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Abstract

Recent work has pointed out the potential existence of a tight relation between the cosmological parameter Ωm, at
fixed Ωb, and the properties of individual galaxies in state-of-the-art cosmological hydrodynamic simulations. In
this paper, we investigate whether such a relation also holds for galaxies from simulations run with a different code
that makes use of a distinct subgrid physics: Astrid. We also find that in this case, neural networks are able to infer
the value of Ωm with a ∼10% precision from the properties of individual galaxies, while accounting for
astrophysics uncertainties, as modeled in Cosmology and Astrophysics with MachinE Learning (CAMELS). This
tight relationship is present at all considered redshifts, z� 3, and the stellar mass, the stellar metallicity, and the
maximum circular velocity are among the most important galaxy properties behind the relation. In order to use this
method with real galaxies, one needs to quantify its robustness: the accuracy of the model when tested on galaxies
generated by codes different from the one used for training. We quantify the robustness of the models by testing
them on galaxies from four different codes: IllustrisTNG, SIMBA, Astrid, and Magneticum. We show that the
models perform well on a large fraction of the galaxies, but fail dramatically on a small fraction of them. Removing
these outliers significantly improves the accuracy of the models across simulation codes.

Unified Astronomy Thesaurus concepts: Cosmology (343)

1. Introduction

Inferring the values of cosmological parameters is one of the
most essential tasks in cosmology. Galaxy clustering is
commonly used to carry out this task, although other methods
(e.g., the cosmic distance ladder) can also be used to estimate
the values of some parameters.

Recently, Villaescusa-Navarro et al. (2022a) claimed that the
properties of individual galaxies could be used to infer the value of
Ωm. The authors showed that by training neural networks on
galaxy properties from individual galaxies to perform likelihood-
free inference on the values of cosmological parameters, they were
able to constrain Ωm, at fixed Ωb, with ∼10% precision. The
authors presented a potential explanation, stating that galaxy
properties exist in a low-dimensional manifold that is affected
differently by Ωm than by astrophysical processes such as
supernova and active galactic nucleus (AGN) feedback. In that
work, the authors used thousands of state-of-the-art hydrodynamic
simulations from the Cosmology and Astrophysics with MachinE
Learning (CAMELS) project (Villaescusa-Navarro et al.
2021, 2023). These included simulations performed with the
AREPO (Springel 2010) and GIZMO (Hopkins 2015)

hydrodynamic codes, implementing the subgrid galaxy formation
models of IllustrisTNG (Nelson et al. 2015) and SIMBA (Davé
et al. 2019).
In this work, we have made use of a new suite of

simulations, CAMELS-Astrid (Ni et al. 2023), run with the
MP-Gadget code using the Astrid model (Bird et al. 2022; Ni
et al. 2022), which solve the hydrodynamic equations and
implement feedback with a yet different method than the
CAMELS-IllustrisTNG and CAMELS-SIMBA simulations
discussed above. As with CAMELS-IllustrisTNG and
CAMELS-SIMBA, the CAMELS-Astrid simulations have
different values of cosmological and astrophysical parameters.
We show that neural networks can also infer the value of Ωm,

at fixed Ωb, from properties of individual galaxies of the
CAMELS-Astrid simulations with a ∼10% precision. We also
investigate what are the most important galaxy properties used
by the model to make the inference and show that our results
hold at different redshifts. We then focus our attention on the
robustness of the different models (i.e., models trained on
galaxies from different simulations). We show that the models
perform well on most galaxies and that removing outliers helps
the model to make unbiased predictions.
This paper is organized as follows. In Section 2, we describe

the data and machine-learning methods we use. Next, we
present the results of our analysis, in terms of the precision and
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accuracy of the models, in Section 3. We then conclude in
Section 4.

2. Methods

In this section, we describe the data we use and the machine-
learning methods we utilize. We also outline the metrics we
consider to quantify the accuracy and precision of the models.

2.1. Data

We train our model using galaxy properties from individual
galaxies of the CAMELS hydrodynamic simulations (Villaes-
cusa-Navarro et al. 2021, 2023). These simulations can be
classified into four different suites:

1. IllustrisTNG. Simulations run with the AREPO code
(Springel 2010) using the IllustrisTNG subgrid physics
(Weinberger et al. 2017; Pillepich et al. 2018).

2. SIMBA. Simulations run with the GIZMO code (Hop-
kins 2015) using the SIMBA subgrid physics (Davé et al.
2019).

3. Astrid. Simulations run with the MP-Gadget code (Feng
et al. 2018) using the Astrid subgrid physics (Bird et al.
2022; Ni et al. 2022).

4. Magneticum. Simulations run with the Open-Gadget code
using a similar but improved subgrid physics model
following Fabjan et al. (2011), Hirschmann et al. (2014),
Teklu et al. (2015), and Steinborn et al. (2016).

Every suite contains 1000 simulations (except Magneticum,
which contains 50 simulations), each of them with different
values of Ωm, σ8, ASN1, ASN2, AAGN1, and AAGN2, which are
varied in a Latin hypercube with the boundaries:14

W ( ) 0.1 0.5, 1m

s ( ) 0.6 1.0, 28

( ) A A0.25 , 4.0, 3SN1 AGN1

( ) A A0.5 , 2.0 . 4SN2 AGN2

The ASN and AAGN parameters control the efficiency of the
supernova and AGN feedback, and their specific definition
depends on the considered subgrid model. We refer the reader to
Villaescusa-Navarro et al. (2021) and Ni et al. (2023) for further
details on this. All simulations follow the evolution of 2563 dark
matter particles plus 2563 initial fluid elements in a periodic box of

-( )h25 Mpc1 3 from z= 127 down to z= 0. We note that in all
these simulations, the value of Ωb is fixed at 0.049.

Halos and subhalos are identified using SUBFIND (Springel
et al. 2001; Dolag et al. 2009) from all simulation snapshots. In
this work, we consider galaxies15 with stellar masses
M*� 5× 108 h−1Me. Villaescusa-Navarro et al. (2022a)
considered galaxies with smaller stellar masses (e.g., galaxies
with stellar masses M*� 2× 108 h−1Me). We note that the
mass of a baryonic fluid element in the initial conditions is
∼1.3× 107 h−1Me, so in codes where the mass of a star is
similar to its progenitor fluid element, the stellar mass threshold
would correspond to roughly 40 star particles. However, in the
case of Astrid, the masses of the star particles can be
significantly smaller, given the star formation and feedback

model used. We have checked that our conclusions do not
change if we consider galaxies with smaller stellar masses. For
each galaxy, we consider 14 properties, computed by SUBFIND:

1. Mg: the gas mass of the subhalo hosting the galaxy,
including the contribution from the circumgalactic medium.

2. MBH: the total mass of the black holes in the galaxy.
3. M*: the stellar mass of the galaxy.
4. Mt: the total mass of the subhalo hosting the galaxy.
5. Vmax: the maximum circular velocity of the subhalo

hosting the galaxy: = <( ( )V GM R Rmaxmax ).
6. σv: the mass-weighted velocity dispersion of all the

particles contained in the galaxy’s subhalo.
7. Zg: the mass-weighted gas metallicity of the galaxy.
8. Z*: the mass-weighted stellar metallicity of the galaxy.
9. SFR: the galaxy star formation rate.

10. J: the modulus of the galaxy’s subhalo spin vector.
11. V: the modulus of the galaxy’s subhalo peculiar velocity.
12. R*: the radius containing half of the galaxy’s stellar mass.
13. Rt: the radius containing half of the total mass of the

galaxy’s subhalo.
14. Rmax: the radius at which < =( )GM R R Vmax.

We train independently three different models: (1) using
IllustrisTNG galaxies; (2) using SIMBA galaxies; and (3) using
Astrid galaxies. We then test the models on galaxies from all
four suites. We note that we do not train a model on
Magneticum galaxies, as this suite only contains 50 simula-
tions; not enough to train the models.
We follow Villaescusa-Navarro et al. (2022a) and first split the

simulations into training (900 simulations), validation (50
simulations), and testing (50 simulations) sets. We then take
individual galaxies from the training and validation sets and pass
them to the neural networks during training. We do this because
we want to avoid a situation where galaxies from the same
simulation are used during training, validation, and testing. The
reason behind this is that those galaxies may be correlated, since
they belong to the same simulation, and there may be some
information leakage underneath. Using our procedure, we ensure
that the galaxies in the test set come from simulations whose
galaxies have never been seen during training.
Unless stated explicitly, we only train our models on galaxies

from a single simulation suite. However, we also investigate the
behavior of our models when trained on galaxies from two
different simulation suites (e.g., IllustrisTNG and Astrid).

2.2. Neural Networks

We train neural networks to infer the values of the
cosmological and astrophysical parameters from the above 14
properties of individual galaxies. Our models consist of a series
of fully connected layers with dropout and LeakyReLU
activation functions. The number of layers, the number of
neurons per layer, the value of the dropout, the weight decay,
and the learning rate are hyperparameters that we optimize
using Optuna (Akiba et al. 2019).
Our models take as input a vector of 14 dimensions

(representing the individual galaxy properties) and return 2N
numbers, where N is the number of parameters considered; N= 6
when inferring all parameters and N= 1 when only inferring Ωm.
For each parameter, the models predict the mean (μi) and standard
deviation (σi) of the marginal posterior for each parameter. To
achieve this, we minimize the loss function of Jeffrey & Wandelt
(2020) with the modifications described in Villaescusa-Navarro

14 In the case of the Astrid simulations, the parameter AAGN2 varies from 0.25
to 4.
15 We define a galaxy as a subhalo with at least one star particle.
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et al. (2022b). We emphasize that by construction, the output of
our models represents the posterior mean and standard deviation,
without making any assumption about the shape of the posterior.

We perform more than 100 Optuna trials16 minimizing the
value of the validation loss.

2.3. Accuracy and Precision Metrics

From the properties of a single galaxy, our models predict two
numbers for the considered parameter i: the marginal posterior
mean (μi) and the standard deviation (σi). We denote by θi the true
value of the parameter i. In order to quantify the accuracy and
precision of a given model, we make use of four different statistics:

1. The rms error (RMSE), defined as

q m= á - ñ( ) ( )RMSE . 5i i i
2

The smaller the RMSE value, the more accurate the
model is.

2. The mean relative error (ò), defined as

 s
m

= ( ). 6i
i

i

The smaller the mean relative error, the more precise the
model is.

3. The coefficient of determination (R2), defined as

q m
q q

= -
å -

å -
( )
( )

( )R 1 . 7i
i i i

i i i

2
2

2

The closer the value to 1, the more accurate the model is.
4. The reduced chi-squared (χ2), defined as

åc
q m

s
=

-

=

⎜ ⎟
⎛
⎝

⎞
⎠

( )
N

1
. 8i

i

N
i i

i

2

1

2

The value of the reduced χ2 is used to quantify the
reliability of the errors (posterior standard deviation for
us). Values close to 1 indicate that the errors are properly
quantified, while values larger/smaller than 1 show that
the errors are underestimated/overestimated.

3. Results

In this section, we first present the results obtained by training
the models on Astrid galaxies. We then study the robustness of this
and the models trained on IllustrisTNG and SIMBA galaxies.

3.1. Astrid Galaxies

Villaescusa-Navarro et al. (2022a) showed that neural networks
were able to infer the value of Ωm from individual galaxies from
either IllustrisTNG or SIMBA simulations. Here we investigate
whether this claim holds for individual galaxies generated by a
different code (MP-Gadget) that uses an independent and different
subgrid model (Astrid). We emphasize that while Arepo, Gizmo,
MP-Gadget, and Open-Gadget may share the same (or a similar)
gravity solver, the methods used to solve the hydrodynamic
simulations and to implement the subgrid physics model can be
substantially different.

We train our model on properties from individual galaxies of
the Astrid simulations at z= 0 to infer the values of all

parameters (Ωm, σ8, ASN1, ASN2, AAGN1, and AAGN2). We then
test the model on individual galaxies from Astrid simulations.17

We show the results of this test in Figure 1. Each point in the
figure represents a single random galaxy. Our model predicts
both the posterior mean and the standard deviation, which are
shown as points and error bars, respectively.
As can be seen, the model is able to infer the value of Ωm

from the properties of individual galaxies with high accuracy
and precision. Similar to Villaescusa-Navarro et al. (2022a), we
find that the model is unable to infer the values of σ8 and
AAGN1. On the other hand, our model seems to be able to infer
the values of ASN1, ASN2, and AAGN2, although with large error
bars. The accuracy and precision metrics for each parameter are
reported in the bottom right of each panel.
In the case of Ωm, the mean relative error is ∼11% and

R2= 0.842, indicating good precision and accuracy. The value
of χ2 is close to 1, showing that the error bars are accurately
estimated. We note that some parameters have a very large
value of χ2 (e.g., ASN1). This is due to a few outliers that
contribute largely. Overall, the accuracy and precision metrics
indicate that the model is well trained.
From now on, we will focus our attention on inferring the

value of Ωm and leave all other parameters aside. In order to
improve the precision and accuracy of the model, we retrain it
to predict only the posterior mean and standard deviation of
Ωm. We do this because this is usually an easier task than
inferring several parameters at the same time—a more
complicated task, prone to degeneracies and local minima.
It is interesting to visualize the average results for all

galaxies in a given simulation, rather than individual galaxies.
In this way, we are less sensitive to outliers and we can detect
biases more easily. To carry out this task, we compute

å åm m s s= =
Î Î

¯ ¯ ( )
N N

1 1
, 9i

s j s
i j i

s j s
i j, ,

where i denotes the considered parameter (e.g., Ωm) and j runs
over all Ns galaxies of a given simulation s. We show the
average results for all 50 simulations in the test set in the left
panel of Figure 2.
From the metrics, we can see that this model is indeed

slightly more accurate and precise than the one used to infer all
six properties. Overall, we see that the model is able to infer the
value of Ωm with a small bias in most of the cases. From these
results, we can already conclude that the Astrid galaxies also
exhibit a tight relationship between Ωm and their individual
properties. We emphasize that this relation, as determined by
the networks, already accounts for changes in supernova and
AGN parameters as modeled in CAMELS.

3.1.1. Redshift Dependence

We now study whether the tight relation between Ωm and the
galaxy properties holds at redshifts other than z= 0. For this, we
train our models on Astrid galaxies at redshifts 1, 2, and 3 and
compute the mean values of all the galaxies in a given simulation
according to Equation (9). We then show the results in Figure 2.
As can be seen, our models perform well at all considered

redshifts. Our results indicate a tighter relation between Ωm and
the galaxy properties at higher redshifts. This could be due to
astrophysics effects being less severe on the galaxy properties.

16 A trial represents a particular combination of the hyperparameter values.

17 We emphasize that the galaxies we use to test the model come from
simulations whose galaxies were not used to train the model.
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We note that these results are in agreement with those of
Villaescusa-Navarro et al. (2022a), who performed a similar
analysis for IllustrisTNG and SIMBA galaxies. We note that a
model trained on galaxies at a given redshift will not work if it
is tested on galaxies at a different redshift, also in agreement
with the results of Villaescusa-Navarro et al. (2022a).

3.1.2. Relevant Features

We now investigate what are the most relevant galaxy
properties used by the models to infer the value of Ωm. For this,
we follow the procedure utilized in Villaescusa-Navarro et al.
(2022a), which we briefly describe here. First, a gradient-
boosted tree regressor18 is used to predict the value of Ωm from

the 14 properties of the individual galaxies. Next, one of the
galaxy properties is removed from the input, the regressor is
retrained, and its accuracy is saved. This procedure is repeated
for all 14 properties. The set with 13 properties that achieves
the highest accuracy is kept for the next phase, and the property
outside that set is discarded. The above procedure is then
repeated by removing one property at a time, until the set only
contains one property.
The above procedure19 allows us to identify sets of variables

that carry different fractions of the information. In Figure 3, we
show the loss in the accuracy of the model as we discard the
galaxy properties. For instance, keeping all galaxy properties
but peculiar velocities and Rt has a negligible effect on the

Figure 1. We have trained a neural network to perform likelihood-free inference on the values of the cosmological (Ωm and σ8) and astrophysical (ASN1, ASN2, AAGN1,
and AAGN2) parameters using as input 14 properties of individual galaxies from the Astrid simulations at z = 0. Once the network is trained, we test it using individual
galaxies from the test set. The different panels show the posterior means (points) and standard deviations (error bars) predicted by the network versus the true values.
Every point with its error bar represents a single galaxy chosen randomly from each simulation of the test set. We find that our model is able to infer the value of Ωm

from the properties of individual galaxies with a ∼10% precision.

Figure 2. Redshift dependence: we have trained neural networks to infer the value of Ωm using the properties of individual galaxies at different redshifts, for galaxies
of the Astrid simulations. For each galaxy of each simulation of the test set, we compute the posterior mean and standard deviation for Ωm. Next, we compute the
means of those two numbers (Equation (9)) and plot them in the figure for the 50 different simulations in the test set. We show the results at redshifts 1, 2, and 3. As
can be seen, our networks can infer the value of Ωm from individual galaxies at redshifts higher than z = 0 with an accuracy similar to the one achieved by the models
at z = 0.

18 We use this method instead of neural networks, as this task would be too
computationally expensive to carry out with neural networks.

19 We note that this procedure is not meant to be optimal, and other sets of
variables may yield similar results.
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accuracy of the model. On the other hand, the set
{ }* *M M V Z M, , , ,g tmax achieves an RMSE value that is
∼30% lower than the one of the model trained on all the
galaxy properties. Adding one more variable,
{ }* *M M V Z M Z, , , , ,g t gmax , further improves the accuracy:
only ∼15% worse than using all the galaxy properties.

It is very interesting to see that three of the most relevant
galaxy properties are: (1) the stellar mass (M*); (2) the
maximum circular velocity (Vmax); and (3) the stellar metallicity
(Z*). Those variables are also among the most relevant for
galaxies in the IllustrisTNG and SIMBA models (Villaescusa-
Navarro et al. 2022a).

3.2. Robustness

It is important to investigate how well the different models
generalize; i.e., whether the networks are able to infer the value
of Ωm from galaxies of simulations run with different codes to
the ones used for training. Villaescusa-Navarro et al. (2022a)
showed that the models trained on IllustrisTNG galaxies were
not able to infer the correct value of Ωm when tested on SIMBA
galaxies (and the other way around).

We have trained three different models using z= 0 galaxies
from (1) IllustrisTNG, (2) SIMBA, and (3) Astrid simulations.
We then test the models on galaxies from all four codes:
IllustrisTNG, SIMBA, Astrid, and Magneticum. To simplify
the analysis, we compute the mean results from all galaxies
using Equation (9). We show the results in Figure 4. We
emphasize that the performance metrics shown in the different
panels represent the results of taking the average over all the
galaxies in the test set; for instance, c c= å( ) Ni

N
i

2 2 .
First, we are able to reproduce the results of Villaescusa-

Navarro et al. (2022a), as the models trained on IllustrisTNG/
SIMBA galaxies do not perform well when tested on SIMBA/
IllustrisTNG galaxies.20 On top of this, we find that those
models do not perform well when tested on galaxies from the
Astrid and Magneticum simulations. Similarly, we find that the
model trained on Astrid galaxies does not perform well when

tested on the IllustrisTNG, SIMBA, and Magneticum galaxies.
It is interesting to see that the models trained on IllustrisTNG
(Astrid) galaxies do not perform that badly when tested on the
Astrid (IllustrisTNG) galaxies, perhaps signaling similarities
between these two simulations.
We note that, from Figure 4, we can only reach conclusions

about the mean behavior of the models. Thus, there are
different possibilities that can explain our results. First, it could
be that the models fail because the galaxies from different
codes are very different; in this case, we would expect a generic
failure of the model. In other words, the networks should infer
wrong values of Ωm for all (or the majority of the) galaxies.
Second, it could be that the mean of the models is off due to the
presence of some outliers where the models fail catastrophi-
cally. In order to shed light on this, we have computed, for each
individual galaxy i in the test set, the value of its reduced chi-
squared:

c
q m

s
=

-( )
( ), 10i

i i

i

2
2

2

where θi is the value of Ωm of the galaxy, while μi and σi are the
posterior mean and standard deviation predicted by the network.
In Figure 5, we show the distribution of the χ2 values for the

individual galaxies of the test sets of the different simulations.
We find that most galaxies have low χ2 values in all cases. For
instance, 83%, 67%, 98%, and 62% of the IllustrisTNG,
SIMBA, Astrid, and Magneticum galaxies, respectively, have
χ2 values below 5 when tested on the model trained on Astrid
galaxies. However, the χ2 distribution for galaxies tested on
models different from the ones used for training display long
tails with large χ2 values; 27%, 5%, and 38% of the SIMBA,
Astrid, and Magneticum galaxies, respectively, have χ2 values
larger than 10 when tested on the model trained on
IllustrisTNG galaxies.
This indicates that the failure of the models is due to the

presence of outliers. To verify this, we have removed all
galaxies with c > 7i

2 from the test sets. We emphasize that our
models are trained using all galaxies in the considered suite
(e.g., all galaxies in the IllustrisTNG training set). We then

Figure 3. We rank order the galaxy properties for Astrid, such that the variables contributing the most to the model accuracy are on the right, while the features
contributing the least are on the left (see the text for details of the procedure used). The vertical bars indicate the accuracy (in terms of RMSE) achieved by the
considered variables, cumulatively from left to right, and the black numbers on top of them show the loss in accuracy with respect to a model trained using all
variables. For instance, a model that only uses M* achieves an RMSE of ∼0.1 and performs 176.3% worse than the model trained on all 14 properties (with an RMSE
of ∼0.04). We emphasize that this ordering was derived when training gradient boosting tree models to perform regression to the value of Ωm.

20 Note that in this case we are using a slightly different cut in stellar mass
when selecting the galaxies, so the results are similar but not identical.
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compute the mean values of all the remaining galaxies using
Equation (9) and show the results in Figure 6.

As can be seen, the performance metrics of all the models
significantly improve. In particular, the models trained on
IllustrisTNG or Astrid galaxies perform well on galaxies from
all simulations, with the exception of the Magneticum galaxies
with large values of Ωm. It is also interesting to note that although
the model trained on SIMBA galaxies exhibits low χ2 values, it is
not robust: for low values of Ωm, it systematically overpredicts the
true value. On the other hand, this model performs better on
Magneticum galaxies than the other two models.

We emphasize that removing the outliers will naturally lead
to better predictions overall, so it is not surprising that the
models become more robust when using this method. On the
other hand, it is important to note that only a relatively small
fraction of the galaxies behave as outliers. For instance, for the
model trained on Astrid galaxies, we find that only 11%, 26%,
<1%, and 30% of the IllustrisTNG, SIMBA, Astrid, and
Magneticum galaxies, respectively, have c  7i

2 .
Overall, the model trained on Astrid galaxies seems to be the

one with the best generalization properties once the outliers
have been removed. The fact that it fails for Magneticum

Figure 4. Robustness test. We test models trained on individual galaxies from IllustrisTNG (left column), SIMBA (middle column), and Astrid (right column) on
galaxies from the IllustrisTNG (first row), SIMBA (second row), Astrid (third row), and Magneticum (fourth row) suites. Each point represents the average result of all
the galaxies in that simulation (see Equation (9)). We find that none of the models are robust. On the other hand, the model trained on the Astrid galaxies performs
relatively well when tested on the IllustrisTNG and SIMBA galaxies.
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Figure 5. We have trained three different models using IllustrisTNG (top), SIMBA (middle), and Astrid (bottom) galaxies at z = 0. We test each model on galaxies
from the IllustrisTNG, SIMBA, Astrid, and Magneticum simulations. For each galaxy i, we compute c q m s= -( )i i i i

2 2 2. The different lines show the distribution of
χ2 in the different setups. As can be seen, the χ2 distribution changes if the simulation is tested on galaxies from a different code than the one used for training. On the
other hand, most of the galaxies have low χ2 values. The numbers in the subpanels indicate the fractions of galaxies with values of χ2 smaller than the indicated
threshold.
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galaxies with large values of Ωm may be due to intrinsic
differences between the Magneticum simulations and the other
models (see, e.g., N. S. M. de Santi et al. 2023, in preparation).
We have checked that more aggressive cuts in the ci

2 lead to
less unbiased predictions, as expected (see Appendix A).
Similar conclusions can be reached for SIMBA galaxies: by
applying more aggressive cuts in the χ2, the models become
more and more robust across simulations. On the other hand,

we also know that Astrid galaxies exhibit the most diverse set
of properties (Ni et al. 2023). Thus, it is perhaps expected that
they should perform best when tested on galaxies from other
simulations.
These results indicate that we could develop robust models

simply by knowing their range of validity; in other words, by
not using them in cases where they will not perform well. A
natural question arises: how do we identify model outliers

Figure 6. The same as Figure 4, but removing all galaxies whose individual χ2 values are higher than 7. As can be seen, the models trained on the Astrid and
IllustrisTNG galaxies are very robust (with the exception of the Magneticum galaxies with Ωm  0.3), while the model trained on the SIMBA galaxies is not.
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a priori? In other words, if we are not able to compute the χ2 of
a galaxy (e.g., with a real galaxy, we do not know the true
value of Ωm), how can we flag it as an outlier? While we do not
provide a rigorous answer to this question in this paper, we
have investigated the distribution of the galaxy properties for
these outliers. We find evidence suggesting that those outliers
correspond to galaxies whose properties are far away from the
distribution of the galaxies used for training. We provide
details of this test in Appendix B. These results indicate that the
outliers of the model may simply correspond to outliers in the
distribution.

We conclude this section by noting that training models on
galaxies from two different codes does not seem to help in
improving the robustness of the model. This was one of the
hypotheses suggested by Villaescusa-Navarro et al. (2022a) for
improving the generalization capabilities of the models. We
provide further details of this in Appendix C.

4. Conclusions

We now summarize the main takeaways from this work:

1. Villaescusa-Navarro et al. (2022a) claimed that it is
possible to infer the value of Ωm, at fixed Ωb, from the
properties of individual simulated galaxies. They showed
that their models were able to perform that task using
galaxies generated by IllustrisTNG and SIMBA simula-
tions. In this work, we have shown that it is also possible
to infer Ωm, at fixed Ωb, with a ∼10% precision from the
properties of individual galaxies generated by Astrid
simulations, which employ a different method to solve
the hydrodynamic equations and utilize a completely
different subgrid model than the IllustrisTNG and
SIMBA simulations.

2. The properties of the Astrid galaxies seem to be more
sensitive to the values of the astrophysical parameters
than the IllustrisTNG and SIMBA galaxies. Because of
this, our models are able to infer the values of ASN2 and
AAGN2 (although with large error bars); this was not
possible with the IllustrisTNG and SIMBA galaxies.

3. The tight relation between Ωm and the properties of
individual Astrid galaxies is present at all redshifts
considered in this work: z= 0, 1, 2, and 3. Models trained
at higher redshifts are able to infer Ωm slightly more
accurately.

4. The five most important properties used by the model to
infer Ωm from Astrid galaxies are{ }* *M M V Z M, , , ,g tmax .
By using only these properties, our models are able to
infer Ωm with an accuracy that is only 30% worst than
when using all 14 galaxy properties. Interestingly, the
stellar mass, the maximum circular velocity, and the
stellar metallicity are the top properties for the models
trained on IllustrisTNG, SIMBA, or Astrid simulations.

5. The model trained on Astrid galaxies is not robust, and it
fails when tested on IllustrisTNG, SIMBA, and Magne-
ticum galaxies. The models trained on IllustrisTNG and
SIMBA galaxies also perform badly when tested on the
Astrid and Magneticum galaxies.

6. An important factor behind the lack of robustness of our
models is the presence of outliers. As expected, removing
those outliers significantly improves the robustness of the
models. We note that the fraction of outliers is relatively
small. For instance, for the model trained on Astrid

galaxies, only 11%, 26%, <1%, and 30% of the
IllustrisTNG, SIMBA, Astrid, and Magneticum galaxies,
respectively, have χ2� 7.

7. We note that all models exhibit a bias when tested on
Magneticum galaxies with Ωm 0.3; even after applying
the c > 7i

2 cut. This bias can be due to the fact that those
simulations exhibit systematic differences with respect to
other models (N. S. M. de Santi et al. 2023, in
preparation) and therefore may require a more aggressive
cut. We have checked that more aggressive cuts improve
the performance of the model.

8. Our results indicate that model outliers (defined as
galaxies with c  7i

2 ) tend to correspond to galaxies
with properties either outside or in the tails of the galaxy
distribution (see Appendix B).

9. Training on galaxies from two different simulations (e.g.,
IllustrisTNG and SIMBA) does not make the model
robust and it still fails when it is tested on a third
simulation.

It is important to emphasize that we identify outliers as
galaxies having large χ2 values (c  7i

2 ). Removing these
outliers will naturally decrease the mean χ2 value of the whole
population, so it is not surprising that our models become more
robust after performing this task. The important thing to note is
that those outliers only represent a relatively small fraction of
the galaxies.
Identifying outliers as galaxies with large ci

2 values can only
be done if the true value of Ωm is known. Thus, this method
cannot be used with real galaxies. On the other hand, we have
some hints that outliers tend to correspond to galaxies whose
properties reside on the outskirts of the distribution used for
training (see Appendix B). Therefore, it may be possible to
identify outliers by finding galaxies whose properties are far
away from the manifold that contains galaxy properties. Being
able to identify and discard outliers will improve the robustness
of the model, as we have shown in this paper. This opens the
door to being able to apply our method to real data if the
galaxies we consider are not outliers with respect to those we
train the models on. We will investigate this avenue in detail in
future work.
Finally, we emphasize that a model that is able to infer the

value of Ωm from galaxies of simulations run with three
different codes is not guaranteed to perform well on
simulations from a new simulation. This is clearly illustrated
with the Magneticum galaxies; even after removing the
outliers, the model trained on Astrid galaxies does not perform
well on the Magneticum galaxies. In this case, we may need to
be even more aggressive in the way we define outliers to
improve the robustness of the models. It is thus important to
test the models on galaxies from as many diverse simulations as
possible.
Overall, in this work, we have shown that galaxies from

three different types of simulations (run with different codes
and employing different subgrid physics models) exhibit a tight
relationship between Ωm and their individual internal proper-
ties. This relation is not affected by astrophysics (at least not in
the way we model them in CAMELS), since our simulations
vary the astrophysical parameters controlling the efficiency of
supernova and AGN feedback. While our models are not robust
yet, in this work we have shown that identifying and removing
outliers seems a promising way of addressing this issue. This
method may also make the models robust to effects from
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supersample covariance and changes in astrophysics and
cosmological parameters not covered in CAMELS.
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Appendix A
χ2 Cut

In Figure 6, we saw that all models failed when tested on
Magneticum galaxies with Ωm 0.3, even after removing the
galaxies with c  7i

2 . We suggested that more aggressive cuts
could improve the robustness of the model. In order to verify that,
we have tested the model trained on Astrid galaxies on
Magneticum galaxies, after removing galaxies with ci

2 greater
than 3, 5, and 7. We show the results in Figure 7. As expected, the
model becomes more robust, the more aggressive our cuts are. We
reach similar conclusions in other scenarios, e.g., training on
SIMBA galaxies and testing on IllustrisTNG and Astrid galaxies.

Figure 7. We have tested the model trained on Astrid galaxies on Magneticum galaxies after removing galaxies with c  3i
2 (left), c  5i

2 (middle), and c  7i
2

(right). As expected, the more aggressive we are in removing outliers, the better the model works.

21 https://xgboost.readthedocs.io
22 https://www.astroreca.org/en
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Appendix B
Outliers

Here we study whether the model outliers, defined as
galaxies with c  7i

2 , correspond to outliers in the galaxy
properties. In other words, whether the outliers represent
galaxies whose properties are on the tails (or outside) of the
distribution. For this, we first consider all the galaxies in the
Astrid training set. Next, for each galaxy, we take its stellar
mass, gas mass, maximum circular velocity, and stellar
metallicity (the four most important properties, according to
Figure 3). We then project these properties into 2D maps and

show their distribution in Figures 8–11 with hexagons. The
color of a hexagon indicates how many galaxies are in that
region, as indicated by the color bar.
We then test the model, trained on Astrid galaxies, on

galaxies from the IllustrisTNG, SIMBA, Astrid, and Magne-
ticum test sets. For each galaxy, we compute the values of the
ci
2. We then select the ten galaxies with the highest χ2 value for

each suite. Finally, we project the properties of these galaxies
into the 2D plots. We show the results in Figures 8–11 with
colored points. The sizes of the points indicate their χ2 values.
In the case of IllustrisTNG, SIMBA, and Magneticum galaxies,

Figure 8. For each galaxy in the training set of the Astrid suite, we have considered four properties: (1) stellar mass, M*; (2) gas mass; Mg, (3) maximum circular
velocity, Vmax; and (4) stellar metallicity, M*. The different panels show the 2D distributions of these properties with hexagons. The color of a hexagon indicates the
number of galaxies in that region of parameter space (see the color bar). We then test our model, trained on Astrid galaxies, on IllustrisTNG galaxies. For each of those
galaxies, we compute their ci

2 values and select the 10 galaxies with the highest values. The ci
2 of these galaxies ranges from 40 to 144. We then project these galaxies

into the different 2D properties. The colors of the points are used to match the galaxies across panels, and their sizes indicate the χ2 values: larger points represent
higher values. As can be seen, these galaxies tend to reside in regions in parameter space with very low density in one or several dimensions. This indicates that these
outliers tend to correspond to galaxies whose properties are on the tails (or outside) of the Astrid distribution.

Figure 9. The same as Figure 8, but testing the model on SIMBA galaxies. The ci
2 of these galaxies range from 252 to 531.
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it is clear that those galaxies are far away from the main
distribution of Astrid galaxies (sometimes mostly along one or
two directions). In the case of Astrid, the galaxies are instead
located within the distribution, with some of them touching the
tails. This is reflected in their smaller χ2 values (see the
captions to Figures 8–11).

To investigate whether the distribution of galaxies with large ci
2

values is different from the ones with smaller values, we have
repeated the above exercise with galaxies randomly taken from the
different test sets. We find that a larger fraction of galaxies occupy
regions in parameter space more densely covered by the Astrid
galaxies. However, a random sampling of the IllustrisTNG,
SIMBA, and Magneticum galaxies also selects galaxies that are
located on the tails of the Astrid distribution. This is expected, as
the fractions of galaxies with c  4i

2 can be 22%, 38%, and 43%

in the case of IllustrisTNG, SIMBA, and Magneticum,
respectively.
While this is not a rigorous analysis, our results indicate that the

model outliers represent galaxies whose properties are located in
the tails of the distribution. This fact can be exploited to increase
the robustness of the models. In future work, we plan to make use
of more sophisticated machine-learning tools, like normalizing
flows, to address this question in a more rigorous manner.

Appendix C
Robustness with Two Suites

One of the reasons behind the lack of robustness of our models
may be that galaxies from the different suites are just too different
and their properties exist in different regions. Training models on
galaxies from two (or more) suites may improve the robustness of
the model, by forcing it to learn common features across models.

Figure 10. The same as Figure 8, but testing the model on Astrid galaxies. The ci
2 of these galaxies ranges from 24 to 49.

Figure 11. The same as Figure 8, but testing the model on Magneticum galaxies. The ci
2 of these galaxies ranges from 111 to 180.
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On the other hand, training on such a configuration may make the
model first classify the galaxy (e.g., recognizing it is a SIMBA
galaxy) before performing the usual task. If so, the model will not
generalize well.

In order to test this, we have trained models using galaxies
from two suites, e.g., Illustris and SIMBA galaxies. We then
test the model on galaxies from all the different suites. We
show the results in Figure 12. We find that models trained on
galaxies from two suites work well when tested on galaxies
from those suites, but fail when tested on a third suite. This
indicates that we cannot build robust models by training
networks on galaxies from different simulations. Given the fact
that the number of different subgrid physics models is really
small, we believe this statement may hold in general.
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