Guillemin and Sternberg [11].
This followed results for compact symplectic manifolds [31L32] (see also [35.[44]),
for noncompact symplectic manifolds [30] (see also [37]), and for compact Spin®-
manifolds [41] (see also [39,40]). The interpretation of the K-equivariant index of
a Dirac operator deformed by a vector field such as v® as a geometric quantisation
goes back to [15,1301[36,137,/46].

Theorem 3.4. In the setting of Theorem B.1, take 1) = ®, the moment map of a
K-invariant, Hermitian connection on Lyet. Suppose that ® is taming and proper,
and that the generic stabiliser of the action by K on M is abelian. For § € K, let
Os = Ad*(K)(n + p¥)/i be the corresponding regular admissible orbit (where 1 is
the highest weight of §). Then

m

6ef<<m3r —myz)d € R(K).

T —mjy = index(Mo,).

In other words,

indexx (A ;TM ® L, ®) = @m( index(Mo, ).

This is a special case of [15, Theorem 3.10]. In that theorem, it was not assumed
that ® is taming, that the generic stabiliser is abelian, or that the Spin°-structure
is induced by an almost complex structure and a line bundle.

3.2. A realisation of tempered representations restricted to K. As in Sub-
section 2.2] let 7w be a tempered representation of G, and write

G M
T = IndMAN(F)\vRXpXM ®e’ ®1y)

as in (2.4). Let H be the corresponding Cartan subgroup. In [16], we realised the
restriction of m to K as an equivariant index in the sense of Definition [B.2] of a
deformed Dirac operator on G/H. We briefly review the construction here.
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Consider the spinor bundle (2.6) and the map ® of Proposition 2.4] but now
for any elements ¢ € t}, and ¢ € a* such that (a,i¢) > 0 for all a € R},, and
¢+ ¢ € b* is regular for the roots of (g¢, h¢). Then the map @ is taming by [34]
Proposition 2.1].

Theorem 3.5. We have
| = (=1) IO K2 indexc e (A, T(G/H) @ Ly 5 ).

This is |16l Theorem 3.10]. It is the last ingredient of the proof of Theorem 2.7
Theorem [3.5] in fact applies more generally to every standard representation m;
see [16, Remark 3.12].

Proof of Theorem 2.2 Let § € K. Let € be as in ([2.8). First, suppose that & is
regular, and choose ¢ such that & +¢ € b* is regular for the roots of (g, h*). Then
Theorem [3.5] states that

7|5 : 0] = (— L)WM/ K2 index e (N ,T(G/H) @ Ly_pot oy, @) 1 6]

By Proposition 2.4] the map ® is a moment map for this specific choice of £. Tt
is proper by [34] (1.1)] and taming, as we saw above. So Theorem [3.4] implies the
claim.

If ¢ is singular, let ¢: G/H — £* be given by

P(gH) = Ad*(9)(€ + )]s,

for £ € t}, such that (,i€) > 0 for all @ € R}, and ¢ € a* such that £ 4 ¢ € h* is
regular for the roots of (g%, h*). Let ®7: G/H — € be as in Lemma[411l Then &~
is a taming, proper moment map, and, by that lemma and Theorem [3.5]
indexx (\;T(G/H) ® Ly_,n ,,, ") = indexg (A, T(G/H) ® Ly_ i 1,5 %)
_ (_1)dim(M/KM)/2ﬂ_‘K.
In the first equality, we used Theorem [3.3l The claim again follows from Theo-
rem [3.4] |

Proof of Corollary 2.8 Applying Theorem 2.7 and [38, Theorem 1.1], we obtain
— (—1)dim(M/K},)/2 : K' N\
i = (—1) b (@ index(G/H){5e)o') |
SeK’
= (= 1)t/ K /2 (O index((G/H)&x)d. O
sek

It remains to prove Proposition 2.4l and to show how to handle the singular case;
see Lemma [4.11] This is done in the next section.

4. A Spin°-MOMENT MAP ON G/H

4.1. Spin®-structures on linearised homogeneous spaces. As an intermediate
step in the proof of Proposition[2.4] we will use a K-equivariant partial linearisation
of the space G/H that was introduced in [16, Subsection 4.2]. Let g = ¢ @ s be the
Cartan decomposition defined by 6. Write m = €y, @ 57, with €3, C € and s, C s.
Let Hy; := HN M. Then Hj; may be disconnected, but its Lie algebra is t;;. Let

EZ:KXHM (SM@H)
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be the quotient of K X (sp; @ n) be the action by Hjs defined by
h-(k, X +Y) = (kh~ ' Ad(h)(X +Y))
for h € Hy, k € K, X € sp7, and Y € n. Lemma 4.2 in [16] states that the map
U: F — G/H defined by
U([k,X +Y]) =kexp(X)exp(Y)H,

for k€ K, X € s);, and Y € n, is a well-defined, K-equivariant diffeomorphism.
In this sense, F is a partial linearisation of G/H.
For every X € s3; and Y € n, we have the linear isomorphism

(4.1) T[e,X+Y]E—g—)E/fM @sydn=g/h
defined by
d
U+ t, V+W) = pn [exp(tU), X + Y +t(V + W)]
t=0

forU € €,V € s)7,and W € n. Let J¥ be the K-invariant almost complex structure
on E corresponding to the complex structure .J /5 (defined in Subsection[2.2) via the
isomorphism (4.1). The almost complex structure ¥*.J on E corresponding to J via
W differs from J¥ because it corresponds to Jy/y via a different isomorphism (.I).
This is worked out in [16, Subsection 4.3], where it it also shown that U*.J and J¥
are K-equivariantly homotopic.

Lemma 4.1. We have a complez, tyr-equivariant isomorphism

nfon = @ (CO(MM'

a€Rg,al,€XF

Proof. Fix A € ¥*. Then

n=( @ )ne

QGRg,a|ﬂ:)\

For every o € Rg, we have 0g5 = g .. Since ad(() preserves g<, this implies that

JCQ(S = gg@.

g-x=( &b g%)ﬂg-

a€RgG,ala=A

Note that

Here we used the fact that o], takes values in R, so alq = @lq. So
QAEBQ—,\Z( D gg@g‘fa)ﬁg,
QGRg,a|ﬂ:)\

where every term on the right-hand side is preserved by J¢.
Let us determine the weight of tj; on g§@g®, for a € Rg. ForY € ty, X, € g5,
and X_5 € g%, we have

ad(Y)(Xo +X_5) = (o, )Xo — (0, V) X 4.
Since (o, Y) € iR, this equals
(a0, Y Xo+ X_5).

So tar acts on g§ @ g©, with weight aly,, .
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We therefore obtain a complex, t)/-equivariant isomorphism

nfen = P adan
rext

@ D Ca,

AeZt a€RgG,ala =X

= @ CO{“M'

a€ERg,alq €5

I

Here we used that the space (g§®g%,)Ng is complex one-dimensional and preserved
by JC and tar. ([l
Lemma 4.2. The group Ty acts trivially on the highest exterior power of n= ®n™.

Proof. By Lemma[4.1] the group T acts on the highest exterior power of n~ @n™
with infinitesimal weight

(4.2) > ol
a€RgG,al €T

If « € Rg satisfies o, € X7, then also @ € Rg and al, = aq € ¥*. And
alt,, = —alt,,. Hence the sum (42) consists of pairs of terms (aly,,,alt,,) that
cancel.

Lemma 4.3. As a complex representation of Tar, the space g/h decomposes as
g/h = @ (Coz\tM'
aeRg
Its highest exterior power equals Cy,n as a representation of Thy.

Proof. We have a complex, Tjs-invariant decomposition

g/b=m/tyy &n” dnt = ( &y mg) @en” @nt.

BERS,
So by definition ([2.7) of RS, the first claim follows from Lemmal4I} and the second
from Lemma [4.2] O
Consider the spinor bundle
A,sTE = E

of the Spin‘-structure defined by JF. Let L¥ . be its determinant line bundle. Let
p: E — K/H); be the natural projection.

Lemma 4.4. We have an isomorphism of complex, K -equivariant line bundles
LE. 2 p* (K xp,, Cypn).
Proof. Lemma [4.3] implies that
Ll = 1" (K X1, Copn B y),

where Y is the representation of Zj; in the highest complex exterior power of g/b.
And Zj; acts trivially on m/tps. It also acts trivially on the highest exterior power
of n= @ n™T, analogously to Lemma [£.2] O

Remark 4.5. In Lemma [4.4] the fact that Z); acts trivially on the highest exterior
power of n~ @ nt is not necessary in what follows.
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4.2. Line bundles.

Lemma 4.6. The determinant line bundle of the Spin®-structure on G/H with
spinor bundle ([2.6]) is
G Xy (CQ)\ D¢ X?\/[)

Proof. The almost complex structures J and ¥, J¥ are K-equivariantly homotopic
(see |16l proof of Lemma 4.3]). Hence the induced Spin®-structures have equivari-
antly isomorphic determinant line bundles. By Lemma [4.4] the determinant line
bundle corresponding to U, J is

U.p* (K X1, Capvr) — G/H.

One can check directly that this line bundle is K-equivariantly isomorphic to
G xg Cypm. Therefore, the determinant line bundle of the Spin®-structure in the
statement of the lemma is

Laet = G x g1 (Copnr @ CF_ v W x3) = G x (Cax B x3y). O
Lemma 4.7. Let o € it} be integral. Let ¢ € ia*, and set
Le =G xyg Cope.
Then there is a K -equivariant isomorphism of line bundles Ls = G x g C,.

Proof. The multiplication map defines a diffeomorphism

K xexp(spy) X N x A~G.
Define the map

E2:GxCope = GxC,

by

E(khna, z) = (khna, e (a)z)
for k € K, h € exp(sm), n € N, a € A, and z € Cyy¢. We claim that this is
map is H-equivariant, and that the induced map L — G x g C, is a K-equivariant
isomorphism of line bundles.

To show that = is H-equivariant, let ¢ € Th; and ag € A. Then for an element
(khna, z) € G x Cyyq¢ as above,

(tag) - (khna, z) = (khna(tao)fl, e”(t)ec(ao)z) = ((khntil)aaal, 6‘7(t)6<(a0)z).

The adjoint action by T); preserves the restricted root spaces of the system
¥ = ¥(g,a) because this action commutes with ad(a). So this action preserves
n. Furthermore, since Thy C Ky, this action also preserves s;. So if h = exp(X)
and n = exp(Y), then

khnt™' = kt ' exp(Ad(t)X) exp(Ad(t)Y) € K exp(sys)N,
Therefore,
E((khnt "aag ', e”(t)ec(ao)z) = ((khnt™")aag ™, eC(aaal)eU(t)ec(ao)z)
= (khna(tag) ™", e (t)e‘ (a)2)
= (tag) - E(khna, 2).

Since = is H-equivariant, it indeed descends to a map L — G x g C,. This map
is immediately seen to be a K-equivariant isomorphism of line bundles. ([l
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Remark 4.8. Lemmas [4.6] and [L.7] imply that the determinant line bundle of the
K-equivariant Spin“-structure with spinor bundle (2.6]) is K-equivariantly isomor-
phic to
G xpyg C2(£+C) X X?\/l — G/H,

with £ and ¢ as in Proposition 2.4l That is to say, modulo the representation s
of group Zy;, the map @ is the symplectic moment map for the action by K on the
coadjoint orbit Ad*(G)(€ 4 ¢), while the Spin“-structure with spinor bundle (2.6)
is a K-equivariant Spin®-prequantisation of this coadjoint orbit. If the infinitesimal
character y of 7 is regular, then we may take ¢ to be the component of x in a* so
that £+ ¢ = x.

4.3. Proof of Proposition [2.4L We start with a general, well-known comment
about moment maps on homogeneous spaces. For now, let G be any Lie group,
and let H < G be a possibly disconnected, closed subgroup. Let C, be a one-
dimensional unitary representation of H, with differential o € ih*. Consider the
line bundle
L, =GxygC, > G/H.

Then I'*°(L,) = (C*(G) ®C,)H. Let V C g be an H-invariant subspace such that
g=0Hd V. Extend o linearly to g by setting it equal to zero on V.
Lemma 4.9. For X € g and s € (C®(G) ® C,)H, set

(Vx195)(e) i= L_x(s)(e) — {0, X)s(e).

Here L is the left reqular representation. This extends to a well-defined G-invariant
connection on L,. The associated moment map ®°: G/H — g* is given by

O (gH) = Ad*(g)o/2i.

Proof. To see that V is well-defined, note that if s € (C*(G) ® C,) and X € b,
then Rxs = (o, X)s, with R being the right regular representation. So at e,

L_x(s)(e) — (o, X)s(e) = Rx(s)(e) — (o, X)s(e) = 0.
The moment map P satisfies
2i(®7, X)s(e) = (Lx — Vxasn)s(e).
Now note that, with respect to the identification T,y G/H = g/b,

X — 4 exp(—tX)H = —X + .
dt|,_,
Hence
(Lx = Vxayu)s(e) = (Lx — V_x4p)s(e) = (o, X)s(e).
So ®7(e) = 0/2i, and the claim about ®7 follows by G-equivariance. O

Importantly, even if H is disconnected—so the representation C, of H is not
determined by c—Lemma [4.9] still gives us a connection with the desired moment
map. This means we can apply it to the representation Coxtic X x3, of the Cartan
subgroup H.

Proof of Proposition 2.4l By Lemmas [4.6] and 4.7, we have K-equivariant iso-
morphisms of line bundles

Laet = G x5 Cox B x5 =2 G x g Coprgic) B\
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Let V be the connection of Lemma [4.9] on the line bundle on the right-hand side;
we use the same notation for the connection on Lge corresponding to V via the
above isomorphism. The moment map for the action by K on G/H associated to V
is the map ®2A %) in Lemma .9 composed with restriction to ¢. This is precisely
the map ® in Proposition [2.4] a

Remark 4.10. In the proof of Proposition 2.4] we used Lemma [4.7] to replace 2\
with 2(A+4¢). The reason for introducing the extra term in Proposition [2.4]is that
the moment map & is taming if A + i( is regular.

4.4. The singular case. If £ + ( is singular, then the moment map of Proposi-
tion[2.4lis not necessarily proper or taming. But then we can still find a proper, tam-
ing Spin“-moment map such that the associated index equals (—1)3mM/Kn)g|

Consider a general setting, where M is a complete Riemannian manifold with
an action by a compact Lie group K, and &: M — £ is the moment map for a
connection V on a line bundle (defined as in ([2.2)), and ¢: M — ¢ is a taming
map. For 7 € C>°(M)X, define the connection

V™ =V + 2it(v¥, ).
Let @7 be the associated moment map.
Lemma 4.11. For 7 large enough, the map ®7 is proper, taming, and homotopic
to ¥ as taming maps.
Proof. Let {X1,...,X,} be an orthonormal basis of ¢. Then
Uq’T =® + Tww,
where
n
- 30 30

Let m € M, and suppose that v¥ (m) 75 0. The definition of w? is independent of the
basis of £, so we may suppose that Xi,..., Xy € &, and Xg41,...,X, € £-. Since

{xXM.(m ) .., XM(m)} is a basis of the subspace T,,(K - m) C T,,M containing
v¥(m), we have

n n
MYy M My y M
w'(m) = (30 XXM ) m) = (D2 (0, XXM ) (m) £ 0.
j=1 j=d+1
So w¥ vanishes exactly at the points where v¥ vanishes.
Now note that
o7 ®
[0l = Tllw? || = [l®].
Let U be a relatively compact, K-invariant neighbourhood of the vanishing set
of v¥. Choose 7 so that, outside U, 7||w¥| > |[v®||. Then v®" does not vanish
outside U.
To show that ®7 is homotopic to v, first note that, by the previous arguments,
the vector field
to® + rw?
is nonzero outside U for all t € [0,1]. Hence ®" is homotopic to the taming map
®7 — P. And

(0%, 0%) = (rw?,0%) = 7 3 (0%, XM)?

j=1
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If 7 > 0, then this is nonnegative. This implies that &7 — ® is homotopic to ¢ (this
is elementary; see, for example, [16 Corollary 3.5]).

Finally, by adding a function 6 as in [15, Subsection 5.1] to 7, we can ensure that
the resulting moment map is proper, as well as taming, and homotopic to ¢». [

Remark 4.12. In [15] Proposition 5.1], it was shown how to replace a taming moment
map by a proper, taming moment map, without changing the corresponding indices.
(This was the last step in the proof of Lemma[d.11]) In Lemma .11l we show how
to replace any taming map by a proper, taming moment map without changing the
index. The additional step here is to replace any taming map by a taming moment
map that is homotopic to it.

5. MULTIPLICITY-FREE RESTRICTIONS

Throughout this section, K < G is a compact subgroup satisfying the condition
of Corollary 2.8l That is, the map ®x in (2.10)) is proper. In particular, what follows
is true if K is a maximal compact subgroup, as we will assume from Subsection [5.2]
onwards. We will omit the subscript K from ®x and write ® := ®x from now on.
We will also write (G/H)¢ := (G/H)? for £ € t*.

Recall that if £ € t},, defined in (2.8), is regular for the roots of (m®, t§,), then
® is simply the projection of the coadjoint orbit Ad*(G)(£ + ¢) onto £*:

(5.1) (gH) = (Ad"(9)(€+Q))le
If ¢ is singular, then ® is as in ([2.9)), with 7 being as in Lemma K111

5.1. Reduced spaces that are points. In the setting of Corollary 2.8 we obtain
multiplicities equal to 0 or 1 if the reduced space (G/H),,x)/; is a single point.
Indeed, the orbifold index on (G/H),4,x)/; then lies in {—1,0,1}. Tt takes only
these values because, up to a sign, it is the dimension of the trivial part of a
one-dimensional representation of a finite group. We can make this more explicit
using [41], expression (5.36)] for indices on reduced spaces that are points.

Let C' C t* be the open positive Weyl chamber. Set Y := ®~1(C). Set &y :=
®|y — pX. Let 6 € K have highest weight 7. Then

(G/H)(ntpxyyi = Yori = @31 (n/i)/T.
Let ty C t be the generic stabiliser of the infinitesimal action by t on Y. Let
I(Y) C t* be the affine space parallel to the annihilator of ty-, containing the image
of ®y. Let Ty < T be the subtorus with Lie algebra ty (note that this subgroup
is connected). Fix goH € ®3'(n/i), and let I' < T//Ty be its stabiliser. This is a
finite group.
Corollary 5.1.

(a) Suppose that n/i is a reqular value of ®y: Y — I(Y), and that ®~1(n/i +
pX)/K is a point. Then

L 4f T acts trivially on Cy_,_,m X x 01,
[k 2 0] = .
0 otherwise.

(b) Ifn/i is not necessarily a regular value of ®y but ®~1(n/i + pX +¢)/K is
a point for all e € I(Y) close enough to zero, then we still have

[k : 6] € {0,1}.
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Proof. First, note that for any o € t*, by construction ®~!(c + p¥) is a single
K-orbit if and only if @;1(5) is a single T-orbit.
We have
T(G/H)ly =TY @ (Y x £/t).

By the two-out-of-three lemma, we have a spinor bundle Sy, — Y such that
(5.2) (/\JT(G/H) X L}\_pM,XM ® (C—U) ‘y = Syﬂ7 ® /\CE/f.

Here the complex structure on £/t is the one defined by the positive compact roots.
Let V;, be the one-dimensional representation of I' such that, as representations
of T,

(53) (SYﬂ?)QOH - /\(CTgOHY & Vn7

for some T'-invariant complex structure on Ty Y. This V; exists since (Sy,) g, 1
and A\cTy,mY are irreducible, I'-equivariant modules over the Clifford algebra of
Ty uY; see also [41, end of Section 5.1]. Then [41] (5.36)] states that

(5.4) index((G/H) (4 picy /i) = index(Yy) = dim V.

Now by (5.2) and (5.3)),
/\JHOH (TgouG/H) ® Coasppm @ XM = Ac(TgoHG/H) QVy.

Here on the right-hand side, the complex structure on Ty g G/H is defined by the
complex structures on Ty, 7Y and €/t via the isomorphism Ty, g G/H = Ty, g Y ®t/t.
This may be a different complex structure from Jy . We conclude that V;, equals
Ca_y—pm @ xar or its dual. So the claim follows from (5.4) and Corollary 2.8 [

Remark 5.2. We have implicitly used that ®3.'(n) is connected because it is a single
T-orbit.

Example 5.3. If G = SL(2,C), then one can check that all reduced spaces are
points. This is compatible with the fact that the multiplicities of the K-types of
the principal series of SL(2,C) are 1.

We work out the example G = SL(2,R) in detail in Subsection (.2} and we
discuss the groups SU(p, 1), SO¢(p, 1), and SOy (2,2) in Subsection [5.5

Corollary [5.1] implies a criterion for multiplicity-free restrictions of general ad-
missible representations. Let m be an irreducible admissible representation of G.
By the Langlands classification, 7 is a quotient of an induced representation as
on the right-hand side of (2.4), where now v € (a®)* may be nonimaginary. Let
®: G/H — £* be the corresponding moment map as in Proposition [2.4]

Corollary 5.4. Let § € K with highest weight 1. Suppose that ®=(n+ p)/K is
a point if /i is a regular value of @y, or @~ (n + pX +¢)/K is a point for all n
small enough if n/i is a singular value of ®y. Then [r|k,0] € {0,1}.

In particular, if all reduced spaces for ® are points, then w restricts multiplicity
freely to K.

Proof. Corollary 2.8] and hence Corollary [5.1] applies to any standard represen-
tation 7; see Remark .91 So under the conditions stated, 7|k is a quotient of a
multiplicity-free representation and hence is multiplicity-free itself. |

We end this subsection with a conjecture that is a partial converse to Corol-

lary [5.1)
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Conjecture 5.5. Let H < G be a 0-stable Cartan subgroup. Let P = M AN < G
be a cuspidal parabolic subgroup corresponding to H (so that A is the noncompact
part of H). Then all tempered representations m induced from P restrict multiplicity
freely to K if and only if all reduced spaces for all maps ®: G/H — € corresponding
to such representations are points.

The “if” part of this conjecture follows from Corollary 5.1l Evidence for the “only
if” part is the following. Let § € K have highest weight n. Let H, 7w, and ® be as
in the conjecture. If the reduced space (G/H), . ,x is smooth, the Atiyah—Singer
index theorem and Theorem 2.7 imply that

n+p

. K A~
il 0] = (-aytmanrmrz [ AT 4G H) s ).
(G/H),  ,x
Here LZ;ZPK — (G/H), 4 x is induced by the determinant line bundle on G/H
from Lemma [4.6] If (G/H),,x is not a point, then the right-hand side depends

n+p
K
on ¢y (LZ:;” ). Then one expects that number to vary with 7 and d, and hence not

to equal 1 for all 7w and §.

Remark 5.6. In some other work about multiplicity-free restrictions, for exam-
ple, [23], it is assumed that G is of Hermitian type, and that the representation
7w in question is of scalar type. We do not make these assumptions in Corollar-
ies[5.1]and 5.4l In Subsection (.5l we work our examples for the groups SOg(p, 1)
and SO,(2,2) that are not of Hermitian type (in addition to the group SU(p, 1),
which is).

5.2. Example: G = SL(2,R). If G = SL(2,R) and K = SO(2), then Theorem [2.7]
implies the usual multiplicity formulas for the K-types of tempered representations
of SL(2,R). This example illustrates the essential point that indices on reduced
spaces that are points may be zero (as in Corollary [5.1)) because these indices are
orbifold indices.

5.2.1. The discrete series. Consider the holomorphic discrete series representation
D of G = SL(2,R) for n € {1,2,3,...}. Then H = T = SO(2), M = G, and
A = na/2, where a € it* is the root mapping (¥ *01) to 2i. So p@ = pM, and
& = na/2i. This element is regular, so ® is the projection of G/T = G - £ onto ¢*.

Let §; = C; be the irreducible representation of K = SO(2) with weight | € Z;
ie., C; = Cjy/e. If I < n, then by Corollary 2.11]

[D;l_ : (51] =0.

If I > n, then la/2i is a regular value of ®, and ®~!(la/2i) is a circle, acted on by
T = SO(2) by rotations with weight 2. Now ty- = {0}, s0 Ty = {I} andT' = {£]} in
Corollary 5.1} Since Zys C Tpr = T, we have Cy_,u @ xr = Cy_ v = C_1ya/2-
Hence I' acts trivially on

Ck—n—pM XM = Cn—l—l

precisely if n — [ is odd. We conclude that

(D} i 6] = 1 if I =n+ s for a positive odd integer s,
" 0 otherwise.
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In the same way, we find that, for the antiholomorphic discrete series represen-
tation D, ,

D= 5] = 1 if ] = —n — s for a positive odd integer s,
n T 0 otherwise.

See [37, Example 2.21] for a symplectic version of the computation of indices on
reduced spaces in this example.

5.2.2. Limits of discrete series. Consider the limit of discrete series representation
Dg. Then, as in the discrete series case, H = T = SO(2) and M = G. But
now A = 0, which is singular. So we have to use the taming moment map from
Lemma [411] Taking ¢(gT) = (Ad*(g)a/2i)|e, we have, for all T € C*°(G/T)X,

Dy =05 =7 (v¥, XYT).
Let ¢: G/T — [1,00] be the function such that, for all g € G,

Y(gT) = o(gT)cx/2i.
Then
PT = T<p\|(a/2i)G/T||2a/2i.

The factor ||(c/2i)¢/T||? only vanishes at the point eT. So we can choose T so that
O™ = fa/2i for a surjective, proper, K-invariant map f: G/T — [0, co] whose level
sets are circles. (In fact, we may take 7 = 1.) Then ®7 is K-invariant, proper,
taming, homotopic to v, and surjective onto the closed Weyl chamber containing
a. For all integers [ > 1, la/2i is a regular value of ®7, and (®7)~*(la/2i) is a
circle, acted on by T' = SO(2) with rotations with weight 2. So in the same way as
for the discrete series, we find that

(D o) = 1 if [ is a positive odd integer,
0700 otherwise.

And analogously,

(Do :

1 if [ is a negative odd integer,
o] = .
0 otherwise.

5.2.3. The principal series. Consider the spherical principal series representation
P;; for v > 0. We now have

n={(; 2)r)

M ={xI}, A=0, and xp = X+, the trivial representation of M. Now tp; = 0, so
¢ = 0. For any nonzero ¢ € a, the element £ + { = ¢ is regular. So ®: G/H — £* is
the projection map of the hyperbolic coadjoint orbit G/H = G-( onto ¢*. Therefore,
for all I € Z, ®~'(la/2i) is a circle, on which T = SO(2) acts by rotations with
weight 2. Also, la/2i is a regular value of ®.

In Corollary 5.1l we have

Coypm @ xmlr =Ci @ x4|r = Cy|r.
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The group I' = {£I} acts trivially on this space precisely if [ is even. Hence

1 ifli ,
[PJ L8] = if lis e?/en
0 otherwise.

For a nonspherical principal series representation P, (with v > 0), we have

XM = X_, the nontrivial representation of Z; = M. Hence
Corppv @ xmlr =C @ x_|r = Cqa]r.

Now I' = {£1} acts trivially on this space precisely if [ is odd. Hence

[P, :6

i

| {1 if 1 is odd,
l f—

0 otherwise.

5.3. Multiplicity-freeness via dimension counts. Corollary [E.1] implies a
dimension-counting criterion for the restriction of any admissible representation
to K to be multiplicity-free. Let m be an admissible representation. By the Lang-
lands classification of admissible representations and the fact that any tempered
representation is a subrepresentation of a representation induced from a discrete
series representation, 7 is a subrepresentation of a quotient of a representation of
the form

:=Ind§ 4y (13, ® € ® 1y),

for a cuspidal parabolic MAN < G, where W%XM belongs to the discrete series of
M, and v € (a®)* may be nonimaginary. Let ®: G/H — £ be the moment map
from Proposition [2.4] for this situation. We write dim(im(®)) for the dimension of
the relative interior of im(®).

Corollary 5.7. If
(5.5) dim(im(®)) = dim(G) — rank(G) — dim(7T),

then [r|x : 8] € {0,1} for all § € K.
In particular, if im(®) has nonempty interior in €* and

dim(G) < rank(G) + dim(T") + dim(K),
then [r|x : 0] € {0,1} for all§ € K.

Proof. For a map ® as in the corollary, the condition (5.5) implies that the reduced
space ®~1(0)/T is zero-dimensional for every o in the relative interior of im(®).
Since ¢ € t}; is regular, ® is a moment map in the symplectic sense, so ®~1(o)/T
is connected for such o, and hence a point. So by Corollary [B.1Ib), which applies to
representations like 7, that representation restricts multiplicity freely to K. Hence
so does . |

In Subsection[5.5] we show that admissible representations of SU(p, 1), SOq(p, 1),
and SOp(2, 2) with regular infinitesimal characters have multiplicity-free restrictions
to maximal compact subgroups. This is based on Corollary [5.7 and techniques for
computing the dimension of the image of ® developed in Subsection [5.4]
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From now on, suppose that K < G is a maximal compact subgroup. The

condition
dim(G) < rank(G) + dim(T") + dim(K)

in Corollary [5.7] holds for the following classical semisimple groups:
SL(2,C),
SO(n, C) for n < 4,
SL(2,H),
SL(2,R),
SO*(4),
SU(p,1) for all p,
SO¢(p, 1) for all p, and
SO0¢(2,2).
So for these groups, any admissible representation for which im(®) has nonempty
interior in £* has multiplicity-free restriction to a maximal compact subgroup. To
determine the dimension of the image of ®, we use the equality

dim(im(®)) = dim(K/T) + dim(im(®) N t).

5.4. Computing the dimension of im(®). The following proposition is a tool
to compute dim(im(®) N t).

Let h. C g be a maximally compact, §-stable Cartan subalgebra. Let R} C
R(g(c7 b(cc) be a choice of positive, imaginary, noncompact roots. For every a € R;!,
let E,, € g be any nonzero vector. Let E, be its complex conjugate with respect
to the real form g, and set H,, := [E,, E,].

Proposition 5.8. Let h C g be any 0-stable Cartan subalgebra. Suppose that
®: G/H — ¢ is given by
®: G/H=AA(G)(E+() —g—t
for £ €etnb and ¢ € a = hNp such that €+ ¢ € b is reqgular. Then im(P) Nt
contains the convex hull of the set
U ¢+ LiHa,
aGR:[

where for all o € R}, the set I, equals either R, [0,00) or (—o0,0].
We will use Lemmas [5.9] and [5.11] below to prove Proposition [5.8]

Lemma 5.9. Consider the map
®: G/H=AA(G)(E+() —g— 8

foréetnb and ¢ € a =HhNp, such that £+ ¢ € b is reqular. Suppose that there is
a set of roots S C R(g%,hC), and for every a € S, that there are X+, € ¢%,, such
that

Xo+X_ 4 €y,

Xo—X_, €,

N := [Xa, X_a] € a, and

(a,me) > 0.

Then im(®) Nt contains

&+ spang{(Xo — X_o);a € S}
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Proof. Fix a € R(g%,h%), and fix X4, € g§,,. Write 1, := [Xa, X_o]. One proves
by induction that, for every positive integer 7,
ad(XOé + X*Q)Qj (g + C) = 2] <Ol, f + <> <Ck, ﬂa>j7177m
ad(Xa + Xfa)szrl(f +¢) = _2j<a’€ + C><aa77a>j(Xa - X_a).

Suppose that {a,n,) > 0. Then the above equalities imply that, for all ¢t € R,

(5.6)
Ad(exp(t(Xa + X-a)))(+¢)
_ (€40 S~ L iy oy
=&+ G TS n; it 2 @)
a4 O (Xa — X_a) ; mgmzy‘ (0 1a)
=&{+¢
cosh(ty/2(a,na)) — 1 sinh(t+/2{c, No))
+ <Oz,f—|—<>< (@, 77a) Na — 20, 7) (Xa _X—a))-

Suppose that a € S, and let X1, be as in the lemma. Then, using (5.6) and the
fact that both sides of this equality lie in g (so the component of the right-hand
side in ig is zero), we find that

B(exp(t(Xo + X_o))H) = €~ Smh“;éf’ ;7(*” (Xa—X-a) et
So
E4+R(Xy—X_o) €im(p) Nt

And since ® is a moment map in the symplectic sense, its image intersected with t
is convex. (]

Example 5.10. If G = SL(2,R), £ =0, ¢ = (3 %), b = a = R¢, {(a,¢) = 2,

S = {a}, and
0 1 0 0
Xa = <0 0> ’ Xoa= <1 0) ’

then X, — X_, € t, 1, = ¢ € a, and Lemma [5.9] states that im(®) contains the
line R¢ and is therefore surjective.

Lemma 5.11. Consider the map

®: G/H=AA(G)(E+C) = g— ¢
foréetnb and ( € a =HNp, such that £+ ¢ € b is reqular. Suppose that there is
a set of roots S C R(g%,§%), and for every a € S, there are X1, € g%, such that

o Xo+X_ o €D,
o 1 = [Xo, X o] €it, and
o (a,nq) > 0.
Then im(®) Nt contains the convex hull of

U (€ +Rso( €)ma).

acsS
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Proof. As in the proof of Lemma [5.9] we find that, for all ¢t € R,

(5.7)

O(exp(t(Xa + X—a))H) = cosh(ad(t(Xa + X-a)))¢ + sinh(ad(t(Xa + X_a)))¢
(@, &)
O‘ﬂb}
_ % sinh(tv/2(a, o)) (Xa — X_a).

The left-hand side and the first term on the right hand side lie in g; hence so does
the second term on the right-hand side. But

=&+ (cosh(tv/2(v, na)) — 1)7a

P

1 .
Xo—Xeo= [N, Xo + X_a] € ig.
(o, M)

And (o, ¢) € R, so the second term on the right-hand side of (5.7) lies in igNg = {0}.
We conclude that

Plexp(t(Xo + X_o))H) =€+ <<oi)é,77£>) (cosh(tv/2(a,na)) — 1)na € t.
So
¢+ Rxo{o, §)1a C im(@) Nt
The claim again follows by convexity of im(®) N t. O

Example 5.12. If G = SL(2,R), £ = (Y1), ¢ =0, h =t = RE, (o, &) = 24,

S ={a}, and
171 — 1/ 4
Xa - 5 (—i _1) ) X,a - 5 (Z _1) )

then X, +X_, € p, no = —i€ € it, and Lemmals.11] states that im(®) contains the
half-line [1,00)¢. (In this case, we actually find that im(®) equals that half-line.)

Proof of Proposition 5.8l For every a € R}, the element H, = [Ey — Eq, Eq +
E,]/2 is imaginary, and it lies in h< and in [p©, p®] C €*. Hence H,, € it. Therefore,
applying Lemma5.11with S = R}, X, = E,, and X_,, = E,, shows that the claim
holds for h = b..

Now fix @ € R;. Consider the Cayley transform
T -

4 (Ea - Ea)))

(For the properties of Cayley transforms that we use, see, for example, [19] Sec-
tion VI.7].) Set b1 := cq(be) N g, and set
Xo i=ico(Ey),
X_o 1= —ica(Ey).

Ca 1= Ad(exp(

These elements lie in root spaces for h;. They satisfy
(1) Xo+X_o=i(Ey— Eq) €3,

(2) Xo— X_q =ica(Ey + Ey) = —iHl, € t, and
(3) [Xa» X o] = ca(Ha) = Eo + Eq € b1 Np.

Hence Lemma [5.9] implies that, with ® as in the proposition for h = by,
&+ iRH, € im(®) Nt.
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As in the first paragraph of this proof, by applying Lemma 511l with S = R} \ {«a},
we find that
| &+ LaiH, Cim(®)Nt,
a€RY\{a}

with I, equal to [0,00) or (—00,0]. If £ 4 ( is regular, then ® is a moment map
in the symplectic sense, so its image intersected with t is convex. Hence the claim
follows for fh = b;.

Continuing in this way, removing noncompact, imaginary roots until there are
none left, one proves the claim for all f-stable Cartan subalgebras. (]

5.5. Examples: SU(p,1), SOg(p,1), and SOy(2,2).

Lemma 5.13. Let G = SU(p,q). Let H < G be a 0-stable Cartan subgroup, and
let pu € b be regular. The image of the map

O: G/H2AA(G)u—g—t
has nonempty interior.

Proof. Let H. < G be the compact Cartan of diagonal elements. Then a choice of
positive imaginary noncompact roots of (g€, h%) is

RI:{ajk;l§j§p7}?+1§k§p+q},

where aj; maps the diagonal matrix with entries (¢1,...,%p4q) to t; — tx. A root
vector in g(g;jk is the matrix Ej; win a 1 in position (j,%) and zeros in the other
positions. The complex conjugation of E;j, with respect to the real form su(p, ¢) is
Ekj. And

[Ejks Erj] = hik,
where hjj, is the diagonal matrix with entry with 1 in the jth position and —1 in
the kth position, and zeros everywhere else. Together, these span ih.. So Propo-

sition [5.8] implies that im(®) Nt has nonempty interior in t so that im(®) has
nonempty interior in &. (]

Lemma 5.14. Let G = SOq(p,q), with p and q even. Let H < G be a 0-stable
Cartan subgroup, and let i € by be regular. The image of the map

®: G/H=2Ad(G)p—g— ¢t
has nonempty interior.

Proof. Write p =2r, ¢q = 2s, and | = r+s. Consider the compact Cartan subgroup
H. = SO(2)! < G. For j = 1,...,1, let h; € H. be the matrix with a block
X = (97') as the jth 2 x 2 block on the diagonal, and zeros everywhere else. For
4, k=1,...,1 with j < k, define positive roots ajik by
+ .
<ajk’ hj> =1
(o, hi) = i,

and (ajik, hm) = 0 for all other m. Then

R ={oj;1<j<rr+1<k<I}
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is a choice of positive, noncompact, imaginary roots. A root vector for a;.tk is the
matrix F_+ with a 2 x 2 block
jk

11 T
Yi_i(—i :Fl>

as the 2 x 2 block in position (j, k) and a block —Y in position (k, 5) if we divide
n X n matrices into [ x [ blocks of size 2 x 2. And

The set
{hjxthp 1 <j<rr+1<k<I}

spans h.. So Proposition [5.8 implies that im(®) Nt has nonempty interior in t so
that im(®) has nonempty interior in €. O

Lemma 5.15. Let G = SOq(p,1). Let H < G be a 0-stable Cartan subgroup, and
let i € b be reqular. The image of the map

O: G/H=2Ad(G)p—g—t
has nonempty interior.

Proof. Write p =2l or p = 2] + 1 depending on the parity of p. Set

A= { (Gt ) e r).

Consider the maximal torus 7 = SO(2)! of K = SO(p). A maximally compact
Cartan subgroup of G is H, = T if p is even, and H. = T x A if p is odd.

For j =1,...,1, let h; be the matrix whose jth 2 x 2 block on the diagonal is
(9 5h), and with all other entries zero. Consider the root a; of (g%, h<) given by
(aj, hj) =1, (aj, hg) =01if k # j, and, if p is odd, o, = 0. A root vector for «;
is the matrix

0 0
—1

E(Xj: 1 )
0 -+ 4 —1 --- 0

where the two nonzero entries in the last column are in rows 2j — 1 and 27, and the
two nonzero entries in the bottom row are in columns 2j — 1 and 2j. So «; is an

imaginary, noncompact root. The matrices [Eq;, Eo,;] = —2ihj, where j = 1,...,1,
span it. Proposition [5.8] implies that im(®) Nt has nonempty interior in t so that
im(®) has nonempty interior in &. O

Combining Corollary 5.7 and Lemmas [5.13H5.15] with the list of groups in Sub-
section [5.3] we obtain the following consequence of Theorem 2.7

Corollary 5.16. If G = SU(p,1), G = SO¢(p, 1), or G = SO¢(2,2), then any ad-
missible representation of G has multiplicity-free restriction to a mazximal compact
subgroup.
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Koornwinder [27] proved the cases G = SU(p, 1) and G = SOq(p,1). We give
a geometric explanation of this fact here, include the case G = SOg(2,2), and
also include a geometric criterion that determines which multiplicities equal 1 (see
Corollary [5.1)). Using Proposition [5.8] one can investigate the groups listed at the
start of this section in a similar way.

Note that SU(p,q) is of Hermitian type (meaning that G/K is a Hermitian
symmetric space), but SOg(p, 1) and SO¢(2,2) are not. Therefore, Corollary [5.16]
illustrates the fact that our method applies beyond the Hermitian case considered,
for example, in [23]. Furthermore, SOg(p, 1) has no discrete series for p odd, so we
find that the method yields nontrivial results for such groups as well.
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