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This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) be-
tween a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using sec-
ond order perturbation theory, and where the donor-acceptor pair are in a homogeneous but dispersive medium. To
understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between
intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there
are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of the
entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum
dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm.
However the E2P-EA rate falls off much more quickly with separation distance than does OP-EA.

I. INTRODUCTION

Resonance energy transfer (RET) has been widely stud-
ied in the past few years due to its promising potential in
bioimaging,1,2 photovoltaics,3–5 and photosythesis.6–8 Gener-
ally, for a donor-acceptor distance smaller than the excitation
wavelength, i.e., R≪ λ , the RET rate described by Förster
theory has a distance dependence proportional to R−6, which
indicates its limitation to a very short distance. To overcome
this limitation, plasmonic nanoparticles are used to transfer
the excitation and thereby to increase the distance of RET.9,10

In order to simulate RET in a plasmonic environment, sev-
eral theoretical works11–15 have developed new methodolo-
gies and insights to study plasmon-mediated RET. To date,
these studies have focused on one-photon RET (OP-RET).
Little is known about the mechanism of RET when two entan-
gled photons are involved in the energy transfer. A simple and
effective approach for investigating the topic is to consider the
emission and absorption of a real entangled two-photon pair
between the donor and acceptor, which is a process we call en-
tangled two-photon emission/absorption (E2P-EA). An earlier
study from our group Ref. [16], developed a related theory in-
volving a donor and two separate acceptors. However, this did
not consider the case (which turns out to be more interesting)
where a single acceptor absorbs both photons.

Entangled photons are of great interest as promising can-
didates for numerous technologies. This motivates their
study using fundamental physics,17, where non-local cor-
relation of the entangled photons can involve various de-
grees of freedom such as spatial,18,19 time-frequency20 and
polarization21, These features make entangled photons use-
ful in applications involving quantum information,22,23 quan-
tum communication24,25 and quantum sensing.26–28. The most
commonly used source of entangled photons is based on spon-
taneous parametric downconversion (SPDC).29 SPDC is a
nonlinear optical process, where one pump photon of fre-

quency ωp is converted into a pair of lower frequency photons,
which are denoted the signal ωs and idler ωi photons. Typi-
cally, the generated photon pair demonstrates time-frequency
and polarization entanglement. The resulting temporal corre-
lation particularly can enhance the probability of two-photon
absorption. This phenomenon is known as entangled two-
photon absorption (ETPA). Several studies30–32 have shown
that the rate of ETPA is linearly proportional to the input
photon flux, showing that ETPA is advantageous for probing
chemical and biological systems compared with the higher in-
tensities that are needed for classical two-photon absorption.

In addition to SPDC, another entangled photon source in-
volves semiconductor quantum dots (QDs).33–35 QDs can be
regarded as a cascade emitter. The energy levels can be mod-
eled as a four-level system, which consists of the ground state
(|g⟩), two degenerate intermediate exciton states with different
spin configurations (|XH(V )⟩) and the biexciton state (|XX⟩).
Often this energy level structure is simplified to three levels,
and if the rate of emission of the first photon (starting in the
biexciton state) is slow compared to the second, the resulting
photons can be highly entangled. The cascade emitter is a
point-like source in this treatment, emitting light from a sin-
gle location. In contrast, SPDC uses a nonlinear crystal as
the emitter, leading to photons that are plane waves. This
difference in the emission process results in different prop-
erties including the two-photon wavefunction, the entangle-
ment time and entanglement area. While recent studies have
largely focused on the physical processes involved in SPDC
light, the processes involved in cascade emitters remain un-
clear. In Ref. [36], the entangled photon properties such as
Schmidt numbers and heralding were studied for quantum dot
emitters that were modeled as a cascade source. In Ref. [37],
quantum dot emitters in polarized cavities were considered.

In this paper, we present a formulation to understand entan-
gled two-photon emission/absorption (E2P-EA) for a cascade
emitter treated as a many-level system that excites an absorber
that can have any number of energy levels. In Section II, we
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FIG. 1. Schematic of the entangled two-photon emission/absorption
between the three-level donor and the three-level acceptor. (a) The
pathway where the irst emitted photonωkis absorbed by the donor
irst and the second emitted photonωqis absorbed second. (b) The
pathway where the second emitted photonωqis absorbed by the
donor irst and the irst emitted photonωkis absorbed second.

derive an expression for the E2P-EA rate using second order
perturbation theory. In Section III, we analyze how the dipole
orientation, radiative lifetime, energy detuning, distance and
entanglement time impact the E2P-EA rate. In Section IV, we
summarize the article.

II. METHODS

To fully capture the essential physics of RET when entan-
gled two-photons are involved, we need to consider a pertur-
bative expansion to fourth order, as has been done in the past
for determining Casimir-van der Waals interactions.38How-
ever, by simplifying the process as separate but linked emis-
sion and absorption events involving a pair of entangled pho-
tons, we can gain some insights into the underlying physics.
Indeed, if we derive the analogous expression for one-photon
emission/absorption (OP-EA) within the rotating-wave ap-
proximation (details are in Appendix A), we show that this
rate is equivalent to the fully retarded version of Förster the-
ory. This gives us a starting point for deriving an expres-
sion for the rate of entangled two-photon emission/absorption
(E2P-EA), and the resulting expression allows us to under-
stand the inluence of time-frequency entanglement on the
process. Nevertheless, it is necessary to keep in mind that the
rotating-wave approximation and the neglect of virtual pho-
tons can lead to the omission of contributions that are present
in the 4th order theory. We also note that our E2P-EA expres-
sion assumes that the ground and two-photon excited states
have zero probability for one-photon excitation, as is rigor-
ously true for molecules with inversion symmetry but often
found in other situations.

We consider the emission/absorption mediated by a pair of
entangled photons between a single cascade donor and a sin-
gle acceptor in a homogeneous dispersive medium. The emit-
ter, acceptor and the ield are treated fully quantum mechani-
cally. The Hamiltonian for the acceptor, under the dipole and

rotating-wave approximations, can be expressed as

H=H0+Vint(t)

=∑
m

h̄ωmgb̂
†
mgb̂mg+∑

m

h̄ωem̂b
†
em̂bem

+h̄∑
λ
∑
l

ωl̂a
λ†
lâ
λ
l+Vint(t), (1)

whereg,mandedenote the ground, intermediate, and inal
states, including the possibility of many intermediates (see
FIG. 1). Alsob̂mg=|gm|,̂bem=|m e|and ̂a

λ
lis the an-

nihilation operator for a photon of frequencyωland polar-
izationλ. Hereωmgdescribes the transition frequency from
the ground state to the intermediate state;ωemdescribes the
transition frequency from the intermediate state to the excited
state. The light-matter coupling in the interaction picture is
given by

Vint(t)=∑
m

h̄̂b†mg(t)∑
λ
∑
l

Eλmg(ωl)e
ikl·Râλl(t)+H.c.

+∑
m

h̄̂b†em(t)∑
λ
∑
l

Eλem(ωl)e
ikl·Râλl(t)+H.c. (2)

where b̂mg(em)(t) =b̂mg(em)exp(−iωmg(em)t), âλl(t) =

âλlexp(−iωlt),E
λ
mg(em)(ωl)=−µmg(em)·̂e

λ
kl

ωl
2̄hεV. Here,kl

is the wave vector of the ield;Ris the spatial displacement
vector between the donor and the acceptor;µmg(em)is the

transition dipole of the acceptor;̂eλklis the polarization vector;

εis the permittivity;Vis the volume. Since the medium is
dispersive, the permittivity is a function of frequency.
We then consider the entangled two-photon state generated

by an arbitrary cascade emitter. Initially, the cascade emitter
is in the excited state|a. Sequential decay goes to interme-
diate state|bs and then to state|c, leading to emission of
the entangled photon pair. To include for many intermediate
states of the emitter, we usesto label all the possible inter-
mediate states|bs of the emitter. We assume that the time
tis larger than the decay lifetime of the emissions such that
t γ−1αs,γ

−1
βsto make sure the photon pair has reached the ac-

ceptor. As shown in Appendix B, based on work presented in
Ref. [39], the initial state of the system can be expressed as

|i=∑
s
∑
k,q
∑
λk,λq

gλkαs,kg
λq
βs,q

(ωq−ωβs+iγβs)(ωk+ωq−ωαs−ωβs+iγαs)

×|1λkk,1
λq
q;g, (3)

where gλkαs,k = −µαs·̂e
λk
k

ωk
2̄hεV andg

λq
βs,q = −µβs·

ê
λq
q

ωq
2̄hεV. Here,µαsandµβsdescribe the transition dipoles

of the donor from state|ato state|bs and from state|bs
to state|c, respectively;ωαsandωβsdescribe the transition
frequencies of the donor from state|ato state|bsand from
state|bs to state|c, respectively. Because Eq. (3) cannot

be factorized into the product of|1λkk and|1
λq
q , the state

is entangled in frequency. The entanglement of the state is
maximized whenγβs γαs. Note that the long-time limit,
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i.e., t ≫ γ−1
αs ,γ

−1
β s , allows us to discard some terms in Eq. (3),

which are proportional to exp(−iγαst) and exp(−iγβ st). These
terms primarily matter in the transient dynamics and in the
non-resonance cases, which are not our present concern.

When second-order perturbation theory is applied to the
evolution of the acceptor while interacting with the entangled
photons, the excitation probability amplitude is described as

M =− 1
h̄2 ⟨ f |

∫ t

0
dt2
∫ t2

0
dt1Vint(t2)Vint(t1)|i⟩ (4)

In Eq. (4), |i⟩ corresponds to the initial state of the sys-

tem, given by Eq. (3); | f ⟩ corresponds to the final state of the
system, which is given by | f ⟩ = |0;e⟩. This means that the
initial state corresponds to the acceptor being in the ground
state and the field being in a two-photon state; the final state
corresponds to the acceptor being in the excited state and the
field being in the vacuum state. Since there are two possible
pathways for the two-photon emission/absorption, we have to
consider two time orderings for the interactions. Then, the
excitation probability amplitude is

M = M1 +M2

= ∑
k,q

∑
λk,λq

∑
s,m

{∫ t

0
dt2
∫ t2

0
dt1

gλk
αs,kgλq

β s,q

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

×
(
⟨ f |Vint(t2)|0λk

k ,1λq
q ;m⟩⟨m;0λk

k ,1λq
q |Vint(t1)|1λk

k ,1λq
q ;g⟩

+⟨ f |Vint(t2)|1λk
k ,0λq

q ;m⟩⟨m;1λk
k ,0λq

q |Vint(t1)|1λk
k ,1λq

q ;g⟩
)}

, (5)

where for completeness, we let the summation index m in-
clude all the possible intermediate states of the acceptor rather
than just one state. As shown in FIG. 1, the two terms, M1
and M2, correspond to the time-ordered pathways where (i)
the first emitted photon ωk is absorbed first, and (ii) the first
emitted photon ωk is absorbed second, respectively.

Assuming the frequency of the field is continuous, which
is true in unbounded space, the summation over k,q can be

replaced by an integral,

∑
k,q
→
(

V
(2π)3

)2 ∫
d3k

∫
d3q, (6)

where V is the volume. To evaluate the integral over k and
q, the dispersion relation between the wavenumber and the
frequency is required. Since we assume the donor and ac-
ceptor are in dispersive medium, not vacuum, we have k ≈
kα +

dk
dω

(ωk−ωα)= kα +
ωk−ωα

vα
, where vα is the group veloc-

ity and ωα is the averaged frequency of the photon. Because it
is a group velocity, the index s is left out and the group veloc-
ity represents an average over the possible intermediate states.
As shown in Appendix C, we can derive

M1 ≈
eiφ

h̄2 ∑
s,m

{(
µαs ·

←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)
×
∫ t

0
dt2
∫ t2

0
dt1ei(ωemt2+ωmgt1)e−(iωαs+iωβ s+γαs)(t1− R

vα
)
Θ[t1−

R
vα

]e
−(iωβ s+γβ s)(t2− R

v
β
−t1+ R

vα
)
Θ[t2−

R
vβ

− t1 +
R
vα

]

}
, (7)

where φ = (kα −ωα/vα)(qβ −ωβ/vβ )R2 is a constant phase
factor, Θ is a unit step function, vα and vβ are the group ve-
locities of the photons with frequencies ωα and ωβ , respec-

tively. Here,
←→
θ (ωα(β )s,R) is the electric dipole-dipole cou-

pling tensor,40–45 where the matrix element is described as
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θi j(ωαs,R) =
ω3

αse
iωαsR/cαs

4πε(ωαs)c3
αs

[
(δi j−3eRieR j)

(
c3

αs

ω3
αsR3

− ic2
αs

ω2
αsR2

)
− (δi j− eRieR j)

cαs

ωαsR

]
, (8)

where cαs is the speed of light in the dispersive medium, cαs = c/
√

ε(ωαs)/ε0. When vα < vβ , the time integration yields

M1 ≈−
eiφ

h̄2 ∑
s,m

(
µαs ·

←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)
e

i(ωem
R

v
β
+ωmg

R
vα

) e−(iωβ s−iωem+γβ s)Te

i(ωαs−ωmg)+(γαs− γβ s)

1− e−(iδ+γαs)(t− R
vα

)

iδ + γαs
,

(9)

where the detuning is defined as δ ≡ ωαs +ωβ s−ωmg−ωem.
Since the detuning is determined by the initial and final states
of the emitter and acceptor, it is independent of s and m. Here,
we define Te, the entanglement time, similar to Ref. [46] as
follows

Te ≡
R
vα

− R
vβ

. (10)

Even though Eq. (10) has the same expression as the entan-
glement time used for a SPDC source of photons, there is a
subtle difference between them. For SPDC, the entanglement

time is the maximum time difference between detection of the
two photons. On the other hand, for a cascade emitter, the
entanglement time is the minimum time difference between
detection of the two photons. The discrepancy arises from the
different ways in which two emission processes occur. The
entanglement time is determined by the distance between the
donor and acceptor, and the group velocity of the two pho-
tons. Experimentally, one can adjust the entanglement time
by changing the distance between the donor and acceptor, or
by altering the dispersive medium.

Likewise, we have

M2 ≈
eiφ

h̄2 ∑
s,m

(
µαs ·

←→
θ (ωαs,R) ·µem

)(
µβ s ·

←→
θ (ωβ s,R) ·µmg

)
e

i(ωem
R

vα
+ωmg

R
v
β
) 1− e−(iωβ s−iωmg+γβ s)Te

i(ωβ s−ωmg)+ γβ s

1− e−(iδ+γαs)(t− R
vα

)

iδ + γαs
.

(11)

If we assume the difference between the two terms, ωem
R
vα

+

ωmg
R
vβ

and ωem
R
vβ

+ωmg
R
vα

is negligible, then the excitation
probability is given by

PE2P(t) =|M1 +M2|2

=

∣∣∣∣∣∣∑s,m

((

µαs ·
←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)
e−(iωβ s−iωem+γβ s)Te

ih̄(ωαs−ωmg)+ h̄(γαs− γβ s)

+

(
µαs ·

←→
θ (ωαs,R) ·µem

)(
µβ s ·

←→
θ (ωβ s,R) ·µmg

)
(1− e−(iωβ s−iωmg+γβ s)Te)

ih̄(ωβ s−ωmg)+ h̄γβ s

)
× 1− e−(iδ+γαs)(t− R

vα
)

ih̄δ + h̄γαs


∣∣∣∣∣∣
2

(12)

We assume γβ s ≫ γαs, which corresponds to the condition where the photons are highly entangled. As γαs≪ δ , we de-
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rive the following expression for the rate of E2P-EA

K = lim
t→∞

PE2P(t)
t

=
2π

h̄

∣∣∣∣∣∣∑s,m

(
µαs ·

←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)
e−(iωβ s−iωem+γβ s)Te

ih̄(ωαs−ωmg)− h̄γβ s

+

(
µαs ·

←→
θ (ωαs,R) ·µem

)(
µβ s ·

←→
θ (ωβ s,R) ·µmg

)
(1− e−(iωβ s−iωmg+γβ s)Te)

ih̄(ωβ s−ωmg)+ h̄γβ s


∣∣∣∣∣∣
2

δ (Eδ ). (13)

Note that since we assume γαs ≪ δ , the index s drops out
in the expression involving the Dirac delta function, which
means that energy conservation is not dependent on the inter-
mediate states.

To compute Eq. (13) numerically, we replace the Dirac
delta function δ (Eδ ) with the ETPA line shape function,
ge(ω f ), as previously derived47. In this function, the ETPA
linewidth is determined by the spontaneous radiative lifetime
from the Fermi’s golden rule, and this leads to a resonant line-
shape given by:

ge(ω f ) = τr =

[
∑
j< f

1
3πε h̄

(
|ω j f |

c

)3

|µ j f |2
]−1

. (14)

Eq. (13) in combination with Eq. (14) provide the gov-
erning equations describing the entangled two-photon emis-
sion/absorption rate between a single many-level cascade
donor and a single acceptor. Our formula gives a convenient
way to analyze the effects of entanglement, energy detuning,
and entanglement time on the emission/absorption rate, using
input from electronic structure calculations. In addition, we
would like to emphasize that our model can be applied to any
molecule as acceptor, and is not limited to a three-level sys-
tem.

III. RESULTS AND DISCUSSION

Let us first focus our attention on the excitation probability
for entangled photons generated by a cascade emitter (PE2P) in
comparison to the excitation probability for uncorrelated pho-
tons generated by two separate emitters (PS2P). For simplicity,
we only consider one intermediate state in the emitter. Thus,
the index s is left out throughout this section. Here, PE2P is
calculated according to Eq. (12); PS2P is given as follows (see

Appendix D)

PS2P = ∑
m

∣∣∣∣∣∣
(
µα ·
←→
θ (ωα ,R) ·µmg

)(
µβ ·
←→
θ (ωβ ,R) ·µem

)
ih̄(ωα −ωmg)+ h̄γα

+

(
µα ·
←→
θ (ωα ,R) ·µem

)(
µβ ·
←→
θ (ωβ ,R) ·µmg

)
ih̄(ωβ −ωmg)+ h̄γβ

∣∣∣∣∣∣
2

×

∣∣∣∣∣1− e−(iδ+γα+γβ )(t− R
vα

)

ih̄δ + h̄(γα + γβ )

∣∣∣∣∣
2

. (15)

One of the notable differences between PE2P and PS2P is that
in terms of the time-dependent part, PE2P is proportional to
1/γ2

α and PS2P is proportional to 1/(γα + γβ )
2. In the case

γβ ≫ γα where the entangled photons are highly correlated
in the time domain, PE2P is larger than PS2P. That is, the ex-
citation using entangled photons is more likely to occur than
excitation using uncorrelated photons. To demonstrate the dif-
ference, we analyze the ratio of PE2P and PS2P as a function
of γβ and ∆ ≡ ωα −ωmg, as shown in Fig. 2. For simplic-
ity, we consider a three-level quantum dot as donor and an-
other three-level quantum dot as acceptor. The parameters are
chosen using a InAs quantum dot embedded in a GaAs/AlAs
planar microcavity48–50 as the donor. This leads to the pa-
rameters ωα = 1.398 eV, ωβ = 1.42 eV, δ = ωα + ωβ −
ωmg −ωem = 0 eV, µα = µβ = µem = µmg = (0,0,10) D,
R = (10,0,0) nm, γα = 0.005 eV, Te = 0 fs and t = ∞. Fig-
ure 2 shows that PE2P can be three orders of magnitude larger
than PS2P. In addition, the ratio PE2P/PS2P becomes larger
when γβ and ∆ are larger.

To further analyze Eqs. (12) and (15), we consider the case
where the emitter only has one intermediate state and the
condition, γα ≫ γβ , where the two photons are minimally
entangled. In other words, the second photon is emitted a
long time after the first photon. Also, we choose a value of
the entanglement time so that exp[−(iωβ − iωem + γβ )Te] =
1− exp[−(iωβ − iωmg + γβ )Te] as this makes the two path-
ways contribute equally to the rate. In this limit, Eq. (12) can
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FIG. 2. The ratio of the excitation probability for entangled two-
photon emission/absorption (PE2P) to the uncorrelated two-photon
emission/absorption result (PS2P). Here, γβ is the decay rate of the
donor from state |b⟩ to |c⟩ and ∆≡ ωα −ωmg.

be approximated as

PE2P ≈∑
m

∣∣∣∣∣∣
(
µα ·
←→
θ (ωα ,R) ·µmg

)(
µβ ·
←→
θ (ωβ ,R) ·µem

)
ih̄(ωα −ωmg)+ h̄γα

+

(
µα ·
←→
θ (ωα ,R) ·µem

)(
µβ ·
←→
θ (ωβ ,R) ·µmg

)
ih̄(ωβ −ωmg)+ h̄γβ

∣∣∣∣∣∣
2

×

∣∣∣∣∣1− e−(iδ+γα )(t− R
vα

)

ih̄δ + h̄γα

∣∣∣∣∣
2

. (16)

Eq. (16) is approximately the same as Eq. (15) as γα ≫ γβ ,
which means the excitation probability using entangled and
unentangled photons are equivalent under such condition.
This makes sense because minimally entangled photons can
be regarded as uncorrelated photons.

Let us now further examine the main result of our work,
Eq. (13). In many respects, Eq. (13) resembles the usual
one-photon emission/absorption rate (Appendix A). First, fac-
tors related to the orientation of the transition dipole moment
are determined by the electric dipole-dipole coupling tensor,
Eq. (8), as in OP-EA. However, two pairs of dipoles are in-
volved in the emission/absorption process, rather than a sin-
gle pair as in OP-EA. Also, the rate is smaller when the pho-
ton energy is detuned from resonance, i.e., when ωα −ωmg
and ωβ −ωmg are nonzero. In addition, there is a significant
difference between Eq. (13) and the usual one-photon emis-
sion/absorption rate, concerning the exponential term contain-
ing the entanglement time, Te. In Eq. (13), Te determines
which pathway dominates during the emission/absorption.
The entanglement time, Te, is the difference between the tran-
sit times of the two photons from donor to acceptor, i.e.,
R
vα
− R

vβ
. When Te is small, the transit time of the first emit-

ted photon is almost the same as the second emitted photon.

10−1 100
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108

R
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e 
(�

−�ퟣ
)

FIG. 3. Log-log plot showing E2T-EA rate as a function of distance
R. We consider µα = µβ = µem = µmg = 10 D and the transition
moments are all aligned in the same direction. Here, ωα = 1.398 eV,
ωβ = 1.42 eV, ωem = 1.398 eV, ωmg = 1.42 eV, γα = 0.005 eV,
γβ = 0.05 eV and Te = 0 fs.

Hence, the first emitted photon is more likely to arrive at the
acceptor first, which means M1 (FIG. 1 (a)) dominates in the
emission/absorption. When Te is large, the transit time of
the first emitted photon is longer than the second, in which
case the first emitted photon is more likely to arrive at the
acceptor second, and M2 (FIG. 1 (b)) dominates in the emis-
sion/absorption. Thus we see that the entanglement time, Te,
plays a crucial role in determining which pathway dominates
during the E2P-EA process. Furthermore, the exponential
terms containing Te cause quantum interference.

In order to gain insight into how E2P-EA varies with donor-
acceptor separation, we show a log-log plot of the E2P-EA
rate as a function of R between 10 nm and 1 µm in FIG. 3.
The slope is about −12 between 10 nm and 100 nm, then
it changes to about −4 between 200 nm and 1 µm. This
shows that the E2P-EA rate is proportional to R−12 in the
near-zone (ωR/c ≪ 1) and proportional to R−4 in the far-
zone (ωR/c≫ 1), which is consistent with OP-EA where the
exponents are half of these values. The slope of the line in
FIG. 3 changes around R = 150 nm. Since the frequency we
used here is around 1.4 eV (885 nm), we expect the transition
point occurs at ωR/c≈ 1, where the corresponding distance is
885/2π ≈ 140 nm. The result is in good agreement with our
prediction. Since E2P-EA decays a lot faster than OP-EA, it
will be difficult to observe E2P-EA in long distance. Our cal-
culation (FIG. 3) suggests that E2P-EA is most likely to occur
when R ⪅ 10 nm. In Appendix E, we show the formulation
of E2P-EA for a one-dimensional system where the donor and
acceptor are placed in a waveguide. In that case the E2P-EA
rate is independent of the distance, which suggests that con-
fining E2P-EA to one dimension provides a way to simplify
the observation of E2P-EA.

It is of particular importance to evaluate the OP-EA and
E2P-EA rates for the same system so that we can understand
which process dominates in the near-zone. In FIG. 4, we show
the comparison of OP-EA and E2P-EA rates as a function
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FIG. 4. Comparison of one-photon emission/absorption (OP-EA)
and entangled two-photon emission/absorption (E2P-EA) rates as a
function of diatance R. For OP-EA, ωD = ωA = 2.8 eV. Here, µD =
µA = 10 D in the solid black line; µD = µA = 20 D in the dashed
black line. For E2P-EA, we consider µα = µβ = µem = µmg = 10 D
and they are all aligned in the same direction. Here, ωα = 1.4 eV,
ωβ = 1.4 eV, ωem = 1.4 eV, ωmg = 1.4 eV, γα = 0.005 eV, γβ =
0.05 eV and Te = 0 fs.

of distance R between 5 nm and 20 nm. These results are
based on the following parameters. For E2P-EA, we consider
a three-level quantum dot as emitter and a three-level quantum
dot as acceptor. The parameters are µα = µβ = µem = µmg =
10 D with all transition moments being aligned in the same
direction. Here, ωα = 1.4 eV, ωβ = 1.4 eV, ωem = 1.4 eV,
ωmg = 1.4 eV, γα = 0.005 eV, γβ = 0.05 eV and Te = 0 fs. For
OP-EA, ωD = ωA = 2.8 eV, where ωD(A) is the one-photon
transition frequency of the donor (acceptor). Two sets of the
transition dipole moments are considered, where (i) µD and
µA are the same as the ones used in E2P-EA and (ii) µD and
µA are twice as large as the ones used in E2P-EA. The figure
shows that the E2P-EA rate is comparable to the OP-EA rate
in the near-zone. Indeed, when R < 8 nm, the E2P-EA rate
can be greater than the OP-EA rate. Note that the E2P-EA
rate reaches 1013 s−1 when R = 5 nm. The rate of 1013 s−1

is possible, but it is close to the limit where the perturbation
theory would break down.

Next, we study the entangled two-photon emis-
sion/absorption rate as a function of Te (x-axis) and γβ

(y-axis). For simplicity, we use a three-level quantum
dot as donor and as acceptor. To explore how the energy
arrangement of the three-level models affect the emis-
sion/absorption rate, we consider two cases, where (i)
the energy levels of the two quantum dots are perfectly
aligned and (ii) the energy levels of the two quantum
dots are mismatched. The results are shown as colormaps
in Fig. 5. Here, we use the parameters ωα = 1.398 eV,
ωβ = 1.42 eV, δ = ωα + ωβ − ωmg − ωem = 0 eV,
µα = µβ = µem = µmg = (0,0,10) D, R = (10,0,0) nm,
γα = 0.005 eV. In Fig. 5 (a), we have ωem = 1.398 eV and
ωmg = 1.42 eV, which corresponds to the case where the
energy levels are perfectly aligned. In Fig. 5 (b), we have
ωem = 1.898 eV and ωmg = 0.92 eV, which corresponds to
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FIG. 5. Entangled two-photon emission/absorption rate as a function
of Te (x-axis) and γβ (y-axis). We consider µα = µβ = µem = µmg =
10 D and all transition moments are aligned in the same direction.
The distance between the donor and the acceptor is 10 nm, and γα =
0.005 eV. (a) Here, ωα = 1.398 eV, ωβ = 1.42 eV, ωem = 1.398 eV
and ωmg = 1.42 eV. (b) Here, ωα = 1.398 eV, ωβ = 1.42 eV, ωem =
1.898 eV and ωmg = 0.92 eV.

the case where the energy levels mismatch.

Fig. 5 (a) shows that for the case where energy levels
are perfectly aligned, there are two areas which give rela-
tively large emission/absorption rates. In particular, the emis-
sion/absorption rate is greater (i) when the entanglement time
is close to zero and (ii) when the entanglement time is large.
This feature demonstrates the fact discussed earlier that the
entanglement time determines which pathway dominates in
the emission/absorption process. When Te→ 0, exp[−(iωβ −
iωem + γβ )Te]→ 1 and the first term in Eq. (13) dominates,
whereas when Te → ∞, exp[−(iωβ − iωem + γβ )Te]→ 0, and
the second term in Eq. (13) dominates. Between the two areas,
the emission/absorption rate is relatively small due to destruc-
tive interference between the two pathways. Furthermore, the
rate has an inverse dependence on γβ . This is due to the fact
that according to the earlier equation, Eq. (3), the spectrum of
the entangled two-photon state becomes broader when γβ gets
larger. This results in a smaller amplitude for the resonant fre-
quency in the entangled two-photon state. Note that in Fig. 5
(a), there is no oscillation with respect to the entanglement
time due to interference. The reason is that the energy levels
are perfectly aligned and the two photons are nearly degener-
ate. Thus, ωβ −ωem and ωβ −ωmg are very small, and very
large Te is required to see oscillations. Besides, exp(−γβ Te)
introduces dephasing into the expression, so the oscillation is
washed out for large Te.

Fig. 5 (b) shows that there is a clear oscillating pattern with
respect to the entanglement time for the case where energy
levels mismatch. The oscillation arises from the exponential
term in the numerator of Eq. (13). The period of the oscillation
is about 8 fs. The energy difference between the donor and
the acceptor is 0.5 eV (∼8.3 fs), which gives a good account
of the period. Furthermore, we can see interference of the two
pathways when Te∼ 4 fs. The interference is destructive when
0 < Te < 4 fs; the interference is constructive when 4 < Te <
8 fs. In general, the rate has an inverse dependence on γβ .
However, when constructive interference dominates, the rate
peaks at a certain value of γβ , which is around 0.12 eV.
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IV. CONCLUSION

In summary, we have derived a new formulation for the en-
tangled two-photon resonance emission/absorption (E2P-EA)
rate between a donor and an acceptor using second-order per-
turbation theory for the cascade emission that is coupled to
second-order perturbation theory for the absorption. With this
result, we have demonstrated several characteristics of E2P-
EA using a temporally entangled two-photon state. First,
we have shown that the probability of E2P-EA can be en-
hanced by orders of magnitude compared to the one with
two unentangled photons. The higher the entanglement of
the two photons is, the larger the enhancement is. Second,
we have shown how the rate is affected by the two possible
pathways for the emission/absorption, and that the entangle-
ment time determines which pathway dominates during the
emission/absorption, and when there might be interference be-
tween the two pathways. Finally, we have shown that the E2P-
EA rate is comparable to one-photon emission/absorption
(OP-EA) in the near-zone, for the specific choices of energy
levels and transition moments that we considered. More-
over, E2P-EA could dominate when excitation of the accep-
tor species by one photon is forbidden but two-photons are
allowed. This suggests that some experiments that were pre-
viously thought to involve OP-EA are actually E2P-EA.
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Appendix A: One-Photon Emission/Absorption

For one-photon emission/absorption, the initial state after
the emission is given as

|i⟩= ∑
k

∑
λk

gλk
k

(ωk−ωD)+ iγ
|1λk

k ,g⟩ (A1)

, where ωD is the transition frequency from the ground state
to the excited state of the donor and γ is the decay rate of the

excited state of the donor. According to first-order perturba-
tion theory, the excitation probability amplitude is described
as

M =
1
h̄
⟨ f |
∫ t

0
dt1Vint(t1)|i⟩

= ∑
k

∑
λk

∫ t

0
dt1

gλk
k

(ωk−ωD)+ iγ
⟨0 : e|Vint(t1)|1k;g⟩

=
1
h̄
(µD ·

←→
θ (ωD,R) ·µA)

∫ t

0
dt1e(iωA−iωD+γ)(t1−R/c)

=
1
h̄
(µD ·

←→
θ (ωD,R) ·µA)

(
1− e(iωA−iωD+γ)(t−R/c)

i(ωA−ωD)+ γ

)
(A2)

As γ≪ |ωD−ωA|, we derive the following expression for the
rate of the OPEA

K =
2π

h̄
(µD ·

←→
θ (ωD,R) ·µA)

2
δ (ωA−ωD) (A3)

Appendix B: Entangled two-photon state

The entangled two-photon state is derived in the same way
as Ref. [39]. The state of the molecule-field system is given
by

|ψ(t)⟩= ca(t)|a,0⟩+∑
s

∑
k

cbs,k|bs,1k⟩+∑
k,q

cc,k,q|c,1k,1q⟩

(B1)
According to the Schrödinger equation |ψ̇(t)⟩ =
− i

h̄Vint(t)|ψ(t)⟩, we obtain the equation of motions of
ca, cbs,k and cc,k,q as follows

ċa =− i∑
s

∑
k

∑
λk

gλk∗
αs,kcbs,kei(ωαs−ωk)t (B2)

ċbs,k =− i∑
s

∑
λk

gλk
αs,kcae−i(ωαs−ωk)t

− i∑
s

∑
q

∑
λq

gλq∗
βs,q

cc,k,qei(ωβs−ωq)t (B3)

ċc,k,q =− i∑
s

∑
λq

gλq
βs,q

cbs,ke−i(ωβs−ωq)t (B4)

Using the Weisskopf-Wigner approximation and solving the
differential equations, we have

cc,k,q(t = ∞)

= ∑
s

∑
k,q

∑
λk,λq

gλk
αs,kgλq

β s,q

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

(B5)

, which is the coefficient of the entangled two-photon state.
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Appendix C: Derivation of Eq. (7)

Replacing the summation over k and q by integrals, we ob-
tain

M1 =

(
V

(2π)3

)2

∑
λk,λq

∑
s,m

(∫ t

0
dt2
∫ t2

0
dt1
∫

d3k
∫

d3q

×
gλk

αs,kgλq
β s,q

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

×⟨ f |Vint(t2)|0λk
k ,1λq

q ;m⟩⟨m;0λk
k ,1λq

q |Vint(t1)|1λk
k ,1λq

q ;g⟩
)

(C1)

Inserting all the coupling terms and evaluating the two brack-
ets, we have

M1 =

(
1

16π3h̄ε

)2

∑
s,m

{∫ t

0
dt2
∫ t2

0
dt1
∫

∞

0
k2dk

∫
dΩk

×
∫

∞

0
q2dq

∫
dΩqei(ωemt2+ωmgt1)e−i(ωkt2+ωqt1)

×
ωkωqei(k·R+q·R′)

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

×∑
λk

[
(µαs · êλk

k )(µem · êλk
k )
]
∑
λq

[
(µβ s · ê

λq
q )(µmg · ê

λq
q )
]}

(C2)

Using the identity of the polarization sum,

∑
λk

êλk
ki êλk

k j = δi j− k̂ik̂ j (C3)

and the relation,

−
∫

k̂ik̂ je±ik·RdΩk =
1
k2 ∇i∇ j

∫
e±ik·RdΩk (C4)

and integrating over Ωk,Ωq, we can rewrite M1 as

M1 =

(
1

8π2h̄ε

)2

∑
s,m

{
∑

i, j∈{1,2,3}
∑

i′, j′∈{1,2,3}
µ

i
αsµ

j
emµ

i′
β sµ

j′
mg

∫ t

0
dt2
∫ t2

0
dt1ei(ωemt2+ωmgt1)

×
∫

∞

0
dk
∫

∞

0
dq
[
(−∇

2
δi j +∇i∇ j)

i(eikR− e−ikR)

R

][
(−∇

′2
δi′ j′ +∇

′
i′∇
′
j′)

i(eiqR′ − e−iqR′)

R′

]

×
ωkωqe−i(ωkt2+ωqt1)

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

}
, (C5)

where µ i
αs is the ith component of the transition dipole mo- ment of the donor; µ

j
em is the jth component of the transition

dipole moment of the acceptor. Discarding the unphysical in-
coming wave, e−ikR and e−iqR′ , we have

M1 =

(
1

8π2h̄ε

)2

∑
s,m

{
∑

i, j∈{1,2,3}
∑

i′, j′∈{1,2,3}
µ

i
αsµ

j
emµ

i′
β sµ

j′
mg

∫ t

0
dt2
∫ t2

0
dt1ei(ωemt2+ωmgt1)

×
∫

∞

0
dk
∫

∞

0
dq

eikR

R3

[
(1− ikR)(δi j−3êRiêR j)− k2R2(δi j− êRiêR j)

]
× eiqR′

R′3
[
(1− iqR′)(δi′ j′ −3êR′i′ êR′ j′)−q2R′2(δi′ j′ − êR′i′ êR′ j′)

]
×

ωkωqe−i(ωkt2+ωqt1)

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

}
(C6)

Since the emitted photons are centered around the transition frequencies, we can replace k, k2 by kα , k2
α and q, q2 by
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qβ , q2
β

. We can assume R = R′ because the distance be- tween the donor and acceptor barely changes during emis-
sion/absorption. Inserting the dispersion relation, k = kα +
ωk−ωα

vα
, yields

M1 =

(
1

2π h̄

)2

∑
s,m

{(
µαs ·

←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)∫ t

0
dt2
∫ t2

0
dt1ei(ωemt2+ωmgt1)

×eiφ
∫

∞

0
dωk

∫
∞

0
dωq

e−iωk(t2−R/vα )e−iωq(t1−R′/vβ )

(ωq−ωβ s + iγβ s)(ωk +ωq−ωαs−ωβ s + iγαs)

}
, (C7)

where φ = (kα −ωα/vα)(qβ −ω/vβ )R2 and

θi j(ωαs,R) =
ω3

αse
iωαsR/cαs

4πεc3
αs

[
(δi j−3eRieR j)

(
c3

αs

ω3
αsR3

− ic2
αs

ω2
αsR2

)
− (δi j− eRieR j)

cαs

ωαsR

]
. (C8)

Lowering the limit in the ωk and ωq integration to −∞ and performing the definite integral, we can derive

M1 ≈
eiφ

h̄2 ∑
s,m

{(
µαs ·

←→
θ (ωαs,R) ·µmg

)(
µβ s ·

←→
θ (ωβ s,R) ·µem

)
×
∫ t

0
dt2
∫ t2

0
dt1ei(ωemt2+ωmgt1)e−(iωαs+iωβ s+γαs)(t1− R

vα
)
Θ[t1−

R
vα

]e
−(iωβ s+γβ s)(t2− R

v
β
−t1+ R

vα
)
Θ[t2−

R
vβ

− t1 +
R
vα

]

}
. (C9)

Appendix D: S2P-EA

To derive the excitation probability for separated two pho-
tons, we define the initial state as follows

|iS2P⟩=∑
k

gλk
α,k

{
1

ωk−ωα + iγα

}
|1k⟩

⊗∑
q

gλq
β ,q

{
1

ωq−ωβ + iγβ

}
|1q⟩. (D1)

According to second-order perturbation theory, the excitation
amplitude is

M =− 1
h̄2 ⟨ f |

∫ t

0
dt2
∫ t2

0
dt1Vint(t2)Vint(t1)|iS2P⟩. (D2)

As a result, the excitation probability is

PS2P = ∑
m

∣∣∣∣∣∣
(
µα ·
←→
θ (ωα ,R) ·µmg

)(
µβ ·
←→
θ (ωβ ,R) ·µem

)
ih̄(ωα −ωmg)+ h̄γα

+

(
µα ·
←→
θ (ωα ,R) ·µem

)(
µβ ·
←→
θ (ωβ ,R) ·µmg

)
ih̄(ωβ −ωmg)+ h̄γβ

∣∣∣∣∣∣
2

×

∣∣∣∣∣1− e−(iδ+γα+γβ )(t− R
vα

)

ih̄δ + h̄(γα + γβ )

∣∣∣∣∣
2

. (D3)
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Appendix E: One-dimensional E2P-EA

In the one-dimensional case, the two photons propagate
along one axis. The excitation amplitude is given by

M =(
L

2π
)2

∑
s,m

{∫
dk
∫

dq
∫ t

0
dt2
∫ t2

0
dt1

gαs,kgβ s,q

(ωq−ωβ s + iγβ s)

× 1
(ωk +ωq−ωαs−ωβ s + iγαs)

×
{
⟨ f |Vint(t2)|0k,1q;m⟩⟨m;0k,1q|Vint(t1)|1k,1q;g⟩

+⟨ f |Vint(t2)|1k,0q;m⟩⟨m;1k,0q|Vint(t1)|1k,1q;g⟩
}}

(E1)

Following steps as in the three-dimensional case, we obtain

K =
2π

h̄ ∑
s,m

{∣∣∣∣∣ |µαs||µβ s||µmg||µem|
ε2h̄2A2vα vβ

∣∣∣∣∣
2

×
∣∣∣∣ (ωαs + iγβ s)(ωβ s− iγβ s)

ih̄(ωβ s−ωmg)+ h̄γβ s

(
1− e−(iωβ s−iωmg+γβ s)Te

)
+

(ωαs + iγβ s)(ωβ s− iγβ s)

ih̄(ωαs−ωmg)− h̄γβ s
e−(iωβ s−iωem+γβ s)Te

∣∣∣∣2 δ (Eδ )

}
.

(E2)
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