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Abstract

In this paper, we develop a family of third order asymptotic-preserving (AP)

and asymptotically accurate (AA) diagonally implicit Runge-Kutta (DIRK) time dis-

cretization methods for the stiff hyperbolic relaxation systems and kinetic Bhatnagar-

Gross-Krook (BGK) model in the semi-Lagrangian (SL) setting. The methods are

constructed based on an accuracy analysis of the SL scheme for stiff hyperbolic re-

laxation systems and kinetic BGK model in the limiting fluid regime when the Knud-

sen number approaches 0. An extra order condition for the asymptotic third order

accuracy in the limiting regime is derived. Linear von Neumann stability analysis of

the proposed third order DIRK methods are performed to a simplified two-velocity

linear kinetic model. Extensive numerical tests are presented to demonstrate the AA,

AP and stability properties of our proposed schemes.

Keywords: Hyperbolic relaxation system; BGK model; semi-Lagrangian (SL) method;

diagonally implicit Runge-Kutta (DIRK) method; asymptotic-preserving; asymptotic

accuracy, von Neumann analysis.

1. Introduction. The models of interests in this paper include stiff hyperbolic

relaxation models and the BGK model, the latter of which was introduced by Bhat-

nagar, Gross and Krook [4] as a relaxation model for the Boltzmann equation. In

these models, a stiffness parameter ε characterizes multi-scale regime of the model.

For example, in the BGK model, ε is the dimensionless Knudsen number, defined as

ε = λ/L with mean free path λ and macroscopic characteristic length L. The BGK
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model is in the kinetic regime with ε = O(1) for rarefied gas, and is in the hydro-

dynamic regime with ε � 1. In the hydrodynamic regime, the BGK model gives

a macroscopic model such as the Euler system as ε approaches 0, by the classical

Champan-Enskog expansion [8, 11]. In this paper, we consider development of high

order asymptotic preserving (AP) and asymptotic accurate (AA) numerical methods

for the above mentioned multi-scale models.

Due to the stiffness of the collision term, an explicit time discretization would

require the time step ∆t to be O(ε), which is very expensive if ε is small. To avoid

this time step restriction, people prefer to use AP schemes [24] which automatically

become consistent numerical methods for the limiting macroscopic model as ε → 0.

As a result, one can take ∆t independent of ε, and the computational cost is dramat-

ically decreased in the hydrodynamic regime, compared to explicit schemes. One

also prefers schemes with the AA property, meaning that the scheme remains its

optimal order in the hydrodynamic regime. High order AP / AA schemes for hy-

perbolic relaxation models and stiff kinetic equations have been developed based

on various frameworks, such as implicit-explicit (IMEX) Runge-Kutta (RK) methods

[23, 25, 3, 28, 29, 16, 13, 20], IMEX-multistep methods [2, 22, 14, 1], exponential-RK

methods [12, 26, 21, 18] and semi-Lagrangian methods [30, 17, 5].

For transport problems, the semi-Lagrangian (SL) method is often designed via

tracking solutions along characteristics of transport terms in time, thus easing the

classical time step restrictions. Because of its computational efficiency due to large

time stepping sizes, the SL method is popular in climate modeling [27, 33] and

plasma simulations [32]. When handling source/diffusion/relaxation terms in the

SL framework, these terms are often integrated in time along characteristics by ex-

plicit, implicit or IMEX RK or multistep type time integrators. Yet, study on asymp-

totic accuracy of the high order time integrator in the SL framework when applied to

stiff hyperbolic systems is still lacking. In fact, it is numerically observed that a third

order diagonally implicit RK (DIRK) method, when applied in the SL framework,

suffers from accuracy degeneracy, with only second order temporal convergence ob-

served in the asymptotic limit, see in [30].

In this paper, our first goal is to study the order reduction phenomenon in the
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limiting regime. In particular, we conduct the accuracy analysis of DIRK methods

for both kinetic and fluid regimes in the SL setting. Our accuracy analysis is semi-

discrete in the sense that we only discretize in time, but keep the spatial operations at

the continuous level. From the accuracy analysis, we find that the traditional order

conditions of first order backward Euler method and second order DIRK (DIRK2)

method [3] still hold in both the kinetic and fluid regimes, while one extra order

condition needs to be imposed to ensure the third order accuracy in the limiting

fluid regime. Taking this observation into consideration, we construct several new

DIRK3 methods. We also study linear stability of high order DIRK schemes, in the

SL framework, by performing the von Neumann analysis to a linear two-velocity

kinetic model with relaxation term, from which we choose a third order accurate

DIRK method in both kinetic and fluid regimes and with best linear stability property

and robustness. There are open issues remain to be addressed in the future work:

one is to optimize the stability property of AA DIRK3 methods in the SL framework;

another is that our current stability analysis is performed in the semi-discrete sense

with spatial operations kept at continuous level. Fully discrete stability analysis is

very involved, especially with the change of stencil around the feet of characteristics

when time stepping sizes are larger than the CFL limit. In fact, numerical instability

is observed for the linear two-velocity model when the time stepping size is larger

than CFL limit; while high order temporal convergence is observed for the nonlinear

BGK model with large time stepping sizes.

The rest of the paper is organized as follows. In Section 2, we introduce our

models of interests, i.e. the stiff hyperbolic relaxation systems and the BGK model.

In Section 3, the SL scheme using DIRK for integration of stiff relaxation terms along

characteristics is introduced. Section 3.2 is devoted to the accuracy analysis of the

DIRK methods, integrating along characteristics, in the limiting fluid regime. In par-

ticular, an extra order condition for third order DIRK schemes is derived and new

Butcher tableaus are constructed accordingly. The linear stability of DIRK methods

is studied in Section 4. In Section 5, we show the asymptotic accuracy and stability

property of DIRK schemes, when coupled with SL methods, via several stiff hyper-

bolic relaxation models. Conclusions are given in Section 6.
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2. Stiff hyperbolic relaxation systems and BGK model. We consider

(2.1) ∂tf + v · ∇xf =
1

ε
Q(f),

where f = f(x, v, t) is the probability density function (PDF) of particles that de-

pends on time t, position x ∈ Ωx and velocity v ∈ Ωv , ε > 0 is a dimensionless

parameter. Q(f) is the relaxation operator that describes the interactions between

particles. In particular, Q could be linear/nonlinear stiff relaxation terms for the

following cases:

• Linear two-velocity model4

(2.2)


∂tf1 + ∂xf1 = 1

2ε (b(f1 + f2)− (f1 − f2))

∂tf2 − ∂xf2 = − 1
2ε (b(f1 + f2)− (f1 − f2))

.

where |b| < 1 is a constant. (2.2) can be further written into

(2.3) ∂tf + v∂xf =
1

ε
Q(f)

of the same form as (2.1). Here v ∈ Ωv = {1,−1} with equal integration

weights, f(t, x, ·) = (f1, f2)T and the collision operator

(2.4) Q(f) =

 1
2 (b(f1 + f2)− (f1 − f2))

− 1
2 (b(f1 + f2)− (f1 − f2))

 .

When Q(f) = 0, the equilibrium MU (t, x) = (M1,M2)T is

(2.5) f = MU =

 1+b
2 U

1−b
2 U

 , U = 〈fφ〉 = f1 + f2

with one collision invariant

(2.6) φ = φ(v) := 1, 〈g〉 :=
∑
v∈Ωv

g(v).

When ε→ 0, the limit of (2.2) is the linear transport equation ∂tu+ b∂xu = 0.

• The considered BGK model

(2.7) ∂tf + v · ∇xf =
1

ε
(MU − f)

4This is indeed the same model as eq. (1.1) of [19] under the change of variable f1 = u+v
2
, f2 = u−v

2
.
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where f = f(x, v, t) is the distribution function of particles that depends on

time t > 0, position x ∈ Ωx and velocity v ∈ Rd with d ≥ 1. Note that

the BGK model is also of form (2.1) if Q(f) = MU − f . MU is the local

Maxwellian defined by

(2.8) MU = MU (x, v, t) =
ρ(x, t)

(2πT (x, t))d/2
exp

(
−|v − u(x, t)|2

2T (x, t)

)
where ρ, u, T represent the macroscopic density, the mean velocity and the

temperature respectively. They are computed by

ρ =

ˆ
Rd

f dv, u =
1

ρ

ˆ
Rd

f · v dv, T =
1

dρ

ˆ
Rd

f |v − u|2 dv.

The macroscopic fields U with the components of the density, momentum

and energy is obtained by taking the first few moments of f :

(2.9) U := (ρ, ρu,E)
>

= 〈fφ〉

with

(2.10) φ = φ(v) :=

(
1, v,

1

2
|v|2
)>

, 〈g〉 :=

ˆ
Rd

g(v)dv.

The total energy E is related to T through E = 1
2ρ|u|

2 + d
2ρT . It is easy to

check that 〈MUφ〉 = U . Hence with (2.9), we see that

(2.11) 〈(MU − f)φ〉 = 0,

namely the BGK operator satisfies the conservation of mass, momentum and

energy. Moreover, it enjoys the entropy dissipation: 〈(MU − f) log f〉 ≤ 0.

See [10, 8, 9] for more details of the BGK model.

We rewrite the general stiff relaxation equation (2.1)

(2.12) ∂tf + v · ∇xf =
1

ε
Q(f),

where Q(f) satisfies the following properties:

• Collision invariants: there exists φ(v) := (φ1(v), . . . φK(v))T such that

(2.13) 〈Q(f)φ〉 = 0, 〈g〉 :=

ˆ
Ωv

g(v) dv.

Recall that we have φ(v) = 1 with K = 1 in (2.6) for the linear two-velocity

model and φ(v) =
(
1, v, 1

2 |v|
2
)> with K = 3 in (2.10) for the BGK model.
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• Equilibrium: in the stiff limit as ε→ 0,

(2.14) Q(f) = 0 ⇔ f = MU [f ] = MU [U ]

where U = 〈fφ〉 are the moments of f , and MU only depends on f through

the moments U .

The hyperbolic relaxation system (2.2) and BGK model (2.7) clearly belong to (2.12)

with Q(f) = MU − f .

If we discretize the transport term in (2.12) by a SL scheme, and introduce d
dt as

the material derivative along characteristics, then we have

(2.15)
d

dt
f
.
= ∂tf + v · ∇xf =

1

ε
Q(f).

From now on, we shall restrict ourselves to the 1D in both space and velocity case

and focus on the abstract ODE

(2.16)
d

dt
f =

1

ε
Q(f).

3. New DIRK methods for (2.16). Due to the stiffness in (2.16) when ε→ 0 and

the consideration of asymptotic preservation property, it is natural for us to choose

the DIRK method as the time integration method in the SL scheme, e.g. see the SL

nodal discontinuous Galerkin (NDG) scheme [15]. However, when investigating the

proposed schemes in the limiting fluid regime, order reduction is sometimes numer-

ically observed. For example, only second order temporal convergence is observed

when a classical 3-stage DIRK3 method (B2) is used for integration along character-

istics, as shown in Figures 5.3. Such order reduction motivates us to perform accu-

racy analysis when ε � 1. In this section, we present accuracy analysis in the fluid

regime, as well as the procedure of constructing high order AA DIRK methods, for

solving (2.16). To the best of our knowledge, this is the first time that the extra order

condition is recognized and truly third order DIRK discretization methods for the

limiting fluid regime are constructed in the SL setting.

3.1. The standard DIRK methods. In the scope of our current work, we keep

physical and phase space continuous and consider only the DIRK discretization of

the collision operator Q along characteristic lines. Assume a DIRK method with s
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stages is characterized by the Butcher tableau
c A

bT
with invertible A = (ai,j) ∈

Rs×s, intermediate coefficient vector c = [c1, · · · cs]T , and quadrature weights bT =

[b1, · · · bs]. For the AP property, we consider only stiffly accurate (SA) DIRK method,

i.e. cs = 1 and A(s, :) = bT (c.f. [13, Definition 3.2]), so that fn+1 coincides with the

last stage of the DIRK scheme.

For simplicity of notation, let fn = fn(x, v) and f (k) = f (k)(x, v) to be the numer-

ical solution at time tn and the intermediate numerical solution at t(k) = tn + ck∆t,

k = 1, · · · s respectively. Apply a DIRK method in the above Butcher tableau to (2.16),

the internal f (k) is given by,

(3.1) The f scheme: f (k) = fn +
∆t

ε

k−1∑
j=1

akjQ(f (j)) +
∆t

ε
akkQ(f (k)), k = 1, · · · s

where the time step ∆t = tn+1−tn. Due to the SA property, fn+1 = f (s). Note that, in

the f scheme, fn and f (j) appeared in the k-th equation are evaluated at characteristic

feet (x− ckv∆t, v, tn) and (x− (ck − cj)v∆t, v, t(j)) respectively. On the other hand,

when handling the nonlinear relaxation term Q(f (k)) = M
(k)
U − f (k), we first predict

the local Maxwellian M (k)
U associated with Uk by taking moments of (3.1) using the

conservation property and then compute f (k) via implicit time discretization solvers

along the characteristics. For more details, we refer to [15] about how to (1) use the

SL NDG scheme for approximating fn ≈ f(x − ckv∆t, v, tn) and f (j) ≈ f(x − (ck −

cj)v∆t, v, t(j)); (2) mitigate the nonlinearity in Q(f (k)) with an explicit procedure at

each intermediate time stage.

In the following Lemma 3.1, we rewrite (3.1) in the Shu-Osher form [31], which

offers convenience for deriving order conditions in the limiting fluid regime.

LEMMA 3.1 (The f scheme in Shu-Osher form). Assume akk > 0. Then (3.1) is

equivalent to

(3.2) f (k) =
(

1−
k−1∑
j=1

bkj

)
fn +

k−1∑
j=1

bkjf
(j) +

∆t

ε
akkQ(f (k)), k = 1, · · · s

where the coefficients bkj are given by the iterative relation

(3.3) bkj =
akj
ajj
−

k−1∑
l=j+1

aklblj
all

, k > j ≥ 1.
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Proof. We use induction on k. For k = 1, both (3.1) and (3.2) gives

(3.4) f (1) = fn +
∆t

ε
a11Q(f (1)).

Assume (3.1) and (3.2) are equivalent for f (j) with j = 1, · · · k − 1. Then by solving

for ∆t
ε Q(f (j)) from (3.2) for f (j) we get

(3.5)
∆t

ε
Q(f (j)) =

1

ajj

(
f (j) −

(
1−

j−1∑
l=1

bjl

)
fn −

j−1∑
l=1

bjlf
(l)

)
.

Then substitute into (3.1) for f (k) gives

f (k) =fn +
k−1∑
j=1

akj
ajj

(
f (j) −

(
1−

j−1∑
l=1

bjl

)
fn −

j−1∑
l=1

bjlf
(l)
)

+
∆t

ε
akkQ(f (k))

=

1−
k−1∑
j=1

akj
ajj

+
k−1∑
j=1

akj
ajj

j−1∑
l=1

bjl

 fn +
k−1∑
j=1

akj
ajj

f (j) −
k−1∑
j=1

akj
ajj

j−1∑
l=1

bjlf
(l) +

∆t

ε
akkQ(f (k))

=

1−
k−1∑
j=1

akj
ajj

+

k−2∑
l=1

k−1∑
j=l+1

akj
ajj

bjl

 fn +

k−1∑
j=1

akj
ajj

f (j) −
k−2∑
l=1

k−1∑
j=l+1

akj
ajj

bjlf
(l) +

∆t

ε
akkQ(f (k))

=

1−
k−1∑
j=1

akj
ajj

+

k−2∑
j=1

k−1∑
l=j+1

akl
all

blj

 fn +

k−1∑
j=1

akj
ajj

f (j) −
k−2∑
j=1

k−1∑
l=j+1

akl
all

bljf
(j) +

∆t

ε
akkQ(f (k))

=
(

1−
k−1∑
j=1

bkj

)
fn +

k−1∑
j=1

bkjf
(j) +

∆t

ε
akkQ(f (k)),

(3.6)

where we changed summation order in the third equality, and exchange the summa-

tion indices j and l in the fourth equality. The result is exactly (3.2).

3.2. Accuracy analysis in the limiting fluid regime. In this section, we derive

order conditions of DIRK schemes (up to third order) for the limiting fluid regime

in the SL framework. The desired order conditions are obtained by first performing

the Taylor expansion of the exact and numerical solutions up to order ∆t4 for both

ε = O(1) and ε being very small (in particular, ε� ∆t); then equating the coefficients

of the corresponding high order terms. Uniform accuracy of the SL schemes in the

intermediate regime when the spatial mesh size ∆x = O(ε) are beyond the scope

of our current work. We refer to [6, 34] for more derivation details of the order

conditions for RK methods.
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Hence, assuming the initial data is well-prepared (or consistent), i.e., f0 = M [f0] if

ε� 1,5 we will show that

(1) The first and second order accuracy of (3.2) in the kinetic regime imply the

corresponding accuracy in the fluid regime. See Theorem 3.5.

(2) The third order accuracy of (3.2) in the kinetic regime does not imply its third

order accuracy in the fluid regime. In fact, assuming its third order accuracy

in the kinetic regime, one needs one more order condition to guarantee the

third order accuracy in the fluid regime. See Theorem 3.6. In particular, this

leads to the order degeneracy of the classical 3-stage DIRK3 method (B2)

mentioned previously when the SL NDG method [15] is applied to the BGK

equation (2.7) with small ε.

3.2.1. The underlying DIRK scheme in the kinetic regime (the f scheme). To

analyze the accuracy of the f scheme (3.2), we use Q′ and Q′′, the first and second

order Fréchet derivatives of Q, defined by

(3.7)

Q′(f)g = lim
δ→0

Q(f + δg)−Q(f)

δ
, Q′′(f)(g1, g2) = lim

δ→0

Q′(f + δg1)g2 −Q′(f)g2

δ
.

There holds the Taylor expansion

(3.8) Q(f + δg) = Q(f) + δQ′(f)g +
1

2
δ2Q′′(f)(g, g) +O(δ3)

for δ small.

By induction, it is straightforward to show the following Taylor expansion for

(3.2), or equivalently, (3.1):

LEMMA 3.2. The f (k) given by (3.1) satisfies

f (k) =fn + ck
∆t

ε
Q(fn) + dk

∆t2

ε2
Q′(fn)Q(fn)

+
∆t3

ε3

(
gkQ′′(fn)(Q(fn),Q(fn)) + hkQ′(fn)Q′(fn)Q(fn)

)
+O(

∆t4

ε4
),

(3.9)

where the coefficients ck, dk, gk, hk satisfy the iterative relations

(3.10a) ck =
k−1∑
j=1

bkjcj + akk, dk =
k−1∑
j=1

bkjdj + akkck,

5If the initial data is not well-prepared, then (3.1) may reduce to first order. This is similar to the

situation of IMEX schemes of type CK. See Theorem 3.6 in [13] and the discussion afterwards.
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(3.10b) gk =
k−1∑
j=1

bkjgj +
1

2
akkc

2
k, hk =

k−1∑
j=1

bkjhj + akkdk.

Proof. For simplicity we only provide the proof of the iterative relations (3.10a)

for ck and dk by second order Taylor expansion. The other two relations can be

proved similarly by expanding to third order. The fact that ck =
k∑
j=1

akj being the

coefficient of the O(∆t
ε ) term for f (k) follows from the Taylor expansion of (3.1). To

prove (3.10a), notice that the Taylor expansion of (3.2) up to second order gives

fn + ck
∆t

ε
Q(fn) + dk

∆t2

ε2
Q′(fn)Q(fn)

=
(

1−
k−1∑
j=1

bkj

)
fn +

k−1∑
j=1

bkj

(
fn + cj

∆t

ε
Q(fn) + dj

∆t2

ε2
Q′(fn)Q(fn)

)
+

∆t

ε
akk

(
Q(fn) + ck

∆t

ε
Q′(fn)Q(fn)

)
+O(

∆t3

ε3
),

(3.11)

where we used

(3.12)

Q(f (k)) = Q
(
fn + ck

∆t

ε
Q(fn) +O(

∆t2

ε2
)
)

= Q(fn) + ck
∆t

ε
Q′(fn)Q(fn) +O(

∆t2

ε2
).

Comparing the O(∆t
ε ) and O(∆t2

ε2 ) terms gives (3.10a) respectively.

It is straightforward to show that the exact solution to (2.16) satisfies the Taylor

expansion

fn+1 = fn +
∆t

ε
Q(fn) +

1

2

∆t2

ε2
Q′(fn)Q(fn)

+
∆t3

ε3

(
1

6
Q′′(fn)(Q(fn),Q(fn)) +

1

6
Q′(fn)Q′(fn)Q(fn)

)
+O(

∆t4

ε4
).

(3.13)

Therefore, comparing (3.9) and (3.13), we have the order conditions for (3.1) in the

kinetic regime ε = O(1):

(3.14) First order: cs = 1, Second order: ds =
1

2
, Third order: gs = hs =

1

6
.

3.2.2. The limiting scheme (the U scheme). In the limiting fluid regime, as ε→

0, f will be relaxed to the equilibrium state MU [f ] for the BGK model. Thus, taking

the moments of (2.7) in the fluid regime, we have the limiting fluid equation for U :

(3.15) ∂tU = T (U), T (U) := −∂x〈vMU [U ](x, v)φ(v)〉.
10



Therefore, the Taylor expansion of its exact solution is given by

Un+1 = Un + ∆tT (Un) + ∆t2
1

2
T ′(Un)T (Un)

+ ∆t3
(

1

6
T ′′(Un)

(
T (Un), T (Un)

)
+

1

6
T ′(Un)T ′(Un)T (Un)

)
+O(∆t4),

(3.16)

which is similar to (3.13).

Taking moments of the f scheme in Shu-Osher form (3.2) against the collision

invariants φ(v) gives

(3.17)

U (k)(x) = (1−
k−1∑
j=1

bkj)〈fn(x− ckv∆t, v)φ(v)〉+
k−1∑
j=1

bkj〈f (j)(x− (ck− cj)v∆t, v)φ(v)〉,

where U (k)(x) := 〈f (k)φ(v)〉 are the moments of f (k). The collision operator in (3.2)

vanishes due to the property that the moments of the relaxation term are identically

zero. Meanwhile, as ε → 0, f (k) and fn+1 will be relaxed to the local equilibriums

M
(k)
U and Mn+1

U respectively. Thus the limiting scheme for U in (3.15) is given by the

following U scheme, for k = 1, · · · s,

(3.18)

U (k)(x) =
(

1−
k−1∑
j=1

bkj

)
〈MU [Un](x−ckv∆t, v)φ(v)〉+

k−1∑
j=1

bkj〈MU [U (j)](x−(ck−cj)v∆t, v)φ(v)〉.

Now we analyze the accuracy of the limiting U scheme (3.18). By Taylor expansion,

〈MU [U ](x− v∆t, v)φ(v)〉 =〈MU [U ](x, v)φ(v)〉 −∆t〈v∂x(MU [U ](x, v))φ(v)〉

+
1

2
∆t2〈v2∂xx(MU [U ](x, v))φ(v)〉

− 1

6
∆t3〈v3∂xxx(MU [U ](x, v))φ(v)〉+O(∆t4)

=U + ∆tT (U) + ∆t2B(U) + ∆t3B̃(U) +O(∆t4),

(3.19)

where

B(U) :=
1

2
〈v2∂xx(MU [U ](x, v))φ(v)〉,

B̃(U) := −1

6
〈v3∂xxx(MU [U ](x, v))φ(v)〉,

(3.20)

are not the same as T ′T , T ′′(T , T ) or T ′T ′T .

REMARK 3.3. In fact, one can write

T ′(U)T (U) = ∂x〈v∇UMU [U ](x, v)φ(v) · T (U)〉,

B(U) = ∂x〈v∇UMU [U ](x, v)φ(v) · ∂x(vU)〉,
(3.21)

11



where ∇UMU means the gradient of the map U 7→ MU [U ](v) at each x. T ′(U)T (U)

and B(U) are clearly not the same, since vU = v〈MU [U ](v)φ(v)〉 6= 〈vMU [U ](v)φ(v)〉.

One can similarly check that B̃(U) is not a linear combination of T ′′(U)(T (U), T (U)) and

T (U)′T (U)′T (U).

For the simple model (2.2), one has 2B(U) = ∂xxU and T ′(U)T (U) = b2∂xxU . Al-

though they only differ by a constant multiple b2, one cannot treat them as similar terms

if one wants an accurate scheme with coefficients independent of the parameter b in the

model. For the third order terms, the situation is similar: one has 6B̃(U) = −b∂xxxU ,

T ′(U)T ′(U)T (U) = −b3∂xxxU , and T ′′(U)(T (U), T (U)) = 0.

Therefore the limiting scheme (3.18) has the following expression, up to third

order accuracy:

U (k) =
(

1−
k−1∑
j=1

bkj

)(
Un + ∆tckT (Un) + ∆t2c2kB(Un) + ∆t3c3kB̃(Un)

)

+
k−1∑
j=1

bkj

(
U (j) + ∆t(ck − cj)T (U (j)) + ∆t2(ck − cj)2B(U (j)) + ∆t3(ck − cj)3B̃(U (j))

)
+O(∆t4).

(3.22)

This can be viewed as an explicit RK scheme for the limiting equation (written in

Shu-Osher form), with some error terms on second and third order. By induction

one can show the following Taylor expansion:

LEMMA 3.4. The U (k) given by (3.22) satisfies

U (k) =Un + Ck∆tT (Un) +Dk∆t2T ′(Un)T (Un) +Bk∆t2B(Un)

+ ∆t3
(
GkT ′′(Un)(T (Un), T (Un)) +HkT ′(Un)T ′(Un)T (Un) +B∗kT ′(Un)B(Un)

+B∗∗k B′(Un)T (Un) +B∗∗∗k B̃(Un)
)

+O(∆t4),

(3.23)

where the coefficients Dk, Bk, Gk, Hk, B
∗
k , B

∗∗
k , B

∗∗∗
k satisfy the iterative relations

(3.24a) Ck = ck, Dk =
k−1∑
j=1

bkj(Dj + (ck − cj)cj),

(3.24b) Bk =
(

1−
k−1∑
j=1

bkj

)
c2k +

k−1∑
j=1

bkj(Bj + (ck − cj)2),

12



(3.24c) Gk =
k−1∑
j=1

bkj(Gj +
1

2
(ck − cj)c2j ), Hk =

k−1∑
j=1

bkj(Hj + (ck − cj)Dj),

(3.24d) B∗k =
k−1∑
j=1

bkj(B
∗
j + (ck − cj)Bj), B∗∗k =

k−1∑
j=1

bkj(B
∗∗
j + (ck − cj)2cj),

(3.24e) B∗∗∗k =
(

1−
k−1∑
j=1

bkj

)
c3k +

k−1∑
j=1

bkj(B
∗∗∗
j + (ck − cj)3).

This lemma can be proved by using the Taylor expansion of (3.22) up to third order,

and we omit the proof since it is similar to the proof of Lemma 3.2.

The order conditions of the U scheme (3.22) are

First order: Cs = 1, Second order: Ds =
1

2
, Bs = 0,

Third order: Gs = Hs =
1

6
, B∗s = B∗∗s = B∗∗∗s = 0.

(3.25)

3.3. Analysis for first and second order. We analyze the relation between the

accuracy of the f scheme and the U scheme by finding relations between their Taylor

coefficients. We first consider first and second order accuracy:

THEOREM 3.5. The first and second order accuracy of the f scheme imply the corre-

sponding accuracy of the U scheme.

Proof. Since the first order condition for the f scheme and the U scheme are the

same (Cs = cs), the first order accuracy of the f scheme implies that of the U scheme.

To show the conclusion for second order accuracy, we will prove the following

relations:

(3.26a) dk +Dk = c2k, Bk = dk −Dk.

From the second order accuracy of the f scheme, we have cs = 1, ds = 1/2. With

(3.26), we obtain Cs = 1, Ds = 1/2, and then Bs = 0, which verifies the order

conditions for the second order scheme in (3.25).

We prove (3.26) by induction. For k = 1, one has

(3.27) d1 = a2
11, D1 = 0, B1 = c21 = a2

11,

13



and thus (3.26) holds for k = 1. Suppose the conclusion holds for j = 1, · · · k − 1. To

show (3.26a), we notice that (by induction hypothesis)

(3.28)

Dk =
k−1∑
j=1

bkj(Dj + (ck − cj)cj) =
k−1∑
j=1

bkj(c
2
j − dj + (ck − cj)cj) =

k−1∑
j=1

bkj(−dj + ckcj).

Summing with the (3.10a) gives

(3.29) dk +Dk =
k−1∑
j=1

bkjckcj + akkck = ck

( k−1∑
j=1

bkjcj + akk

)
= c2k.

To show (3.26a),

Bk =
(

1−
k−1∑
j=1

bkj

)
c2k +

k−1∑
j=1

bkj(Bj + (ck − cj)2) = c2k +
k−1∑
j=1

bkj(dj −Dj − 2ckcj + c2j )

=c2k +

k−1∑
j=1

bkj(2dj − 2ckcj) = c2k − 2

k−1∑
j=1

bkj(−dj + ckcj) = c2k − 2Dk = dk −Dk,

(3.30)

where we started from (3.24b), and then used the induction hypothesis, and finally

used (3.28) and (3.26a).

3.4. Analysis for third order.

THEOREM 3.6. The third order accuracy of the f scheme, together with the condition

Gs = 1/6, implies the third order accuracy of the U scheme.

Proof. We will prove the following relations

(3.31a) 2Gk −Hk + 2gk = ckdk,

(3.31b) B∗k = 2Gk − 2Hk, B∗∗k = 2gk − 2Hk − c3k + 2ckDk,

(3.31c) B∗∗∗k = c3k − 3B∗∗k − 6Gk.

(3.31) implies the conclusion of the theorem. In fact, the third order accuracy of

the f scheme gives cs = 1, ds = 1/2, gs = hs = 1/6. If Gs = 1/6, then (3.31a) gives

Hs = 1/6, and similarly the other three equations of (3.31) giveB∗s = B∗∗s = B∗∗∗s = 0

(where we need to use Ds = 1/2 by Theorem 3.5).
14



To prove (3.31a), we define Lk = 2Gk −Hk. Then from (3.24c) and (3.26a),

Lk =
k−1∑
j=1

bkj(Lj + (ck − cj)dj).(3.32)

We prove by induction that

(3.33) Lk = ckdk − 2gk,

which is exactly (3.31a). For k = 1, L1 = 0, c1d1 − 2g1 = a11 · a2
11 − 2 · (a3

11/2) = 0.

Suppose the conclusion holds for j = 1, · · · k − 1, then

Lk =

k−1∑
j=1

bkj(Lj + (ck − cj)dj) =

k−1∑
j=1

bkj(cjdj − 2gj + (ck − cj)dj)

=ck

k−1∑
j=1

bkjdj − 2
k−1∑
j=1

bkjgj = ck(dk − akkck)− 2
k−1∑
j=1

bkjgj

=ckdk − 2

k−1∑
j=1

bkjgj +
1

2
akkc

2
k

 = ckdk − 2gk,

(3.34)

where we used the induction hypothesis, (3.10a) and (3.10b). (3.31b) is clear from

the (3.24c) and (3.26). Now we show the second equality in (3.31b) by induction. For

k = 1, B∗∗1 = 0, 2g1− 2H1− c31− 2c1D1 = 2 · 1
2a11c

2
1− c31 = 0. Suppose the conclusion

15



holds for j = 1, . . . , k − 1, then

B∗∗k =
k−1∑
j=1

bkj(B
∗∗
j + (ck − cj)2cj)

=
k−1∑
j=1

bkj(2gj − 2Hj + 2cjDj + c2kcj − 2ckc
2
j )

=2
k−1∑
j=1

bkjgj − 2
k−1∑
j=1

bkjHj +
k−1∑
j=1

bkj(2cjDj + c2kcj − 2ckc
2
j )

=2(gk −
1

2
akkc

2
k)− 2

(
Hk −

k−1∑
j=1

bkj(ck − cj)Dj

)
+
k−1∑
j=1

bkj(2cjDj + c2kcj − 2ckc
2
j )

=2gk − akkc2k − 2Hk +
k−1∑
j=1

bkj(2(ck − cj)Dj + 2cjDj + c2kcj − 2ckc
2
j )

=2gk − akkc2k − 2Hk + ck

k−1∑
j=1

bkj(ckcj − 2dj)

=2gk − 2Hk − ck
( k−1∑
j=1

bkjdj + akkck

)
+ ck

k−1∑
j=1

bkj(ckcj − dj)

=2gk − 2Hk − ckdk + ckDk

=2gk − 2Hk − c3k + 2ckDk,

(3.35)

where we used the induction hypothesis, (3.10b), (3.24c), (3.10a) and (3.28).

To prove (3.31c), notice that

(3.36)

B∗∗∗k −c3k =

k−1∑
j=1

bkj((B
∗∗∗
j −c3j )−3c2kcj+3ckc

2
j ) =

k−1∑
j=1

bkj((B
∗∗∗
j −c3j )−3(ck−cj)2cj−6·1

2
(ck−cj)c2j ).

Therefore (3.31c) follows from (3.24d) and (3.24c).

This forms sharp contrast with that of the mesh-based Eulerian IMEX schemes

for stiff kinetic equations. It was shown in Theorem 3.3 in [13] that an IMEX of type

A (i.e., the implicit table is DIRK) applied to a stiff kinetic equation gives rise to

an explicit RK scheme in the fluid regime, whose Butcher table is the same as the

explicit table of the IMEX scheme. As a consequence, the k-th order accuracy of such

an IMEX scheme in the kinetic regime implies that in the fluid regime, for any k ≥ 1.

Based on the order conditions in Theorem 3.6, we propose 4-stage DIRK3 meth-

ods (B3)-(B10) in Appendix B for both regimes up to third order.
16



REMARK 3.7. The classical 3-stage DIRK3 method (B2) [7] in the Appendix B does not

satisfies the condition G3 = 1/6 appeared in Theorem 3.6. In fact, calculation shows that

G3 ≈ 0.066745, and therefore the corresponding U scheme is not third order. This example

shows that the condition Gs = 1/6 is not a consequence of the third order accuracy of the f

scheme.

REMARK 3.8. There are a lot of freedoms when creating 4-stage DIRK3 methods satisfy-

ing Theorem 3.6. For the consideration of computational cost, one could let certain elements

of the Butcher tableaus be zeros. For instance, in Table B7 - Table B10, we have two zero

elements of aij .

4. Stability analysis for DIRK methods. In this section, we analyze the stabil-

ity property of DIRK schemes under the SL setting. In particular, we are interested in

the L-stable DIRK methods for the AP property in the limiting ε→ 0 regime. Linear

stability of DIRK schemes with different ε are investigated. Similar to the accuracy

analysis in Section 3, we keep the phase space continuous and consider the linear ki-

netic problem (2.2) with periodic boundary condition, written in the following form

(4.1)

f1

f2


t

+

1 0

0 −1

f1

f2


x

=
1

ε

M1 − f1

M2 − f2


where MU = (M1,M2)T satisfies (2.5). In the analysis, we apply DIRK methods in

the SL framework to (4.1) and study f1 and f2 in the form of Fourier series

(4.2) f1 =
∑
k

f̂
(k)
1 (t)eikx and f2 =

∑
k

f̂
(k)
2 (t)eikx, i =

√
−1

with k is the wavenumber.

Before discussing the stability of general DIRK methods, we first work with the

backward Euler method to illustrate the process. Applying the backward Euler to

(4.1) along characteristics, gives us

fn+1
1 = fn1 (x−∆t) +

∆t

ε
(Mn+1

1 − fn+1
1 ),

fn+1
2 = fn2 (x+ ∆t) +

∆t

ε
(Mn+1

2 − fn+1
2 ).(4.3)

Plugging (4.2) into (4.3), one can obtain the following the relation between the k-th
17



Fourier modes eikx at tn+1 and tn:

(4.4)f̂ (k)
1 (tn+1)

f̂
(k)
2 (tn+1)

 =

I − ∆t

2ε

−1 + b 1 + b

1− b −1− b

−1e−ik∆t 0

0 eik∆t

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)


with the amplification matrix

MBE =

I − ∆t

2ε

−1 + b 1 + b

1− b −1− b

−1e−ik∆t 0

0 eik∆t


=

1

1 + ξ

1 + 1+b
2 ξ 1+b

2 ξ

1−b
2 ξ 1 + 1−b

2 ξ

e−ik∆t 0

0 eik∆t

(4.5)

where ξ = ∆t
ε . Below we will use ∆t

ε and ξ interchangeably. Taking the 2-norm of

MBE, we have

‖MBE‖2 ≤

∥∥∥∥∥∥ 1

1 + ξ

1 + 1+b
2 ξ 1+b

2 ξ

1−b
2 ξ 1 + 1−b

2 ξ

∥∥∥∥∥∥
2

∥∥∥∥∥∥
e−ik∆t 0

0 eik∆t

∥∥∥∥∥∥
2

= 1.

In fact, the backward Euler method is unconditionally stable in this context.

Next, we generalize the above analysis to a 2-stage DIRK2 method, e.g. with

Butcher tableau (B1). At the first stage t(1) = tn + c1∆t, repeating similar procedure

as from (4.3) and (4.4), one can show the Fourier modes at t(1) and tn are related viaf̂ (k)
1 (t(1))

f̂
(k)
2 (t(1))

 =
1

1 + a11ξ

1 + 1+b
2 a11ξ

1+b
2 a11ξ

1−b
2 a11ξ 1 + 1−b

2 a11ξ

e−ikc1∆t 0

0 eikc1∆t

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)


.
= MDIRK2, (1)

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)

(4.6)

with amplification matrix MDIRK2, (1). At the second (i.e. final) stage tn+1, using (3.2),

we have the following formulation in the Shu-Osher form

fn+1
1 = (1− b21)fn1 (x−∆t) + b21f

(1)
1 (x− (1− c1)∆t) +

a22∆t

ε
(Mn+1

1 − fn+1
1 ),

fn+1
2 = (1− b21)fn2 (x+ ∆t) + b21f

(1)
2 (x+ (1− c1)∆t) +

a22∆t

ε
(Mn+1

2 − fn+1
2 ).

(4.7)
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For the notation simplicity, for l = 2, · · · s, l > j ≥ 1, we introduce

Al = I − all∆t

ε

−1+b
2

1+b
2

1−b
2

−1−b
2

 , Bl = (1−
l−1∑
j=1

blj)

e−ikcl∆t 0

0 eikcl∆t

(4.8)

Clj = blj

e−ik(cl−cj)∆t 0

0 eik(cl−cj)∆t


for the operations involving intermediate stage values at t(j), j = 1, · · · l. With nota-

tions in (4.8), (4.7) leads to

(4.9)

f̂ (k)
1 (tn+1)

f̂
(k)
2 (tn+1)

 = A−1
2

B2

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)

+ C21

f̂ (k)
1 (t(1))

f̂
(k)
2 (t(1))


Combining (4.6) and (4.9), we have

f̂ (k)
1 (tn+1)

f̂
(k)
2 (tn+1)

 = A−1
2

[
B2 + C21MDIRK2, (1)

]f̂ (k)
1 (tn)

f̂
(k)
2 (tn)

 .
= MDIRK2

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)

 .

(4.10)

When ξ →∞, the amplification matrix MDIRK2 goes to

 1+b
2

[
(1 + −1+b

2 b21)e−ikc2∆t + 1−b
2 b21e

ik(c2−2c1)∆t
]

1+b
2

[
1+b

2 b21e
−ik(c2−2c1)∆t + (1 + −1−b

2 b21)eikc2∆t
]

1−b
2

[
(1 + −1+b

2 b21)e−ikc2∆t + 1−b
2 b21e

ik(c2−2c1)∆t
]

1−b
2

[
1+b

2 b21e
−ik(c2−2c1)∆t + (1 + −1−b

2 b21)eikc2∆t
]


(4.11)

and the corresponding eigenvalues are λ1 = 0 and

λ2 =

(
1− 1− b2

2
b21

)
cos(kc2∆t) +

1− b2

2
b21 cos(k(c2 − 2c1)∆t).

In Figure 4.1, we present the contour plot of |λ2| versus b ∈ [0, 1] and k∆t ∈ [0, 2π], as

ξ = ∆t
ε →∞. The contour plot of |λ2| in Figure 4.1 is plotted subject to the calculation

error of Matlab. We observe that for different b ∈ [0, 1], different constraints on k∆t

need to be imposed for stability. For example, one needs to use k∆t ∈ [0, 1.7927π]

so that |λ2| ≤ 1 when b = 0, while k∆t ∈ [0, 2π] is allowed for a bigger b, such as

b = 0.6 in Example 5.1. In Figure 4.1, we show the contour plot of two eigenvalues

for MDIRK2 when b = 0.6. We consider the range of k∆t ∈ [0, 2π] and ξ ∈ [0, 10].

Notice that for ξ greater than 10 and in the limit of∞, the spectral radius of MDIRK2

has been numerically checked to be bounded by 1 with b = 0.6, k∆t ∈ [0, 2π]. We
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FIG. 4.1. DIRK2 method in Table B1. Left: contour plot of spectral radius of MDIRK2,ξ→∞ versus b ∈ [0, 1]

and k∆t ∈ [0, 2π]. Middle and right: contour plot of the eigenvalues |λ1,2| with k∆t ∈ [0, 2π] and ξ = ∆t
ε

∈

[0, 10] for the amplification matrix MDIRK2 with b = 0.6 in (4.1). Note that we choose the range of ξ ∈ [0, 10] as

an example. It is numerically verified that both eigenvalues are bounded from above by 1 for ξ > 10.

note that, the constraint for the range of k∆t gives a guidance to the time stepping

size one can take, since k is the wave number related to the spatial resolution ranging

from 0 to π
∆x , thus the upper bound on k∆t provides a time stepping constraint on

the CFL∝ ∆t
∆x . However, it does not provide a sufficient condition for linear stability,

since the spatial operations are kept continuous in the current analysis. Analysis for

a fully discrete scheme will be rather involved and out of the scope of current work,

especially when feet of characteristics could be located more than one cell away for

CFL larger than 1.

Finally, when we perform the linear stability analysis to the proposed 4-stage

DIRK3 time discretization methods specified in Butcher Tables B3-B10 for (4.1), the

Fourier modes of eikx for f1 and f2 follow the following recursive relation, l = 2, 3, 4,

(4.12)

f̂ (k)
1 (t(l))

f̂
(k)
2 (t(l))

 = A−1
l

Bl
f̂ (k)

1 (tn)

f̂
(k)
2 (tn)

+

l−1∑
j=1

Clj

f̂ (k)
1 (t(j))

f̂
(k)
2 (t(j))

 ,
and that f̂ (k)

1 (tn+1)

f̂
(k)
2 (tn+1)

 = A−1
4

B4 +
3∑
j=1

C4jA
−1
j Ej

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)


= MDIRK3

f̂ (k)
1 (tn)

f̂
(k)
2 (tn)

(4.13)

where Ej = Bj +
j−1∑
l=1

CjlA
−1
l El. We compute the spectral radius of MDIRK3,ε→0 by

Matlab, for which the contour plot is presented in Figure 4.2 with b ∈ [0, 1] and
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k∆t ∈ [0, 2π] for DIRK3 methods given in Table B2 - B10. It can be observed that the

appropriate ranges of k∆t such that |λ2| ≤ 1 depend on the choice of b ∈ [0, 1]. In

particular, when b = 0.6, we see that in Figure 4.2(i), with k∆t ∈ [0, 5] which is a con-

siderable wide range for the k∆t, we have |λ2| ≤ 1. Compared with other contour

plots of λ2 in Figure 4.2, we found the 4-stage DIRK3 method (B10) being a robust

choice for linear stability, as well as asymptotic third order accuracy. Following this

observation, in Figure 4.3, we plot the contour plot of |λ1,2| for the corresponding

amplification matrix MDIRK3 when b = 0.6 and use k∆t ∈ [0, 1.5924π], ξ ∈ [0, 10].

We observe the |λ1,2| ≤ 1 with our choice of ξ and k∆t which indicates that when

b = 0.6 in (4.1), the spectral radius of DIRK3 method (B10) is bounded by 1 for

k∆t ∈ [0, 1.5924π]. Such statement is checked to be valid for all ξ, although only

ξ ∈ [0, 10] is being plotted. For the numerical tests in the next section, we choose the

DIRK3 method specified in Table B10 with third order classical accuracy as well as

asymptotic accuracy. We also note that the spectral radius of MDIRK3,ε→0 is slightly

larger than 1 toward the lower right corner of the plot in Figure 4.2(i), yet no nu-

merical instability is observed in our tests. It is our future work to optimize DIRK3

methods, that satisfy the extra order condition for asymptotic third order temporal

convergence, in terms of their linear stability properties.

5. Numerical Tests. In this section, we apply the SL NDG-DIRK methods pro-

posed in [15] to test the classical and asymptotic temporal orders of convergence

for proposed DIRK methods via stiff linear/nonlinear hyperbolic relaxation systems

and the kinetic BGK model. Unless otherwise noted, we use a third order SL NDG

spatial discretization with a well-resolved mesh of 640 uniformly spaced elements,

to minimize the spatial error, and periodic boundary conditions are used for all tests.

We also use the time stepping size as ∆t = CFL · ∆x
a where a is the maximum trans-

port speed, and CFL values are to be specified for each test.

EXAMPLE 5.1. [19] Consider the linear two-velocity model (2.2) with b = 0.6 on x ∈

[0, 1], and the initial condition given by

u(x, 0) = exp(sin 2πx), v(x, 0) = b exp(sin 2πx).

We test the temporal convergences of different DIRK methods, by plotting in Figure 5.1(a)-
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(a) Table B2 (b) Table B3 (c) Table B4

(d) Table B5 (e) Table B6 (f) Table B7

(g) Table B8 (h) Table B9 (i) Table B10

FIG. 4.2. Contour plot of the eigenvalues |λ2| for MDIRK3,ε→0 versus b ∈ [0, 1] and k∆t ∈ [0, 2π] for the

DIRK3 method in Table B2 - B10 as ξ = ∆t
ε

→ ∞.

5.1(c) L1 errors versus the CFL numbers in ε = 10−2, 10−5 and 10−6 regimes at T =

0.2. In the figures, for backward Euler and DIRK2 methods, we can clearly observe the

expected orders of convergence in all three regimes with CFL values as large as 16; we also

see that the errors stagnates due to dominancy of the spatial errors when CFL < 0.02 for

the DIRK2 method. Here, we note that, compared with the Eulerian methods, the temporal

errors of SL methods computed using reference solutions still depend on ∆x on a fixed mesh

due to the characteristic tracing feature. For the classical 3-stage DIRK3 scheme (B2), we

have the following observation: when ε = 10−2, third order accuracy is observed when
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(a) |λ1| (b) |λ2|

FIG. 4.3. Contour plot of the eigenvalues |λ1,2| with k∆t ∈ [0, 1.5924π] and ξ = ∆t
ε

∈ [0, 10] for the

amplification matrix MDIRK3 of the 4-stage DIRK3 method in Table B10. b = 0.6 in (4.1). Note that we choose the

range of ξ ∈ [0, 10] as an example, we checked that for ξ > 10, the eigenvalues are bounded by 1 as well.

CFL > 0.2; while for ε = 10−5 and 10−6, when 0.02 < CFL < 1 and CFL > 3, only

second order temporal convergence is observed as shown in Theorem 3.6 together with the

Remark 3.7, but the method suffers from the numerical instability when 1 < CFL < 3. Such

instability, may be due to the shift of characteristics feet across one computational cell from

DG spatial discretization, is not covered in our current analysis. For the 4-stage DIRK3

method (B10), when ε = 10−2, the expected third order convergence is observed when CFL

> 0.4; for ε = 10−5 and ε = 10−6, the following observations are made with the decrease of

the CFL values: when CFL is sufficiently large, the method shows the third order asymptotic

accuracy (phase 1), as CFL getting smaller, numerical instability again shows up for CFL

> 1 (phase 2), then the method continues to converge when CFL is even smaller (phase

3), and eventually the numerical errors are trapped in a plateau with the dominant spatial

errors (phase 4). Additionally, we see that the convergence behavior in phase 3 is related to

the ε value: when ε = 10−5, both third and first order accuracies are observed for 0.04 <

CFL < 0.1 (kinetic regime) and 0.1 < CFL < 1 (intermediate regime) respectively; when

ε = 10−6, the convergence reduces to first order accuracy for 0.1 < CFL < 1 (intermediate

regime). The accuracy analysis performed in Section 3 considers ∆t� ε in the kinetic regime

and ε � ∆t in the fluid regime. The convergence studies of time discretization methods in

intermediate regime, when ε and ∆t are on a comparable scale, is not covered in our current

analysis.
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(a) ε = 10−2 (b) ε = 10−5

(c) ε = 10−6

FIG. 5.1. Plots of L1 errors versus CFL of SL NDG-DIRK methods for (2.2) with b = 0.6 at T = 0.2.

The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.001. 5.1(a) - 5.1(c):

L1 errors computed on fixed mesh Nx = 640 in ε = 10−2, 10−5, 10−6 regimes. BE, DIRK2, DIRK3 B2,

DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2) and 4-stage DIRK3

method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

EXAMPLE 5.2. Consider the nonlinear hyperbolic relaxation system in [19],

(5.1)


∂tu+ ∂xv = 0,

∂tv + ∂xu = 1
ε (bu2 − v),

with b = 0.2 on x ∈ [0, 1]. When ε → 0, the limit of (5.1) is the Burger’s equation

∂tu + b∂x(u2) = 0. Let f = (f1, f2)T where f1 = u+v
2 , f2 = u−v

2 , then (5.1) can be

reformulated into the two-discrete velocity model:

(5.2) ∂tf + v∂xf =
1

ε
(MU − f)

with v ∈ Ωv = {−1, 1} and the local equilibrium MU = ( bu
2+u
2 , −bu

2+u
2 )T . (5.1) has only
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one collision invariant φ(v) = 1. The initial condition for u and v are given by u(x, 0) =

1
2 exp(sin 2πx), v(x, 0) = bu2(x, 0). The final simulation time T = 0.2. In Figure 5.2,

we plot L1 errors versus the CFL numbers for both ε = 10−2 and 10−6. Similar observation

as Example 5.1 can be made. When ε = 10−2, classical orders of convergence are observed

for various DIRK schemes with CFL as large as 16. When ε = 10−6, only second order

convergence is observed for the classical 3-stage DIRK3 (B2) when 0.02 < CFL < 0.8 and

CFL > 4. Numerical instability again shows up when 0.8 < CFL < 4, which is not covered

in our current analysis. We also observe four phases for the 4-stage DIRK3 (B10): third order

asymptotic accuracy for CFL > 8 (phase 1), numerical instability for 1 < CFL < 8 (phase

2), first order accuracy for 0.03 < CFL < 1 (phase 3) and stagnant errors for CFL < 0.03

(phase 4).

(a) ε = 10−2 (b) ε = 10−6

FIG. 5.2. Plots of L1 errors versus CFL on fixed mesh Nx = 640 for (5.2) in ε = 10−2, 10−6 regimes at

T = 0.2. The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.001. BE,

DIRK2, DIRK3 B2, DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2)

and 4-stage DIRK3 method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

EXAMPLE 5.3. Consider 1D1V BGK equation (2.7) with the consistent initial distribu-

tion in [29]

(5.3) f(x, v, 0) =
ρ0√
2πT0

exp

(
− (v − u0(x))2

2T0

)
, x ∈ [−1, 1]

and initial velocity

(5.4) u0 =
1

10

[
exp

(
−(10x− 1)2

)
− 2 exp

(
−(10x+ 3)2

)]
.
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Initial density and temperature are uniform with constant values ρ(x, 0) = ρ0 = 1 and

T (x, 0) = T0 = 1 respectively. The test is performed on the velocity domain v ∈ [−15, 15],

which is uniformly discretized with Nv = 100 grid points. The temporal accuracies of the

SL NDG-DIRK method [15] when applied to (5.3) with ε = 10−2 and 10−6 at T = 0.04 are

given in Figure 5.3. As the previous examples, classical orders of convergence are observed

for ε = 10−2 with large CFL numbers. But both the classical 3-stage DIRK3 (B2) and the

4-stage DIRK3 (B10) degenerate to first orders for CFL < 2. In the asymptotic limit with

ε = 10−6, all schemes tested are observed to be stable for rather large CFL numbers. The

3-stage DIRK3 (B2) only has second order convergence. The 4-stage DIRK3 (B10) displays

third order asymptotic convergence for CFL > 10, then its error stays the same for CFL

ranges from 1 to 7.

(a) ε = 10−2 (b) ε = 10−6

FIG. 5.3. Plots of L1 errors versus CFL on fixed mesh Nx = 640 for (5.2) in ε = 10−2, 10−6 regimes at

T = 0.04. The reference solutions are obtained from the corresponding numerical solutions with CFL = 0.01. BE,

DIRK2, DIRK3 B2, DIRK3 B10 refer to backward Euler, DIRK2 method (B1), classical 3-stage DIRK3 method (B2)

and 4-stage DIRK3 method (B10) respectively. Line segments of slope 1, 2 and 3 are also provided as references.

6. Conclusions. In this paper, we study the asymptotic accurate property of the

DIRK methods when they are coupled with semi-Lagrangian solvers for stiff hyper-

bolic relaxation systems and kinetic BGK model. By performing an accuracy analysis

in the asymptotic limit of ε → 0, an additional order condition is derived for third

order accuracy of DIRK methods in the limiting fluid regime. In additional, linear

stability analysis of DIRK schemes is performed on a linear two-velocity model via

Fourier analysis, when the spatial operations are kept continuous. Numerical insta-
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bilities show up for the limiting fluid regime, with CFL greater than 1. Further study

of linear stability of fully discrete DIRK schemes when coupled with discontinuous

Galerkin spatial discretization is open and optimization of DIRK methods for better

linear and nonlinear stability, are subject to our future work.

Appendix: Butcher Tableaus of DIRK methods. Classical 2-stage DIRK2 in

Table B1 and 3-stage DIRK3 methods in Table B2:

ν ν 0

1 1− ν ν

1− ν ν

, ν = 1−
√

2/2.

TABLE B1

DIRK2.

γ γ

1+γ
2

1−γ
2 γ

1 β1 β2 γ

β1 β2 γ

,

γ ≈ 0.435866521508459,

β1 = − 3
2γ

2 + 4γ − 1
4 , β2 = 3

2γ
2 −

5γ + 5
4

TABLE B2

3-stage DIRK3.

Proposed DIRK3 methods in Table B3-B10 satisfying the order conditions Gs =

1/6 in Theorem 3.6:

1.482285978970554 1.482285978970554

0.840649305846235 -0.6416366731243188 1.482285978970554

0.369773737448817 0.849139645385794 -1.961651886907531 1.482285978970554

1 -0.1539440520308502 -1.343634476018696 1.015292549078992 1.482285978970554

-0.1539440520308502 -1.343634476018696 1.015292549078992 1.482285978970554
TABLE B3

4-stage DIRK3
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