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Abstract

In this paper, we develop a family of third order asymptotic-preserving (AP)
and asymptotically accurate (AA) diagonally implicit Runge-Kutta (DIRK) time dis-
cretization methods for the stiff hyperbolic relaxation systems and kinetic Bhatnagar-
Gross-Krook (BGK) model in the semi-Lagrangian (SL) setting. The methods are
constructed based on an accuracy analysis of the SL scheme for stiff hyperbolic re-
laxation systems and kinetic BGK model in the limiting fluid regime when the Knud-
sen number approaches 0. An extra order condition for the asymptotic third order
accuracy in the limiting regime is derived. Linear von Neumann stability analysis of
the proposed third order DIRK methods are performed to a simplified two-velocity
linear kinetic model. Extensive numerical tests are presented to demonstrate the AA,
AP and stability properties of our proposed schemes.
Keywords: Hyperbolic relaxation system; BGK model; semi-Lagrangian (SL) method;
diagonally implicit Runge-Kutta (DIRK) method; asymptotic-preserving; asymptotic

accuracy, von Neumann analysis.

1. Introduction. The models of interests in this paper include stiff hyperbolic
relaxation models and the BGK model, the latter of which was introduced by Bhat-
nagar, Gross and Krook [4] as a relaxation model for the Boltzmann equation. In
these models, a stiffness parameter e characterizes multi-scale regime of the model.
For example, in the BGK model, ¢ is the dimensionless Knudsen number, defined as

e = A/L with mean free path A and macroscopic characteristic length L. The BGK
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model is in the kinetic regime with ¢ = O(1) for rarefied gas, and is in the hydro-
dynamic regime with ¢ < 1. In the hydrodynamic regime, the BGK model gives
a macroscopic model such as the Euler system as e approaches 0, by the classical
Champan-Enskog expansion [8, 11]. In this paper, we consider development of high
order asymptotic preserving (AP) and asymptotic accurate (AA) numerical methods
for the above mentioned multi-scale models.

Due to the stiffness of the collision term, an explicit time discretization would
require the time step At to be O(¢), which is very expensive if € is small. To avoid
this time step restriction, people prefer to use AP schemes [24] which automatically
become consistent numerical methods for the limiting macroscopic model as ¢ — 0.
As a result, one can take At independent of ¢, and the computational cost is dramat-
ically decreased in the hydrodynamic regime, compared to explicit schemes. One
also prefers schemes with the AA property, meaning that the scheme remains its
optimal order in the hydrodynamic regime. High order AP / AA schemes for hy-
perbolic relaxation models and stiff kinetic equations have been developed based
on various frameworks, such as implicit-explicit (IMEX) Runge-Kutta (RK) methods
[23, 25, 3, 28, 29, 16, 13, 20], IMEX-multistep methods [2, 22, 14, 1], exponential-RK
methods [12, 26, 21, 18] and semi-Lagrangian methods [30, 17, 5].

For transport problems, the semi-Lagrangian (SL) method is often designed via
tracking solutions along characteristics of transport terms in time, thus easing the
classical time step restrictions. Because of its computational efficiency due to large
time stepping sizes, the SL method is popular in climate modeling [27, 33] and
plasma simulations [32]. When handling source/diffusion/relaxation terms in the
SL framework, these terms are often integrated in time along characteristics by ex-
plicit, implicit or IMEX RK or multistep type time integrators. Yet, study on asymp-
totic accuracy of the high order time integrator in the SL framework when applied to
stiff hyperbolic systems is still lacking. In fact, it is numerically observed that a third
order diagonally implicit RK (DIRK) method, when applied in the SL framework,
suffers from accuracy degeneracy, with only second order temporal convergence ob-
served in the asymptotic limit, see in [30].

In this paper, our first goal is to study the order reduction phenomenon in the



limiting regime. In particular, we conduct the accuracy analysis of DIRK methods
for both kinetic and fluid regimes in the SL setting. Our accuracy analysis is semi-
discrete in the sense that we only discretize in time, but keep the spatial operations at
the continuous level. From the accuracy analysis, we find that the traditional order
conditions of first order backward Euler method and second order DIRK (DIRK?2)
method [3] still hold in both the kinetic and fluid regimes, while one extra order
condition needs to be imposed to ensure the third order accuracy in the limiting
fluid regime. Taking this observation into consideration, we construct several new
DIRK3 methods. We also study linear stability of high order DIRK schemes, in the
SL framework, by performing the von Neumann analysis to a linear two-velocity
kinetic model with relaxation term, from which we choose a third order accurate
DIRK method in both kinetic and fluid regimes and with best linear stability property
and robustness. There are open issues remain to be addressed in the future work:
one is to optimize the stability property of AA DIRK3 methods in the SL framework;
another is that our current stability analysis is performed in the semi-discrete sense
with spatial operations kept at continuous level. Fully discrete stability analysis is
very involved, especially with the change of stencil around the feet of characteristics
when time stepping sizes are larger than the CFL limit. In fact, numerical instability
is observed for the linear two-velocity model when the time stepping size is larger
than CFL limit; while high order temporal convergence is observed for the nonlinear
BGK model with large time stepping sizes.

The rest of the paper is organized as follows. In Section 2, we introduce our
models of interests, i.e. the stiff hyperbolic relaxation systems and the BGK model.
In Section 3, the SL scheme using DIRK for integration of stiff relaxation terms along
characteristics is introduced. Section 3.2 is devoted to the accuracy analysis of the
DIRK methods, integrating along characteristics, in the limiting fluid regime. In par-
ticular, an extra order condition for third order DIRK schemes is derived and new
Butcher tableaus are constructed accordingly. The linear stability of DIRK methods
is studied in Section 4. In Section 5, we show the asymptotic accuracy and stability
property of DIRK schemes, when coupled with SL methods, via several stiff hyper-

bolic relaxation models. Conclusions are given in Section 6.



2. Stiff hyperbolic relaxation systems and BGK model. We consider

@.1) Of +v-Vaf = 20(f),

€
where f = f(z,v,t) is the probability density function (PDF) of particles that de-
pends on time ¢, position x € ), and velocity v € €,, € > 0 is a dimensionless
parameter. Q(f) is the relaxation operator that describes the interactions between
particles. In particular, @ could be linear/nonlinear stiff relaxation terms for the
following cases:

e Linear two-velocity model*

Ofr+0ufr = 5-(0(f1 + f2) — (fr — f2))
(2.2) .

Ofo— Oufo = —5(b(f1 + f2) — (f1 — f2))

where |b| < 1is a constant. (2.2) can be further written into

(2.3) @J+v&f=%QU)

of the same form as (2.1). Here v € Q, = {1, -1} with equal integration

weights, f(t,z,) = (f1, f2)* and the collision operator

(2.4) QU)(QMh+h%%h—b»).
—3(0(fi + f2) = (f1 = f2))

When Q(f) = 0, the equilibrium My (t,z) = (My, M2)7 is

Hu
(2.5) f=My=| 2 |, U={(f¢)=Ffi+f

(2.6) =) =1, (g9):= > g(v).

VEN,
When € — 0, the limit of (2.2) is the linear transport equation d;u + b0y u = 0.
e The considered BGK model

@7) Ouf +v-Vuf = +(My — )

_ utv uU—v

4This is indeed the same model as eq. (1.1) of [19] under the change of variable f; = =, f2 = 457
4




where f = f(z,v,t) is the distribution function of particles that depends on
time ¢t > 0, position € €, and velocity v € R? with d > 1. Note that
the BGK model is also of form (2.1) if Q(f) = My — f . My is the local

Maxwellian defined by

p(a,1) v — u(z, )
@8) My =My(w,v.1) = G =y P <2T(xt))

where p, u, T represent the macroscopic density, the mean velocity and the

temperature respectively. They are computed by

1 1
p:/ fdv, u=- fvdv, T:—/ flv —ul?* dv.
R4 dp Jra

R p
The macroscopic fields U with the components of the density, momentum

and energy is obtained by taking the first few moments of f:

2.9 U= (p.pu, B)" = (f¢)

with

(2.10) b= (o) = (1,v,;|v|2>T, )= [ gy

The total energy F is related to T through E = 1p|u|? + 4pT. It is easy to
check that (My¢) = U. Hence with (2.9), we see that

(2.11) (My = f)¢) =0,

namely the BGK operator satisfies the conservation of mass, momentum and
energy. Moreover, it enjoys the entropy dissipation: (My — f)log f) < 0.
See [10, 8, 9] for more details of the BGK model.

We rewrite the general stiff relaxation equation (2.1)
1
(2.12) Ouf +v-Vaf = -Qf),

where Q(f) satisfies the following properties:

e Collision invariants: there exists ¢(v) := (¢1(v),... ¢k (v))? such that

(2.13) ©@Ne) =0, (9= [ g

Recall that we have ¢(v) = 1 with K = 1 in (2.6) for the linear two-velocity

model and ¢(v) = (1,v, %|v|2)T with K = 3 in (2.10) for the BGK model.
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e Equilibrium: in the stiff limit as e — 0,
(2.14) Q(f)=0 & f=My[f]=MylU]

where U = (f¢) are the moments of f, and My only depends on f through
the moments U.
The hyperbolic relaxation system (2.2) and BGK model (2.7) clearly belong to (2.12)
with O(f) = My — f.
If we discretize the transport term in (2.12) by a SL scheme, and introduce % as

the material derivative along characteristics, then we have
d, . 1
(2.15) af:&gf—f—v-vmf:zQ(f).

From now on, we shall restrict ourselves to the 1D in both space and velocity case

and focus on the abstract ODE

(2.16) %f = %Q(f)-

3. New DIRK methods for (2.16). Due to the stiffness in (2.16) when € — 0 and
the consideration of asymptotic preservation property, it is natural for us to choose
the DIRK method as the time integration method in the SL scheme, e.g. see the SL
nodal discontinuous Galerkin (NDG) scheme [15]. However, when investigating the
proposed schemes in the limiting fluid regime, order reduction is sometimes numer-
ically observed. For example, only second order temporal convergence is observed
when a classical 3-stage DIRK3 method (B2) is used for integration along character-
istics, as shown in Figures 5.3. Such order reduction motivates us to perform accu-
racy analysis when e < 1. In this section, we present accuracy analysis in the fluid
regime, as well as the procedure of constructing high order AA DIRK methods, for
solving (2.16). To the best of our knowledge, this is the first time that the extra order
condition is recognized and truly third order DIRK discretization methods for the

limiting fluid regime are constructed in the SL setting.

3.1. The standard DIRK methods. In the scope of our current work, we keep
physical and phase space continuous and consider only the DIRK discretization of

the collision operator Q along characteristic lines. Assume a DIRK method with s
6



stages is characterized by the Butcher tableau < :; with invertible A = (a; ;) €
R***, intermediate coefficient vector ¢ = [cy,---¢s]T, and quadrature weights b7 =
[b1,- - - bs]. For the AP property, we consider only stiffly accurate (SA) DIRK method,
i.e. ¢, = 1and A(s,:) = b? (c.f. [13, Definition 3.2]), so that f"*! coincides with the
last stage of the DIRK scheme.

For simplicity of notation, let f* = f"(z,v) and f*) = f*)(x, v) to be the numer-
ical solution at time " and the intermediate numerical solution at t(*) = " + ¢, At,

k =1,---srespectively. Apply a DIRK method in the above Butcher tableau to (2.16),

the internal f(*) is given by,
() _ o AL Gy 4 At k)
(3.1) The f scheme: f*) = f Jr?Zaka(fﬂ )+ —aQ(fM), k=15
j=1

where the time step At = "1 —#". Due to the SA property, f"*! = f(*). Note that, in
the f scheme, ™ and f(/) appeared in the k-th equation are evaluated at characteristic
feet (z — cjvAt,v,t") and (x — (cx — ¢;)vAt, v, 1)) respectively. On the other hand,
when handling the nonlinear relaxation term Q(f*)) = M, l(]k) — f®), we first predict
the local Maxwellian M g“) associated with U* by taking moments of (3.1) using the
conservation property and then compute f*) via implicit time discretization solvers
along the characteristics. For more details, we refer to [15] about how to (1) use the
SL NDG scheme for approximating " ~ f(z — cxvAt, v,t") and f9 ~ flx — (cx —
c;)vAt, v,t)); (2) mitigate the nonlinearity in Q(f*)) with an explicit procedure at
each intermediate time stage.

In the following Lemma 3.1, we rewrite (3.1) in the Shu-Osher form [31], which

offers convenience for deriving order conditions in the limiting fluid regime.

LEMMA 3.1 (The f scheme in Shu-Osher form). Assume ayg, > 0. Then (3.1) is

equivalent to
k—1 k—1 Ay

(32) f® = (1 -3 bkj)f“ +D bk fO+ —a QM) k=105
j=1 j=1

where the coefficients by,; are given by the iterative relation

k—1
QAL aklbl- .
i S U
7



Proof. We use induction on k. For k = 1, both (3.1) and (3.2) gives
At
(3.4) fO =g 7a119(f<1>).
Assume (3.1) and (3.2) are equivalent for f () withj = 1,---k — 1. Then by solving

for 2LQ(f) from (3.2) for f19) we get

ajj

j—1 i—1
(3.5) %Q(f@) = # (f“) - (1 - Zbﬂ)f" — Zbﬂf@) :
=1 =1

Then substitute into (3.1) for f*) gives

(3.6)
AL = ! At
(k) — n Skife() _ (71— ) L@ = (k)
o=y (19~ (1 ;bjl)f > b )+ =anQ(s®)
i ai; 3 N" 0 ) NS T NS ) (k)
_ J Akj n Ski ¢(5) _ kg = k
= Za +Z Zb frad 0= sy b+ akkg(f )
=11 53 % 7= j=1 97 jl”ll
el k=2 k—1 u e
Sty Y f”+z W )3 S Wy 0 4 B o)
=1 %99 =i Y Rz =1 j=i31 i
k— la k—2 k— a a k—2 k—1 a ) At
= aikj Z Z ﬂbl] fn_|_z Okg f(]) Z Z ﬂbljf(J)—i—?aka(f(k))
=1 7 j=ll=j+1

j=11=j+1

.

k-1 k—
:(1—Zbkj)f +Zbk]f(J)+faka(f(k)

where we changed summation order in the third equality, and exchange the summa-

tion indices j and [ in the fourth equality. The result is exactly (3.2). 0

3.2. Accuracy analysis in the limiting fluid regime. In this section, we derive
order conditions of DIRK schemes (up to third order) for the limiting fluid regime
in the SL framework. The desired order conditions are obtained by first performing
the Taylor expansion of the exact and numerical solutions up to order At* for both
€ = O(1) and € being very small (in particular, e < At); then equating the coefficients
of the corresponding high order terms. Uniform accuracy of the SL schemes in the
intermediate regime when the spatial mesh size Az = O(e) are beyond the scope
of our current work. We refer to [6, 34] for more derivation details of the order

conditions for RK methods.



Hence, assuming the initial data is well-prepared (or consistent), i.e., f© = M[f°] if

€ < 1,° we will show that

(1) The first and second order accuracy of (3.2) in the kinetic regime imply the
corresponding accuracy in the fluid regime. See Theorem 3.5.

(2) The third order accuracy of (3.2) in the kinetic regime does not imply its third
order accuracy in the fluid regime. In fact, assuming its third order accuracy
in the kinetic regime, one needs one more order condition to guarantee the
third order accuracy in the fluid regime. See Theorem 3.6. In particular, this
leads to the order degeneracy of the classical 3-stage DIRK3 method (B2)
mentioned previously when the SL NDG method [15] is applied to the BGK

equation (2.7) with small e.

3.2.1. The underlying DIRK scheme in the kinetic regime (the f scheme). To
analyze the accuracy of the f scheme (3.2), we use Q" and Q”, the first and second
order Fréchet derivatives of Q, defined by
(3.7)

&)y = iy LI+ = Q)

9 Q/,(f)(glng) — ;LI)% Ql(f + 591)92 - Ql(f)gg '

J J
There holds the Taylor expansion
1
(3-8 Qf +39) = Qf) +9Q'(flg + 50°Q"()(g,9) + O(5%)

for 6 small.
By induction, it is straightforward to show the following Taylor expansion for

(3.2), or equivalently, (3.1):

LEMMA 3.2. The f*) given by (3.1) satisfies

2
19 =+ a2torr +ac S @ (meu)

; 4
20 (0@ (MR, QUM + @ (PR (RU™) + 050,

where the coefficients cy, dy, gi, hi satisfy the iterative relations

(3.9)

k—1 k—1
(3.10a) cp = Z brjcj + apk, dp = Z br;jd; + aprcr,
j=1 j=1

5Tf the initial data is not well-prepared, then (3.1) may reduce to first order. This is similar to the
situation of IMEX schemes of type CK. See Theorem 3.6 in [13] and the discussion afterwards.

9



k—1 k—1
1
(3.10b) gk = E bkjgj + gaka%, hp = E bkjhj + appdy.
Jj=1 Jj=1

Proof. For simplicity we only provide the proof of the iterative relations (3.10a)
for ¢ and dj, by second order Taylor expansion. The other two relations can be

k
proved similarly by expanding to third order. The fact that ¢, = ) aj; being the
j=1

coefficient of the O(%) term for f(*) follows from the Taylor expansion of (3.1). To

prove (3.10a), notice that the Taylor expansion of (3.2) up to second order gives
n A n / n n
f +Ck7 o(f )“!‘dkig (f")e(f")
At At?
ey =(1- 5 b ) S+ S b, (£ +e=20U™ + = Q (M au™)
j=1 j=1
At At?

+ 2 a (e +a e menm) + o),

where we used

(3.12)
Q1) = o(/" + e Zro(m +0(5)) = o) + e (me™) + 0(2h).

Comparing the O(4%) and O(44 ®) terms gives (3.10a) respectively. 0

It is straightforward to show that the exact solution to (2.16) satisfies the Taylor

expansion

A 2
= 2o + SR umen

At3 Att

(3.13)
+ 2 (GO Q) + GEUME MR ) + O

Therefore, comparing (3.9) and (3.13), we have the order conditions for (3.1) in the
kinetic regime ¢ = O(1):

(3.14)  Firstorder: ¢ =1, Second order: d; = %, Third order: g; = hy = %
3.2.2. The limiting scheme (the U scheme). In the limiting fluid regime, as ¢ —
0, f will be relaxed to the equilibrium state M/ [f] for the BGK model. Thus, taking

the moments of (2.7) in the fluid regime, we have the limiting fluid equation for U:

(8.15) U =TWU), TWU):=—0:(vMy[U](z,v)¢(v)).
10



Therefore, the Taylor expansion of its exact solution is given by

U71,+1 — Un —|—AtT(U") + At2%7—/(U")T(Uﬂ)
(3.16) 1 1
+ A3 <67'”(U”) (T(U”), T(U")) + 6T’(U")T’(U")T(U”)> +0(Ath),
which is similar to (3.13).
Taking moments of the f scheme in Shu-Osher form (3.2) against the collision
invariants ¢(v) gives

(3.17)

k—1 k—1
UM (@) = (1= by ) (" (x — cxv At 0)p(v)) + D big (f9 (2 = (cx — ;)AL v)(v)),
j=1

j=1
where U (z) := (f*)¢(v)) are the moments of f(*). The collision operator in (3.2)
vanishes due to the property that the moments of the relaxation term are identically
zero. Meanwhile, as ¢ — 0, f*) and f"*+! will be relaxed to the local equilibriums
M [(]k) and M, g“ respectively. Thus the limiting scheme for U in (3.15) is given by the
following U scheme, for k=1, --s,

(3.18)

k—1 k—1
U® (@) = (1=30 biy ) (Mo[U™) (et 0)6(0)+ 3 biy (M [UD) (k= 0L, 0)(v)).

Jj=1

Now we analyze the accuracy of the limiting U scheme (3.18). By Taylor expansion,

(My[Ul(z — vAt, 0)¢(v)) =(My[U](z,v)¢(v)) — At(vdy(My [U](z, v))$(v))

+ %At%“‘am(Mu[U](x, v))6(v))

(3.19) ;
— S Dy (M [U](,0))8(0)) + O(ALY)
=U + AtT(U) + A’ B(U) + At*B(U) + O(At?),
where
B(U) = 5 (0200 (Mu[U](2,0))0(0),
(3.20)

1, .
BU) = —g(v%mz(MU[U](g;,v))qs(v)),
are not the same as 7’7, T"(T,T) or T'T'T.

REMARK 3.3. In fact, one can write

T'(U)T(U) = 0:(vVuMy[U](z,v)¢(v) - T(U)),
(3.21)

B(U) = 0:(vVu My [U](x, v)¢(v) - 82(0U)),
11



where Ny My means the gradient of the map U — My[U](v) at each x. T'(U)T (U)
and B(U) are clearly not the same, since vU = v(My[U](v)p(v)) # (vMy[U](v)¢(v)).
One can similarly check that B(U) is not a linear combination of 7" (U) (T (U), T(U)) and
TW)TWU)T).

For the simple model (2.2), one has 2B(U) = 9,,U and T'(U)T(U) = b*0,,U. Al-
though they only differ by a constant multiple b?, one cannot treat them as similar terms
if one wants an accurate scheme with coefficients independent of the parameter b in the
model. For the third order terms, the situation is similar: one has GB(U ) = =00y U,
T(O)T'(U)T(U) = =b30y,,U, and T"(U)(T(U), T(U)) = 0.

Therefore the limiting scheme (3.18) has the following expression, up to third

order accuracy:
(3.22)

k—1
U = (1 -3 bkj) (U” + Atep T(U™) + AREBU™) + At%gé(m))
j=1

k-1
+ Z br; (U(j) + At(cg — c))T(UD) + At (ex, — ¢;)?BUD) + At3(ey, — cj)gl';’(U(j))) + O(Ath).

j=1
This can be viewed as an explicit RK scheme for the limiting equation (written in
Shu-Osher form), with some error terms on second and third order. By induction

one can show the following Taylor expansion:

LEMMA 3.4. The U) given by (3.22) satisfies

(3.23)

UR =U™ 4 CLAtT(U™) + D AT (U™ T (U™) + Bp AB(U™)
+ At (GkT”(U”)(T(U"), TU™)+ HT'(UMT(UMTU") + BT (UMBU™)
+ BEB(UMT(U™) + B;**B(U”)) +O(AY,

where the coefficients Dy, By, Gy, Hi, By, Bi*, BS** satisfy the iterative relations

k—1
(3.24a) O =cr, Di=Y bii(Dj+ (cx —¢;)e;),
j=1
k—1 k—1
(324b) B, = (1 — b]w)C% + Z bkj(Bj + (Ck — Cj)z)a
j=1 j=1

12



k—1 k—1
1
(3.24¢) Gr=> by(Gj+ 5 ek — ), Hy=> bei(H;+ (ck — ¢;)D;),

j=1 J=1
k—1 k—1
(324d) B;; = Z bk](Bj* + (Ck- — Cj)Bj)7 BZ* — Z ka(Bj** + (Ck - Cj)zcj)7
j=1 J=1
k—1 k—1
(3.24¢) By = (1 -3 bkj)ci + ) bk (B + ek — ¢)°).
j=1 j=1

This lemma can be proved by using the Taylor expansion of (3.22) up to third order,
and we omit the proof since it is similar to the proof of Lemma 3.2.

The order conditions of the U scheme (3.22) are

. 1
First order: C; =1, Second order: D, = 3 Bs; =0,
Third order: G5 = Hs; = é, B =B =B =0.

(3.25)

3.3. Analysis for first and second order. We analyze the relation between the
accuracy of the f scheme and the U scheme by finding relations between their Taylor

coefficients. We first consider first and second order accuracy:

THEOREM 3.5. The first and second order accuracy of the f scheme imply the corre-

sponding accuracy of the U scheme.

Proof. Since the first order condition for the f scheme and the U scheme are the
same (Cs = c;), the first order accuracy of the f scheme implies that of the U scheme.
To show the conclusion for second order accuracy, we will prove the following

relations:
(3.26a) dp + Dy = C% By = di — Dy.

From the second order accuracy of the f scheme, we have ¢, = 1, d; = 1/2. With
(3.26), we obtain Cs; = 1, Dy = 1/2, and then B, = 0, which verifies the order
conditions for the second order scheme in (3.25).

We prove (3.26) by induction. For k£ = 1, one has

(3.27) dy=a?, D=0, B =c=d,
13



and thus (3.26) holds for £ = 1. Suppose the conclusion holds for j = 1,---k — 1. To

show (3.26a), we notice that (by induction hypothesis)

(3.28)
k—1 k—1 k—1
Dy = Z bkj(Dj + (C]€ - Cj)Cj) = Zbkj(C? - dj + (Ck - Cj)Cj) = Z bkj(—dj + Cij).
j=1 j=1 j=1
Summing with the (3.10a) gives
k—1 k—1
(3.29) di + Dy, = Z bijij + aprCcr = Ck ( Z bijj + akk> = Ci.
j=1 j=1
To show (3.26a),
(3.30)
k-1 k—1 k-1
By :(1 — Z bkj)ci + Zbkj(Bj + (Ck — Cj)z) = Ci + Z bkj(dj — Dj — QCij + C?)
Jj=1 j=1 j=1
k—1 k—1
:Ci + Z bkj(2dj — 2Cij) = Ci -2 Z bkj(—dj + Cij) = Ci — 2Dy =dy — Dy,
j=1 j=1

where we started from (3.24b), and then used the induction hypothesis, and finally
used (3.28) and (3.26a). 0

3.4. Analysis for third order.

THEOREM 3.6. The third order accuracy of the f scheme, together with the condition

Gs = 1/6, implies the third order accuracy of the U scheme.

Proof. We will prove the following relations

(3.31a) 2Gy — Hy + 291 = cxdyg,
(3.31b) B} =2Gy —2Hy,, Bp* =2gp — 2H), — ¢} + 2c4 Dy,
(3.31c) Bj** = ¢} — 3B}* — 6G}.

(3.31) implies the conclusion of the theorem. In fact, the third order accuracy of
the f scheme gives ¢, = 1, ds = 1/2, g5 = hs = 1/6. If G, = 1/6, then (3.31a) gives
H, = 1/6, and similarly the other three equations of (3.31) give B} = B* = B¥** =0

(where we need to use D, = 1/2 by Theorem 3.5).
14



To prove (3.31a), we define L, = 2Gj, — Hj,. Then from (3.24c) and (3.26a),
k—1
(3.32) Ly = ; bij(Lj + (e — ¢;)d;).
We prove by induction that
(3.33) Ly = cpdi, — 2g,

which is exactly (3.31a). For k = 1, L1 = 0, c1dy — 2g1 = a11 - a3, — 2 - (a3,/2) = 0.

Suppose the conclusion holds for j = 1,---k — 1, then

k—1 k—1
Lk == Z bkj(Lj + (Ck — Cj)dj) = Z bkj(dej — 29]' —+ (Ck — Cj)dj)
Jj=1 j=1
k—1 k—1 k—1
(3.34) =Ck Z brjdj — 2 Z brjgj = ck(di — agkcr) — 2 Z brjg;
j=1 j=1 j=1

k-1
1
=cpdi — 2 (Z brjg; + 2%1&%) = cpdy — 29y,

j=1

where we used the induction hypothesis, (3.10a) and (3.10b). (3.31b) is clear from
the (3.24¢) and (3.26). Now we show the second equality in (3.31b) by induction. For

k=1, B{* =0, 2¢ —2H; — ¢} —2¢1Dy = 2- 1ay1¢] — ¢} = 0. Suppose the conclusion
15



holds for j = 1,...,k — 1, then

(3.35)

k—1
Byt = bij(B]" + (ex — ¢)%¢;)
Jj=1

k—1
= Zbkj(ij‘ — 2Hj + 2Cij + CiCj — QC]CC?)
7j=1
k—1

k—1 k-1
=2 brjg; =2 biHy+ > biy(2¢;D; + ciey — 2065)
j=1 J=1 J=1
1 k—1 k-1
=2(gx — 5 kkCR) — 2(Hk — > bi(ek — Cj)Dj) + ) big(2¢;D; + ciej — 2e565)
j=1 Jj=1
k-1
=2g; — akkci —2H, + Zbkj(Q(ck — Cj)Dj + ZCij + Cicj - 20!@0?)
j=1
k-1
:29k — akkcﬁ — 2H;, + ¢y, Z bkj (Cij — 2dj)
j=1

k—1 k—1
:2gk: —2Hy — ¢ ( Z bkjdj + akkck) + ¢k Z bkj (Cij - dj)

j=1 j=1
=2gr — 2Hy, — cpdi + ci Dy,
=2gy — 2H}, — ¢ + 2¢, Dy,
where we used the induction hypothesis, (3.10b), (3.24¢c), (3.10a) and (3.28).
To prove (3.31c), notice that

(3.36)

k—1 k—1
kK kK sk kK 1
Bi**—c} = E br; ((B] —c?)—Scicj—i—Sckc?): E br; ((B] —c?)—?)(ck—cj)zcj—@i(ck—cj)c?).
Jj=1 j=1

Therefore (3.31c) follows from (3.24d) and (3.24c¢). 0

This forms sharp contrast with that of the mesh-based Eulerian IMEX schemes
for stiff kinetic equations. It was shown in Theorem 3.3 in [13] that an IMEX of type
A (i.e., the implicit table is DIRK) applied to a stiff kinetic equation gives rise to
an explicit RK scheme in the fluid regime, whose Butcher table is the same as the
explicit table of the IMEX scheme. As a consequence, the k-th order accuracy of such
an IMEX scheme in the kinetic regime implies that in the fluid regime, for any k£ > 1.

Based on the order conditions in Theorem 3.6, we propose 4-stage DIRK3 meth-

ods (B3)-(B10) in Appendix B for both regimes up to third order.
16



REMARK 3.7. The classical 3-stage DIRK3 method (B2) [7] in the Appendix B does not
satisfies the condition G3 = 1/6 appeared in Theorem 3.6. In fact, calculation shows that
G3 =~ 0.066745, and therefore the corresponding U scheme is not third order. This example
shows that the condition Gs = 1/6 is not a consequence of the third order accuracy of the f

scheme.

REMARK 3.8. There are a lot of freedoms when creating 4-stage DIRK3 methods satisfy-
ing Theorem 3.6. For the consideration of computational cost, one could let certain elements
of the Butcher tableaus be zeros. For instance, in Table B7 - Table B10, we have two zero

elements of a;;.

4. Stability analysis for DIRK methods. In this section, we analyze the stabil-
ity property of DIRK schemes under the SL setting. In particular, we are interested in
the L-stable DIRK methods for the AP property in the limiting e — 0 regime. Linear
stability of DIRK schemes with different e are investigated. Similar to the accuracy
analysis in Section 3, we keep the phase space continuous and consider the linear ki-

netic problem (2.2) with periodic boundary condition, written in the following form

1) fi N 10 f1 1 M, - f1
f2), 0 =1/ \f2) CA\M; - fo

where My = (M, Ms)7 satisfies (2.5). In the analysis, we apply DIRK methods in

the SL framework to (4.1) and study f; and f> in the form of Fourier series
4.2) A=Y_A"®e*™ and fo=> fP e, i=v-1
k k

with k is the wavenumber.
Before discussing the stability of general DIRK methods, we first work with the
backward Euler method to illustrate the process. Applying the backward Euler to

(4.1) along characteristics, gives us

At
= e - A+ S - ),

n n At n n
(43) = S (o A+ — (MG — £,

Plugging (4.2) into (4.3), one can obtain the following the relation between the k-th
17



Fourier modes ¢**% at t"*1 and ¢":

(4.4)
—1
—ik k n
e kAt /\1( )(t )

AP\ S A1+ 14 0
’;(k)(tn+1) 2e 1—-b —1—5b 0 cikAt gk) (t")

with the amplification matrix

—1
At [-14+b 1+0b e~ ikAL 0
Myg = [1- =2 _
2e\1-b —1-b 0 ekt
_l’_

(4 5) _ 1 1 1T+b€ IT—H)E e—ikAt 0
14+¢ L-be 1+%§ 0 ikt

t and ¢ interchangeably. Taking the 2-norm of

where ¢ = At, Below we will use &t
Mgg, we have

HM || - 1 1+1 bg 1T+b£ e—ikAt 0 _
BEll2 =117 ¢ 1— 14 Lbe i 0 kAL . '

In fact, the backward Euler method is unconditionally stable in this context.

ofe

¥
o
Iy

Next, we generalize the above analysis to a 2-stage DIRK2 method, e.g. with
Butcher tableau (B1). At the first stage t(!) = " + ¢; At, repeating similar procedure

as from (4.3) and (4.4), one can show the Fourier modes at ¢(!) and " are related via

Ta11§

FiM )
Mpirko, (1) &)

fa(t")

with amplification matrix Mprio, (1)- At the second (i.e. final) stage t"**, using (3.2)

k
BRI

(4.6)

we have the following formulation in the Shu-Osher form

fn+1 (1 — b21)f1 (JC — At) + b21f (Zl? _ (1 _ Cl)At) a22At (M"+1 f{L+1),

4.7)
T = (1= boa) f3 (2 + A8 + bar £V (4 (1 — e1) At) + CmeAt(Mn+1 2.

18
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AP 1 (1 Hang Htang | [er*ert 0\ (FPem)
1+a11€ 1-b 1+ 171?@115 0 etkei At /\Q(k)(t")



For the notation simplicity, for{ = 2,---s, [ > j > 1, we introduce

At —1+b 14+b -1 e—ikclAt 0
@8 A =1-" P2 B=(1-Y"by)
€ 1-b —1-b — 0 ik At
2 2 J=1 €
o ) e~ th(ci—c;)At 0
1; = 05
J I 0 eik(cl—Cj)At

for the operations involving intermediate stage values at t@) j =1,---1. With nota-

tions in (4.8), (4.7) leads to

k) rin k) /in k
wo (R [ (B g, (R0
. - 2 21

FR) (gt 2 70 (4 7R (1))

Combining (4.6) and (4.9), we have

(4.10)

AP R i
) = Ay [B + Co1 Mpira, 1)) ~5) = Mpwiz |
2 (") fa (@) 2 (1)

When £ — oo, the amplification matrix Mpirk2 goes to

(4.11)
17—9—1) [(1 + —12+bb21)e—ik02At + 1T—bb21€ik(cQ—2c’1)At} 1+b [1 bbzle—ik(cz—ch)At + (1 =+ —12—bb21)6ik02At]

b
2 L2
1?717 [(1 4 712+bb21)€—ichAt + IT%b2leik(CQ—2c1)At] % [ITerb21e—ik(02—2c1)At + (1 + 7127bb21)eikC2At]

and the corresponding eigenvalues are A\; = 0 and

2

32
Ao = <1 1 2b b21> cos(kca At) + bo1 cos(k(co — 2¢1)At).

In Figure 4.1, we present the contour plot of |\z| versus b € [0, 1] and kAt € [0, 27], as
¢ = &1 — o0. The contour plot of |\, | in Figure 4.1 is plotted subject to the calculation
error of Matlab. We observe that for different b € [0, 1], different constraints on kAt
need to be imposed for stability. For example, one needs to use kAt € [0,1.79277]
so that |\2] < 1 when b = 0, while kAt € [0, 2] is allowed for a bigger b, such as
b = 0.6 in Example 5.1. In Figure 4.1, we show the contour plot of two eigenvalues
for Mprk2 when b = 0.6. We consider the range of kAt € [0,27] and £ € [0, 10].
Notice that for ¢ greater than 10 and in the limit of oo, the spectral radius of Mpirk2

has been numerically checked to be bounded by 1 with b = 0.6, kAt € [0,27]. We
19
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FIG. 4.1. DIRK2 method in Table B1. Left: contour plot of spectral radius of Mpir2,¢— oo versus b € [0, 1]
and kAt € [0, 2x]. Middle and right: contour plot of the eigenvalues |\1 2| with kAt € [0,27] and & = % €
[0, 10] for the amplification matrix Mprk, with b = 0.6 in (4.1). Note that we choose the range of & € [0, 10] as

an example. It is numerically verified that both eigenvalues are bounded from above by 1 for & > 10.

note that, the constraint for the range of kAt gives a guidance to the time stepping
size one can take, since k is the wave number related to the spatial resolution ranging
from 0 to x, thus the upper bound on kAt provides a time stepping constraint on
the CFL ox £L. However, it does not provide a sufficient condition for linear stability,
since the spatial operations are kept continuous in the current analysis. Analysis for
a fully discrete scheme will be rather involved and out of the scope of current work,
especially when feet of characteristics could be located more than one cell away for
CFL larger than 1.

Finally, when we perform the linear stability analysis to the proposed 4-stage
DIRKS3 time discretization methods specified in Butcher Tables B3-B10 for (4.1), the

Fourier modes of €?*® for f; and f, follow the following recursive relation, [ = 2, 3,4,

Fk) (1) 2(k) (1n -1 7(K) (1(5)
t t t
(412) ’\l(k)( ) =471 | By Al(/c)< ) +ZCZJ Al(ic)( | ’
2 (t(l)) 2 (tn) Jj=1 2 (t(]))
and that
(k) (in41 3 2(k) (4n
t t
J:l(k)( ) = A7 [ Bi+ ) CyAT'E, Al(k)( )
f2 (tn+1) j=1 f2 (tn)
FiM )
(4.13) = Mpirk3 &)
(")

j—1
where E; = B; + Y, leAl_lEl. We compute the spectral radius of Mpirk3 e—0 by
=1

Matlab, for which the contour plot is presented in Figure 4.2 with b € [0, 1] and
20



kAt € [0,2n] for DIRK3 methods given in Table B2 - B10. It can be observed that the
appropriate ranges of kAt such that |[A;] < 1 depend on the choice of b € [0,1]. In
particular, when b = 0.6, we see that in Figure 4.2(i), with kAt € [0, 5] which is a con-
siderable wide range for the kAt, we have |A\;| < 1. Compared with other contour
plots of A\ in Figure 4.2, we found the 4-stage DIRK3 method (B10) being a robust
choice for linear stability, as well as asymptotic third order accuracy. Following this
observation, in Figure 4.3, we plot the contour plot of |\ 2| for the corresponding
amplification matrix Mprrks when b = 0.6 and use kAt € [0,1.5924x],¢ € [0, 10].
We observe the |1 2| < 1 with our choice of £ and kAt which indicates that when
b = 0.6 in (4.1), the spectral radius of DIRK3 method (B10) is bounded by 1 for
kAt € [0,1.59247]. Such statement is checked to be valid for all &, although only
¢ € [0,10] is being plotted. For the numerical tests in the next section, we choose the
DIRK3 method specified in Table B10 with third order classical accuracy as well as
asymptotic accuracy. We also note that the spectral radius of Mpirk3 e—o is slightly
larger than 1 toward the lower right corner of the plot in Figure 4.2(i), yet no nu-
merical instability is observed in our tests. It is our future work to optimize DIRK3
methods, that satisfy the extra order condition for asymptotic third order temporal

convergence, in terms of their linear stability properties.

5. Numerical Tests. In this section, we apply the SL NDG-DIRK methods pro-
posed in [15] to test the classical and asymptotic temporal orders of convergence
for proposed DIRK methods via stiff linear/nonlinear hyperbolic relaxation systems
and the kinetic BGK model. Unless otherwise noted, we use a third order SL NDG
spatial discretization with a well-resolved mesh of 640 uniformly spaced elements,
to minimize the spatial error, and periodic boundary conditions are used for all tests.
We also use the time stepping size as At = CFL - % where a is the maximum trans-

port speed, and CFL values are to be specified for each test.

EXAMPLE 5.1. [19] Consider the linear two-velocity model (2.2) with b = 0.6 on x €

[0, 1], and the initial condition given by
u(z,0) = exp(sin27rx), v(x,0) = bexp(sin 27x).

We test the temporal convergences of different DIRK methods, by plotting in Figure 5.1(a)-
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FIG. 4.2. Contour plot of the eigenvalues |Az| for Mpjrk3,e—o versus b € [0,1] and kAt € [0, 2] for the
DIRK3 method in Table B2 - B10 as € = &t — oo.

5.1(c) L* errors versus the CFL numbers in e = 1072,1075 and 107° regimes at T =
0.2. In the figures, for backward Euler and DIRK2 methods, we can clearly observe the
expected orders of convergence in all three regimes with CFL values as large as 16; we also
see that the errors stagnates due to dominancy of the spatial errors when CFL < 0.02 for
the DIRK2 method. Here, we note that, compared with the Eulerian methods, the temporal
errors of SL methods computed using reference solutions still depend on Ax on a fixed mesh
due to the characteristic tracing feature. For the classical 3-stage DIRK3 scheme (B2), we

have the following observation: when ¢ = 1072, third order accuracy is observed when
22



DIRK3
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@ M| (b) |A2]

FIG. 4.3. Contour plot of the eigenvalues |A1,2| with kAt € [0,1.5924x] and £ = % € [0,10] for the
amplification matrix Mpr3 of the 4-stage DIRK3 method in Table B10. b = 0.6 in (4.1). Note that we choose the

range of & € [0, 10] as an example, we checked that for £ > 10, the eigenvalues are bounded by 1 as well.

CFL > 0.2; while for ¢ = 107° and 1075, when 0.02 < CFL < 1 and CFL > 3, only
second order temporal convergence is observed as shown in Theorem 3.6 together with the
Remark 3.7, but the method suffers from the numerical instability when 1 < CFL < 3. Such
instability, may be due to the shift of characteristics feet across one computational cell from
DG spatial discretization, is not covered in our current analysis. For the 4-stage DIRK3
method (B10), when e = 1072, the expected third order convergence is observed when CFL
> 0.4; for e = 1075 and e = 107°, the following observations are made with the decrease of
the CFL values: when CFL is sufficiently large, the method shows the third order asymptotic
accuracy (phase 1), as CFL getting smaller, numerical instability again shows up for CFL
> 1 (phase 2), then the method continues to converge when CFL is even smaller (phase
3), and eventually the numerical errors are trapped in a plateau with the dominant spatial
errors (phase 4). Additionally, we see that the convergence behavior in phase 3 is related to
the € value: when ¢ = 107>, both third and first order accuracies are observed for 0.04 <
CFL < 0.1 (kinetic regime) and 0.1 < CFL < 1 (intermediate regime) respectively; when
€ = 1075, the convergence reduces to first order accuracy for 0.1 < CFL < 1 (intermediate
regime). The accuracy analysis performed in Section 3 considers At < e in the kinetic regime
and e < At in the fluid regime. The convergence studies of time discretization methods in
intermediate regime, when € and At are on a comparable scale, is not covered in our current

analysis.
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FIG. 5.1. Plots of L' errors versus CFL of SL NDG-DIRK methods for (2.2) with b = 0.6 at T = 0.2.
The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.001. 5.1(a) - 5.1(c):
LY errors computed on fixed mesh Ny = 640 in e = 10—2,1075,10~6 regimes. BE, DIRK2, DIRK3 B2,
DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2) and 4-stage DIRK3

method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

EXAMPLE 5.2. Consider the nonlinear hyperbolic relaxation system in [19],

Oiu + O,v =0,

(5.1)
v + 0pu = L(bu? —v),
with b = 0.2 on z € [0,1]. When € — 0, the limit of (5.1) is the Burger’s equation

Ovu + b9, (u?) = 0. Let f = (f1, fo)7 where fi = “L°, fo = “5Y, then (5.1) can be

reformulated into the two-discrete velocity model:

(5.2) O0f +v0uf = L(My — )

€

withv € Q, = {—1,1} and the local equilibrium My = (W%, _Z’“T%““)T (5.1) has only
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one collision invariant ¢(v) = 1. The initial condition for u and v are given by u(z,0) =
Lexp(sin2rz), v(z,0) = bu?(x,0). The final simulation time T = 0.2. In Figure 5.2,
we plot L' errors versus the CFL numbers for both ¢ = 10~2 and 10~°. Similar observation
as Example 5.1 can be made. When e = 1072, classical orders of convergence are observed
for various DIRK schemes with CFL as large as 16. When e = 1075, only second order
convergence is observed for the classical 3-stage DIRK3 (B2) when 0.02 < CFL < 0.8 and
CFL > 4. Numerical instability again shows up when 0.8 < CFL < 4, which is not covered
in our current analysis. We also observe four phases for the 4-stage DIRK3 (B10): third order
asymptotic accuracy for CFL > 8 (phase 1), numerical instability for 1 < CFL < 8 (phase
2), first order accuracy for 0.03 < CFL < 1 (phase 3) and stagnant errors for CFL < 0.03
(phase 4).

L error

L' error
\
. %

10 > i ‘477¥M
st
10% 1(;" 10f 10
CFL
(b) e =105

FIG. 5.2. Plots of L' errors versus CFL on fixed mesh Ny = 640 for (5.2) in e = 1072,1075 regimes at
T = 0.2. The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.001. BE,
DIRK?2, DIRK3 B2, DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2)

and 4-stage DIRK3 method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

EXAMPLE 5.3. Consider 1D1V BGK equation (2.7) with the consistent initial distribu-
tion in [29]

(5.3) f(z,0,0) =
and initial velocity

(5.4) ug = %0 [exp (— (102 — 1)%) — 2exp (—(10z + 3)%)] .
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Initial density and temperature are uniform with constant values p(x,0) = po = 1 and
T(x,0) = T = 1 respectively. The test is performed on the velocity domain v € [—15,15],
which is uniformly discretized with N,, = 100 grid points. The temporal accuracies of the
SL NDG-DIRK method [15] when applied to (5.3) with e = 1072 and 1076 at T = 0.04 are
given in Figure 5.3. As the previous examples, classical orders of convergence are observed
for e = 1072 with large CFL numbers. But both the classical 3-stage DIRK3 (B2) and the
4-stage DIRK3 (B10) degenerate to first orders for CFL < 2. In the asymptotic limit with
€ = 1079, all schemes tested are observed to be stable for rather large CFL numbers. The
3-stage DIRK3 (B2) only has second order convergence. The 4-stage DIRK3 (B10) displays
third order asymptotic convergence for CFL > 10, then its error stays the same for CFL

ranges from 1 to 7.
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FIG. 5.3. Plots of L errors versus CFL on fixed mesh N, = 640 for (5.2) in e = 1072,1076 regimes at
T = 0.04. The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.01. BE,
DIRK?2, DIRK3 B2, DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2)
and 4-stage DIRK3 method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

6. Conclusions. In this paper, we study the asymptotic accurate property of the
DIRK methods when they are coupled with semi-Lagrangian solvers for stiff hyper-
bolic relaxation systems and kinetic BGK model. By performing an accuracy analysis
in the asymptotic limit of ¢ — 0, an additional order condition is derived for third
order accuracy of DIRK methods in the limiting fluid regime. In additional, linear
stability analysis of DIRK schemes is performed on a linear two-velocity model via

Fourier analysis, when the spatial operations are kept continuous. Numerical insta-
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bilities show up for the limiting fluid regime, with CFL greater than 1. Further study
of linear stability of fully discrete DIRK schemes when coupled with discontinuous
Galerkin spatial discretization is open and optimization of DIRK methods for better

linear and nonlinear stability, are subject to our future work.

Appendix: Butcher Tableaus of DIRK methods. Classical 2-stage DIRK?2 in
Table B1 and 3-stage DIRK3 methods in Table B2:

1 1-v v, v=1-+72/2.

1—v v
TABLE B1
DIRK?2.
v v =~ 0.435866521508459,
14y 1—y v
2| 2 , Bir=-3V+4y- 1 B=37—
1 B B
1 2 57_"_%
b1 Bz
TABLE B2

3-stage DIRK3.

Proposed DIRK3 methods in Table B3-B10 satisfying the order conditions G, =
1/6 in Theorem 3.6:
1.482285978970554 |  1.482285978970554

0.840649305846235 | -0.6416366731243188  1.482285978970554
0.369773737448817 0.849139645385794 -1.961651886907531  1.482285978970554

1 -0.1539440520308502  -1.343634476018696  1.015292549078992  1.482285978970554
-0.1539440520308502  -1.343634476018696  1.015292549078992  1.482285978970554

TABLE B3

4-stage DIRK3
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