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Quantum gas microscopy of an attractive
Fermi-Hubbard system

Debayan Mitra, Peter T. Brown, EImer Guardado-Sanchez, Stanimir S. Kondov, Trithep Devakul,
David A. Huse, Peter Schauf® and Waseem S. Bakr*

The attractive Fermi-Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions
on a lattice. It exhibits many interesting features including a short-coherence length at intermediate coupling and a pseudogap
regime with anomalous properties. Here we study an experimental realization of this model using a two-dimensional (2D)
atomic Fermi gas in an optical lattice. Using a new technique for selective imaging of doublons with a quantum gas microscope,
we observe chequerboard doublon density correlations in the normal state close to half-filling. With the aid of quantum Monte
Carlo simulations, we show that the measured doublon density correlations allow us to put a lower bound on the strength of
s-wave pairing correlations in our system. We compare the temperature sensitivity of the doublon density correlations and the
paired atom fraction and find the correlations to be a much better thermometer. Accurate thermometry of attractive lattice

systems will be essential in the quest for optimizing cooling schemes to reach superfluid phases in future experiments.

model for studying strongly correlated fermions on a lattice' .

With attractive interactions, it has been a fruitful theoretical
playground for exploring the crossover from Bose-Einstein
condensation (BEC) of local pairs to Bardeen—Cooper-Schrieffer
(BCS) superconductivity in a lattice setting™**. Unlike its repulsive
counterpart, the spin-balanced attractive model is not plagued
by the fermion ‘sign problem®. This has historically made it of
immense pedagogical value in exploring short-coherence length
superconductivity and pseudogap phenomena of the kind observed
in the cuprates, despite the fact that it is now known that it is not a
correct microscopic description of these materials®®.

In recent years, there has been much interest in quantum
simulations of the Hubbard model using cold atoms in optical
lattices. In contrast to the case of repulsive interactions’'®, the
attractive model has received much less attention from the cold atom
community"". In the continuum, strongly interacting attractive
fermions have been studied using Feshbach resonances, resulting in
the observation of superfluid gases across the BEC-BCS crossover™.
Fermionic superfluids have also been prepared in optical lattices
close to a Feshbach resonance”. However, these systems are not
described by a simple Hubbard model due to multi-band couplings
and off-site interactions™ .

In this work, we focus on the 2D attractive Fermi-Hubbard
model which has been theoretically studied in detail****°. Our
experiments are performed at an interaction energy small compared
to the bandgap, where the single-band Hubbard description
is applicable. In a grand-canonical ensemble, the Hamiltonian
of the system is given by H = —t¢ ,Z(rr% (¢ cvo + c:,ﬁcm) +
U, teahly, — 10, e, Here ¢ is the creation operator
for a fermion with spin o on site r, n,, = cigcm, t is the
tunnelling matrix element between nearest-neighbour lattice sites,
U <0 is the strength of the on-site interaction and u is a spin-
independent chemical potential. At low temperatures, the fermions
undergo a Berezinskii-Kosterlitz—-Thouless (BKT) transition to a
superfluid phase. As U/t becomes more negative, the superfluid

—|_ he Fermi-Hubbard model is a fundamental condensed matter

crosses over from a BCS-type superfluid to a BEC of hardcore
bosons, with the critical temperature reaching a maximum in the
intermediate coupling regime. Near this maximum and in the BEC
regime, numerical calculations indicate a clear separation between
a temperature scale T* at which fermions start to pair and the BKT
transition temperature T, (ref. 4).

As the temperature of the system is reduced towards and below
T., it is theoretically predicted that the fermions should exhibit
charge-density-wave and pairing correlations***. These two kinds of
correlations in the system can be understood as antiferromagnetic
correlations of different projections of a pseudo-spin defined
on each site’. Formally, rotations of the pseudo-spin on site
r=(r,,r,) are generated by the charge-density fluctuation operator
n: = (n, — 1)/2 and the pairing operators n, = (— 1)t Crp Gy, and
n:r = (n:)T (see Methods for more details). The local pseudo-spin
vector is defined by (17, n/, n:), where nri =’ £in’ and the
pseudo-spin vector is aligned with (against) the z-axis for a site
with a doublon (hole). Pairing (density) correlations correspond to
correlations of the projection of the pseudo-spin in the xy-plane
(along the z-axis). The Hubbard Hamiltonian is rotationally
invariant under global pseudo-spin rotations exactly at half-
filling, leading to charge-density-wave (CDW) and s-wave pairing
correlations of equal strength. The SU(2) pseudo-spin symmetry
drives the critical temperature to zero. Away from half-filling, the
degeneracy is lifted, and pairing correlations exhibit quasi-long-
range order below a non-zero BKT critical temperature while the
charge-density-wave correlations remain short range (Fig. 1a).

The dependence of pseudo-spin correlations on filling in
the attractive Hubbard model mirrors the dependence of spin
correlations on spin imbalance in the repulsive model, a topic
we experimentally investigated in earlier work'. This is due
to an exact mathematical mapping between the models. A
particle-hole transformation on operators of | fermions in the
Hubbard Hamiltonian, ¢, | <> (— D] ci v changes the sign of the
interaction in the Hubbard Hamiltonian and exchanges the roles of
pseudo-spin and spin as well as doping and spin imbalance™.
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Figure 1| Experimental scheme for detecting densities and density correlations. a, Schematic phase diagram of the 2D attractive Hubbard model at
intermediate interaction (U/t~ —5), indicating pseudogap (PG), superfluid (SF), charge-density-wave (CDW), vacuum (VAC) and band-insulating (BI)
regimes. The critical temperature vanishes at n=1. The temperatures achieved in the experiment (grey band) are above the BKT critical temperature but
precursor correlations are present in the system. b, Single-shot fluorescence images of the singles density n® (left) and the doublon density n? (right). In
any single image, we can either detect atoms in the singly occupied sites of the lattice only or in the doubly occupied sites only. €, Overview of magnetic
fields and interactions used in the experimental sequence. Lines represent °Li scattering length versus field for a 1-3 mixture (red) and a 2-3 mixture

(green)*®

. We load the lattice at attractive interactions of a;3 = —889aq (red circle). After freezing the density distribution, we convert 1-3 doublons to

2-3 doublons, of which the state |3) atom is removed in a regime of repulsive interactions and we are left with only one atom per site (orange circle at
a3 =414agp). The diagram to the right illustrates the two steps of the doublon detection: first an interaction dependent transfer and switch to repulsive
interactions and then the pushing of one state of the pair which only works well at repulsive interactions. d, Calibration of the efficiency of the scheme to
detect doublons in single-site imaging using a band-insulating region in the centre of the trap. Top, single image of singles (left) and doublons (right).
Bottom, azimuthal average of ten images of singles (left) and doubles (right). In the centre, single occupancy is largely suppressed, while the double

occupancy exhibits a plateau. Lines are atomic limit fits to the density profiles.

In this work, we perform a site-resolved study of the attractive
Hubbard model with a fermionic quantum gas microscope'***~** at
temperatures above the BKT transition temperature. We measure
the in-trap distributions of single and double occupancies and
observe doublon density correlations for different fillings. Because
the gas is mostly composed of on-site pairs, the doublon density,
like the total density, exhibits chequerboard correlations. This
observation allows us to put a lower bound on pairing correlations
in the system. Furthermore, the measured correlations enable us
to perform accurate thermometry on the attractive lattice gas at
the superexchange scale. Thermometry at this scale is important
for future work aimed at observing lattice superfluid phases,
including homogeneous superfluids in spin-balanced gases and
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluids in spin-
imbalanced gases™*.

We realize the 2D Fermi-Hubbard model using a degenerate
mixture of two hyperfine ground states, |[1) =|1) and || ) =|3), of
°Li in an optical lattice, where |k) labels the kth lowest hyperfine
ground state. A spin-balanced mixture is obtained by optical
evaporation in the vicinity of the broad Feshbach resonance centred
at 690 G. After the evaporation, the scattering length is set to
—889a,, where g, is the Bohr radius, obtained by adjusting a bias
magnetic field to 305.4(1) G. The mixture is prepared in a single
layer of an accordion lattice (for details see ref. 41) and subsequently
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loaded adiabatically into a 2D square lattice of depth 6.2(2) Eg, where
t = h x 1150(50) Hz. The lattice depth is chosen experimentally
to maximize the observed doublon density correlations at half-
filling (see Methods). Here, Ey=(mh)’/2ma; =h X 14.66kHz
is the recoil energy, where a,,,=1,064nm/ ﬁ is the lattice
constant. For these parameters, we obtain U/t = —5.4(3) from a
bandstructure calculation and a spectroscopic determination of the
interaction energy.

We extract the density profiles and correlations in the cloud
from site-resolved fluorescence images obtained using quantum
gas microscopy techniques (Fig. 1b). After freezing the density
distribution in a deep lattice, we shine near-resonant light on the
atoms in a Raman-cooling configuration. Light-assisted collisions
eliminate atoms on doubly occupied sites, and we measure the
singles density n* = ny + n, — 2nyn,. To gain the full density
information, one needs to measure the doubly occupied sites as well.
But they are not directly accessible, so we developed a procedure to
selectively image doubly occupied sites (Fig. 1c). After freezing the
dynamics, we tag doubly occupied sites using a radiofrequency (RF)
pulse to transfer atoms in state |1) to state |2) only on these sites,
relying on the interaction energy for spectroscopic addressing™"’.
We then push atoms in states |1) and |3) out of the lattice with a
resonant light pulse in the presence of a repulsive interaction. Since
we have a relatively weak vertical confinement, the atoms feel a
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cigar-shaped on-site potential. Consequently the atoms can separate
in the direction perpendicular to the 2D lattice plane, leading to a
strong suppression of loss of state |2) atoms during the resonant light
pulse due to light-assisted collisions. This procedure gives us access
to the doublon density n' =n,n;. We have measured our doublon
detection efficiency to be 0.91(1) by analysing the imaging fidelity
of band-insulating regions in the cloud (Fig. 1d, see Methods). The
average singles and doubles density profiles obtained from clouds
prepared under identical conditions allow us to extract the total
density profile n = n* + 2n. For most of our measurements, we
adjust the atom number to obtain a total mean density slightly above
n=1 at the centre of the trap to obtain a large region in the cloud
near half-filling.

Spatial correlations of the z-component of the pseudo-spin
near half-filling correspond to CDW correlations, characterized by
ming e = img, ) — ) (nfy,) = (menera) /4= C"(a) /4 where
a is the displacement vector between two lattice sites. As the
correlator of the total density is not directly accessible from our
data we extract a closely related quantity, the doublon density
correlator C*(a) =4(nn, ).. In a gas consisting mostly of on-site
pairs such as the ones discussed here, C%(a) ~ C"(a), and also
exhibits chequerboard order (see Supplementary Fig. 6). As the
attractive gas is compressible for any filling below unit filling, the
local density varies across the harmonic trap. Figure 2a shows
the doublon density correlator versus density for the nearest-
neighbour and the next-nearest-neighbour, obtained by azimuthally
averaging the correlations over the trap. The corresponding trap
density profile of the gas is depicted in Fig. 2b. The nearest-
neighbour doublon density correlator measured at half-filling,
where the correlations are largest, is C%(1, 0) = —0.155(6).
An interesting feature of the next-nearest-neighbour correlator
CY(1,1) is that it becomes negative as the average density falls
below ~0.4. This can be understood in the limit of large negative
U, where the system can be treated as a gas of hardcore bosons
with repulsive nearest-neighbour interactions, leading to negative
correlations at distances less than the interparticle spacing. In
a recent experiment, we have observed similar behaviour in
the next-nearest-neighbour antiferromagnetic correlations of the
z-projection of the spin in a spin-imbalanced repulsive Hubbard
model'®. This is a consequence of the aforementioned mathematical
mapping between the attractive and repulsive models.

We theoretically model our system wusing determinantal
Quantum Monte Carlo (DQMC)* in a local density approximation
(LDA) and see very good agreement between theory and experiment
for the doublon density correlators and density (Fig. 2 and
Methods). The fits give U/t = —5.7(2) and T/t = 0.45(3). The
measured temperature is comparable to our recent measurements
in a repulsive gas'®. We have also compared to DQMC in the
presence of a spatially varying potential to reproduce the largest
experimentally observed density gradients to verify that the LDA
holds in our system. The fact that the same temperature fits both the
doublon density correlator and the density confirms that the system
is in thermal equilibrium. In addition, we have obtained the pairing
correlations C* (a) from DQMC. Here C*(a) = (A} A?, ). and the
s-wave pairing operator on site r is defined by AY =¢, ;¢ +¢/ ' ¢l 1
We find that |C%(a)| <|C”(a)| for any temperature, interaction
strength, filling and distance between the sites (see Methods and
Supplementary Fig. 2). As an example, we show the predicted
pairing correlations versus density for the parameters of Fig. 2.
Thus our measured doublon density correlations provide a bound
on s-wave pairing correlations in a cold atom lattice system.

Single-site imaging of doublons allows us to also measure longer
range correlations (Fig. 3). We see doublon density correlations up
to two sites on a diagonal shown in the correlation matrices C*(i, ).
We find good agreement with DQMC calculations corresponding
to the experimental fillings, calculated using the same parameters as
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Figure 2 | Observation of doublon density correlations. a, Measured
nearest-neighbour doublon density correlator c4(1,0) (red circles) and
next-nearest-neighbour correlator c4(1,1) (blue circles) from an average of
60 repetitions. Error bars s.e.m. DQMC results for cd (1,0) (red), i@, n
(blue), —C2(1,0) (dark green) and cA2,1) (light green) at U/t=—5.7 and
T/t=0.45 are shown for comparison (bands are s.e.m. of the numerics).
b, Density profiles. Density of singles (n®, green circles), density of doubles
(2n%, purple circles) and total density (n=n® 4 2n9, orange circles). Lines
are a simultaneous local density approximation fit of DQMC data to the
total and singles densities. Inset, zoom in on the tail of the density
distribution. For this fit, we fix U/t and T/t at the values above and we
obtain from the fit the central chemical potential £1(0) =0.46(2)U <0 and
the trap frequency w =2x x 202(5) Hz, in agreement with independent
measurements of w (Supplementary Information).

above. The range of the correlation becomes maximal at half-filling,
as expected from theory.

Both the doublon fraction and doublon density correlations
may be used as thermometers in an attractive Hubbard system. To
investigate their sensitivity as thermometers, we heated the system
in a controlled fashion by holding it for variable times in the
lattice before imaging. Technical noise leads to a linear increase
in the temperature. We observe a slight reduction in doublon
fraction in a region of half-filling for long hold times (Fig. 4a),
while the doublon density correlators C%(1,0) and C%(1,1) show
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Figure 3 | Doublon density correlation matrices for varying density. a, Doublon density correlator C4(j, j) for average densities ranging from 0.15 to 1.26.
Correlator values are averaged over 60 pictures. b, DQMC matrices calculated for the same parameters as in Fig. 2.
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Figure 4 | Thermometry of an attractive Hubbard system. a, Temperature dependence of the paired fraction and nearest-neighbour doublon density
correlations. Shown are the fraction of singles (green circles) and doubles (purple circles) at half-filling on the left axis as a function of hold time in the
lattice. On the right axis is the doublon density correlator €9(1,0) (red circles) at half-filling measured for the same hold times. The upper x-axis are
temperatures obtained from comparison to DQMC, giving a linear heating rate of 1.3(1) t/s. b, €9(1,0) as a function of singles fraction. Each data point
corresponds to a single hold time. ¢, The next-nearest-neighbour doublon density correlator c4(1,1) as function of singles fraction. Bands correspond to
DQMC results for U/t=—5.7 and half-filling in all of the above. Each point is averaged over 60 pictures. Error bars and bands are s.e.m.

a significant change during the same time. These observations
illustrate that the doublon fraction is a good thermometer for
temperatures on the order of U, where doublon density correlations
are small, while the latter are more sensitive thermometer for
temperatures on the order of the exchange 4¢°/U. This is similar
to the repulsive case, where spin correlations have been found to
be a more sensitive thermometer than density'®. Figure 4b,c shows
the nearest-neighbour and next-nearest-neighbour doublon density
correlators versus the singles fraction at half-filling. Plotting the data
this way allows a temperature-independent comparison to DQMC
with a single free parameter (U /t), and we obtain good agreement
for U/t =—5.7.

In conclusion, we have performed quantum gas microscopy on
an attractive atomic Fermi-Hubbard system. We have observed
doublon density correlations and studied their dependence on
the lattice filling and temperature, finding excellent agreement
with DQMC calculations. These correlations serve as an excellent
thermometer in the low-temperature regime that will help in the
development of cooling schemes required for achieving long-range
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Hubbard superfluids. Above the critical temperature, attractive
Hubbard systems will allow experimental exploration of the physics
of the pseudogap regime, while at lower temperatures, they will
enable studies of the BKT transition in a lattice system. The
pairing correlations inferred in this experiment may be probed
more directly using collective excitations of the pairing order
parameter that couple to the conjugate CDW order parameter®.
Another interesting direction for future work is the study of the
spin-imbalanced attractive Hubbard model in 2D, where Fermi
surface nesting due to the lattice increases the stability of FFLO
superfluids* . Unlike spin-balanced gases investigated in this
work, DQMC suffers a fermion ‘sign probleny in simulating the
spin-imbalanced attractive Hubbard model, making theoretical
predictions difficult at low temperatures.

Methods

Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods

Preparation of an attractive Fermi gas in an optical lattice. The experimental
set-up is described in detail in the supplement of ref. 16. We realize the
Fermi-Hubbard model using a spin-balanced degenerate mixture of two Zeeman
states (|1) =|1) and |3) =), numbered up from the lowest energy) in the
ground state hyperfine manifold of °Li in an optical lattice.

To create the sample we load a magneto-optical trap (MOT) from a Zeeman
slower, then use a compressed MOT stage before loading into a approximately
1-mK-deep optical trap and evaporating near the 690 G Feshbach resonance. We
stop the evaporation before Feshbach molecules form and transfer the atoms to a
highly anisotropic ‘light sheet’ trap where the gas undergoes further evaporation to
degeneracy at 305.4(1) G. At this field, the scattering length is a, = —889a,. Next
we transfer the gas into the final trapping geometry where a 1,070 nm beam
provides radial confinement and a 532 nm accordion lattice with trapping
frequency w, =27 X 21(1) kHz provides axial confinement (for further details see
ref. 41). The spin populations are balanced to within 2.1(9)%. We then load the gas
into a 2D square lattice with a 25-ms-long ramp to varying depths from 4 — 7.5E,.

Calibration of Hubbard parameters and overall confinement. We use a
non-separable 2D square lattice with a 752 nm spacing formed by four interfering
passes of a single vertically polarized beam'®. We calibrate our lattice depth by
measuring the frequencies of the three d bands in a deep lattice using lattice depth
modulation, and compare these with a 2D band structure calculation. The inferred
depth of the lattice at which our measurements are performed is 6.2(2)E,, where

E, =14.66 kHz. From that we obtain nearest-neighbour tunnelling values

t, =1,200Hz, t, = 1,110 Hz (t, /t, = 1.08). The reduction of the lattice depth across
the cloud due to the Gaussian profile of the lattice beams leads to an increase in the
tunnelling by 10% at the edge of the cloud compared to the central value. We also
calculate a non-zero but negligible diagonal tunnelling ¢,, =42 Hz=0.04t,, due to
the non-separability of the lattice.

We measure the interaction energy U at the lattice loading field of 305 G using
RF spectroscopy. We transfer atoms from state |1) to |2) and resolve the frequency
shift between singly and doubly occupied sites. We determine
U3 =0U (ay3/(a;; — ay)), where §U is the measured difference between the
singles and doublon peaks and a,; (a,;) is the scattering length at the spectroscopy
field for a 1-3 (2-3) mixture. Taking into account this correction due to a significant
final state interaction, we obtain U,; = 6.6(3) kHz. The experimentally measured
value agrees with the value determined from band structure calculations of
5.9(1) kHz including higher band corrections to within 10% (ref. 49).

The harmonic trapping potential for the attractive gas in the lattice has been
checked in several independent ways. A calculation from measured beam waist and
power yields 220 Hz. A spatially resolved lattice depth modulation spectroscopy
allows us to extract the lattice depth variation in the radial direction, which yields
197 Hz. In addition we did a density and correlator fit to a non-interacting Fermi
gas at the same lattice depth as the attractive gas, which yields 218 Hz. These values
all agree within uncertainty with the value determined from the DQMC fit in the
main text.

Imaging of doublons. In the usual scheme of Raman imaging, a singly occupied
lattice site produces a fluorescence signal while atoms in a doubly occupied site are
lost due to light-assisted collisions. To measure density correlations between doubly
occupied sites, we have developed a new detection scheme. After the gas is loaded
adiabatically into the optical lattice, we pin the atoms by increasing the lattice depth
to 55(1)Ey in 100 us where tunnelling dynamics get frozen. The next step is to
adiabatically ramp the field to 594 G where we perform an interaction-resolved
Landau-Zener sweep (Supplementary Fig. 1) to selectively transfer 1-3 doublons to
2-3 doublons while not effecting the |1) singles. Finally we ramp to a field of 641 G
where the 2-3 scattering length is 414a,. We apply resonant pushing pulses of 30 us
durations to remove |1) and |3) atoms, leaving behind only |2) atoms on sites that
originally had doublons. The large relative wavefunction of the atoms on a site due
to repulsive interactions and a relatively weak vertical confinement significantly
reduces the probability of light-assisted collisions during the resonant pulse. On the
other hand, to get the singles images, we apply no RF or resonant pushing pulses.

We image the final atom distribution by increasing the lattice depth to 2,500E,
within 250 pis, ramping up the light sheet to provide axial confinement, and then
collecting fluorescence photons during Raman cooling.

To measure the efficiency of imaging doublons, we prepare a band insulator
where the filling in the trap centre is saturated at two atoms per site. We perform
the above-mentioned process to image only the doublons. We measure a combined
fidelity (including RF-transfer efficiency and pushing efficiency) of
1 —¢€;=91(1)% of imaging doublons, leading to an underestimation of our
doublon density correlator by (1 — €,)* =0.83 which we correct for. We have also
performed the same detection procedure on a Mott insulator, where we expect unit
occupancy on the lattice sites. This allows us to extract the probability that a single
atom in state |1) would get transferred to |2) and give a false positive signal of the
presence of a doublon. We measure the probability of this process to be
only 2.3(3)%.

Raman imaging and reconstruction. We perform Raman imaging for 1,200 ms
and collect approximately 1,000 photons per atom. For more details, see ref. 16. We
estimate fidelity errors due to Raman imaging imperfections by taking 40
consecutive images of the same atom cloud and determine the shot-to-shot
differences. This leads to a hopping rate during one picture of 0.4(1)% and a loss
rate of 1.9(2)%. In addition, while holding the atoms in a deep lattice for doublon
detection, we lose 2(1)% of the atoms, leading to a net detection efficiency of
approximately 95% for singly occupied sites. The densities that we obtain are
corrected for the above detection efficiency.

Lower bound on pairing correlations. The full Hubbard Hamiltonian can be
written as

H=—t Z (cr‘a o+ E:/Ia cm) +U Z Nerfly, — [ Z ey
(rr').0 r ro

—hY (g —ngy) )

where c:ﬂ is the creation operator for a fermion with spin o onssite r, n,, = c:{T [
t is the matrix element for tunnelling between lattice sites, U is the strength of the
on-site interaction (U < 0 for the attractive model), i is a spin-independent
chemical potential and  is an effective Zeeman field in the presence of spin
imbalance. For the purpose of this paper, h =0, since we work only with a
spin-balanced system. Consider first the SU(2) spin symmetry of the problem for
h=0. The vector spin operator on site r is given by (S, 5/, 57), where S© =8 £iS].
In terms of fermionic creation and annihilation operators, the generators of spin
rotations are

-
S, =6 Gt

§T=(5) =1y
"z 1 T T 1
S, = E(Cr,TC'»T —C Gy = E(Vlm — 1) (2)

These operators obey the usual commutation relations

[S,S71==8, [SF,S 1=28; 3)
In the absence of an effective Zeeman field, the operators $* =3 &7 and
§E=3", SF satisfy

[#,5°]=[#.5]=0 @)

implying the SU(2) spin symmetry of the Hubbard model. In other words, the
Hamiltonian is invariant under a global rotation of the spin degree of freedom. To
demonstrate the other ‘hidden’ symmetry of the Hubbard model, we define a new
set of generators for rotations of the ‘pseudo-spin’ on a site given by

n =",

nf=a)

n, = %(nr ) (5)

It can be easily verified® that they obey the following commutation relations

.nfl=%n [nfn =21 (6)

The operators 1° = >, n° and n* =>_ nZ satisfy

[ 1=%U —2wn",  [H,n]=0 @
regardless of the sign of the interaction U. Exactly at half-filling, © = U /2 and all
the pseudo-spin generators in equation (7) commute with # similar to the spin
generators in equation (4), meaning that the Hamiltonian is invariant under global
rotations of the pseudo-spin.

The pseudo-spin on a site can be visualized on the Bloch sphere like a regular
spin. If it points up (down) the site contains a doublon (hole), while if it lies in the
equatorial plane, the site contains an equal superposition of a doublon and hole
with a complex relative phase determined by the azimuthal angle. In the limit of
large attractive interactions, the spin-balanced Hubbard Hamiltonian can be
approximated as a Heisenberg Hamiltonian with antiferromagnetic interactions
between the pseudo-spins, leading to charge-density-wave and pairing correlations
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corresponding to z and x, y antiferromagnetic pseudo-spin correlations,
respectively. At half-filling, the pseudo-spin rotational symmetry implies

i) = (), ®)
where ¥ = (1" + 1) /2. Defining the s-wave pairing operator in the x direction as
Al=copey +cl el ©)

one concludes that the density correlations C"(a) = (n,n,,,) =4 <r]j nfﬂ)[ and
pairing correlations C* (a) = ( A Afﬂ>c =4(y nfﬂ>£ are equal in magnitude
at half-filling.

Deviation from half-filling introduces an effective Zeeman field along z that
couples to the pseudo-spin. This leads to canted antiferromagnetic pseudo-spin
correlations, with stronger correlations in the direction orthogonal to the
field—that is, the pairing correlations become stronger than the density
correlations. Therefore, measurement of charge-density-wave density correlations
in the attractive Hubbard model provides a lower bound on the pairing correlations
at any filling. In our experiment we measure a more accessible quantity, the doublon
density correlator C*(a) =4 <nfnf+a>c. The doublon density and total density
correlators become equal in the limit of low temperatures and large interactions.
However, the doublon density correlator C? still provides a bound on the pairing
correlator C*, as we have verified numerically for the entire range of interactions,
temperatures and fillings studied in the experiment (Supplementary Fig. 2).

Determinantal Quantum Monte Carlo calculations. The DQMC simulations

shown in the paper were all performed using a Fortran 90/95 package called

QUantum Electron Simulation Toolbox (QUEST) developed and maintained by

R. T. Scalettar and colleagues™. For a spin-balanced system with attractive

interactions (U /t < 0) the calculations do not suffer from a fermion sign problem.
Simulations for Figs 2 and 3 of the main text were performed on a square lattice

of 8 X 8 sites with U/t = —5.7 and a chemical potential (;+/t) varying from -3 to

NATURE PHYSICS | www.nature.com/naturephysics

1.5, with ;=0 representing half-filling. The inverse temperature f = Ldt was split
into L =40 imaginary time slices, with an interval d7 =0.0556. To obtain higher
statistics, the simulations were averaged over ten runs, 50,000 passes each. For

Fig. 4 of the main text, U/t was fixed at —5.7 and p to zero. The temperature was
scanned by varying dt from 0.0046 to 0.083 for a fixed L =40 and each point was
averaged over 100,000 passes.

The DQMC simulations in the paper are performed using homogeneous
systems. We rely on the local density approximation (LDA) for comparison to the
experiment where the density varies slowly due to the harmonic trapping potential.
For data shown in Supplementary Fig. 4, the density gradient at n=1 varied from
0.07 atoms/(site)* for a depth of 4.1E; to 0.14 atoms/(site)’ for a depth of 7.4E;. To
verify that the LDA holds for our system, we have performed DQMC simulations
in the presence of a linearly varying chemical potential along one direction of the
2D Hubbard lattice to reproduce the maximal density gradients observed in the
experiment. The results of this calculation showed that the LDA holds to excellent
approximation for our experimental parameters. However, we note that violation of
the LDA had been predicted for such a system at much lower temperatures and
higher gradients™.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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