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Abstract

From 1000 hydrodynamic simulations of the CAMELS project, each with a different value of the cosmological and
astrophysical parameters, we generate 15,000 gas temperature maps. We use a state-of-the-art deep convolutional
neural network to recover missing data from those maps. We mimic the missing data by applying regular and
irregular binary masks that cover either 15% or 30% of the area. We quantify the reliability of our results using two
summary statistics: (1) the distance between the probability density functions, estimated using the Kolmogorov–
Smirnov (K-S) test, and (2) the 2D power spectrum. We find an excellent agreement between the model prediction
and the unmasked maps when using the power spectrum: better than 1% for k< 20 hMpc−1 for any irregular
mask. For regular masks, we observe a systematic offset of ∼5% when covering 15% of the maps, while the results
become unreliable when 30% of the data is missing. The observed K-S test p-values favor the null hypothesis that
the reconstructed and the ground-truth maps are drawn from the same underlying distribution when irregular masks
are used. For regular-shaped masks, on the other hand, we find a strong evidence that the two distributions do not
match each other. Finally, we use the model, trained on gas temperature maps, to inpaint maps from fields not used
during model training. We find that, visually, our model is able to reconstruct the missing pixels from the maps of
those fields with great accuracy, although its performance using summary statistics depends strongly on the
considered field.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Computational methods
(1965); Astrostatistics (1882)

1. Introduction

Cosmology is in a transformative stage. Nowadays, we know
the value of the main cosmological parameters with a relatively
high precision. This has allowed us to claim, with high
confidence, the existence of a substance that is responsible for
the accelerated expansion of the universe: dark energy. The
nature and properties of dark energy remain the biggest
mysteries in modern physics. In order to shed light on these and
other open questions, such as the sum of the neutrino masses,
the community has spent billions of dollars on surveys like the
Dark Energy Spectroscopic Instrument (DESI; DESI Colla-
boration et al. 2016), Euclid (Laureijs et al. 2011), Prime Focus
Spectrograph (PFS; Tamura et al. 2016), extended ROentgen
Survey with an Imaging Telescope Array (eROSITA; Merloni
et al. 2012), Roman Observatory (Spergel et al. 2015), Rubin
Observatory (The LSST Dark Energy Science Collaboration
et al 2018), Square Kilometer Array (SKA; Square Kilometre
Array Cosmology Science Working Group et al. 2020), and
Simons Observatory (Ade et al. 2019), whose data may contain
the answers to all these fundamental questions.

The traditional method used to transform the data from
cosmological surveys into constraints is this: (1) the data is
compressed into a lower-dimensional summary statistic, (2)

theoretical predictions for that summary statistic are provided as
a function of the value of the cosmological parameters, and (3) a
likelihood function is evaluated to find the parameter constraints.
Currently, there is a large debate on what summary statistics
should be employed to extract the maximum information from
these surveys (e.g., Allys et al. 2020; Banerjee et al. 2020; Dai
et al. 2020; de la Bella et al. 2021; Friedrich et al. 2020; Giri &
Smith 2022; Hahn et al. 2020; Uhlemann et al. 2020; Villaescusa-
Navarro et al. 2020; Banerjee & Abel 2021a, 2021b; Bayer et al.
2021; Gualdi et al. 2021a, 2021b; Hahn & Villaescusa-
Navarro 2021; Kuruvilla & Aghanim 2021; Massara et al.
2021; Samushia et al. 2021; Valogiannis & Dvorkin 2022).
Another possibility is to extract information from the field itself
without relying on summary statistics, using machine-learning
methods (Ravanbakhsh et al. 2017; Schmelzle et al. 2017; Gupta
et al. 2018; Fluri et al. 2019; Ntampaka et al. 2020; Ribli et al.
2019; Hassan et al. 2020; Jeffrey et al. 2021; Zorrilla Matilla et al.
2020).
Unfortunately, the data from the cosmic surveys are affected

by numerous issues, such as instrument noise. Among these
problems, there are some effects that can induce spatial
discontinuities in the data. For instance, in the case of galaxy
redshift surveys, the presence of stars, fiber collisions, and bad
observations will create masks in the survey geometry (Ross
et al. 2012; de la Torre et al. 2013; Bianchi & Verde 2020;
Mohammad et al. 2020). Another example is when such masks
are created to avoid contamination by systematic effects; e.g.,
Cosmic Microwave Background (CMB) and 21 cm observations
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may be masked near the galactic plane to avoid the bright
foregrounds.

In general, the complicated geometry induced by these
masked regions represents a challenge for both the theoretical
predictions and the computation of the (optimal) summary
statistic. This problem may also get worse when working at the
field level with machine-learning methods, as one needs to
make sure that no information from the mask itself is used by
the network.

One potential solution to this problem will be to reconstruct
the missing data within the masked region. In most of the cases,
however, this is a very difficult task, as the clustering properties
of the considered field (e.g., galaxy redshift surveys or 21 cm
surveys) are not well-understood theoretically (see discussion
about summary statistics above). On the other hand, the
statistical properties of the considered field can be learned by
neural networks and used to reconstruct the masked region.
This idea has been developed in the machine-learning
community to inpaint the missing pixels of images (Pathak
et al. 2016; Yang et al. 2016; Demir & Unal 2018; Liu et al.
2018; Yan et al. 2018; Yu et al. 2018, 2019; Nazeri et al. 2019;
Zhu et al. 2021).

The use of image inpainting techniques based on deep
learning has recently gained increasing interest in the
cosmological community. Several works have successfully
used deep convolutional neural networks to reconstruct missing
data in 2D maps of the cosmic microwave background
(Raghunathan et al. 2019; Yi et al. 2020; Montefalcone et al.
2021; Vafaei Sadr & Farsian 2021) and in the galactic
foreground intensity and polarization maps (Puglisi & Bai
2020).

In this work, we use these techniques to investigate whether
we can reconstruct masked regions from 2D images generated
from state-of-the-art magnetohydrodynamic simulations. For
this, we make use of data from the Cosmology and
Astrophysics with MachinE Learning Simulations (CAMELS;
Villaescusa-Navarro et al. 2021) Multifield Data set (CMD;
Villaescusa-Navarro et al. 2022b), a collection of hundreds of
thousands of 2D maps and 3D grids containing 13 different
fields from thousands of different cosmological and astro-
physical models. To our knowledge, this is the first time that
such a study has been carried out with data from state-of-the-art
hydrodynamic simulations over a vast range of cosmological
and astrophysical models.

This paper is organized as follows. In Section 2, we describe
the data we use in this work. We outline the architecture and
training procedure in Section 3. The main results of this work
are shown in Section 4. Finally, we summarize and discuss the
findings of this paper in Section 5.

2. Data

In this work, we make use of 2D maps from the CAMELS
Multifield Data set,8 CMD, a collection of hundreds of
thousands of 2D maps showing different properties of the
gas, dark matter, and stars at z= 0 from 2000 state-of-the-art
(magneto-)hydrodynamic simulations of the CAMELS project
(Villaescusa-Navarro et al. 2021, 2022a). All simulations
follow the evolution of 2563 dark matter particles and 2563

fluid elements from z= 127 down to z= 0 in a periodic
comoving volume of ( )-h25 Mpc1 3. Half of the hydrodynamic

simulations have been run with the AREPO code (Weinberger
et al. 2019) and employ the same subgrid model as the
IllustrisTNG simulations (Weinberger et al. 2017; Pillepich
et al. 2018), while the other half have been run with the GIZMO
code (Hopkins 2015) and utilize the subgrid model of the
SIMBA simulation (Davé et al. 2019).
All simulations share the same values of these cosmological

parameters: baryon density Ωb= 0.049, Hubble parameter
h= 0.67, spectral index ns= 0.96, sum of the neutrino mass
∑mν= 0 eV, and the equation-of-state parameter for dark
energy w=−1. On the other hand, each simulation has a
different value for the total matter density parameter Ωm and
σ8, the amplitude of the linear power spectrum on scales of
8 h−1 Mpc, and they also differ in the values of four
astrophysical parameters that characterize the efficiency of
supernova and active galactic nuclei feedback. CMD contains
maps for 13 different fields: (1) gas density, (2) gas velocity,
(3) gas temperature, (4) gas pressure, (5) gas metallicity, (6)
neutral hydrogen density, (7) electron number density, (8)
magnetic fields, (9) magnesium-to-iron ratio, (10) dark matter
density, (11) dark matter velocity, (12) stellar mass density, and
(13) total matter density. Each 2D map covers an area of

( )´ -h25 25 Mpc1 2, contains 256× 256 pixels, and has a
specific value of the cosmological and astrophysical para-
meters. For each field, CMD provides 15,000 maps. We refer
the reader to Villaescusa-Navarro et al. (2022b) for further
details on CMD.
In this work, we focus our attention on the gas temperature

maps, which represent the mass-weighted temperature field of
the gas particles in the different simulations.

3. Technique

In this section, we describe the method used to evaluate the
performance of the inpainting model. We start in Section 3.1 by
describing the construction of the binary masks that we later
apply to the CMD maps in order to mimic the missing data. In
Section 3.2, we present the architecture of the deep convolu-
tional neural network used to inpaint the masked regions in the
data. In Section 3.3, we discuss the loss function used to train
the neural network, while the training process is described in
Section 3.4.

3.1. Binary Masks

We generate two types of masks: (1) regular masks that have
either a rectangular or circular shape and cover a continuous
portion of the field of view, and (2) irregular masks that consist
of a set of segments of different width and length randomly
placed over the field. For each of these two types, we build
masks that cover different fractions of the total area. In
particular, we use masks, both regular and irregular, that cover
15% and 30% of the total area. These are realistic numbers that
one may encounter in galaxy redshift surveys. In particular, in
the Dark Energy Survey (DES) photometric sample for
cosmology (Sevilla-Noarbe et al. 2021), the masked regions
amount to roughly 10% of the total survey area. In spectro-
scopic surveys, such as the Baryon Oscillation Spectroscopic
Survey (BOSS) LOWZ and CMASS (Dawson et al. 2013)
samples, ∼7% of the total area is lost due to the veto masks. In
the extended Baryon Oscillation Spectroscopic Survey
(eBOSS), ∼17% of the area covered by the Luminous Red
Galaxy (LRG) and quasar (QSO) (Ross et al. 2020) catalogs8 https://camels-multifield-dataset.readthedocs.io
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was obscured by different types of veto masks. The choice for
the sizes of regular masks is straightforward, given the desired
fraction of the area to be masked. Each irregular mask, on the
other hand, is built by successively adding segments of
randomly chosen width and length until the number of pixels
they cover is the target fraction of the total area. In this paper,
we will refer to the pixels covered by the mask as the “hole
pixels” and to the unmasked pixels as “valid pixels”.

3.2. Architecture

We use the network architecture presented in Zhu et al.
(2021) based on the so-called “Mask-Aware Dynamic Filter-
ing” (MADF) module. This is a deep convolutional neural
network consisting of three main stages: the encoder, the
recovery decoder, and the refinement decoder. The architecture
is similar in nature to a U-shaped encoder-decoder network that
encodes the semantic information from the valid pixels of the
masked image into multiple-level feature maps, which are later
decoded into the low-level pixel values.

The encoder provides the high-level feature maps using the
information from the input damaged image and the corresp-
onding binary mask. In particular, rather than using fixed
kernels, it uses the MADF module to dynamically generate
kernels for each convolutional window based on the features of
the corresponding position on the mask. The decoder step is
further divided into two stages. The recovery decoder performs
a rough filling of the holes in the feature maps and produces the
first output. A set of refinement decoders are run in parallel to
the recovery decoder, to refine the decoded feature maps.
Another distinct feature of this novel network architecture is
the use of the so-called “Point-wise Normalization” (PN) in
place of the typical “Batch Normalization” (BN) in the
refinement decoding steps, to avoid the “covariant shift”
problem arising from the difference between the statistical
properties of the features of the hole and valid pixels. We refer
the reader to Zhu et al. (2021) for a detailed discussion of the
advantages of this approach.

Although the architecture proposed in Zhu et al. (2021) is
flexible in terms of the model complexity, tuning its
hyperparameters would require many tests that are computa-
tionally expensive and time-demanding. We thus use the same
setup proposed in Zhu et al. (2021) that resulted in excellent
results on the benchmark data sets typically used to assess the
performance of the image inpainting models. In particular, each
of the encoder, recovery decoder, and refinement decoders
consists of seven levels, with the kernel size and strides of each
convolutional operation set empirically. Also the number of
refinement decoders is set to be two, as a compromise between
model performance and efficiency.

3.3. Loss Function

We use the “inpainting loss” adopted in Liu et al. (2018) and
Zhu et al. (2021) as the optimization objective. The total loss
function consists of multiple terms that depend on the output of
each decoder and are incrementally added. Different loss terms
compare different properties of the predicted and the true maps
(ground truth).

The first-order comparison is performed using the so-called
“per-pixel reconstruction loss” that is split into two terms, one
evaluated over the valid pixels (Lvalid) and one over the hole

pixels (Lhole):

( ) ( )  = -I IL
N

M
1

, 1
I

valid out gt 1
gt

( ) ( ) ( )  = - -I IL
N

M
1

1 . 2
I

hole out gt 1
gt

In Equations (1) and (2), NIgt indicates the number of elements
in the ground-truth map, M is the binary mask, Iout is the model
output, Igt is the ground-truth image, and e denotes the
element-wise product.
While the terms introduced in the previous paragraph

encourage accurate per-pixel predictions, they do not account
explicitly for larger-scale structures in the contents of the
images. The perceptual loss Lperc, introduced by Gatys et al.
(2015), forces the network to output semantically meaningful
predictions as encoded by the feature maps Ψp extracted using
the pool1, pool2, and pool3 layers of the pretrained VGG16
ImageNet (Simonyan & Zisserman 2014). By encouraging high
accuracy in several pooling layers, the perceptual loss assists in
the prediction of structures of general nature on various scales,
which is expected to be beneficial for a complex structure like
the cosmic web. This perceptual loss is given by
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where YN I
p
gt denotes the number of elements in the feature map

extracted from the VGG16 layer p, and Icomp results from the
model output with the valid pixels set to their ground-truth
values.
Further, the style loss Lstyle uses the same feature maps

extracted from the VGG16 network as those used for Lperc, but
it computes the L1 loss over their autocorrelation given by the
Gram matrix,
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where Kp= 1/(CpHpWp) is the normalization factor, with
(CpHpWp) being the size of the feature vector extracted from
layer p. In Equation (4), Cp is the number of channels while Wp

and Hp refer to the number of pixels along the width and height
of the image, respectively. The style loss Lstyle helps constrain
the texture of the predicted maps to match that of the ground
truth.
Finally, the total-variation loss Ltv is used to allow for the

spatial smoothness in the output map,
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where R represents the 1 pixel dilation of the hole region.
Different loss terms described above are weighted by the

corresponding weights and combined to provide the total loss
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function, Ltot:

( )= + + + +L L L L L L6 0.05 120 0.1 . 6tot valid hole perc style tv

The weights associated with each term in Equation (6) are
identical to those set by Liu et al. (2018), found by empirical
calibration.

It is worth noting that we deliberately choose to use a loss
function that has been trained to work directly on the images
rather than to optimize some commonly used summary statistic
such as the power spectrum or density pdf. This is because the
optimal summary statistics for cosmological information are
unknown. We postulate that this loss function, which was
developed in previous work and shown to be successful for
complex images, will be effective at reproducing salient
features of our fields. This postulation is explicitly tested in
the next section for common cosmological summary statistics
for which the loss function has not been explicitly tuned.

3.4. Training

In order to train the model, we first split the 15,000
IllustrisTNG-based CMD gas temperature maps into the train,
validation and test sets. We assign 10,000 maps to the train set,
2000 to the validation set, and 3000 to the test set.

We train the network using four NVIDIA P100 GPUs for
130 epochs. Each epoch consists of multiple iterations, with a
single iteration using a batch of 16 maps. At a given iteration,
each map is coupled with a randomly selected binary mask
from a pool of 12,000 masks for data augmentation purposes.
We apply the log10 transformation to the input maps, to reduce
the dynamic range of the temperature values, and then
normalize the training set to zero mean and unit variance
using the mean μtrain and standard deviation σtrain of the train
set. The same parameters ( )m s,train train are then used to
normalize the log10-transformed validation and test sets. We
use the Adam optimizer and set the initial learning rate to
0.0002. We use the PyTorch ReduceLROnPlateau function
to implement the update policy that decays the learning rate by
a factor of 10 if no decrease in the training loss Ltot is observed
for five consecutive epochs. The training process is completed
in approximately 24 hr. After each epoch, the model is
evaluated on the validation set in order to monitor any
overfitting to the training set.

4. Results

We evaluate the model predictions using the holdout test set
of 3000 gas temperature maps and binary masks. None of these
maps and masks is exposed to the model during training, in
order to check how well the results generalize to new data. We
first show a visual comparison of the ground truth and
predicted maps in Section 4.1. We then quantitatively assess
the reliability of the inpainted maps using the probability
density function in Section 4.2, and the 2D power spectrum in
Section 4.3. In Section 4.4, we also evaluate the performance of
the model in recovering missing data in physical fields different
from the one exposed during training.

4.1. Visual Comparison

In Figure 1, we show four temperature maps from the CMD
test set. Rather than showing the raw maps, we plot the log10 of
the temperature values to facilitate a visual inspection. From
top to bottom, the first row shows the ground-truth maps, the

second row displays the output of the reconstruction, and the
last row shows a pixel-by-pixel comparison between the
ground truth and the predicted maps. Different columns show
the results for different types (regular or irregular) and extent
(fraction of the total area covered) of the binary masks. The left
two columns contain results using irregular-shaped masks, and
a visual comparison between the ground truth and network
prediction can barely spot any difference. In the case of regular
masks in the right two columns of Figure 1, there are some
clear differences between the target and the predicted map,
even for the masks with the lower coverage (15%). This
naturally arises from the fact that whole structures are wiped
out in the masking process and the inpainting model aims at
recovering the correct style (or statistical properties) in the
reconstructed map rather than matching pixel-by-pixel the
output and the ground-truth maps. This effect is much more
pronounced for the regular masks that cover 30% of the total
pixels. Indeed, large structures in the reference map are
replaced by an ensemble of smaller structures. This result is not
surprising, because the lost information cannot be retrieved
from the valid pixels given the size of the mask relative to that
of the cosmological structures it covers and the size of the
whole map.
We also highlight the near-perfect match between the model

output and the ground-truth maps for the unmasked pixels. This
can be attributed to the “skip connection” between the input
map and the final stage of the recovery decoder (see Figure 4 in
Zhu et al. 2021).
Finally, the use of Ltv in the total loss Ltot allows a continuity

and smooth transition between the hole and valid pixels.
Indeed, in none of the cases tested in this work do we find any
artifacts at the edges of the binary masks.

4.2. Probability Density Function (PDF)

In order to quantify how closely the predicted maps match
the ground truth, we compare their probability density
functions of the temperature values. We use the p-values of
the Kolmogorov–Smirnov test (K-S test hereafter) that
quantifies the likelihood that the pixels temperature values in
the reconstructed and the ground-truth maps are drawn from the
same underlying distribution. In particular, for each map, we
estimate the p-value of the K-S test by comparing the
reconstructed and ground-truth maps in the masked region
and repeat the exercise for all 3000 maps in the test set.
Figure 2 shows the histograms of the corresponding 3000 p-
values for different choices of binary masks.
Under the null hypothesis, i.e., the temperature values in the

reconstructed and the ground-truth maps are drawn from the
same underlying distribution, we expect a uniform distribution
of the K-S test p-values. However, we notice that, for irregular
masks, the distribution peaks at p-value = 1, with a near-
exponential drop at lower p-values indicating an even stronger
agreement than that expected between two samples randomly
drawn from the same distribution. In order to observe a
distribution, such as those seen in the top panel of Figure 2, the
temperature values in a non-negligible fraction of the
reconstructed pixels must match very closely their counterparts
in the ground-truth map. On the other hand, the observed p-
values in the case of regular masks in the lower panel of
Figure 2 provide strong evidence against the null hypothesis,
especially when 30% of the pixels are masked. Although, for
regular masks covering 15% of the data, some of the maps
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exhibit p-values larger than the threshold of 0.05 that is
typically used to reject (lower p-values) or accept (larger p-
values) the null hypothesis; these form only a relatively small
fraction of the 3000 test maps.

In order to understand the trend observed in Figure 2, we
notice from Figure 1 (last row) that there is a near-perfect
match in the temperature values between the reconstructed and
the ground-truth map near the edges of the mask. However, this
is not surprising, given the use of the “per-pixel” loss and the
“total-variation” loss to train the network that together ensure
continuity in the reconstructed map between the hole and valid
pixels. On the other hand, the neural network struggles to
provide accurate reconstruction in the innermost part of larger
masked patches. For irregular masks, a smaller fraction of the
area being masked results in a lower probability of different
segments that form the mask being joined together to create a
single large patch. This increases the fraction of the hole pixels
that are close to the mask boundaries where the reconstructed
temperature field closely matches its ground-truth values. This
explains the blue histogram (irregular masks covering 15% of

the data) in the top panel of Figure 2 being more skewed
toward 1 than the red one (irregular masks erasing 30% of the
data). For regular masks, along with the aforementioned cause,
another effect that contributes to the bad performance seen in
Figure 2 (and later on in Figures 4 and 5) is the unique nature
of the structures being removed. In particular, the structure that
are erased by the regular masks are unique, and the network is
unable to retrieve the semantic features of the missing data
from the valid pixels of the map. The latter effect is field-
dependent, and we expect a much better performance in terms
of recovering both accurate probability density function and the
power spectrum for a field that is more homogeneous on the
scales of the ( )-h25 Mpc 1 2 maps, such as the temperature
fluctuations seen in the CMB.
To support the aforementioned arguments, we show two

extreme cases in Figure 3 when irregular masks covering 15%
of the pixels are applied to maps in the test set. The two
columns show the cases that result in the lowest (left column)
and highest (right column) p-values observed in the blue
histogram in the top panel of Figure 2. We notice that the

Figure 1. Temperature maps extracted from the CAMELS test set. Different columns display results applying masks of different types and extents. We show the log10
of the temperature maps for better visualization. Rows in order from top to bottom show the ground-truth maps Ilog10 gt , prediction of the network Ilog10 out , and the
difference between the ground truth and the output maps ( )I Ilog10 out gt . The contours show the area delimited by the masks. The different panels in the top two rows
share the same color scale, while the color range in the bottom row is adapted to highlight the structures in the plot.
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segments that make the irregular mask in the left column
(lowest p-value of the Kolmogorov–Smirnov test) cluster
together in correspondence with the white arrow form a large
blob where the reconstructed image differs significantly from
the ground-truth one. Similar large continuous masked regions
are absent in the right column, where the model yields a near-
perfect reconstruction.

We also investigate whether the p-values of the K-S test
correlate with any of the six cosmological or astrophysical
parameters used to run the simulations. The Pearson correlation
coefficients reported in Table 1 show that there is no significant
correlation between the K-S test p-values and any of the
simulation parameters. This indicates that the model perfor-
mance mainly depends on the properties and extent of the mask
—and not that much on the particular cosmological and
astrophysical model employed.

While the K-S test quantifies the statistical differences
between the probability density functions of the ground truth
and the predicted map, it does not indicate where these
differences originate from. To investigate if the model’s bad
performance occurs in specific regimes of the temperature
values, we compare the corresponding probability density
functions estimated from the ground truth and the predicted
maps. In particular, for each map in the test set, we apply the
log10 transformation and the min-max scaling to both the
ground truth and the model output before estimating the
probability density functions. We show the results in Figure 4,
where the y-axis shows the difference between the two
distributions averaged over 3000 maps from the test set in
units of the standard error on the mean as a function of the

min-max scaled logarithmic temperature. We note that the
disagreement between the model prediction and the ground
truth is (i) stronger in the regime of low pixel values and
improves in pixels with higher field intensity; (ii) as expected,
worse for regular masks compared to the irregular ones; and
(iii) higher for regular masks covering a larger extent of the
total area.

4.3. Power Spectrum

Besides the probability density function, another widely used
statistic in cosmology is the power spectrum, defined in this
case as

( ) ( ) ( ) ( ) ( )d - = á ñk k k kP k F F , 7D
1 1 2 1 2

where F(k) is the Fourier transform of the considered field F(x)
and δD is the Dirac delta. Note that the fields we consider are
statistically homogeneous and isotropic, so the power spectrum
only depends on the magnitude of the wavenumber, k. We use
the publicly available Pylians39 library to compute the power
spectra of the maps. In this section, we use the power spectrum
as a summary statistic to quantify the agreement between the
reconstructed maps and their unmasked versions.
The results are shown in Figure 5 for the data from the test

set, masked using irregular and regular masks. The top panels
show the power spectra measured from the masked data (red
thick and blue dashed lines), from the reconstructed maps (blue
and red dots with corresponding statistical errors), as well as
from the ground-truth maps (black thick lines) averaged over
the 3000 maps from the test set. The error bars (on red and blue
dots) and shaded bands (around the black thick lines) show the
errors on the mean of the 3000 estimates (i.e., the standard
deviation scaled by )3000 . The differences between the
power spectra from the reconstructed and the ground-truth
maps are barely visible in the top panels. We thus show the
ratio between these two quantities in the bottom panels of
Figure 5. As in the top panels, shaded bands in the bottom
panels of Figure 5 correspond to the error on the mean of 3000
estimates.
For irregular-shaped masks, we find that the power spectra of

the reconstructed maps agree very well with the reference ones.
In particular, for masks covering 15% of the total area, the
power spectra from the reconstructed maps show a systematic
bias with respect to the reference ones of less than ∼1% up to a
wavenumber of k∼ 20 hMpc−1 (blue dots with error bars in
the top left panel, blue line with shaded band in the bottom left
panel of Figure 5). The accuracy degrades only marginally for
wavenumbers below k∼ 20 hMpc−1, when extending the
analysis to irregular masks that cover 30% of the input maps
(red points in top left panel and red line in the bottom left
panel). For larger wavenumbers (up to the Nyquist wavenum-
ber of kNyq.∼ 30 hMpc−1), the power spectra estimated from
the reconstructed maps stay accurate within ∼5% (∼10%) for
irregular masks covering 15% (30%) of the area.
For regular masks that cover a continuous area of the maps,

the reconstruction is less accurate than that for the irregular-
shaped masks. As already discussed in Section 4.2, this is due
to the fact that regular-shaped masks erase entire structures in a
single large patch. Furthermore, the learning process is also
complicated by the fact that we have only very limited number

Figure 2. Distribution of the p-values of the Kolmogorov–Smirnov test
performed on the 3000 maps that form the test set. Blue and red histograms
show results for masks covering 15% and 30% of the total area, respectively.
Top panel: results applying irregular masks. Bottom panel: results when
regular-shaped masks are used. For irregular masks, the observed distribution
of the K-S test p-values in the top panel supports the null hypothesis that the
pixel values of the reconstructed and ground-truth maps are drawn from the
same distribution. For regular masks, the distributions seen in the bottom panel
indicate that the model fails to match the probability density function of the
pixel values in the ground-truth temperature maps.

9 https://pylians3.readthedocs.io
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(10) of maps for each set of simulation parameters to train the
model, far below the standard size of data sets used to train
deep convolutional neural networks. Nevertheless, the network
does an excellent job in reconstructing maps where the mask
covers 15% of the total area, with the recovered power spectra
matching the reference ones within ∼5% up to Nyquist
wavenumber of kNyq.∼ 30 hMpc−1. For regular masks that
erase 30% of the data, the agreement degrades drastically and
becomes strongly scale-dependent.

Figure 3. Two cases from the test set where the comparison of the pixel values distributions using the Kolmogorov–Smirnov test results in two extreme p-values: very
low in the left column and very high in the right column. In both cases, irregular masks that cover 15% of the data are applied. The top row shows the ground-truth
maps while the bottom row shows the reconstructed ones. In all panels, dark contours represent the edges of the binary mask. The reconstruction performs poorly in
the large contiguous masked patch highlighted by the white arrow in the left column, resulting in a low p-value. Such large continuous patches are absent in the right
column, and the model returns a near-perfect reconstruction and a high p-value.

Table 1
Correlation Coefficients between the Simulation Parameters and the Model

Performance.

Irr. 15% Irr. 30% Reg. 15% Reg. 30%

Ωm −0.041 +0.055 −0.040 −0.036
σ8 +0.075 +0.084 −0.028 −0.029
ASN1 −0.058 −0.082 +0.007 −0.002
AAGN1 +0.001 +0.007 −0.010 +0.013
ASN2 −0.001 −0.000 −0.017 +0.011
AAGN2 +0.007 +0.022 −0.007 −0.041

Note. Pearson Correlation Coefficients between the values of the six simulation
parameters and the K-S test p-values estimated using the model output for the 3000
Maps from the holdout test set. The different columns report results for irregular
(Irr.) and regular (Reg.) shaped masks covering 15% and 30% of the data.

Figure 4. Mean difference between the probability density functions of the
min-max scaled and log10-transformed temperature maps, estimated from the
model output and the corresponding ground-truth map averaged over 3000
maps in the test set, in units of the standard error on the mean. Continuous lines
show results when data are masked using irregular masks, while dashed lines
correspond to the cases when regular-shaped masks are employed. Blue and red
lines correspond to masks covering 15% and 30% of the total area,
respectively. Horizontal shaded bands delimit 1σ and 2σ intervals. It is
evident from this figure that the difference between the probability density
functions of the reconstructed values and their ground-truth counterpart is (i)
larger in the low-intensity regime, (ii) larger for regular masks compared to the
irregular masks covering the same extent, and (iii) positively correlated with
the extent of the masked regions.
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This analysis, combined with the results in Section 4.2,
shows that the neural network breaks down when large portions
of the data are erased in a single patch, while results are reliable
for the measured power spectrum in other cases explored in this
work. One natural way to improve the performance is to train
the neural network either on a larger number of simulations for
each set of cosmological and astrophysical parameters or on
data over an area much larger than the homogeneity scale of
the field.

4.4. Performance on Auxiliary Data

So far, we have used the CMD IllustrisTNG-based gas
temperature maps, split into the train, validation, and test sets,
to both train the model and test its performance on unseen data.
In this section, we use this model and try to reconstruct the
missing data in a number of different fields that are not used
during the model training. In particular, we test the perfor-
mance of the model to recover missing data in maps from other
fields, such as: (1) SIMBA-based gas temperature maps
(TSIMBA), (2) gas density (Mgas), (3) total matter density
(Mtot), (4) gas pressure (P), (5) electron density (ne), and (6) the
magnesium-to-iron ratio (Mg/Fe). Here, we limit the analysis
to irregular masks that cover 15% of the total area.

The scales of the pixel intensities in these auxiliary fields are
significantly different than the gas temperature field used to
train the model. In order to feed the neural network with pixel

values that cover a range similar to that of the training set, we
first rescale each single map to the min-max range of the gas
temperature maps in the training set and then normalize it using
the ( )m s,train train values used in Section 3.4.
The visual comparison between the ground truth and the

model output is shown in Figure 6, where each row contains
results from a different field. Except for the gas pressure (P)
maps, the differences between the model output and the ground
truth are very subtle and can be noticed only through a direct
comparison as shown in the rightmost column in Figure 6. For
the gas pressure (P) map, the model completely fails to recover
reliable estimates of the field in specific regions where the
model predicts negative pressure. We note that this mainly
occurs in the areas with low pixel values in the ground-truth
maps, in agreement with results shown in Figure 4, i.e., the
model struggles to provide accurate estimates of the field in the
low-intensity areas. While this effect is unnoticeable in other
fields, it is exacerbated for the gas pressure map. It is very
interesting to see that, even for fields that have a very different
morphology, e.g., Mg/Fe, our model is still able to inpaint
features with great success.
We also perform the analysis using the power spectrum of

the auxiliary fields and show the results in Figure 7. Although
results for all six fields are worse than those seen in Figure 5,
we notice that, for the magnesium–iron density field, the model
is able to match the reference power spectrum within ∼5% up

Figure 5. Top panels: Power spectra measured from the ground-truth gas temperature maps averaged over 3000 maps in the test set (black thick line with shaded
band), from the input maps masked using irregular-shaped masks (left panels) or regular-shaped masks (right panels) that cover 15% (blue shaded line) and 30% (red
thick line) of the total area. Results, after the reconstruction is applied, are shown as blue dots with error bars for masks covering 15% and with red dots with error bars
for those covering 30% of the area. Bottom panels: ratio between the power spectra measured from the reconstructed Pout and ground-truth maps Pref are shown when
masks cover 15% (blue line with shaded band) and 30% (red line with shaded band) of the area. All errors shown as shaded bands or error bars refer to the error on the
mean of 3000 estimates.
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Figure 6. Two-dimensional maps of six different auxiliary fields not used in the network training. From top to bottom row: SIMBA-based gas temperature map
(TSIMBA), gas density (Mgas), total matter density (Mtot), gas pressure (P), electron number density (ne), and the magnesium-to-iron ratio (Mg/Fe). Column-wise
from left to right: ground truth ( ( )Ilog10 gt ), model output ( ( )Ilog10 out ), and the difference between the model output and the ground-truth maps ( ( )I Ilog10 out gt ). For a
fixed row, the left two columns share the same color coding shown in the color bars on the left, while the range of the color map in the rightmost column is
adapted to highlight the differences between the model output and the ground-truth map. The color bars on the right show the color coding for the rightmost
column.
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to k∼ 10 hMpc−1. This can be explained by the fact that, as
seen in Figure 6, the structures in the Mg/Fe maps are less
complex compared to the other fields. These structures also
extend well beyond the typical width of the masks. Interest-
ingly, even for the SIMBA-based gas temperature maps, the
power spectra of the reconstructed maps are accurate, within
the level of 1%, only for k< 3 hMpc−1, indicating a difference
in the small-scale morphological features with respect to the
maps based on the IllustrisTNG simulations. The predicted
power spectra show a systematic error within ∼1% up to
k∼ 1 hMpc−1 for the gas density (Mgas) and the electron
density (ne) fields. This scale extends to k∼ 2 hMpc−1 for the
total matter density (Mtot) field. On the other hand, the neural
network completely fails to return reliable predictions for the
gas pressure (P) maps, resulting in a significantly biased
estimates of the power spectra. We do not attempt to provide a
physical explanation for these results and leave this for
future work.

Our analysis in this section shows that the model does not
generalize particularly well to fields it is not exposed to during
training. While the model fails to return reliable predictions for
some fields, in other cases the validity of the predictions is
limited to the largest scales (smallest wavenumbers k). These
results highlight the need to train a model specifically for the
field under investigation. In other words, our model has learned
characteristic features of the gas temperature field that,
although very generic due to the large variety of cosmological
and astrophysical models present in CMD, are still very distinct
to those present in other fields.

5. Summary and Conclusions

In this paper, we test the ability of a state-of-the-art deep
convolutional neural network architecture, based on the MADF
module, to inpaint masked pixels in 2D maps of the CAMELS
CMD. We focus our attention on the gas temperature maps
based on the IllustrisTNG simulations; CMD provides 15,000
maps obtained from 1000 state-of-the-art magnetohydro-
dynamic simulations with different values of the cosmological
and astrophysical parameters.

The data set is split into a train set of 10,000 maps, a
validation set of 2000 maps and a test set of 3000 maps. We
mimic the missing/masked data in the maps by applying two
different kinds of binary masks: (1) regular-shaped ones that
cover a continuous area of each map in a circular or rectangular
patch randomly placed within the map and (2) irregular-shaped
masks that are composed of a number of segments of various
width and length randomly placed across the map area. For
each type of mask, we test the model performance using two
different extents, covering 15% and 30% of the total area. We
train the model for 130 epochs using a batch size of 16 for a
total of 81,250 training iterations.
We check the model performance using the holdout test set

of 3000 gas temperature maps and different binary masks.
Through a qualitative visual comparison between the model
output and the target ground truth, we first show that the model
outputs are visually indistinguishable from the ground truth for
irregular masks covering either 15% or 30% of the map. The
difference becomes more evident for regular-shaped masks. In
particular, for regular masks covering 30% of the data in each
map, reticular-like artifacts start to appear in correspondence
with the masked pixels, indicating a breakdown of the model
for such a large masks. We also quantify the statistical
agreement between the output of the model and the unmasked
maps using two different summary statistics: (i) the probability
density functions and (ii) the 2D power spectrum.
We compare the temperature probability density functions of

the model output with that of the ground truth using the
Kolmogorov–Smirnov test in the masked regions. We find that,
for irregular masks, the observed distribution of the K-S test p-
values supports the null hypothesis that the reconstructed maps
follow the same distribution of the corresponding ground-truth
maps. For regular masks, on the other hand, the results of the
K-S test indicate that the model fails to match the probability
density function of the ground-truth temperature maps. In
particular, for regular masks covering 15% of the pixels, a vast
majority of the 3000 test maps exhibit a p-value < 0.05 that
indicates a rejection of the null hypothesis. For the largest
regular masks that occult 30% of the pixels, we find that the
K-S test p-values are systematically 0.05, indicating a strong
evidence against the hypothesis that the reconstructed field
matches the ground truth in distribution. We do not find any
correlation between the K-S test p-values and any of the six
simulation parameters. We also show that the main sources of
such a disagreement are the low-intensity pixels.
Estimates of the 2D power spectra highlight an excellent

agreement with a systematic error below 1%–2% up to
k∼ 20 hMpc−1 between the model output and the ground
truth when data are masked using irregular masks covering up
to 30% of the pixels. The accuracy deteriorates significantly
when regular masks are employed, although the systematic
offset remains within 5% up to the Nyquist wavenumber
k∼ kNyq. when only 15% of the pixels are masked. The model
breaks down when regular masks covering 30% of the total
area are used.
The main cause of the model breakdown when data are

erased in large patches is the unique nature of the structures
being removed combined with a smaller number of maps (for
each set of cosmological and astrophysical parameters) used
to train the network. On one hand, the neural network is
unable to retrieve the statistical properties of the missing data
from the unmasked pixels; on the other hand, it fails to learn

Figure 7. Ratio between the power spectra estimated using the model output
and the ground truth averaged over 15,000 maps. Shaded bands show the
corresponding errors on the mean. The horizontal bands delimit the 1%, 3%,
and 5% intervals around the reference. Results are shown for six different
auxiliary fields not used in the network training process. This result indicates
that the model trained on the temperature maps fails to accurately reconstruct
the masked pixels when applied to a different field. The degree at which it fails
also varies from field to field.
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the semantic features of the field from the ensemble of the
training maps for a fixed set of cosmological and astro-
physical parameters. We thus expect an improvement in the
model performance by increasing either the size of each map
or the number of maps in the training set.

Finally, we use the model that was trained on the CMD gas
temperature maps to perform inpainting on CMD maps of
different fields like the SIMBA-based gas temperature maps
(TSIMBA), the total matter density (Mtot), the gas density (Mgas),
the gas pressure (P), the magnesium-to-iron ratio (Mg/Fe), and
the electron density (ne). We find that, even when using
irregular masks that extend over 15% of the pixels, the model
performance degrades significantly compared to when it is
applied to the same field it is trained on. An even more
important result is that the model performance becomes
strongly field-dependent, indicating the need to train the model
specifically on the field under investigation.

We conclude that the model used in this work is able to
recover reliable pixel values distributions when data are
missing in irregular-shaped patches. These results hold for
gas temperature maps that span 1000 different cosmological
and astrophysical models and that exhibit very different
morphological aspects, such as halos, filaments, and voids.
The power spectra of the inpainted maps exhibit an
impressive agreement with their unmasked versions: within
1% for = -k h20 Mpcmax

1 and within 5% all the way to the
Nyquist wavenumber at k∼ 30 hMpc−1. For regular-shaped
masks, our model breaks down in recovering reliable
probability density functions for the field in the masked
patches, regardless of the extent, while it yields power
spectrum estimates accurate at 5% only when 15% of the
pixels are masked. This could be a consequence of the very
large variety of models seen by the networks; we would
expect a higher accuracy also for regular masks if the model
was trained on a very large number of images with a fixed
cosmological and astrophysical model.

The results presented in this paper have important con-
sequences for cosmological surveys, where missing, masked,
and damaged data are very common issues. This paper paves
the way to tackle these issues in a novel way. However, more
work is needed in order to apply this to real data. We plan to
pursue this direction in future work.

This work has made use of the Tiger cluster of Princeton
University. The CAMELS Multifield Data set (CMD) is pub-
licly available at https://camels-multifield-dataset.readthedocs.
io. Details on the CAMELS simulations can be found at https://
www.camel-simulations.org.
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