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Complex astrophysical systems often exhibit low-scatter relations between observable
properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling
relations illuminate the underlying physics, and can provide observational tools for
estimating masses and distances. Machine learning can provide a fast and systematic
way to search for new scaling relations (or for simple extensions to existing relations)
in abstract high-dimensional parameter spaces. We use a machine learning tool called
symbolic regression (SR), which models patterns in a dataset in the form of analytic
equations. We focus on the Sunyaev-Zeldovich flux−cluster mass relation (YSZ −M ),
the scatter in which affects inference of cosmological parameters from cluster abundance
data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find
a new proxy for cluster mass which combines YSZ and concentration of ionized gas
(cgas): M ∝ Y 3/5

conc ≡ Y 3/5
SZ (1 − A cgas). Yconc reduces the scatter in the predicted M

by ∼ 20 − 30% for large clusters (M & 1014 h−1 M�), as compared to using just
YSZ. We show that the dependence on cgas is linked to cores of clusters exhibiting
larger scatter than their outskirts. Finally, we test Yconc on clusters from CAMELS
simulations and show that Yconc is robust against variations in cosmology, subgrid
physics, and cosmic variance. Our results and methodology can be useful for accurate
multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like
ACT, SO, eROSITA and CMB-S4.

cosmology | interpretable machine learning | hydrodynamic simulation

Astrophysical scaling relations are simple low-scatter relationships (generally power laws)
between properties of astrophysical systems which hold over a wide range of parameter
values. Such relationships have a large number of applications: i) inferring distances to
objects, which is crucial for inferring cosmological parameters like the Hubble constant
(H0) see, e.g., the Leavitt period luminosity relation for Cepheids (1–3), Phillips relation
for supernovae (4); ii) inferring properties of massive black holes e.g., the black hole-bulge
mass/velocity dispersion relation (5–7); iii) inferring properties of galaxies e.g., the Tully
Fisher relation (8) and its baryonic analog (9) for spiral galaxies, the Faber Jackson relation
(10), the Kormendy relation or the more general fundamental plane relation (11–14) for
ellipticals, the Color–Magnitude Relation; iv) providing insights into galaxy formation
and evolution e.g., the stellar to halo mass relation (15); v) Inferring masses of galaxy
clusters for cluster cosmology e.g., theY−M relation (16–18),Mgas−M relation (19, 20),
Mass-richness relation (21). Note that many of these relations have been discovered
phenomenologically—often by trial and error—from observational data/simulations,
rather than being derived from first principles*.

Most of the scaling relations found in astrophysics till now are power-law relations
which involve only two variables. A reason for this could just be that it is easy to visually
identify two-parameter relations in a dataset. There could exist many low-scatter relations
with three or more variables in existing data which have been overlooked as it can be
tedious to identify such relations with manual data analysis. For instance, some of the
popular two-parameter relationships were later shown to extend to three dimensions
only by a more detailed subsequent analysis, e.g., the fundamental plane relationship for
elliptical galaxies. One of the traditional approaches to identify a high-dimensional
nonlinear hypersurface in a dataset is by looking at various 2D projection plots.

*It is interesting to mention that, in some areas of physics, discovery of empirical relations has sometimes led to deep
theoretical insights—take Kepler’s laws giving inspiration to Newtonian mechanics, or the Planck equation (also an empirical
function fit) aiding the development of Quantum Mechanics.
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This approach, however, becomes increasingly difficult and time
consuming with larger datasets.

Machine learning (ML) tools can provide a faster and a
more systematic approach to search for nonlinear low-scatter
relationships in abstract high-dimensional parameter spaces. ML
tools are increasingly useful as datasets available in astrophysics
continue to grow in size due to advent of high-precision
multiwavelength surveys. A particularly useful ML tool to search
for new scaling relations, or to find extensions to existing
ones, is symbolic regression (SR). SR identifies equations with
parsimonious combinations of input parameters that have the
smallest scatter with the given quantity of interest.

SR, also known as automated equation discovery, has been
studied for decades in the context of scientific discovery,
including early work creating the “BACON” algorithm (22)
and its later implementations including COPER (23) and
FAHRENHEIT/EF (24, 25). More recent work by refs. 26
and 27 popularized SR for science and introduced the software
package Eureqa, which is a powerful (but proprietary) library
still in use today. This preceded significant interest from the
ML community in advancing fundamental search techniques,
including (28–42). In parallel, these algorithms have been applied
to a range of scientific problems, such as (39, 43–57). It is
worth mentioning that SR has been used in various astrophysical
applications: modeling assembly bias (43, 44); estimating pho-
tometric redshifts of galaxies (57); inferring universal subhalo
properties (47); modeling the concentration of dark matter
from the mass distribution of nearby cosmic structures (39);
discovering relationships in time-domain astronomy (45, 46);
finding analytic forms of the one-point probability distribution
function for neutrino-density fluctuations (58); and modeling
the SFR density as a function of cosmological and astrophysical
feedback parameters (59).

In order to put SR in context, we illustrate tradeoffs in available
ML tools along various dimensions in Fig. 1. Deep learning tools
like neural networks can handle very high-dimensional inputs
and large datasets but are the least interpretable. SR lies on the
opposite side of this spectrum: as of today, SR can be applied
to datasets with only .10,000 data points, each with .10
parameters. One must therefore simplify the problem or at times
subsample the data in order to use SR on it. We follow the
approach of ref. 44, where we first reduce the dimensionality of
our dataset using a decision-tree–based approach called a random
forest regressor and then apply SR on it. Using the minimum set
of relevant variables as input to SR is important to speed up its
search for optimal equations.

We will focus on applying SR to find accurate expressions
that relate properties of galaxy clusters to their masses. Galaxy
clusters are the most massive bound structures in the Universe
and their abundance as a function of mass is a very sensitive
probe of cosmology (16, 60–66). In the 2020s, many ongoing
and upcoming surveys (e.g., Rubin observatory, DES, HSC,
DESI, ACT, eROSITA, SO, CMB-S4) will provide a wealth
of multiwavelength data on clusters. If we can obtain robust
mass estimates for these clusters from this data, we will be able
to put very strong constraints on the nature of dark energy and
neutrino masses (67–72). Cluster masses are typically inferred
from properties easily measurable in observational surveys. For
example, CMB surveys use the integrated electron pressure (YSZ)
via the mass-observable power-law relationship†:Mcluster ∝ Y 3/5

SZ
(the observable properties thus used are referred to as ‘mass

†In practice, the power-law exponent is calibrated with observational data; however, the
actual fitted values are fairly close to 3/5, which is the prediction from virial theorem.

Fig. 1. Various aspects of the trade-offs between machine learning (ML)
techniques. Symbolic regression can robustly be applied to datasets with only
.10,000 data points, each with . 10 parameters. On the other hand, it can
provide analytic equations that are readily interpretable and generalizable.
We first use a decision-tree–based approach called random forest regressor
to narrow down the set of parameters that impact the scatter in the Y -M
relation. We then implement symbolic regression to find an analytic form for
a cluster mass proxy using the preselected parameters.

proxies’). The scatter in these relationships affects the accuracy to
which the masses—and thereby the cosmological parameters—
can be inferred (73) (e.g., the uncertainty in the scatter can be a
source of systematic bias). Therefore, an important property of a
mass proxy is that the scatter in its relation with mass should be
well-characterized and small.

A combination of observable properties (sometimes measured
in different surveys) could sometimes provide a lower scatter
mass proxy. For example, X-ray studies show that the product
of gas mass, Mgas, and gas temperature, TX , provides a lower
scatter proxy than X-ray luminosity, gas mass, or temperature:
YX ≡ MgasTX (17)‡. Recently, it has become possible to measure
numerous properties of clusters: cluster electron pressure with
SZ surveys, gas density, and temperature profiles with X-ray
surveys, density profiles with weak lensing surveys, spectra and
color of galaxies in optical surveys, and diffuse synchrotron flux
in radio surveys. In order to construct an optimal mass proxy
from these, one encounters the following challenges: i) Which
particular properties in this large set to combine together? ii)
What functional form should be used to fit the combination?

ML methods can be useful for such problems. It is worth
mentioning that there have been many recent ML-motivated
approaches to estimate cluster masses: (39, 78–93). Our goal in
this paper is to model Mcluster by approximating the following
function

Mcluster = f (Y 3/5
SZ , {iobs}), [1]

with ML tools like random forests and symbolic regressors. {iobs}
is the set of various observable properties from multiwavelength
cluster surveys (e.g., gas mass, gas profile, richness, and galaxy
colors). As clusters are nonlinear objects, there are no obvious

‡There have also been similar studies on augmenting the Y −M relation (74–77); we will
discuss them later in section 5C.
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first principles predictions for which properties in {iobs} should
contribute. Furthermore, the high dimensionality of {iobs}makes
this a complex and challenging problem for traditional methods.

The paper is organized as follows. In Cluster Data and
Properties, we briefly describe the cluster data that we use from
various hydrodynamical simulations. In Mass Proxies, we present
an overview of mass proxies. We then discuss an overview of
our ML techniques in Machine Learning Techniques and show
the results for cluster mass prediction in Results for Y -M Scatter.
We describe our reasoning behind using cluster concentration in
Discussion, and we conclude in Conclusions.

1. Cluster Data and Properties

In this section, we provide a brief description of the cluster
data that we employ in our analysis. We use the TNG300-1
simulation (hereafter TNG300) produced by the IllustrisTNG
collaboration (94–101)§, which is run with the moving mesh
AREPO code (102, 103). We use the cluster samples from two
different snapshots at redshifts z = {0 , 0.7} in our study.

We also use clusters from the CAMELS suite of simulations
(59, 104)¶, which consists of more than 2,000 hydrodynamic
simulations (each simulation box has length 25 h−1 Mpc) run
with different baryonic feedback and cosmological parameters,
and with varying initial random seeds. CAMELS contain two
distinct simulation suites, depending on the code used to solve the
hydrodynamic equations and the subgrid model implemented:
i) CAMELS-SIMBA, based on the GIZMO code (105, 106)
employing the same subgrid model as the flagship SIMBA
simulation (107); ii) CAMELS-TNG, based on the AREPO
code employing the same subgrid model as the flagship Illus-
trisTNG simulations. Let us provide one example to highlight
the substantial differences in these models: Feedback from
active galactic nuclei (AGN) is implemented considering Bondi
accretion and spherical symmetry in IllustrisTNG (108), while
SIMBA implements gravitational torque accretion of cold gas and
collimated outflows and jets from AGN (109). We use clusters in
the z = 0 snapshots of the Latin hypercube set for our analysis.
(See ref. 59 for further details on the CAMELS simulations.)

For all the simulations, we work with halos identified by
the FOF friends-of-friends, also referred to as single linkage
hierarchical clustering (110) algorithm with linking length 0.2.
We choose the centers of clusters to be the locations of the
minimum gravitational potential within the FOF volume. Note
however that, to calculate properties of clusters mentioned later
in this section, we do not use the FOF volume but instead use the
spherical definition of clusters (we refer the reader to ref. 111 for
the advantages of using a spherical halo definition over the FOF
volume). We use the boundary R200c to define the cluster radii#.
M200c is the mass of all the particles (dark matter, gas, stars,
and black holes) within R200c of the center of the halo. Note
that we will use the 3D data of clusters in this paper; in reality,
however, projected properties, instead of 3D, are measured in
surveys; we will test our results for that case in a future study.
We show the number of clusters as a function of their masses in
SI Appendix Fig. S1. Let us now discuss the cluster properties we
use in our study.
(i) Integrated electron pressure: CMB photons are scattered by
high-energy electrons in the plasma inside clusters due to inverse

§IllustrisTNG: https://www.tng-project.org/data/.
¶CAMELS: https://camels.readthedocs.io.
#R200c is the radius enclosing an overdensity 1 = 200 with respect to the critical density
of the Universe.

Compton scattering. This phenomenon is known as the thermal
Sunyaev-Zeldovich (tSZ) effect and it induces a shift in the energy
of the scattered CMB photons (112). Such a shift is typically
parameterized by the integrated Compton-y parameter (YSZ) and
can be directly measured in SZ surveys. We measure a 3D analog
of it in simulations, as given by,

Y200c =
σT

mec2

∫ R200c

0
Pe(r) 4πr2dr, [2]

where σT is the Thomson cross-section, me is the electron mass,
Pe is the electron pressure, and c is the speed of light. Note that
we use the group_particles code|| to obtain Pe(r) (and most other
properties mentioned in this section) from the simulation data.
(ii) Ionized gas mass: We calculate the cluster ionized gas mass
(Mgas) as,

Mgas(r < R) =
2

1 + XH
mp

∫ R

0
ne(r) 4πr2dr, [3]

where ne is the free electron number density profile, XH = 0.76
is the primordial neutral hydrogen fraction, and mp is the proton
mass. Note that we derive Mgas from the electron density profile
of a cluster in order to mimic the Mgas measurements from X-ray
surveys where ne(r) is derived by deprojecting of X-ray surface
brightness profiles (20, 113).
(iii) Cluster concentration: We use different versions of the
cluster concentration in this paper. For the main results, we use
concentration corresponding to the gas profile: cgas ≡ Mgas(r <
R200c/2)/Mgas(r < R200c). We also perform additional cross-
checks using the concentration obtained by fitting an NFW
profile to the halos. In particular, we use cNFW ≡ Rvir/Rscale
(Rvir is the virial radius and Rscale is the Klypin scale radius (114)
corresponding to the largest subhalo in the halo) measurements
by ref. 115, which were obtained by running the Rockstar code
(116) on the TNG300 halos.
(iv) Stellar mass: We calculate M∗ by summing over of the masses
of all the star particles within R200c. Note that this quantity
represents thus the total stellar mass in the cluster, not the stellar
mass of the central galaxy.
(v) Cluster triaxiality: We generally expect clusters to be triaxial
since they are formed by accretion along filaments that can impose
a tidal gravitational force upon the forming clusters. We first
calculate the moment of inertia tensor using,

Tij ≡
∑
α

mα(xi,α − x̄i)(xj,α − x̄j), [4]

where x̄i is the coordinate of the center-of-mass of the cluster and
mα is the particle mass (we only use the particles within R200c
of the cluster center in our calculations). We calculate Tij in two
different ways: first, using all particle types (gas+stars+DM+black
holes); second, using only the gas particles. We then calculate
the triaxiality of the cluster as λ1/λ3 where λi are eigenvalues of
Tij ordered as λ1 < λ2 < λ3. We also check our results with a
different definition of triaxiality: (λ1 − λ3)/2/(λ1 + λ2 + λ3).
(vi) Cluster richness: The richness of a cluster is the number
of galaxies associated with it. We select the galaxies using the
threshold M? > 109 h−1M� and by requiring the centers of the
galaxies to be within R200c of the cluster center. At z = 0, this
threshold yields a number density of galaxies in the simulation
sample of ∼0.02 (h/Mpc)3.
||https://github.com/leanderthiele/group_particles.
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2. Mass Proxies

Simple models of clusters based on the virial theorem (which
assumes that the only source of energy input into the intracluster
medium is gravitational) predict nearly self-similar relations
between halo mass and various dynamic properties (117, 118).
For example, the scaling relation between cluster masses and
temperature is given by ref. 119:

T ∝ (M E(z))2/3, [5]

where E(z) ≡ H(z)/H0 =
√
�m(1 + z)3 +�3 for a flat

Universe. Note that the temperature also depends on the value
of 1 (the overdensity with respect to the critical density of
the Universe used for defining the cluster boundary); we have
absorbed this dependence under the proportionality sign. The
scaling relation for the gas mass of a cluster is simply Mgas ∝ M .
Using Eqs. 2 and 5, one can write a scaling relation for the
integrated Compton−y parameter given by,

YSZ ∝ MgasT ∝ M5/3E(z)2/3. [6]

Scaling relations like these help in determining various possible
proxies of cluster mass, e.g.,

M ∝ Y 3/5
SZ E(z)−2/5. [7]

In addition to being motivated by idealized scaling relations,
a mass proxy should have additional properties: i) Robustness: it
should be largely insensitive to limitations in our understanding
of clusters, baryonic feedback effects, or their merger history,
ii) Accuracy: it should have a small and well-characterized
scatter in the relation with mass, and iii) Low cost: it should
be observationally inexpensive in order to be applied for mass
prediction of thousands of clusters.

YSZ satisfies all the aforementioned requirements. The self-
similar evolution of the YSZ-M relation for clusters is also
remarkably insensitive to baryonic physics like AGN feedback
or radiative cooling (18, 120–122). The YSZ−M relation can be
calibrated using two types of gravitational lensing measurements:
CMB lensing measurements (which offer the advantage of a
very well-determined distance to the source plane) (123–126)
and optical weak lensing surveys (which provide higher S/N
measurements for individual clusters) (127–132). Analogs of
YSZ have therefore been used for cluster mass estimation in
CMB surveys like Planck (16, 60, 61), ACT (62, 63), and SPT
(64, 65). It is worth mentioning that there are also proposals to
self-calibrate the relation (133, 134). An analog of YSZ called YX
is also used in X-ray surveys for mass estimation (17, 121). For a
comprehensive review of the YSZ −M relation, see ref. 18.

We show the Y200c −M200c relation from Eq. 7 for TNG300
clusters in Fig. 2 (Eq. 2 for the definition of Y200c). For
comparison, we also show the performance of other mass proxies
like Mgas and cluster richness in SI Appendix, Fig. S2. For a large
region of parameter space in Fig. 2, the clusters closely follow
the self-similar scaling relation** with low scatter. Reducing
the scatter further is imperative as the uncertainty in the mass-
observable relation is currently the largest systematic uncertainty
in cosmological analyses of galaxy clusters.

**A perceptive reader would notice that there is a deviation/break from the power-law
relation in Fig. 2 for low-mass clusters. This is because gas in the cluster gets ejected at
low masses since the gravitational potential wells are comparatively shallower (135–139).
We only focus on high mass clusters in this paper as only those are typically used in
cosmological analyses; we have however modeled the deviations from self-similarity in a
more recent paper (140).

Fig. 2. Y -M scaling relation in clusters from the TNG300 simulation at z =
{0 , 0.7} (Y200c [M200c] is the integrated Compton-y parameter [cluster mass]
within R200c). The self-similar power-law scaling relation normalized to the
most massive halos is shown by the dotted green line. The goal of this paper
is to improve this scaling relation in order to reduce its scatter and infer
cluster masses more accurately.

As we can see from Fig. 2, Mcluster ∝ Y 3/5
SZ is a very good first

approximation; we therefore train our ML models to approximate
the following function based on the residuals:

M200c/Y
3/5
200c = g({iobs}). [8]

In this way, we incorporate the domain knowledge (in our case
the already well-established leading-order cluster physics) and use
ML only to learn extensions to it.

3. Machine Learning Techniques

We now continue our discussion of machine learning (ML)
techniques from the introduction section. In Fig. 1, we had
compared the ML techniques along two particular dimensions.
Deep neural networks (DNNs) are on one extreme: they can work
with very high-dimensional datasets or datasets with large sizes.
There also have been many interesting applications of DNNs to
cosmology (see, e.g., refs. 39, 54, 141–161). However, DNNs
are notoriously difficult to interpret due to the high-dimensional
parameter space of the model (typically & 106 parameters).
Furthermore, DNNs typically require very large datasets to
train, whereas in our case, we only have ∼200 clusters with
M200c > 1014 h−1 M� in the TNG300 sample. We therefore
used the two techniques detailed below, both of which can have
better performance than DNNs on small datasets.

A. Random Forest. A random forest regressor (RF) is a collection
of decision trees; each tree is in itself a regression model and is
trained on a different random subset of the training data (162)
(random forests can also be used for classification tasks, but here
we use them for regression). The output from a RF is the mean
of the predictions from the individual trees (a single decision tree
is prone to overfitting and using the ensemble mean of different
trees reduces overfitting) (163). RFs have been used for various
applications in astrophysics: (78, 79, 164–172). As they allow
one to easily infer the relative importance of each input feature,
they are slightly better suited with regard to interpretability as
compared to deep neural networks. Other advantages of decision
tree-based algorithms are that they are comparatively much faster
to train and they do not require access to GPUs.
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D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

U
N

IV
 O

F 
C

O
N

N
EC

TI
C

U
T 

L 
M

 S
TO

W
E 

LI
B

 C
O

LL
EC

TI
O

N
 M

G
M

T 
on

 S
ep

te
m

be
r 6

, 2
02

3 
fr

om
 IP

 a
dd

re
ss

 1
37

.9
9.

14
2.

20
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2202074120#supplementary-materials


We use RF from the publicly available package Scikit-Learn††

(173). In order to check whether the results from the RF are
robust to overfitting, we divide the data into two categories: We
use a subsample containing∼40% of the clusters to train the RF,
and the rest are used in testing the RF. We show the results from
the test set later in Results for Y -M Scatter A. Note that we do
not use RF for the final results of this paper, but only as a feature
selection tool for making the application of symbolic regression
easier.

B. Symbolic Regression. Symbolic regression (SR) is a technique
that approximates the relation between an input and an out-
put through analytic mathematical formulae. The difference
between using it versus ordinary “least squares” regression is
that knowledge of the underlying functional form of the fitting
function is not required a priori. The advantage of using SR
over other machine learning regression models is that it provides
analytic expressions which can be readily generalized and also
facilitates the understanding of the underlying physics. One of
the downsides of SR, however, is that the dimensionality of the
input space needs to be relatively small. To overcome this, we
first use the RF to obtain an indication of which parameters in
the set of {ih} in Eq. 8 give the most accurate M200c. We then
compress the {ih} set to include only the five most important
parameters. Finally, we use SR on the compressed set to obtain an
explicit functional form to approximate f from Eq. 8. We use the
symbolic regressor based on genetic programming implemented
in the publicly available PySR package‡‡ (39, 40).

Let us briefly describe the procedure to fit a function with the
PySR package. First, we specify the relevant input parameters
(in our case, {cgas,Mgas,M∗, cNFW}). We also need to specify
unary and binary operators as input; we have chosen: binary
operators= [sum (+), multiplication(·), division(/), power], and
unary operators = [negative, exponential, absolute value]. Using
genetic programming, the SR then generates multiple iterations
of formulae (e.g., 2.7 ·M2

∗ + exp(Mgas/cgas)). The best equations
are decided based on their complexity and the specified loss
function (equations which are the simplest and simultaneously
give the least loss are preferable).

We use an analog of the L1 loss function, given by,

Loss =
∑

i∈clusters

wi |M true
i −Mpredicted

i |. [9]

The reason for choosing the L1 loss instead of L2 (i.e., Loss∝
|1M |2) is that it is as it is more robust to cases when the scatter
is large. In other words, it is less susceptible toward outliers
(see also other robust loss functions like Huber loss). As the
number of halos decreases with their mass, we use the weights
wi = M1/2

i to upweight the high-mass halos (the weights also
help in accounting for increased scatter towards low masses). Our
primary focus in this paper is on clusters withM & 1014 h−1 M�
as lower mass clusters are not used for probing cosmology (the
lower mass regime is relatively more affected by AGN/supernova
feedback). We specifically focus on improving Y −M relation
for low-mass regime in a more recent paper (140). As separation
between most clusters is too large for them to affect each other’s
evolution, we assume that their mass residuals are independent
in the loss function in Eq. 9.

††Random forest: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html.
‡‡PySR: https://github.com/MilesCranmer/PySR.

The complexity penalty of equations from SR is determined
by the number of operators, free constants, and variables in them.
We use the default setting of equal complexity of individual
operators, constants, variables (one also has the option to specify
different values of complexity penalty to different operators, e.g.,
sin can be set to have three times the penalty of +). Note that
there are traditional criteria to evaluate complexity of different
fitting functions, e.g., Bayesian Information Criterion (BIC)
or Akaike Information Criterion (AIC). However, such criteria
typically only penalize the number of free constants and do not
take into account the number of operators or variables in the
equations, making them difficult to apply directly to output
equations from SR.

It is worth mentioning that instead of needing to explicitly
specify a parametric form like Eq. 9 for the loss function, there
are various nonparametric methods for fitting relations to data. A
few examples are quantile regression and local regression models
(e.g., Gaussian processes, local polynomial models like LOWESS)
(173–176). Such methods are relatively advantageous to use when
errors are heteroscedastic (i.e., the scatter is nonuniform, which is
also the case for Y −M relation at low masses) or the data contain
outliers. These methods have been used in various astrophysical
applications, e.g., refs. 177, 178, and 179. However, we do not
use them in our work as current SR packages require a parametric
form of loss function to be specified (to our best knowledge,
they are not currently designed to work with nonparametric
loss functions).

4. Results for Y-M Scatter

In this section, we compare the results from ML methods against
the standard Y -M relation. Most of the studies which carry out
the analysis ofY−M for cluster cosmology assume that the scatter
is log-normal (62, 63, 65) see however (18, 77). We therefore
choose to compare the performance of different mass estimation
methods using the following statistic:

σi ≡

[
1
Ni

Ni∑
j

(logM true
j − logMpredicted

j )2
]1/2

, [10]

where i corresponds to individual mass bins containingNi clusters
(we used uniformly spaced bins in log-space).

A. Results from the Random Forest. We train the RF regressor
using various cluster properties from Cluster Data and Properties
and show results in Fig. 3. In the bottom panel, we use Eq. 10
to calculate the scatter and show the relative improvement in
the mass prediction (the improvement is &30% for the best-case
scenario). We do not compare the scatter for the very high-mass
end as there are very few halos available to calculate the scatter
robustly.

We also used cluster richness and triaxiality as input to the RF
but did not notice any improvement in our results; we therefore
do not show lines corresponding to them in Fig. 3. We show the
feature importance assigned by the RF to various input variables
in SI Appendix Fig. S3. We also tried using other galaxy properties
(e.g., color of the brightest cluster galaxy), but we did not find
any improvement in the scatter prediction.

B. Symbolic Regression. Using the RF, we identified that the
parameters cgas, M∗/Mgas and cNFW have the largest effect on
the mass prediction. We now train the symbolic regressor to
model the function in Eq. 8 using these properties and obtain
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Fig. 3. Results from prediction of cluster masses with a random forest
regressor (RF). Scatter in the predicted mass using the traditional Y-M relation
(RF) is in Top (Middle) panel. The Bottom panel shows the effect of different
sets of input parameters on the mass prediction. cgas is the concentration
of gas from Eq. 12, cNFW is the NFW concentration, M∗ (Mgas) is the stellar
(gas) mass within R200c. Overall, the RF improves mass prediction by & 30%
as compared to the traditional scaling relation method.

the results shown in Fig. 4. Our main result of the paper is the
following mass proxy which improves the cluster mass prediction
as compared to using the standard Y -M relation:

M ∝ Y 3/5
conc ≡ Y 3/5

200c
[
1− A cgas

]
, [11]

where cgas is related to the concentration of the halo gas profile
and is given by,

cgas ≡
Mgas(r < R200c/2)
Mgas(r < R200c)

, [12]

where Mgas(r) is given by Eq. 3 and can be estimated from X-ray
surveys. A is a dimensionless parameter and we obtain the best-
fit value A = 0.4 for the TNG300 sample (we generally expect
A ∈ [0, 1]). We will discuss the physical explanation behind the
better performance of Yconc in Section 5.

We also found that replacing cgas in Eq. 11 by an analogous
parameter:

cY ≡
Y (r < R200c/2)
Y (r < R200c)

, [13]

gives a very similar improvement in the mass prediction. The
advantage of using cY over cgas is that one does not need X-ray
observations of clusters and SZ measurements alone are sufficient.
On the other hand, it may not be straightforward to resolve scales
of R200c/2 (i.e., ∼0.7R500c) in the observations of clusters from
upcoming SZ surveys like SO and CMB-S4 due to their low
resolution.§§

§§Looking further into the future, CMB-HD could provide high-resolution observations of
clusters (in case full cluster pressure profile information is available, other ML tools like
deep sets can be used to obtain even more accurate mass predictions).

Fig. 4. Top: same as Fig. 3, but when the mass prediction is made using
expressions from symbolic regression. Second and third panels show our two
best results from Eqs. 11 and 14 (additional results are shown in SI Appendix,
Fig. S4). Fourth panel compares the scatter in the mass residuals (the scatter
is calculated using two different methods). We label the mass proxy in the
second from Top panel as Yconc. Introducting the term (1−A cgas) effectively
down-weights the cluster cores in comparison to their outskirts (the cluster
cores are relatively much noisier) and leads to a reduction in the scatter.
Bottom: similar to the top case except the Y −M power-law slope is allowed
to vary. Using Yconc reduces the scatter by ∼25% for M200c∼ 2× 1014M�/h.

We also obtained the following mass proxy which has an even
better performance than Eq. 11:

M ∝ Y 3/5
200c

(
B

cNFW

)M∗/Mgas

, [14]
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where B is another dimensionless constant (the best-fit value
B ∼ 50 is used in the figure). However, there are caveats regarding
accurately estimating M∗/Mgas or cNFW from observational
data. Analogs of Y are typically estimated within .20% in
current CMB surveys (see, e.g., ref. 63). However, M∗ can
only be estimated to within a factor of & 50% accuracy
with the current galaxy surveys (see, e.g., refs. 66, 180–182).
Therefore the mass estimation with Eq. 14 could be dominated
by observational uncertainties. More importantly, estimating
the NFW concentration (cNFW) requires high-resolution lensing
observations and is therefore too expensive to measure for a large
number of clusters. Therefore, we will use Yconc from Eq. 11 as
our main result for the rest of the paper.

In addition to using the lognormal assumption (Eq. 10) to
calculate the scatter in Fig. 4, we nonparametrically calculate the
scatter using quartiles of the mass residuals and find a similar
improvement when our new equations are used. We leave testing
the assumption of lognormality of the Y −M scatter to a future
paper. Note also that we also obtained more complex equations as
outputs from SR (some of them are shown in SI AppendixFig. S4).
However, given the large scatter already present in clusters from
TNG300, the risk of overfitting goes up with increasing equation
complexity. Hence, we show only the simplest expressions which
have a relatively good performance.

In cluster cosmology analyses, the power-law index on Y −M
is usually not fixed to 3/5, but is fitted to data. We therefore
perform a test where we let the power-law index vary. We use
the scipy.fit package and find the following best-fit relations:
M ∝ Y 0.59±0.002 and M ∝ Y 0.618±0.002(1− [0.61±0.02]cgas).
Their performance is shown in Fig. 4, Bottom.

Due to the lack of clusters in the high-mass end of the TNG300
simulation, we are unable to compare the scatter between the
different models. Cosmological simulations with a larger number
of high-mass clusters (e.g., MillleniumTNG) or hydrodynamical
zoom-in simulations centered on massive halos of a dark matter
only simulation e.g., the ones used in (152) would be valuable
to test our results. Generally, we expect results from machine
learning algorithms to improve with a larger training dataset.

C. Tests with CAMELS Simulations. Until this point, we showed
results corresponding to the TNG300 simulation which uses a
particular configuration of baryonic feedback parameters and a
fixed cosmological model. However, the true nature of feedback
in the Universe can be different, and we therefore want to
test if the mass proxy Yconc is robust to changes in feedback
prescriptions. We therefore use the CAMELS suite of simulations
which have varying cosmological and astrophysical feedback
parameters, as well as varying initial conditions. We show our
results for z = 0 clusters in Fig. 5.

It is quite interesting that Yconc consistently outperforms YSZ
even when the feedback prescriptions in the simulations are very
different. Note that we did not retrain the symbolic regressor
using the CAMELS dataset, we merely used Eq. 11 and adjusted
the constant A to optimize our results. We found that using a
larger constant A′ = 0.8 for CAMELS-SIMBA works better than
using A = 0.4 which was obtained for TNG300 (for CAMELS-
TNG, however, the same constant: A = 0.4 gives optimal
results). This difference could be related to the scatter in the cores
of SIMBA clusters being larger; we will return to this point in
section 5A. It is worth mentioning that the CAMELS simulations

Fig. 5. Same as Fig. 4 but for halos in the CAMELS simulation suite instead of TNG300. As CAMELS includes variations in the baryonic feedback prescriptions in
the hydrodynamic simulations, cosmological parameters and simulation initial seeds, the improvement upon using M ∝ Yconc is robust against these changes.
Note also for CAMELS-SIMBA that Yconc not only reduces the scatter but also reduces the deviation from a power law for low M200c.
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have a small box size (25 h−1 Mpc) and there are very few high-
mass clusters in the entire sample. It will be useful to check our
results on the next iteration of the CAMELS simulations which
will contain many more high-mass clusters.

5. Discussion

A. Dependence on Concentration. Having shown our results, let
us now discuss some physical reasons behind the improvement
in cluster mass prediction by taking into account concentration.
For A ∈ [0, 1], the term (1−A cgas) contributes toward effectively
down-weighting the cluster cores in comparison to their outskirts.
Downweighting/excising the central regions is desirable because
observed cluster profiles show a greater degree of similarity
outside the core (118, 121, 183, 184). To verify this, we show in
Fig. 6 that the scatter in predicted mass is reduced when cluster
cores are explicity excised from the calculation of Y200c (Fig. 6 is
for the TNG300 clusters, while the comparison with CAMELS
clusters is shown in SI Appendix, Fig. S5).

Another way of verifying our results is to show the scatter
in the pressure profile as a function of radius in the TNG300
clusters in Fig. 7 (see also Figure 4 of ref. 184 for comparison of
pressure profile measurements from XMM-Newton and Planck).
Note that the cores are the regions of clusters which are the most
sensitive to nongravitational processes like radiative cooling and
AGN feedback. Furthermore, simulations so far have not been
able to convincingly reproduce the observed thermal structure of
cool cores (see ref. 118), and the observed scatter in cluster cores
could be larger than that predicted in simulations (121). Given
that Yconc at least partly corrects for the cluster core effects, we
expect it to perform better in case the scatter in cluster cores is
larger. We also expect our method to work better in case Y500c

Fig. 6. Same as Fig. 4 but when the cores of the clusters are excised from
the calculation of the integrated electron pressure. We see a roughly similar
scatter reduction as in Fig. 4. Directly excising the cores in upcoming CMB
surveys is difficult because of their low resolution, hence using Yconc is
beneficial.

Fig. 7. Dependence of scatter with radius in the electron pressure profile
(Pe) of clusters. We use the clusters from TNG300 in the specified mass range
and show the mean and the 1� region of the pressure profile scaled by
the cluster mass. The profiles have a large scatter in the innermost regions
(cores), while the outer regions (until R200c) are relatively well-equilibrated.

is used instead of Y200c as the contribution from cluster cores is
relatively larger for Y500c .

We explicitly show the dependence of Y -M relation on cgas,
cNFW, and M∗/Mgas in Fig. 8, Top panel for halos in the mass
range 1014

≤ M ≤ 2× 1014 h−1 M�. The Bottom panel shows
that Yconc or Eq. 14 takes into account a major part of these
dependencies (which is responsible for the improvement in the
cluster mass prediction due to them).

B. Combining SZ andX-rayObservations. In the coming decade,
numerous clusters will be probed with both X-ray, e.g., eROSITA
survey (172, 185) and SZ surveys (e.g., SO). Let us now discuss
ways in which these surveys can provide complementary infor-
mation. The advantage of X-ray surveys over SZ surveys is their
higher resolution. On the other hand, their disadvantage is that
they probe the cluster thermal energy indirectly (assumptions
about the gas density and temperature profiles are needed to
estimate the integrated pressure in X-ray surveys, whereas it is
directly measured in SZ surveys). Using Yconc enables one to
exploit this complementary behavior.

There are other advantages of combining SZ and X-ray surveys.
Cross-calibration across different wavelength measurements gen-
erally helps in minimizing the possible systematics in individual
measurements such as projection effects (see, e.g., ref. 186).
Sometimes, Yspherical reported by SZ surveys use an X-ray-derived
estimate of the aperture size (as the cluster radii could be poorly
measured by SZ surveys alone). X-ray and SZ surveys have
different redshift dependence: The selection function of SZ
surveys flattens toward higher redshifts, while X-ray surveys favor
low-redshift systems. Combination of SZ and X-ray data can also
help in removing outliers (e.g., recently merged clusters which
deviate from the power-law relationship) and further tighten the
Y -M relation (77).

C. Comparison with Previous Literature. Let us briefly mention
some other proposals in the literature for augmenting the Y -M
relation. Refs. (74, 75) proposed a fundamental plane relationship
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Fig. 8. Top panel: Dependence of the Y -M relation on gas concentration (cgas), NFW concentration (cNFW), and stellar to gas mass ratio (M∗/Mgas) for halos
in the mass range 1014

≤ M ≤ 2 × 1014 h−1 M�. The dashed lines show the mean of the scatter. Higher cgas (or cNFW) is related to increase in the density
of the ionized gas and can be a result of more radiative cooling (which in turn increases Y200c). Higher M∗/Mgas implies more gas being converted into stars
and is therefore associated with a decrease in Y200c. Bottom panels: Using Yconc (Middle) and Eq. 14 (Bottom) instead of Y200c , for which the mean trends are
comparatively weaker.

between Y , M , and the SZ half-light radius of the cluster. (187)
proposed augmenting the thermal pressure profile of clusters
with a model for the nonthermal pressure in order to ameliorate
the hydrostatic mass bias effect. (76) noted that the NFW
concentration can have an impact on the scatter in the Y -M
relation. (77) proposed augmenting Y -M with a different form
of cluster concentration: R200/R500. However, measuring this
quantity requires high-resolution weak lensing data and this
approach is therefore too expensive to be applied to a large
number of clusters. Our analysis provides a way of augmenting
the Y -M relation with properties that can be relatively easily
measured in observational surveys. We also did a test with the
random forest by adding analogs of the parameters proposed in
the aforementioned studies for augmenting Y −M ; we find that
the RF predictions for cluster mass are improved only marginally
(we show a comparison plot in SI Appendix, Fig. S6).

It is also worth mentioning that there have been studies
augmenting other cluster scaling relations than Y -M , e.g., refs.
188, 189 and 190 proposed a fundamental plane between cluster
temperature, its mass, and the scale radius of its matter profile.
Recently, cluster NFW concentration was used in improving the
model for the electron number density and pressure profiles of
clusters (191).

6. Conclusions

Astrophysical scaling relations have a number of applications in
inferring properties of stars, supernovae, black holes, galaxies,
and clusters. With the upcoming high-precision astronomical
surveys, it is imperative to find ways to augment the existing
scaling relations in order to make them more accurate. Machine
learning can provide a fast and systematic approach to search

for extensions to scaling relations in abstract high-dimensional
parameter spaces.

We focused on searching for augmentations to the widely used
YSZ − M scaling relation in order to make mass prediction of
galaxy clusters more accurate. We first used a random forest
regressor to search for a subset of parameters which give the
most improvement in the cluster mass prediction (Fig. 3).
We consequently used symbolic regression and found a new
mass proxy which combines Y200c and gas concentration (cgas):
M ∝ Y 3/5

conc ≡ Y 3/5
200c(1 − A cgas). Yconc reduces the scatter

in the mass prediction by ∼ 20 − 30% for large clusters
(M200c & 1014 h−1 M�) at both high and low redshifts (Fig. 4).
The new proxy exploits the complementary behavior of X-ray
(high resolution but indirect probe of cluster thermal energy) and
SZ (low resolution but direct probe of thermal energy) surveys.

We verified that Yconc is robust against changes in both
feedback parameters and subgrid physics by testing it with
the CAMELS suite of simulations (Fig. 5). The dependence
of Yconc on cgas is likely due to the cores of clusters being
noisier (Fig. 7), and we verify this explicitly by excising the
cores of clusters (Fig. 6). Our results and methodology can be
useful for accurate multiwavelength cluster mass estimation from
current and upcoming CMB and X-ray surveys like ACT, SO,
eROSITA, and CMB-S4.

Future Work. We use three-dimensional cluster information
(e.g., Y200c) in this paper; but, in reality, projected properties
of clusters (e.g., Ycylindrical) are measured in surveys; we will try
to test our results for that case in a future study. We focused
on improving the Y -M relation for high M regime in this
paper, but we use a similar ML-motivated methodology for
improving Y -M in the low M regime in a more recent paper
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(140). We could not robustly test Yconc for very high mass clusters
(M & 5 × 1014 h−1 M�) due to lack of statistics, but we will
do this test using clusters from the MilleniumTNG simulation
(which has 15 times the volume of TNG300) in a separate
upcoming paper.

As cluster observations improve, we will be able to use ML
techniques directly on observed quantities and find the lowest
scatter relations between lensing masses, microwave, and X-ray
observables. Our methodology could also be useful for improving
other widely used astrophysical scaling relations for exoplanets,
stars, supernovae, galaxies, and clusters.

Data, Materials, and Software Availability. The code and data asso-
ciated with this paper are available at https://github.com/JayWadekar/
ScalingRelations_ML. All study data are included in the article and/or
SI Appendix.
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