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Abstract. Semi-Lagrangian (SL) approach is attractive in transport simulations, e.g. in climate
modeling and kinetic models, due to its numerical stability in allowing extra-large time-stepping
sizes. For practical problems with complex geometry, schemes on the unstructured meshes are
preferred. However, accurate and mass conservative SL methods on unstructured meshes are still
under development and encounter several challenges. For instance, when tracking characteristics
backward in time, high order curves are required to accurately approximate the shape of upstream
cells, which brings in extra computational complexity. To avoid such computational complexity,
we propose an Eulerian-Lagrangian Runge-Kutta discontinuous Galerkin method (EL-RKDG) in
[X. Cai, J.-M. Qiu, and Y. Yang, J. Comput. Phys., 439 (2021), 110392], as an extension of the
SL discontinuous Galerkin (DG) methods. This work is a further extension of the algorithm to
unstructured triangular meshes with discussion on the treatment of inflow boundary condition. We
also discuss the discrete geometric conservation law. The nonlinear WENO limiter is applied to
control oscillations. Desired properties of the proposed method are numerically verified by a set of
benchmarks tests.
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1. Introduction. The transport processes are ubiquitous in a variety of appli-
cations such as climate modeling and kinetic models. They can be described by the
transport equation

(1.1) ug + V- (Vu) =0,

where V is the advection coefficient which could depend on space, time and the
solution « for a nonlinear problem.

In the past decades, extensive mesh-based computational tools such as Eulerian
and semi-Lagrangian (SL) approaches have been successfully developed and applied to
various areas of science and engineering. For the Eulerian approach, the Runge-Kutta
(RK) discontinuous Galerkin (DG) methods [16] are well-known for their properties of
high resolution, compactness, flexibility for handling complex geometry, high parallel
efficiency and superconvergence for long time integration, which led to successful
applications to diverse application fields such as aerodynamics [57], computational
geosciences [50], plasma simulation [14, 48], among many others. One drawback of the
RK DG method is the stringent time stepping size with numerical stability for explicit
time stepping. On the other hand, the SL approach allows extra large time stepping
size by tracking solutions along characteristics. Several classes of semi-Lagrangian
schemes have been developed such as the finite element based Lagrange-Galerkin
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method (or the Characteristic-Galerkin method) [39, 20, 36] and their extensions
[11, 44, 53, 46], finite difference based [40, 29], finite volume based [37, 24, 30, 34, 17],
DG based [41, 43, 28, 31, 6, 5, 18], and unstructured meshes based[4, 3]. Recently,
the multi-dimensional SLDG method is proposed in [8, 31] methods. For the nonlinear
dynamics, the SL method can be coupled with the high order prediction-correction
method [9] or the exponential integrators [7] for nonlinear characteristic tracing. For
theoretical analysis, the optimal convergence and superconvergence of SLDG schemes
for linear convection equations in one space dimension are shown in [54].

One significant limitation of the SL approach is to efficiently track characteristics
in a nonlinear, truly multi-dimensional and highly accurate fashion. For example, in
order to achieve third order spatial accuracy, sides of upstream cells have to be approx-
imated by quadratic curves in a general setting. This introduces extra computational
complexity, especially when extended to problems with dimension higher than two.
In additional, to resolve the nonlinearity, some prediction-correction strategy or the
exponential integrators [9, 7] have to be introduced. To address these challenges, we
proposed a novel Eulerian-Lagrangian (EL) DG method in [10]. The EL DG method is
a generalization of the SL DG method [8]. The SLDG method is formulated based on
the design of a localized adjoint problem for the test function that exactly tracks char-
acteristics; while in the EL DG method, the adjoint problem for the test function does
not need to follow exact characteristics, but only approximately. Such feature allows
flexibility, especially for high dimensional and nonlinear problems, where characteris-
tics are difficult to track. The errors that occurred in approximating characteristics
will be integrated in time by RK methods via the method-of-lines approach. Thus
the fully discrete EL DG scheme will be termed EL. RK DG method. Note that the
SL DG in [8] and EL RK DG in [10] are based on the Cartesian meshes. With the
consideration of complex geometry for practical applications, this paper extends the
EL RK DG method to unstructured triangular mesh.

We propose Eulerian-Lagrangian schemes on the unstructured mesh that satisfy
the following essential properties for transport problems: mass conservation, high or-
der accuracy in both space and time, stability with extra large time-stepping sizes,
and essentially non-oscillatory for discontinuities. To conserve the total mass, the
exact evaluation of the integral over the upstream cell that overlaps multiple back-
ground elements is crucial but very challenging. To tackle this difficulty, we propose
a remapping algorithm by local mesh intersection that is mass conservative, where
the evaluation of integrals is stable and accurate via a subregion-by-subregion fash-
ion; other conservative remapping algorithms by local mesh intersection can be found
in [2, 23, 22, 1]. We first propose a second order, unconditionally stable, and mass
conservative SLDG method on the triangular meshes. Then we propose a high order
EL RK DG method on the triangular meshes. Note that the evolution step of EL RK
DG coincides with the arbitrary Lagrangian-Eulerian (ALE) DG scheme [26], from
which we extend the discussion of discrete geometric conservation law (GCL) to the
proposed EL RK DG method. In addition, we have discussions on inflow boundary
condition and nonlinear WENO limiters [59] to control oscillations around disconti-
nuities. As an initial effort, we confine our attention to the linear transport equations
when V is independent of solution wu.

The rest of this paper is arranged as follows. In Section 2.2, we propose a second
order conservative SL DG method on unstructured mesh; in Section 2.3, we propose a
high order EL RK DG method on the triangular meshes together with the discussion
on the discrete geometric conservation laws and the treatment of inflow boundary
condition in Sections 2.4-2.5 respectively. In Section 3, we provide numerical results
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to showcase favorable properties of the proposed schemes. Finally, concluding remarks
are made in Section 4.

2. SL DG and EL RK DG on unstructured meshes.

2.1. A 2D transport problem and notations. We consider a 2D linear trans-
port equation in a conservative form

(2.1) us + vz,y : (V(m,y,t)u) =0,

with continuous velocity field V(z,y,t) = (a(x,y,t),b(x,y,t)) on a polygonal domain
), a given initial condition and proper boundary conditions. In this paper, either
the inflow/outflow or periodic boundary conditions will be considered. We generate
a fixed background mesh which is a partition of €2 by a set of triangular elements
Kj, j=1,---,J and let h = sup; diam(K), where diam(K}) denotes the diameter
of K;. We define the finite dimensional DG approximation space as V}f = {up :
vp|k, € PF(K;)}, in which P¥(K;) denotes the space of polynomials in K; of degree

at most k. In particular P*(K;) = Span (\I/lKJ i=1,--- ,nk> with the dimension
ng = W, where ‘Iff(j,i =1,---,n are an orthogonal basis on K.

2.2. The SL DG method. In this section, we propose a conservative SL. DG
method on unstructured triangular meshes. The scheme uses linear functions to ap-
proximate sides of upstream cells. Note that the integral evaluations on the upstream
cells that overlap with several background cells are important for mass conservation
[36] and are performed by a new remapping algorithm, different from a direct appli-
cation of numerical quadratures on the upstream cells [55]. It will be an important
step for the higher-order EL. RK DG algorithm introduced next.

To update the numerical solution from time level t™ to time level "t over element
K, we consider an adjoint problem for the test function ¢ (z,y,t):

(22) Gr+ V(@,y,) - Vo p = 0, e,y t = ") = U(z,y) € PH(K),

for which the test function v stays constant along characteristic trajectories. As
shown in [8], we have

d

— u(z,y, t)(z,y, t)dedy = 0,
dt Jre, 1)

where K (t) is a dynamic moving element, emanating from the Eulerian element K at
t"+1 backward in time by following the characteristic trajectories. The SLDG scheme
is formulated as follows: given the approximate solution u} & V,{C at time level t", to

find the solution u2+1|Kj € V¥, such that for \IJZKJ € PH(K;),i=1,---,n, we have
(2.3) / UZH\I/ZKj (x,y)dzdy = / uZ’z/JZ-Kj (z,y,t")dxdy,
K; K

J

where K7 := K;(t") denotes the upstream element of the element K; following the
characteristics backward to t”, see the deformed element bounded by blue curves
in Figure 2.1 (a); and wl-K I(x,y,t™) comes from tracking along characteristics from
solving the final value adjoint problem (2.2).

The SLDG method boils down to evaluate the right-hand side (R.H.S.) of (2.3),
which consists of three parts: (1) the upstream element can be approximated by a
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Fic. 2.1. Illustration of SLDG with triangular approzimation. (c): K; connects the potential
boxes: C(i,3), C(i,3+1), C(1,j+2), C(i+1,7), C(i+1,j+1), C(i+1, j+2).

triangle (subject to a second order accuracy), and below we still use K7 to represent

this triangle, as shown in Figure 2.1; (2) win (z,y,t") is unknown on K7, and we
adopt an interpolation to reconstruct it based on the fact that the test function stays
constant along characteristic trajectories; (3) uj is the DG solution that is discontin-
uous across element interfaces of the background mesh (black lines in Figure 2.1 (b)),
and thus the evaluation of (2.3) should be evaluated in a subregion-by-region manner.
Accordingly, the procedure of the SLDG method is performed as follows.
1. Characteristic tracing. The three vertices of K; with the coordinate
(xj,4,Yj,q) are denoted by v,,q = 1,2,3. We trace characteristic trajecto-
ries backward in time from time level "1 to time level " for v, by using a
high order RK method to solve the characteristics equations,

dx

dd&” = a(z,y,t),
t

W) — p(z,y,t),

x(tn-‘rl) = xj,q,y(t""'l) =Yj.¢

and obtain vy with the new coordinate (77,5 ,),q¢ =1,2,3.
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2. Interpolation for test function w Iz, y,t") We use a polynomial
1nterpolat10n to approximate the test function @/} I(z,y,t"), based on the
fact that 1/1i stays constant along characteristics; for instance, for k = 1,

. K} . . .
we reconstruct a P! polynomial ¢, ’ (z,y) by the interpolation constraints

*

szJ (x;,qu;,q) = \PzKJ (xj7q7yj»q)v ¢=1,2,3.

3. An SLDG remapping algorithm. When K7 overlaps with K; in the
background mesh, one can identify overlapping subregions (denoted by
and plotted in different colors in Figure 2.1 (b)), and compute the integral
(2.3) subregion-by-subregion. Subregions can be identified by an algorithm
to determine the intersection regions illustrated in Figure 2.1 (b), and the
subregion integrals can be done by dividing subregions into triangles as in [32]
(denoted by K* ) and applying triangular quadrature rules in the reference
element as in [ ] We denote the solution and test function at quadrature

point by u; Kitn and Vi K, T’", respectlvely The corresponding weight and
the area of K fr,, are denoted by wi,, |[K77 | . The formulation of this
remapping algorlthm is summarized as follows for K7,

K*
/ U}h(x7y7tn)1/}i ! (m,y)dxdy
n K7
:Z/ up(z,y,t" ) 7 (z,y)dxdy
1 jil

:Z/ N uh(mayvtn)¢f;($,y)dmdy

m 3, Tm
K K* ~ K.
(2.4) =YD w, T w |, | = U ().
mooig

The key step of the remapping algorithm is to search K ¥, which is the
overlapping subregion by the upstream element K7 and the Eulerlan element
K. Then we summarize the SLDG remapping algorithm as follows:

Step 1. To search the elements K that intersect with the upstream element
K7, we generate an auxiliary rectangular mesh to create a location look-
up table, with which we provide a look-up table for the location of K7,
as indicated in Figure 2.1 (c).

Step 2. Perform the Sutherland-Hodgman clipping algorithm in [47, 13] for
K7 and K; to get K7, and cut it into a set of sub-triangles K7, |
Step 3. The final L? projection (2.4) can be done since given K7 s vertices

and location in the background mesh, we can have |K7 | quadrature

K’ K}
oints and corresponding u, ™™ 2 Tm iy this sub-triangle.
ig 1 Mg
)

PROPOSITION 2.1. Given a DG solution up(z,y,t") € V[ and assuming the
boundary condition is periodic, the proposed SLDG scheme on the unstructured mesh
(2.3) is mass conservative. In particular,

J
(2.5) Z/ up (z,y, t" T dedy = Z/ up(x,y, t")dzdy.
J=1
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Proof. The proof can be done by letting ¥(z,y) = 1 and recombining K7, to the
background mesh K; as well as using the periodically boundary condition as that of
SLDG on the structured mesh in [8]. O

2.3. The EL-RKDG method. In this section, we propose a general high-order
EL-RKDG method on the unstructured triangular meshes, which is a generalization
of the SLDG method [28, 8] and the RKDG method [16]. The proposed EL-RKDG
method of exactly mass conservative and largely alleviats the CFL condition of the
RKDG method.

We start to formulate the EL-RKDG scheme by a modified adjoint problem on
the associated space-time region. The formulation can be viewed as a composition of
the ALE scheme [26] and the SLDG remapping algorithm in the previous section.
(1) A modified adjoint problem for the 2D transport equation. Consider a
modified adjoint problem:

(2.6) e+ V(2,y,t) - Vo =0, Y(z,y,t =1"") = ¥(z,y) € PH(K;),

where V(m,y,t) = (a(x,y,t), B(z,y,t)) are defined as follows:
1. On K; at t"*'. a(z,y,t"") and SB(z,y,t" ') are set as P! polynomials

denoted by
(27) a(x,y7t”+1) = oo + a1 + o2y,
(28) ﬁ(xvyvtn+1) = BO +51x+ﬂy

As in [10], a and S are linear functions interpolating V(x,y,t) at vertices of
K; at the time level ¢"*1.

2. On K;(t) at t € [t",t"+1). Along characteristic lines of the adjoint problem
(2.6) originating from any point (X,Y) € K; at t"™!, with

(2.9) Bt (XY, 7)), (6 (X, Y, 074))

satisfying the following equations,
(2.10)

d d
P OYATT) = a(X Vo), (s (X, Vo)) = XY 0.

Note that the right-hand side of above equations are independent of t, then
solving these equations that originate from (X,Y"), we have

(2:11) Bt (XY, 4")) = X — a(X, Y ") (" — 1),
(2.12) g(t; (XY, "t =y — B(X, Y, ¢ttt ).
The associated space-time region for (2.6) then becomes Qj = Kj(t) X

[t",¢"+1], where K;(t) is the triangle with vertices along straight charac-
teristic lines originated from vertices of K, see Figure 2.2 (a).
Then, for (2(t), 5(1)) = (&(t: (X, Y, 1)), 5t (X, Y, £71))) € K (1), where
t e [t", t"t1], the V(z,y,t) is defined as

T a0 — @Y ) g (X, Y ),
@ V0500 = (5 GO ) oy e

_ ( a(X, Yt
- ( B(X,Y, ¢+ )
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)
E(th = #(t; (X, Y, t7T1y)
G(4) = 5(t; (X, Y, t7 1))
T

#(t) = (2, 9, R
3(t) = 5(a, 9,501 U2

FIG. 2.2. (a): illustration of the space-time region K;(t) x [t™,t"1]; (b): the mapping between

dynamic element f(j (t) and the reference element K.

We summarize several properties of the modified adjoint problem in the following
proposition.

PROPOSITION 2.2. For the modified adjoint problem, we have

(i) its characteristic lines,

(2.14) (t; (X, Y, 1), gt (X, Y, 7)),

for any point (X,Y) € K; at t" 1 can be explicitly presented as

(2.15) ( ggg ) = JRiKi (1) ( i,( >+ ( g:gg )

with the merely time-dependent Jacobian matrix denoted by

(2.16)

K oy . O@9) A e ) I LY ()
IKKG (1) = m(t) = ( —%X(tnﬂ P —8§(tn+1 o ) 7

where 61(t) = (t — " )y, 52(t) := (t —t"+1)By.

(ii)

(2.17)
Y(E(E; (2, 9, "), Gt (2,9, 7)), 1) = U, y) € PH(K;), Vit e [t ).
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Proof. Firstly, the equation (2.15) can be easily obtained by substituting (2.7)
and (2.8) into (2.11) and (2.12).

Secondly, we can prove (2.17) by the fact that the test function v stays constant
along characteristics. 0

(2) Semi-discrete EL-RKDG formulation. Integrate (2.1) -t + (2.6) - u over ),
that is,

(2.18) /[@h~¢+@@-@h@ﬁ=&
2

After manipulating the above equation with the divergence theorem and the Leibniz-

Reynolds transport theorem and considering its time differential form, we have

(2.19) 4 / updxdy = —/ YF -nds + / F - Vipdady,
dt Ji; 0 : <

oK, (t) K;(t)

where F(u,z,y,t) = (V(x,y,t) — V(z,y,t)) u, ds is the infinitesimal boundary of

K;(t), and n denotes the unit outward normal vector to 9K (t).

To facilitate implementation, we map the semi-discrete EL-RKDG formulation on
the reference element K with vertices ©1(0,0), 02(1,0), and 93(0,1) (see Figure 2.2
(b)). We denote the isoparametric mapping functions from the reference element K
to the Eulerian element K; and the dynamic element K;(t) by (X (2,9),Y(2,9))"
and (Z(2,9,t),5(2,9,t))T, respectively. We can easily have

X(:fcg})) KK<:%> <x1>

2.20 CY) ) iR (T ) T )

(2:20) ( Y(%,9) (] Yin

where

(2.21) IR = < R ) .
Yj2 — Y1 Y53 —Yja

Then the mapping function (#(%,7,t),4(Z,9,t))" can be presented as:
N = J7i%i(t
( §(.9.1) ) © Al
- - | 51(t)
2.22 = JKiRi(¢ + JEiKG (¢ < L3l >+( ' >
(222) (%) o o)+ ()
where JKiKi(t) = JKiK; (1)JKK5 | that is, the Jacobian of the mapping functions
with respect to variables z, .

Next we introduce a few notations and useful equalities [15, 38] regarding this
mapping function.

NSSING
~

S R

(2.23) dzdj = det (JKK (t)) didy,
(224) vi,ﬂ/lz[}('iag?t) = JKjKj (t)iTvzft,ﬁ\Il(i‘7g)a

(2.25) nds = det (Jfffffa' (t)) IKKs (1)~ Tids,
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where d§ is the infinitesimal boundary of the isoparametric element and n denotes
the unit outward normal vector to JK.

We denote the approximation solution of u on the reference element by
(2.26)

Jny
&, 9, t) Z Z i (t 2,9) =Y ip(t) Wy (2, §), for all t € [t", "],
j=1p=1 p=1

where W7 (&, ) denotes Wa? (X (&,9),Y (&,9)), we rename {tin’ (t) : 1 < p < my,1 <
J< Ty ={up(t): 1<p<Jntand (U7 :1<p<mp,1<j<Jy={b,:1<p<
Jni}. We rewrite the semi-discrete EL-RKDG formulation (2.19) on the reference
element K as follows: YU, (X,Y) € V}F,

d K;K;
i [ g det (J ()) dady
(2.27)  =-— / U, Fds + / F. (kakj(t)—va,g\i/q) det (Jf‘jfff(t)) didy,
oK K
where
(2.28) F (i, #,9,t) == Vi,
with

(229) V= (V(@(@,9,0,5(55.0), 1) = V(X (2,9), Y (2,9), 1))

(2.30) F (a;"tk,a;“k,ﬁs, §,t, JEi K (t)) — WutP
with

(2.31) W =V (det (35555 1)) 3555 (1) ")
and

(2.32) u =

~ext

artE AW >0,

i, © if W<O.
Here ﬁ;ntk and ﬂ;ﬂk are the interior solution and the exterior solution of the K i(t), re-
spectively. The line and volume integrals are performed by proper high order quadra-
ture rules [21, 42] which are exact for polynomials of degree up to 2k for the element
integral and up to 2k 4+ 1 for the edge integral as in a standard RKDG scheme. Then
we have

(2.33) % / in W, det (ij (t)) didy = G (ah,Jf@f@ (t)) ,
K
where
G (1,355 (1) = — 3 |€‘Z[ ] TN
ecdR e et
(2.34) +2\K|Z [ (JK K; )*Tv@,@@q) det (JKJKJ (t))] oy
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with the numerical quadrature points (Z;_, ¢;,) and corresponding weights o;_ for the
edge integral, and the numerical quadrature points (;, ;) and corresponding weights

w; for the element integral.

(3) Fully-discrete EL-RKDG scheme. We write the semi-discrete scheme (2.33)
into a form of ordinary differential equations with the initial conditions. We let u(¢)
be a vector in R/™ which consists of unknowns {tp(t) : 1 < p < Jng}, and denote

the spatial discretization operator of the R.H.S. of (2.33) by L (u(t),t).
semi-discrete scheme (2.33) can be written as

d
(2.35) & M@a(n) = £, 0, ar) =,
where the matrix M(t) = (Mpqy(t)),,, with block diagonals,
diag (M (£), -+, M/ (t))

for M (t), its element

My (t) /K Ui (2, 9) 055 (2, 9) det (JKJ'KJ‘ (t)) dzdg

N,y YN (2, ) dady
K; ()

- /K VXY (X, Y ) det (JKJ'Kj(t)> dXdY

(2.36) = det (J&'Kj(t)) / W (X, V)UK (X, Y)dX dY,
K.

J

where the last equality is due to the space-independency of det(J K;K; (t)). The fol-

lowing steps are proposed for updating the system (2.35).

1. Building the space-time region. In order to update the system (2.35)

by the ALE scheme, we build the space-time region ) and pre-compute the
Jacobians at immediate stages of the Runge-Kutta method; the coordinates
of vertices of the upstream element can be easily obtained from (2.11)-(2.12).
. The test function zb,{(j (z,y,t"). The test function wzj,(j (z,y,t") can be
provided explicitly due to the local affine mapping (2.15).

. Remapping step. We apply the remapping algorithm as proposed for the
SLDG in Section 2.2 to compute

(2.37) /K* qu/J;(j (z,y,t")dzdy := Uf?’ (t").

J

We rename {Up7(t) : 1 < p<np,1<j<J}i= {U,(t) : 1 < p < Jnyg}, all

elements of which form the vector U(¢). Then the initial condition in (2.35)
can be obtained as

(2.38) ut =M@E)TTU), p=1---Jng,

where M(t") comes from (2.36) and U(t") comes from (2.37) via the remap-
ping algorithm.
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Algorithm 2.1 The s-stages SSP-RK time discretization for the system (2.35).
Let ¥ = #t™; For RK stage i =1,---,s,

1—1
(2.39) ) = M(t"+diAt") Y (omM(t + di A AY + BaAt"L (ﬁ“), "+ dzAt”)) :
=0

where At"™ = t"T! — ", and a4 and B are related to the RK method;

(2.40) Wt =a,

TABLE 2.1
Parameters of SSP-RK2 and SSP-RKS.

Order (677 Bil dl

2 1 1 0
1 1 1

2 3 05 1

3 1 1 0
3 1 1

1Z Z2 O Z2 }

303 003 3

4. Evolution step. We apply the strong stability preserving (SSP) RK method
[45] to (2.35), which is organized in Algorithm 2.1. The parameters of the sec-
ond order SSP-RK method (SSP-RK2) and the third order SSP-RK method
(SSP-RK3) are provided in Table 2.1.

PROPOSITION 2.3. Given a DG solution uy(x,y,t") € V¥ and assuming the
boundary condition is periodic, the fully discrete EL-RKDG scheme with SSP RK
time discretization on the unstructured mesh is mass conservative.

Proof. The conclusion is due to the mass conservative of the SLDG remapping
algorithm and the local conservative form of integrating flux function with the unique
flux at the element boundaries. We skip details for brevity. |

Remark 2.4. (Comparison to the ALE DG method [26]) We note that when we
put the background element K at t"*1 and its upstream element K]* at t" in a moving
mesh setting, the formulation of EL-RKDG scheme (2.19) is the same as the ALE DG
method [26] and the quasi-Lagrangian moving mesh discontinuous Galerkin method
[35]. In fact, the EL-RKDG method for the problem (2.35) is the composition of
SLDG remapping algorithm in evaluating u(¢") and the ALE DG method in updating
solutions from (") to u(t"+1).

Remark 2.5. (Empirical time step constraint for stability) Note that the time
step constraint for the RKDG scheme on triangular meshes are numerically verified
in [16, 12] as around

min; R;

(2.41) At ~

mMax; MaXgace |V - 0|

We observe that the EL-RKDG formulation has a similar spirit to applying the RKDG
method with the flux term (V — V)u, thus an empirical time step stability constraint
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of the EL-RKDG method is

min; R;

(2.42) At ~

max,; maxgaee |(V — V) -n|’

For a smooth velocity field V, by Taylor expansions, we have |(V —V)-n| = O(At)+
O(h?). Combining the estimate with (2.42) gives the time step constraint for the
stability of the EL-RKDG scheme on the unstructured triangular mesh,

(2.43) At ~ V.

This is verified in Example 3.3 with mesh refinement, that is, we refine the mesh by

increasing the number of elements by a factor of around 4 and then the Maximum
CFL with numerical stability could increase by a factor of around /2. A rigorous
analysis is subject to further investigation.

2.4. Geometric Conservation Law. Although the EL-RKDG scheme is a
fixed mesh method, we notice that an ALE scheme is embedded in the EL-RKDG
scheme (2.35). Hence, the Geometric Conservation Law introduced in [51, 49, 25],
i.e., the preservation of constant solutions, should be considered; that is, by letting u,
and \i/q be a constant, the obtained formulation in the following should be updated
by numerical schemes exactly.

PROPOSITION 2.6. Letting i, = ¥, = ¢ and assuming the divergence free property
of V (ie., Vs -V =0), the semi-discrete EL-RKDG formulation on the reference
element K (2.27) can be written as follows:

(2.44)

d KR, _ RE (\—1x7( v (A o | KR,
o det (J ) J(t)) - (vw,y : (J )" WV(X(2,9),Y (&, 9),t ))) det (J ) J(t)) .

Proof. 1t can be proven by substituting u;, = \i/q = ¢ into (2.27) and then using
Vi,V =0, the linear property of V and the integration by parts. 0

Note that the scheme (2.35) by the SSP RK method fails to preserve the constant
solution since the Jacobian determinant det (J KiK; (t)) is involved in both sides of

(2.44) and is evolved approximately due to the temporal integration.

To preserve the constant solution, we need to consider the time discretization of
the evolution of the Jacobian determinant (2.44) as well; we adopt the GCL correction
strategy by updating the Jacobian determinant by the SSP-RK method synchronously,
which was introduced in [38, 26, 56]. For implementation, we replace the system (2.35)
by

(2.45) % (M(t)ﬁ(t)) = L(a(t),t), u(t")=u",
(2.46)
d

G0 = (Vag - (IFFO VX (@), Y (@,9),4")) ) det (3555 (1)) 1= R(2),

where 7;(t) is an approximation to det (Jkﬂf(]‘ (t)), J; (") = det (Jlﬁ((zf’l))7 and the
matrix M(t) = (]\Ai;,q(t)) with block diagonals diag (MKl (t),--- , MK (t)) The
pq
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element of M (t) is set as,
J; ()

A7 M () = M (1) — L.
(2 4 ) pq (t) (t) det (Jf(jf(j (t))

Pq

Then we apply the s-stages SSP-RK method to the system to replace the evolution
step in the EL-RKDG method, which is organized in Algorithm 2.2.

Algorithm 2.2 The s-stages SSP-RK time discretization for the system (2.45)-(2.46).
Let 7% = 7;(t");

(2.48) / a0, 7 didy = / ap W, J; (t™) dadg;
K K

For RK stage¢t=1,---,s,

i—1

(2.49) T =3 (aadV + B R (1" + diA™) ) 5
=0
/ a7 didy
K

i—1 .
(2.50) => (a“ / a7V didg + BaAt"G (a§f>,JK-7‘ Kin 4+ dlAt”))) :

1=0 K
(2.51) /K apt i, det (JKJ' K; (t"“)) didj = /K W\, T dédy.

Finally, we state that the EL-RKDG scheme with (2.37)-(2.38) and the evolution
step of Algorithm 2.2 satisfies the GCL when the R.H.S. of (2.27) (for instance, the
problem with the velocity field being merely time-dependent, i.e., V(t) = (a(t), b(t)))
can be solved exactly by the numerical quadratures, which is summarized in the

following proposition.

PROPOSITION 2.7. (Discrete Geometric Conservation Law.) Suppose that the
R.H.S. of (2.27) can be solved exactly by the numerical quadratures, an s-stage SSP-
RK method with order greater than or equal to 2, and the solution at time level t™,
up = c for all (x,y) € Q. Then the solution at time level t"*1 of the EL-RKDG
scheme with (2.37)-(2.38) and the evolution step of Algorithm 2.2, uZH = ¢ for all
(z,y) € S

Proof. As in Remark 2.4, the EL-RKDG method for the problem (2.35) is the
composition of the SLDG remapping algorithm in evaluating u(¢") and the ALE DG
method. For the SLDG remapping algorithm, it is easy to see that when uj = c for
all (z,y) € Q, through the remapping algorithm (2.37) and mapping solution to the
reference element (2.38), we have @ = ¢. Then similar to the proof of GCL property
of ALE DG in [26], we can show that u}"' = ¢ and thus omit the details. d

2.5. Inflow boundaries. In this section, we consider the inflow Dirichlet bound-
ary conditions, which are often posed in applications such as subsurface contaminant
transport and remediation [52]. For inflow boundary condition, we propose a ghost-
cell strategy.
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Fi1c. 2.3. The illustration of the EL-RKDG scheme the ghost-cells method for transport problems
with inflow boundary conditions.

Let 09 be the boundary of 2, and I' := 92 x (0,T), consisting of two parts: the
inflow part I'y, and outflow part 'y with

T = {(x,y,t)\(a:,y) € 6Q,t S (O,T)7V n < 0}, ow =T \ T
We consider the transport problem (2.1) with the inflow Dirichlet boundary condition

u(m7yat) = 9(%3/:75)7 (x7y7t) S 1—‘in-

The scheme proceeds on a large enough ghost region by first building DG solutions
on ghost cells by a Lagrangian procedure. Once it is done, the EL-RKDG scheme in
Section 2.3 can be implemented, as illustrated in Figure 2.3 (c¢). The procedure of
building DG solutions on ghost cells consists of several steps:

1. Generate a set of triangular elements K on the I'i,.
2. Locate the vertices of the ghost element K; by tracking the characteristics

20 = a(x,y,1),
(2.52) WO — bz, y,t)
. dt v I V)
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where (x;’q,y}"q,t*) is the coordinates of the vertex of element K7, as illus-
trated in Figure 2.3 (b). We denote the region which originates from K7
to K; along the characteristics by IC. Note that the velocity field V(z,y,t)
outside of  is the natural extension of the velocity field in 2.

3. We consider the adjoint problem for the test function ¥,

(2'53) i + V(fﬂ,yat) : vx,yw =0, 111(0& y,t = tn) = \I/(x7y) € Pk(Kj)'

Integrate (2.1) - 9 + (2.53) - w over K, that is,

(2.54) / [(2.1) -9 + (2.6) - u]dxdydt = 0.
K
After manipulating the above equation with the divergence theorem, we have
(2.55) / uWdxdy :/ (V(z,y,t)urp) - ndS,
K; K:

where dS is infinitesimal of K. We adopt the SLDG scheme in [28, 31] to
evaluate the R.H.S. of the above equation.

3. Numerical results. In this section, we demonstrate the performance of the
proposed SLDG and EL-RKDG schemes for 2D transports equations, in terms of mass
conservation, discrete geometric conservation law, high order accuracy in both space
and time, numerical stability for large time stepping size as well as ability to capture
discontinuities. In order to better show the advantages of the proposed schemes, we
compare the results of the schemes with those of the classic RKDG method under the
same settings. As in [35], the CFL number is defined by

Max; MaXface |V - N At
b

(3.1) CFL =

min; R;

where R; is the radius of the inscribed circle of the element K; and n is the unit
normal vector of the face of K;

|55

3.2 R; =2 ,
( ) J |8KJ|

where |K;| and |0K| are the area and perimeter of K, respectively. By tests, we
found there is little difference between the scheme with GCL correction and that
without GCL correction besides the preservation capability. Thus unless otherwise
noted, the EL-RKDG scheme for simulations is without GCL correction.

e Mass conservation and discrete geometric conservation law. For all simula-
tions, we find that the mass is conserved up to machine precision for each
time step of the presented schemes and we omit the results for brevity. The
discrete GCL of EL-RKDG is verified in Example 3.2.

o (Consistency. We test the spatial and temporal accuracy by linear trans-
port problem, rotation and swirling deformation flow. For linear transport
problem, we test the schemes for the problem with either periodic boundary
conditions or inflow boundary conditions; the results are almost the same
thus we only present the later in Example 3.1. For EL-RKDG, the expect
high order accuracy can be observed for all these tests; for the proposed P?
SLDG, we observe the second order of convergence for solving the swirling
deformation flow.
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e Stability. The SLDG is numerical unconditional stable and EL-RKDG is
numerically stable around time stepping size of At ~ v/h, in Figures 3.3-3.5.
The results are consistent with those in [10].

e Resolution for discontinuities. A simple WENO limiter in [59] used for all
schemes is used to control oscillations for problems with discontinuities. Note
that some advanced limiters such as [58] can be applied in the proposed
schemes as well. We find the SLDG and EL-RKDG method can do a better
job on the resolution of solutions around discontinuities, compared to RKDG.

EXAMPLE 3.1. (2D linear equation.) To verify the spatial accuracy of the EL-
RKDG method with large time-stepping size, we apply the scheme to solve the following
linear equation in two dimensions up to T = 1:

(3.3) U+ uy +uy, =0, (z,y) € [—7, 7]

with the initial condition u(x,y,0) = sin(x + y) and the inflow boundary conditions,
u(x = —m,y,t) = sin(y — 7 — 2t) and u(z,y = —m,t) = sin(z — 7w — 2t). As shown
in Figure 3.1, the structured uniform mesh and the unstructured mesh generated by
the Gmsh [27] are used to test the mesh adaptability in this example. We report the

FiG. 3.1. Left: the structured triangular mesh, N = 2 x 102. Right: the unstructured triangular
mesh, N = 300.

L' errors and corresponding order of convergence of P¥ (k =1,2) EL-RKDG scheme
with CFL = 10.2 in Table 3.1. The expected k + 1-th orders of convergence are
observed for P* EL-RKDG scheme with either the structured uniform mesh or the
unstructured mesh.

TABLE 3.1
L' errors of EL-RKDG schemes for linear problem, us +ugz +uy = 0, (x,y) € [—m, 7|? with the
initial condition u(x,y,0) = sin(x + y) and the inflow boundary condition. T =1. CFL = 10.2.

Structured triangular meshes Unstructured triangular meshes
P EL-RKDG P? EL-RKDG P! EL-RKDG P? EL-RKDG
Mesh LVerror Order | L' error Order | Mesh | L' error  Order | L' error  Order
2% 20?7 | 1.73E-03 - 7.67E-05 - 1018 | 2.31E-03 - 6.98E-05 -

2x40% | 477E-04 185 | 851E-06 3.17 | 4132 | 547E-04 2.06 | 8.33E-06 3.04
2x80% | LO9E-04 212 | 1.02E-06 3.07 | 16364 | 1.43E-04 1.95 | 9.24E-07  3.19
2x 1607 | 272E-05 2.01 | 1.01E-07 3.33 | 65278 | 3.75E-05  1.94 | 1.54E-07  2.59
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EXAMPLE 3.2. (The GCL property.) To wverify the GCL property of the EL-
RKDG method, we test the previous example with the conditions u(x,y,0) = 1,
ulx = —m,y,t) = 1, u(lz,y = —m,t) = 1. In the result of Proposition 2.7, the
GCL property of the EL-RKDG scheme relies on the time integration; we test P1 EL-
RKDG scheme with SSP-RK2 and SSP-RKS3, using CFL = 10.2, in which the velocity
field is perturbed by a random number multiplying h. The results of the EL-RKDG
scheme with either discrete GCL or without discrete GCL are listed in Table 5.2. We
observe that: the EL-RKDG scheme without discrete GCL approximates the constant
solutions in the high order accuracy; yet the EL-RKDG scheme with discrete GCL
exactly preserves the GCL property.

TABLE 3.2
GCL tests on the linear problem, ut + uy + uy = 0, (z,y) € [—m, 7|2 with the initial condition
w(x,y,0) = 1, u(z = —m,y,t) = 1, u(z,y = —m,t) = 1 at T = 1. P! EL-RKDG scheme with

different temporal methods, using CFL = 10.2, in which the velocity field is perturbed randomly.
The EL-RKDG scheme with discrete GCL (GCL), without discrete GCL (no GCL).

no GCL GCL
SSP-RK2 SSP-RK3 SSP-RK2 SSP-RK3
Mesh | L? error Order | LZ error Order | L? error  Order | L? error  Order
1018 1.95E-05 — 7.64E-07 — 1.11E-13 — 1.11E-13 -
4132 1.17E-06 4.01 1.45E-08 5.66 2.19E-13 — 2.18E-13 —
16364 | 2.72E-07 2.12 2.42E-09 2.60 3.61E-13 — 3.61E-13 —
65278 | 2.23E-08 3.61 7.18E-11 5.09 7.75E-13 - 7.73E-13 -

EXAMPLE 3.3. (Rigid body rotation on a circle domain.) Consider
(3.4) up = (yu)a + (wu)y = 0, (2,y) € {(z,9)[2* +* < 7%}

with the initial condition u(x,y,0) = exp(—3x2 — 3y?). The coarsest mesh N = 160
is shown in Figure 3.2.

F1c. 3.2. The unstructured mesh with the mesh of 160 is generated by GMSH.

First, we test the spatial convergence of the proposed SLDG schemes, proposed
EL-RKDG schemes, and the RKDG schemes. We use the same time-stepping sizes
for comparison; the CFL numbers in time step selection are set to be 0.8 for P!
DG and 0.15 for P? DG. These time-stepping sizes are with the stability constraint
of 1/(2k + 1) for RKDG. We summarize the results of these scheme for solving the
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problem up to T = 2w in Table 3.5. We observe the expected orders of convergence
and the similar results for different DG schemes.

Second, we study numerical stabilities of EL-RKDG and SLDG schemes. We
present the plots of L' error versus CFL of these schemes in Figure 3.3. We make
a few observations: (1) When CFL is relatively large but smaller than the stability
constraint of EL-RKDG, the temporal errors starting to kick in 2nd and 3rd order
temporal convergence order are shown. (2) Mazimum CFLs with numerical stability of
P? EL-RKDG using meshes N = 1884,7432,28996 are 13.8, 19.6, 27.5, respectively.
The increasing rate is around /2. (3) SLDG schemes are stable for arbitrarily large
time-stepping sizes.

Third, we numerically solve the rigid body rotation (3.4) with an initial condition
plotted in Figure 3.4 (a), which consists of a slotted disk, a cone as well as a smooth
hump, similar to the one used in [33] for comparison purposes. In Figure 3.4, we
present plots of the solutions solved by P> RKDG, SLDG, and EL-RKDG schemes
with WENO limiter after one full rotation. We use CFL=10.2 for SLDG and FEL-
RKDG. We observe that: (1) the solutions of SLDG and EL-RKDG are comparable;
(2) the solutions of SLDG and EL-RKDG are less dissipative than that of RKDG,
due to the fewer error accumulations of the schemes with large time-stepping size.

TABLE 3.3
Errors of different DG schemes for rigid body rotation on a circle domain with the initial
condition u(x,y,0) = exp(—322 — 3y?). T = 2r. The CFL=0.3 for P' DG and CFL=0.15 for P2
DG.

Mesh LY error  Order | LY error Order | LY error  Order
P! EL-RKDG PTSLDG P RKDG
522 | 2.37E-03 - 2.37E-03 - 2.40E-03 -
1884 | 5.24E-04 2.35 | 5.24E-04 2.35 | 5.33E-04 2.35
7432 | 1.15E-04 221 | 1.15E-04 2.21 | 1.17E-04 2.21
28996 | 2.77E-05  2.09 | 2.77E-05 2.09 | 2.81E-05  2.10
P? EL-RKDG PZSLDG PZ RKDG
522 | 1.88E-04 - 1.89E-04 - 1.94E-04 -
1884 | 2.41E-05 3.20 | 2.41E-05 3.21 | 2.43E-05 3.24
7432 | 2.91E-06 3.08 | 2.91E-06 3.08 | 2.94E-06  3.08
28996 | 3.62E-07  3.07 | 3.62E-07  3.07 | 3.65E-07  3.07

-3
107 - — .- P?EL-RKDG N=1884 :
———— P? EL-RKDG N=7432 i
———- P? EL-RKDG N=28996 .

2
107 - .- P' EL-RKDG N=1884 \ i
1
P>SLDG N=28996 ./ !
i

————- P' EL-RKDG N=7432
———- P' ELRKDG N=28996 ;
P' SLDG N=28996 I

i
|
j
1 -4 /
B /ol 107}
107k / H
5 b AN 5
G S 510°
- / I -
- 7 ; -
B e Sy
107t Ly 107ty 5
10 cFL 10 10 crL 10

F1G. 3.3. The L' error versus CFL of SLDG schemes and EL-RKDG schemes for the rigid
body rotation with u(x,y,0) = exp(—3x2 — 3y3). T = 2.
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i ||/

(a) initial state, N = 7432

=

g
i
i

=

=

(c) P2 SLDG, CFL = 10.2 (d) P? EL-RKDG, CFL = 10.2

F1G. 3.4. Plots of the numerical solutions of P2 SLDG and EL-RKDG schemes the rigid body
rotation with the initial condition in (a). T = 2.

EXAMPLE 3.4. (Swirling deformation flow.) We consider solving

(3.5) ur— (cos2 (g) sin(y)g(t)u)w+ (sin(x) cos? (%) g(t)u) =0, (v,y) € [-7, 7%,

Y

where g(t) = cos (”%) m and T = 1.5. The initial condition is set to be the following
smooth cosine bell (with C5 smoothness),

T‘b N
(3.6) (s, 0) = 78 cos® (ﬁﬂ) ., ifrt <,

0, otherwise,

where r§ = 037, and r* = \/(x — 2§)2 + (y — y8)? denotes the distance between (x,y)

and the center of the cosine bell (z3,vy}) = (0.37,0). As Ezample 5.3, we study the
spatial error and the numerical stability of the proposed SLDG and EL-RKDG schemes
in Table 3.4 and Figure 3.5, respectively. The similar observations as Example 3.3
can be made for P* part. We find that P? SLDG is of second order due to the second
approzimation to the sides of upstream cells while P> EL-RKDG is of third order.
Figure 3.0 presents spatial errors and CPU times of EL-RKDG method and SLDG
method; we observe that with the same setting, SLDG is more expensive in CPU time
to achieve the same error, compared to EL-RKDG.
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TABLE 3.4

Errors of different DG schemes for swirling deformation flow with the smooth cosine bell.
T =1.5. CFL = 0.8 and 0.15 for P! and P2, respectively.

Mesh LY error  Order | Lt error Order | LY error  Order
PT EL-RKDG P! SLDG PP RKDG

2 x 20° 2.97E-03 — 2.91E-03 — 3.07E-03 —
2 x 402 7.18E-04 2.05 7.05E-04 2.05 7.64E-04 2.01
2 x 802 1.28E-04 2.49 1.26E-04 2.49 1.37E-04 2.48
2 x 160% | 2.25E-05 2.50 2.22E-05 2.50 2.39E-05 2.50
P? EL-RKDG P? SLDG P? RKDG

2 x 202 4.90E-04 — 4.77E-04 — 5.10E-04 —
2 x 402 3.88E-05 3.66 4.27E-05 3.48 4.03E-05 3.66
2 x 802 3.41E-06 3.51 5.99E-06 2.83 3.51E-06 3.52
2 x 160% | 3.77E-07 3.18 1.26E-06 2.25 3.90E-07 3.17

102=——- P'EL-RKDG N=2x40"

e P'EL-RKDG N=2:80" [ j -
———— P'EL-RKDG N=2x160"%
P'SLDG N=2x160° !

-~ P’ EL-RKDG N=2:407
-- P’ EL-RKDG N=2x80’ H
102k ——-—-- P? EL-RKDG N=2x160" :
P* SLDG N=2x160"

!

<
()

= L"error o~

S
S

0%

FiG. 3.5. The L' error versus CFL of SLDG schemes and EL-RKDG schemes for the swirling
deformation flow with the smooth cosine bell. T = 1.5.

108 ¥ . ‘
L P? EL-RKDG N=2 x 407
% P? EL-RKDG N=2 807
| ‘-.' ----- P2 EL-RKDG N=2 x 1602| |
Y P? SLDG N=2 x 160°
e
5
@ 10°°
‘__l
10-5 -‘.
LY
.‘. ----------
1077
10° 10" 102 10% 104 10°

CPU

F1G. 3.6. The L' error versus CPU time of SLDG schemes and EL-RKDG schemes for the
swirling deformation flow with the smooth cosine bell. T'=1.5.

As Example 3.3, we numerically solve the swirling deformation flow (3.5) with
an initial condition plotted in Figure 3.7 (a). The results are present in Figure 3.7.
The similar observations as Example 3.3 can be made.
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i i1

i

(a) initial state, N = 2 x 802

Irl\im i i

(c) P2 SLDG, CFL = 10.2 (d) P? EL-RKDG, CFL = 10.2

F1G. 3.7. Plots of the numerical solutions of P? SLDG and EL-RKDG schemes the swirling
deformation flow with the initial condition in (a). T = 1.5. N = 2 x 802

4. Conclusion. We have devised the SLDG method and the EL-RKDG method
on the unstructured triangular meshes for linear transport problems. The crucial
ingredient of the present schemes is the conservative remapping algorithm. Then
the proposed schemes can be mass conservative. To the best of our knowledge, the
present SLDG scheme is the first SL scheme on the unstructured mesh that can enjoy
favorable properties of mass conservation, second-order accuracy, and unconditionally
numerical stability; the present EL-RKDG can inherit main favourable properties and
can largely alleviate the CFL constraint from RKDG. The theoretical analysis of the
stability of the present schemes is subject to our future investigation.

This is an initial effort to propose accurate and conservative semi-Lagrangian
schemes for the practical problems with complex geometry. Although the presented
schemes are just for linear transport problems, we believe they can be extended to
nonlinear transport problems via exponential integrators in [7], which has successfully
coupled with the SLDG method on the structured meshes. And we believe it can also
be extended for convection-diffusion equations, as in [19]. These extensions will be
investigated in our future research work. As we mentioned, the semi-Lagrangian
schemes are popular in the climate modeling and kinetic models. Hence, it would be
interesting to use this solver for these applications.
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