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2Center for Computational Astrophysics, Flatiron Institute,
162 5th Avenue, New York, New York 10010, USA

3Department of Astrophysical Sciences, Princeton University,
Peyton Hall, Princeton, New Jersey 08544, USA

4Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA
5Department of Physics, University of Connecticut,

196 Auditorium Road, U-3046, Storrs, Connecticut 06269-3046, USA
6Center for Astrophysics—Harvard and Smithsonian, 60 Garden St, Cambridge,

Massachusetts 02138, USA
7Dipartimento di Fisica e Astronomia “Augusto Righi,” Università di Bologna,
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We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies
derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic
simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of
the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while
accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with
estimates from other traditional methods, within our derived posterior standard deviation.

DOI: 10.1103/PhysRevD.107.103003

I. INTRODUCTION

The ΛCDM model describes how nonlinear gravitational
evolution amplifies the small dark matter perturbations after
inflation creating larger and deeper gravitational potential
wells where gas can collapse, cool down, and form stars and
galaxies [1]. The observed rotation curves of galaxies
indicate the existence of an additional mass beyond the
one that can be accounted for from luminous matter,
suggesting that galaxies are embedded in larger objects
called halos [2–4]. Determining the mass of the halo hosting
our galaxy or that of our neighbors would provide us with a
better understanding of the dark matter-baryon relation [5].
Furthermore, knowing the total mass of our galaxy and its
companions will help us to determine their fate [6,7].
In [8] we developed a new machine learning method

that uses graph neural networks (GNNs) to perform

likelihood-free inference of halo masses from the positions,
velocities, and internal properties of the galaxies they host.
Our model does not make any assumption about the state of
the system, and since it was trained on galaxies from
simulations of the Cosmology and Astrophysics with
MachinE Learning Simulations (CAMELS) project [9],
automatically marginalizes over the cosmological and
astrophysical uncertainties as modeled in CAMELS. We
also showed that the model predictions are robust, i.e., the
outcome weakly depends on the particular type of simu-
lation used to train the GNN. In this work we use those
networks to infer the individual masses of the halos hosting
the Milky Way (MW) and Andromeda (M31) galaxies,
being, to our knowledge, the first time that artificial
intelligence is applied to this task.1

*pablo.villanueva.domingo@gmail.com
†fvillaescusa@flatironinstitute.org

1Note, however, that the joint mass of the MWþM31
system has been previously inferred using machine learning
methods [10].
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II. MODEL

Our model works as follows. Given a halo, we first select
all the galaxies belonging to it. Next, we create a math-
ematical graph, where each of the halo galaxies (including
both central and satellites) are considered as nodes that are
connected by edges depending on their relative distances.
The nodes can have several properties associated with
them, such as positions, velocities, and stellar masses of the
galaxies they represent.
GNNs are deep learning architectures appropriate to deal

with irregular data, like the graphs constructed above
[11–13]. They exhibit many advantages over traditional
convolutional neural networks (CNNs), and given the spar-
sity, structureandirregularityof thedataweareworkingwith,
GNNs aremore suited for this problem. They employ the so-
called message passing scheme, where the node features of
neighbors are aggregated to infer global quantities of the
graph. In thatway,GNNsexploit neighborhood relations and
locality. These models are by construction permutation
invariant, and we also perform data augmentation to enforce
the network to be rotationally invariant. The GNNs are
trained to perform likelihood-free inference of the halomass,
in order to output the posterior mean and standard deviation
without making any assumption on the form of the posterior
distribution [14]. We use M200c, the mass within a virial
radius with a density 200 times the critical density, as the
definition of halo mass. We refer the reader to [8] for further
details on the architecture and training procedure.
We train the networks on halos/galaxies from the

CAMELS simulations [9,15,16], containing two different
simulation suites that were run with two distinct codes
employing different subgrid physics models: (i) AREPO2

[17] and the IllustrisTNG model [18–20], and (ii) GIZMO3

[21] and the SIMBA model [22]. These models differ in
their treatment of astrophysical processes such as super-
nova and active galactic nuclei (AGN) feedback or black
hole growth. Each suite (IllustrisTNG and SIMBA) con-
tains 1000 simulations, each of them having different
values of two cosmological parameters (Ωm and σ8) and
four astrophysical parameters controlling the efficiency of
feedback from supernovae and AGNs.4 The halos and
subhalos have been identified with the FOFþ SUBFIND
algorithm [23]. In the simulations, galaxies are defined as
subhalos that contain more than 10 star particles. In this
paper we only consider galaxy properties that can be
accessed via observations5: (i) positions, (ii) modulus of

the velocity v, and (iii) stellar mass of each galaxy M�.
Positions and velocities of galaxies are defined relative
to the rest frame of the central galaxy, about its origin. In
this work we have trained four different networks: (1) using
IllustrisTNG galaxies including velocities, (2) using
IllustrisTNG galaxies without velocities, (3) using SIMBA
galaxies including velocities, and (4) using SIMBA galaxies
without velocities. We note that since the networks are
trained employing galaxies having different cosmological
and astrophysical models, the network learns to marginalize
over these. We emphasize that in this setup we are consid-
ering all CAMELSmodels equally likely. In other words, we
are assuming a flat prior on the value of the cosmological and
astrophysical parameters.

III. DATA

With the networks trained on simulated galaxies we apply
them to real data. The inputs to the model are the positions,
velocities, and stellar masses of the galaxies belonging to the
halos hosting the MWand M31 galaxies. The list of known
satellite galaxies of the MW has grown during the last years
up to several dozens thanks to observations by DES [24,25]
and SDSS [26]. The PAndAS survey has also extended the
number of M31 satellites above 30 [27].6 When building our
graphs we only consider galaxies with stellar masses above
∼108 h−1M⊙, since those are the galaxies present in the
CAMELS simulations and therefore the ones used to train
the GNNs.
The MW graph contains thus the Large and Small

Magellanic Clouds (LMC and SMC), together with the
Milky Way (MW) itself. The remaining dwarf satellites are
much less massive [30]. Stellar masses are extracted from
[31,32], while velocities for the Magellanic clouds are
computed from radial velocities and proper motions from
[33–37]. Positions in the galactic coordinate frame have
been transformed to Cartesian galactocentric frame making
use of astropy7 [38,39].
TheAndromeda graph containsM31,M33 (also known as

the Triangulum galaxy),M32 (also known as LeGentil), and
M110 (also known as NGC 205). Note that the membership
of M33 to the M31 halo is still under discussion, but the
general consensus is that it is a satellite [40–42]. We take the
positions and stellar masses of Andromeda and its satellites
from [28]. The galactocentric velocities forM31 andM33 are
extracted from [43], using  v3D;M31 ¼ ð34;−123;−19Þ km=s
from their DR2þ HST weighted average. Note, however,
that there is not complete agreement about the tangential
velocity of M31, which strongly relies on the specific
approach followed [40,43,44]. 3D velocities for M32 and
M110 have not been derived in the literature, since their
propermotions are difficult tomeasure, given their proximity

2https://arepo-code.org/.
3http://www.tapir.caltech.edu/ phopkins/Site/GIZMO.html.
4This corresponds to the CAMELS LH set [8,9].
5We note that the models in [8] also include the stellar half-

mass radius as a galactic feature. However, since it may be
difficult to estimate it observationally for some satellites, we do
not include it in our analysis. Excluding this feature does not
dramatically decrease the accuracy, presenting mean relative
errors (in the logarithm of the mass) between ∼1%–2%.

6See Refs. [28,29] for comprehensive compilations of the MW
and M31 satellite galaxy data.

7https://www.astropy.org.
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to M31; only radial velocities have been estimated for these
galaxies. Given that minor variations in the velocity of these
small satellites are not expected to have a significant impact
on the results, since only the modulus of the relative velocity
is required rather than specific 3Dvalues, and as long as other
satellites also present large uncertainties in their velocities,
we set their velocities to their radial component in the M31
framemultiplied by a factor of

ffiffiffi

3
p

. We have verified that the
precise value of the velocities of M32 and M110 does not
have a major impact on the determination of the M31 mass.
Table I presents a summary of the features and sources
considered for each halo.Note that we treat theMWandM31
datasets separately, i.e., inferring masses for each halo
individually.

IV. RESULTS

Several distinct methods have been used to infer the mass
of the MW halo: (i) from Local Group dynamics [47–51],
(ii) modelling stellar tidal streams [52,53], (iii) rotation
curve data [54–58], (iv) the escape speed of the galaxy
[59–61], (v) properties and dynamics of satellite galaxies
[41,62–69], and (vi) halo globular cluster kinematics
[70,71]. See, e.g., [56,72], for recent comprehensive
compilations of estimates of the MW mass using different
approaches. Some of these methods have also been devoted
to estimate the mass of the Andromeda halo, such as
(i) from the Local Group dynamics [48–51], (ii) stellar
streams [73], (iii) rotation curve data [54], (iv) the escape
velocity of planetary nebulae [74], (v) satellite phenom-
enology [41,75–78], (vi) globular clusters [79], and (vii) the
distribution of its stellar mass [80]. Other works have
inferred instead the sum of the MW and M31 total masses
[10,40,81–83]. The colored points in Fig. 1 show the
constraints derived for the MW (left) and M31 (right) halos.
The black points of Fig. 1 show instead the bounds

derived for the MW and M31 halo masses from the four
GNNs mentioned using the two training simulation suites
and whether they incorporate peculiar velocities as features.
Table II summarizes these results. As can be seen, the

predictions from models employing only positions and
stellar mass (shown as black ♠ points) are generally in
good agreement with most of the previous literature, within
the confidence limits. The estimated uncertainties are
slightly larger than those from other traditional techniques,
mainly due to the few features considered and given that the
GNNs have been trained on simulations varying cosmo-
logical and astrophysical parameters. Predictions of the
M31 halo mass taking into account also velocities (shown
as black ♣ points in the right panel of Fig. 1) are also
consistent with standard estimations, but show smaller
uncertainties, since the model is more precise when
employing an additional feature. It is worth it to highlight
that results from models trained with different simulation
suites, IllustrisTNG and SIMBA, are compatible in both the
central values and the confidence region, illustrating the
robustness of the method.
However, we find that the predictions for the MW

employing a GNN where galaxy velocities are included
(shown as black♣ points in the left panel of Fig. 1) lead to a
larger halo mass. While these networks are more accurate,
these predictions are in worse agreement with most of the
literature estimates (although still consistent with some
estimates from satellite and Local Group dynamics). We
believe this result can be attributed to the fact that the
velocity of the LMC is relatively large. To see this, we show
in Fig. 2 the velocities versus stellar masses of galaxies
within MW-like halos (with total masses between
0.8 × 1012 and 1.5 × 1012M⊙) from both CAMELS suites:
IllustrisTNG and SIMBA. Local Group satellite galaxies
considered are also shown. It can be noted that the LMC
presents a relatively large velocity compared to most
CAMELS satellites of the same stellar mass. We believe
that this large value of the most massive satellite would lead
the GNN to predict a larger value of the halo mass. This fact
is also consistent with other works in the literature employ-
ing velocities to infer the MWmass. For instance, the LMC
velocity suggests a MW mass estimate larger than usual
[41,84]. It has been argued that this large velocity could
be due to the fact that the LMC is on its first passage about

TABLE I. We use graph neural networks (GNNs) to infer the masses of the halos hosting the Milky Way (MW)
and the Andromeda (M31) galaxies. This table shows the galaxies taken into account and their properties for both
cases. The input data comprise the position in Cartesian galactocentric coordinates, the modulus of the velocity in
the central galaxy rest frame (either MW or M31), and the stellar mass of each galaxy. Velocities marked with an
asterisk are estimated by multiplying their radial components by

ffiffiffi

3
p

.

Halo Galaxy Position (kpc) Velocity (km=s) Stellar mass ðM⊙Þ References

MW MW (0,0,0) 0.0 5 × 1010 [31]
LMC ð−0.6;−41.3;−27.1Þ 322.1 2.7 × 109 [32–35]
SMC ð15.8;−37.3;−43.3Þ 237.4 3.1 × 108 [32,35–37]

M31 M31 ð−386.0; 622.7;−287.3Þ 0.0 1.0 × 1011 [28,43,45,46]
M33 ð−485.9; 500.6;−419.0Þ 257.6 2.9 × 109 [28,43]
M110 ð−401.4; 661.0;−295.6Þ 116.1* 3.3 × 108 [28]
M32 ð−395.5; 638.4;−300.6Þ 38.1* 3.2 × 108 [28]
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the MW [85]. Moreover, the velocities of LMC and SMC-
like satellites are found to be larger when the Local Group
environment is taken into account [63]. This goes along
with the fact pointed out in previous works that the MW
may behave as a somewhat unusual galaxy for some
aspects, e.g., regarding its satellite population [86] or its
luminosity and rotational velocity relation [87,88].
It is worth examining the robustness of the GNN

predictions. Given that the networks have been trained
applying random rotations to the galaxies in the halos, it is
expected that the inference would be rotationally invariant.
By performing 50 arbitrary rotations of the MW and M31
graphs, we have verified that our results are stable to ≲0.05
times the mean values. This shows that, effectively,
the GNN outputs are robust under these transformations.

On the other hand, it is pertinent to check how sensitive the
outputs are to the number of satellites considered. The MW
and M31 predictions can increase by up to ∼15% when
the smallest satellites, the SMC and M32, respectively, are
removed. If M110 is also removed from the M31 group,

FIG. 1. The colored points with error bars show constraints on the mass (M200c) of the halo hosting the Milky Way (left) and the
Andromeda (right) galaxies using different methods. The black points with error bars display instead the halo masses derived from graph
neural network models that are trained from CAMELS simulations with and without velocities of the galaxies. Shaded regions
correspond to the uncertainty of the GNN predictions.

TABLE II. Constraints on the masses of the MWandM31 halos
from models trained in IllustrisTNG and SIMBA simulations,
either including or excluding velocities to train the models.

Mass ð1012M⊙Þ
IllustrisTNG SIMBA

Halo w/o v w/ v w/o v w/ v

MW 1.0þ0.9
−0.5 2.6þ1.2

−0.8 1.3þ0.9
−0.6 2.3þ0.9

−0.7
M31 2.3þ2.4

−1.2 2.3þ1.2
−0.8 2.5þ1.8

−1.0 2.2þ1.3
−0.8

FIG. 2. Velocity v versus stellar mass M� for satellite galaxies
within MW-like halos, with total mass between 0.8 × 1012 and
1.5 × 1012M⊙, in the CAMELS simulations. Scatter points are
extracted from the IllustrisTNG and SIMBA simulations suites.
Satellite galaxies from the MWand M31 systems are also shown.
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there can be an additional ∼15% increase if the velocities
are employed, or a ∼5% decrease when only positions and
stellar masses are considered. This change of tendency if
velocities are employed or not reveals that the GNN may
rely more on some satellites than others depending on the
features considered, as shown in [8]. We cannot push this
further, as the network is trained on halos with at least one
satellite, so it would not be reliable to apply it to only the
central galaxy.
Analogously, we have also checked the sensitivity of the

results when the next satellites in stellar mass are also taken
into account. The following satellites in order of decreasing
stellarmass are the SagittariusDwarf SpheroidalGalaxy (Sgr
dSph) and NGC 147 for the MW and M31, respectively,
having both stellar masses just below the CAMELS galaxy
mass resolution, around ∼108M⊙ [89,90]. Considering Sgr
dSph for the MW halo can lead to a ∼15% increase, while
NGC 147 enhances the M31 mass up to a ∼30%. Note,
however, that these predictions are not reliable and are only
useful for testingpurposes, since theGNNshave been trained
only with galaxies above the CAMELSmass resolution. Sgr
dSph andNGC147 stellar mass values are not sampled in the
training dataset and thus there is noguarantee that theGNN is
able to extrapolate there.Anyway, all these tests show that the
presence of satellite galaxies is highly relevant and has a non-
negligible impact on the final results.
Finally, so far we have neglected the effect of the

uncertainties of observational data in the error of the mass
constraint. To properly evaluate their impact, we would
need to compute the covariance between the different data.
Here we limit to provide a simple estimate on the effect of
observable uncertainties. We focus on the models trained
with only positions and stellar masses (i.e., without con-
sidering velocities). Furthermore, we consider the error of
the stellar mass of the central galaxy as the only source
of uncertainty, as it is the most prominent expected source of
error and the most relevant feature within this configuration
[8]. The values considered areM�;MW ¼ ð5� 1Þ × 1010M⊙
for theMW[31] andM�;31 ¼ ð10.3þ2.3

−1.7Þ × 1010 M⊙ forM31
[45]. We have randomly sampled 100 values within the
confidence range, and used these stellar masses to query the
GNN and compute the standard deviation. Using the model
trained with SIMBA simulations, the results areMMW;200c ¼
ð1.3� 0.1Þ × 1012M⊙ for the MWandMM31;200c ¼ ð2.5�
0.3Þ × 1012 M⊙ for M31, obtaining similar errors with the
model trained in IllustrisTNG. Note that these reported errors
only include the observational uncertainty from the stellar
mass of the central galaxy, and not those from the likelihood-
free inference of the GNN (shown in Table II), which are
always notably larger. These results illustrate that the main
source of uncertainty comes from the likelihood-free infer-
ence approach to train the GNN rather than from observa-
tional sources. Note, however, that future applications of this
method would require a proper evaluation of observable
uncertainties, in order to guarantee reliable results.

V. DISCUSSION

We have applied a novel machine learning model trained
on hydrodynamic simulations to predict the masses of the
halos hosting the MW and M31 galaxies, obtaining results
in good agreement with standard observational methods
from rotation curves, Local Group dynamics, kinematic
tracers, and others techniques. To our knowledge, these are
the first constraints on the individual MW and M31 halo
masses from artificial intelligence. The predicted masses do
not make any assumptions about the underlying cosmology
and astrophysical scenario, since the models have been
trained to marginalize over a broad parameter space. This
achievement illustrates the suitability of these models to be
applied in other galactic systems. Furthermore, models
trained with different simulation suites provide highly
compatible results, indicating the robustness of the method.
Our GNN-based method relies on few observational
galactic properties, including the 3D positions, velocities,
and stellar masses. When velocities are considered as
features, predictions for the MW are slightly larger than
those using only positions and stellar mass. This behavior
is, however, expected, given the large velocity of LMCwith
respect to their counterparts in simulations.
Our method presents some caveats which are worth

noting. First, we only provided a simple estimate of the
impact of observational errors in the galaxy properties
belonging to the halos containing MW and M31. Properly
accounting for these statistical uncertainties via the covari-
ance matrix would increase the expected confidence level
of our predictions. Furthermore, it is not clear which
observational features would be more relevant to infer
halo masses. Interpretability is one of the main limitations
of deep learning. While one may think that the GNN learns
to approximate a virial-like mass-velocity relation to extract
the total halo mass, it is not possible for us to make strong
claims on whether the network is learning such mapping. In
contrast, in our previous paper [8] we made use of saliency
graphs to try to visualize the important elements of the
model, finding that the GNNs tend to exploit the central
galaxy information, and occasionally also focus on some
small satellites, but the interpretability is still unclear. Also,
it is possible that employing other properties (e.g., neutral
hydrogen mass, metallicity, morphology, luminosity, or
different velocity components), our results may become
more precise, robust, and reliable. Furthermore, we have
implicitly assumed that the velocity is isotropic for some of
the M31 satellites which lack velocity data, which may
induce some biases in the M31 prediction. Using 3D
velocities when possible would allow us to find more
restrictive results. Note that we have implicitly assumed
that the CAMELS training set is representative of the MW
and M31 galaxies, which could not be the case, since the
MW may present atypical features in some regards. Note
also that the CAMELS simulations adopt a wide flat
prior over the range of initial conditions and parameters
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employed, which could give too much weight to some
unlikely and extreme cosmological and astrophysical
scenarios. Training the GNNs with more realistic and
tighter priors on some parameters may also enhance the
accuracy and reduce the uncertainties, as shown in [8]
within a fixed cosmology, as well as limiting to models that
match some observable quantity such as the stellar mass
function or star-formation rate history. Moreover, increas-
ing resolution and resolving smaller galaxies in the training
simulations would allow us to include further lighter
satellites, which may enhance the constraints. It is also
worth it to explore variations of the GNN architecture, such
as those applied to cosmological inference, making use of
edge attributes [91,92] or hierarchical aggregation [93].
Moreover, the effect of nearby halos as interlopers has not
been explicitly taken into account, which may impact the
predictions, given that the MW and M31 are close and
gravitationally bound. One could restrict the set of simu-
lations used for training the models to those with properties
similar to the MWand M31 system, either in terms of their
current configuration as a pair of binary galaxies approach-
ing each other, or alternatively having a history that
matches their expected evolution. Besides, training on
simulations with higher resolution will enable the inclusion

of smaller and fainter satellites that can provide additional
information and therefore tighten the constraints. This
method is hence a proof-of-concept rather than a definitive
technique, since there is still room for improvement, which
is left for future work.
The implementation of the GNNs underlying this article,

HaloGraphNet, is available on GitHub at [94,95],
making use of PyTorch Geometric [96]. Details on the
CAMELS simulations can be found at [97].
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