
An Eulerian-Lagrangian Runge-Kutta finite volume
(EL-RK-FV) method for solving convection and

convection-diffusion equations

Joseph Nakao1, Jiajie Chen1, and Jingmei Qiu1

1Department of Mathematical Sciences, University of Delaware, Newark,
DE 19716

Abstract

We propose a new Eulerian-Lagrangian Runge-Kutta finite volume method for numer-
ically solving convection and convection-diffusion equations. Eulerian-Lagrangian and
semi-Lagrangian methods have grown in popularity mostly due to their ability to al-
low large time steps. Our proposed scheme is formulated by integrating the PDE on
a space-time region partitioned by approximations of the characteristics determined
from the Rankine-Hugoniot jump condition; and then rewriting the time-integral form
into a time differential form to allow application of Runge-Kutta (RK) methods via
the method-of-lines approach. The scheme can be viewed as a generalization of the
standard Runge-Kutta finite volume (RK-FV) scheme for which the space-time region
is partitioned by approximate characteristics with zero velocity. The high-order spa-
tial reconstruction is achieved using the recently developed weighted essentially non-
oscillatory schemes with adaptive order (WENO-AO); and the high-order temporal
accuracy is achieved by explicit RK methods for convection equations and implicit-
explicit (IMEX) RK methods for convection-diffusion equations. Our algorithm ex-
tends to higher dimensions via dimensional splitting. Numerical experiments demon-
strate our algorithm’s robustness, high-order accuracy, and ability to handle extra large
time steps.

Keywords: Eulerian-Lagrangian, semi-Lagrangian, convection-diffusion equation, WENO-
AO, IMEX Runge-Kutta

1 Introduction

In this paper, we are concerned with numerically solving convection-diffusion equations of
the form {

ut +∇ · F(u) = ε∆u+ g(x, t), x ∈ D, t > 0,

u(x, t = 0) = u0(x), x ∈ D,
(1.1)

1

where ε ≥ 0. We propose an Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-
FV) scheme utilizing weighted essentially non-oscillatory (WENO) schemes with adaptive
order (WENO-AO) for spatial reconstruction. The proposed method is designed for one-
dimensional problems of the form (1.1) and extended to higher-dimensional problems via
dimensional splitting.

Eulerian-Lagrangian (EL) and semi-Lagrangian (SL) schemes [14, 41, 48] have proven to
be computationally effective when solving hyperbolic problems because of their ability to em-
ploy high spatial resolution schemes while admitting very large CFL with numerical stability.
Generally speaking, an EL or SL method involves working on a background grid so that high-
order spatial resolutions can be used (the Eulerian part), and tracing characteristics of the
cell boundaries backward/forward in time to relax the CFL constraint (the Lagrangian part).
Such methods have been developed in a wide variety of frameworks: discontinuous Galerkin
[12, 20, 39, 40], finite difference [13, 15, 29, 32, 37, 38, 47], finite volume [1, 7, 19, 22, 27, 28].
Although the SL and EL frameworks are similar in spirit, the SL framework assumes exact
characteristic tracing and hence poses difficulties when considering nonlinear problems. Two
other methods similar to EL and SL methods are the arbitrary Lagrangian-Eulerian (ALE)
methods where an arbitrary mesh velocity not necessarily aligned with the fluid velocity is
defined [8, 9, 10, 11, 21, 26, 36], and moving mesh methods where the PDE is first evolved
in time and then followed by some mesh-redistribution procedure [33, 34, 35, 41, 44, 45].
The main difference between these two methods and the previously mentioned methods is
that they move the mesh adaptively to focus resolving the solution around sharp transitions;
whereas EL and SL methods evolve the equation by following characteristics.

Our goal in this paper is to develop a new high-order EL method in the finite volume
framework using method-of-lines (MOL) RK time discretizations. Finite volume methods are
attractive since they are naturally mass conservative, easy to physically interpret, and mod-
ifiable for nonuniform grids. Similar to the recent developments made by Huang, Arbogast,
and Qiu [27, 28], we use approximate characteristics to define a traceback space-time region,
and then use WENO reconstructions to evaluate the modified flux. Huang and Arbogast
developed a re-averaging technique that allows high-order reconstruction of the solution at
arbitrary points by applying a standard WENO scheme [17, 43] over a uniform reconstruc-
tion grid that is defined separately. They then used a natural continuous extension [51] of
Runge-Kutta schemes, which requires the solution at several Gaussian nodes of the interval
[tn, tn+1], to evolve the solution along the approximate characteristics.

The novelty of our proposed method is twofold: (1) the partition of space-time regions
formed by linear approximations of the characteristic curves, and (2) integrating the differ-
ential equation over the partitioned space-time regions, followed by rewriting the space-time
integral form of the equation into a spatial-integral time-differential form. In this way, a
MOL RK type method can be directly applied for time discretization, thus avoiding the
need to use a natural continuous extension of RK schemes. To be more precise, we construct
linear approximate characteristics by using the Rankine-Hugoniot jump condition to define
the traceback space-time regions. If the linear approximate characteristics are defined with
zero velocity, then the proposed EL-RK-FV scheme reduces to the standard RK-FV method.
Whereas, when linear space-time curves adequately approximate the exact characteristics, a
large time stepping size is still permitted. We use WENO-AO to perform a solution remap-
ping of the uniform cell averages onto the possibly nonuniform traceback cells. The recently

2

developed WENO-AO schemes [4, 5, 6] are robust and guarantee the existence of the linear
weights at arbitrary points. We note that Chen, et al. used WENO-AO schemes in the
SL framework [15], and Huang and Arbogast have recently used WENO-AO schemes in the
Eulerian framework [3, 4]. RK methods are used to evolve the MOL system along the approx-
imate characteristics. Explicit RK methods, such as the strong stability-preserving (SSP)
RK methods [24], are used for convection equations; and implicit-explicit (IMEX) RK meth-
ods [2, 18, 25] are used for convection-diffusion equations. In the latter case, the non-stiff
convective term is treated explicitly and the stiff diffusive term is treated implicitly. Dimen-
sional splitting is used to extend the one-dimensional algorithm to solve multi-dimensional
problems. The proposed method is high-order accurate, capable of resolving discontinuities
without oscillations, mass conservative, and stable with large time stepping sizes.

The paper is organized as follows. We discuss the EL-RK-FV algorithm for pure con-
vection problems in Section 2. In Section 3, we discuss the EL-RK-FV algorithm, coupled
with IMEX RK schemes, for convection-diffusion equations. Numerical performance of the
EL-RK-FV algorithm is shown in Section 4 by applying the algorithm to several linear and
nonlinear test problems. Conclusions are made in Section 5. Appendices are listed after the
references.

2 The EL-RK-FV method for pure convection prob-

lems

The spirit of the EL-RK-FV method is best demonstrated by starting with a pure convection
problem in one dimension, i.e., equation (1.1) with ε = 0 and g(x) = 0. Let the flux
be denoted f(x). We first discuss the formulation of the scheme in Section 2.1, followed
by discussion of high-order spatial reconstruction in Section 2.2 and time discretization in
Section 2.3.

2.1 Scheme formulation

We discretize the spatial domain [a, b] into Nx intervals with Nx + 1 uniformly distributed
nodes

a = x 1
2
< x 3

2
< ... < xNx− 1

2
< xNx+ 1

2
= b.

Define the cells Ij := [xj− 1
2
, xj+ 1

2
] with centers xj = (xj− 1

2
+ xj+ 1

2
)/2 and widths ∆xj = ∆x

for j = 1, ..., Nx. We let

∆t =
CFL∆x

max|f ′(u)|
, (2.1)

where CFL defines the time stepping size. In contrast to Eulerian methods, which evolve
the solution on a stationary mesh, our EL algorithm proposes tracing the characteristics
backwards in time from tn+1 to tn to partition a set of space-time regions based on the
computational grid. Since tracing characteristics in the nonlinear case is often nontrivial,
we consider computing approximations of characteristics that are linear space-time curves.
In particular, the approximate characteristic speeds at nodes xj+ 1

2
and time tn+1 are defined

3

using the Rankine-Hugoniot jump condition at time tn,

νj+ 1
2

=


f(unj+1)− f(unj)

unj+1 − unj
, unj+1 6= unj ,

f ′(unj), unj+1 = unj ,

(2.2)

where unj and unj+1 are the cell averages at time tn. In practice we tested if |unj+1 − unj | < ε,
with ε = 1.0e−8, in which case we took u to be the average of u− and u+. As seen in Figure
1, the (upstream) traceback nodes can be defined by

x∗
j+ 1

2

:= xj+ 1
2
− νj+ 1

2
∆t, j = 1, ..., N. (2.3)

Define x̃j+ 1
2
(t) = x∗

j+ 1
2

+νj+ 1
2
(t−tn) with tn ≤ t ≤ tn+1, for j = 0, 1, 2, ..., N . The approximate

characteristics are given by the space-time tracelines

Sleft := {(x̃j− 1
2
(t), t) : tn ≤ t ≤ tn+1} and Sright := {(x̃j+ 1

2
(t), t) : tn ≤ t ≤ tn+1}.

Note that x∗
j+ 1

2

= x̃j+ 1
2
(tn), xj+ 1

2
= x̃j+ 1

2
(tn+1), and the (upstream) traceback cells I∗j =

Ĩj(t
n) are in general nonuniform. We define the space-time domain Ωj as the region bounded

by Ij, I
∗
j , Sleft, and Sright.

Figure 1: The space-time region Ωj.

With the constructed space-time region Ωj, we rewrite the one-dimensional pure convection
problem in divergence form∇t,x·(u, f(u))T = 0, integrate it over Ωj, and apply the divergence
theorem to get∫

Ij

u(x, tn+1)dx−
∫
I∗j

u(x, tn)dx

=−

[∫ tn+1

tn

Ä
f(u(x̃j+ 1

2
(t), t))− νj+ 1

2
u(x̃j+ 1

2
(t), t)

ä
dt−

∫ tn+1

tn

Ä
f(u(x̃j− 1

2
(t), t))− νj− 1

2
u(x̃j− 1

2
(t), t)

ä
dt

]
.

(2.4)

4

We rewrite the time-integral form (2.4) into the time-differential form to get

d

dt

∫
Ĩj(t)

u(x, t)dx = −
[
Fj+ 1

2
(t)− Fj− 1

2
(t)
]
, (2.5)

where Fj+ 1
2
(t) := f(u(x̃j+ 1

2
(t), t)) − νj+ 1

2
u(x̃j+ 1

2
(t), t) is called the modified flux function.

Choosing any appropriate monotone numerical flux function

F̂j+ 1
2
(t) = F̂j+ 1

2
(u−

j+ 1
2

, u+
j+ 1

2

; t) (2.6)

(e.g., Lax-Friedrichs flux) for the modified flux function, equation (2.5) can be rewritten as
the following semi-discrete finite volume scheme:

d

dt

∫
Ĩj(t)

u(x, t)dx = −
[
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
]
. (2.7)

Here, the starting condition is obtained by a solution remapping onto a trackback grid,
discussed in Section 2.2; F̂j+ 1

2
(t) are computed from (2.6) with reconstructed values from

neighboring cell averages at time t, discussed in Section 2.3. We evolve equation (2.7) by
the MOL approach with explicit RK schemes, discussed in Section 2.4.

2.2 Solution remapping onto a traceback grid

Referring back to Figure 1 and equation (2.4), we see that the solution will need to be
projected onto the traceback grid in order to compute the traceback cell averages

ũnj :=
1

∆x∗j

∫
I∗j

u(x, tn)dx, j = 1, 2, ..., N, (2.8)

that is, the starting condition for (2.7). Hence, we desire a procedure for an integral re-
construction that –in general– uses known uniform cell averages {uj(t) : j = 1, 2, ..., N} to
approximate the desired cell averages {ũj(t) : j = 1, 2, ..., N} defined by

ũj(t) :=
1

∆x̃j(t)

∫
Ĩj(t)

u(x, t)dx, j = 1, 2, ..., N. (2.9)

Unless otherwise stated, overlines (e.g., uj(t)) denote uniform cell averages, and tildes (e.g.,
ũj(t)) denote nonuniform cell averages.

Since discontinuities and sharp gradients can occur when solving pure convection problems,
we use high-resolution schemes to control spurious oscillations, e.g., weighted essential non-
oscillatory (WENO) methods [5, 17, 31, 43]. Again, we assume to only be given the uniform
cell averages at some time t. One might apply the well known WENO procedure presented
in [17, 43] to obtain the reconstruction polynomials Rj(x ∈ Ij) in terms of the neighboring
uniform cell averages (at time t) ui, i = j − p, ..., j + q. Referring to Figure 1 for the sake of
demonstration, we might then approximate the cell averages ũ∗j by

ũ∗j ≈
1

∆x∗j

(∫
I∗j ∩Ij−1

Rj−1(x)dx+

∫
I∗j ∩Ij

Rj(x)dx

)
. (2.10)

5

However, the linear weights in the WENO reconstruction are not guaranteed to exist or be
positive at arbitrary points. To alleviate this issue, we instead use the WENO schemes with
adaptive order (WENO-AO) presented in [5] since the linear weights exist at arbitrary points.

The overarching idea of WENO-AO methods is to provide high order accuracy for smooth
solutions over a large center stencil and adaptively reduce to lower order accuracy when
the solution does not permit the high order accuracy. This is done by creating a nonlinear
hybridization between a large center stencil with high order accuracy, and very stable lower
order WENO schemes (e.g., CWENO schemes [31]). Aside from the high order accuracy and
existence of linear weights at arbitrary points, the robustness of these WENO-AO schemes is
particularly attractive for our purposes. The authors in [5] write WENO-AO(p, r) to denote
an adaptive order that is at best pth order (from the large center stencil) and at worst rth
order (from the stable lower order stencils). For our purposes we use WENO-AO(5,3). The
end product of WENO and WENO-AO methods is ultimately a reconstruction polynomial
Rj(x ∈ Ij) that we shall use for reconstruction.

Equation (2.10) is valid when using WENO-AO reconstruction polynomials Rj(x ∈ Ij).
In general, if the traceback points x̃j− 1

2
(t) and x̃j+ 1

2
(t) reside in cells I` and Ir respectively,

then ∫
Ĩj(t)

u(x, t)dx ≈
∫
Ĩj(t)∩I`

R`(x)dx+ ∆x
r−1∑
i=`+1

ui(t) +

∫
Ĩj(t)∩Ir

Rr(x)dx. (2.11)

Below, we summarize the integral reconstruction procedure using WENO-AO as the Algo-
rithm 1.

Algorithm 1. Integral reconstruction using WENO-AO

Input: uniform cell averages uj(t) on the background grid of nodes xj+ 1
2
.

Output: possibly nonuniform cell averages ũj(t) on the traceback grid of nodes x̃j+ 1
2
(t).

do j = 1, 2, ..., N
Locate the uniform background cells that x̃j− 1

2
(t) and x̃j+ 1

2
(t) reside in.

Call these cells I` and Ir, respectively.
if ` = r

Compute ũj(t) ≈
1

∆x̃j(t)

∫
Ĩj(t)

R`(x)dx.

else
do k = `, r

Compute

∫
Ĩj(t)∩Ik

Rk(x)dx.

end do

Compute ũj(t) ≈
1

∆x̃j(t)

Ñ∫
Ĩj(t)∩I`

R`(x)dx+ ∆x
r−1∑
i=`+1

ui(t) +

∫
Ĩj(t)∩Ir

Rr(x)dx

é
.

6

end if
end do

2.3 Reconstruction of point values

Referring back to Figure 1 and equations (2.4)-(2.7), we also need to reconstruct the point
values u(x̃−

j+ 1
2

(t), t) and u(x̃+
j+ 1

2

(t), t) for the modified flux function. However, the WENO-AO

schemes in [5] assume a uniform grid for convenience and efficiency. We wish to avoid using
nonuniform WENO methods since the linear weights need to be recomputed every step and
will quickly become expensive. However, nonuniform WENO methods for two-dimensional
problems [6, 52, 53, 54, 55] might become a more reasonable and realistic choice when dealing
with non-splitting algorithms. Yet, we still need to reconstruct the left and right limits
on the generally nonuniform traceback grid. We propose using the continuous piecewise-
linear transformation from the nonuniform grid consisting of nodes x̃j+ 1

2
(t) to the uniform

background grid; performing a WENO-AO reconstruction on the uniform grid; and mapping
back to the nonuniform grid to obtain the desired limits. We call this the nonuniform-to-
uniform transformation. Given a fixed t ∈ [tn, tn+1], consider the linear bijection φj : Ĩj(t)→
Ij for j = 1, 2, ..., N . Letting x ∈ Ĩj(t) and ξ ∈ Ij,∫

Ĩj(t)

u(x, t)dx = |J |
∫
Ij

u(x(ξ), t)dξ, (2.12)

where |J |(ξ) = |dx/dξ|(ξ) is the Jacobian of the bijection φj. In particular, the Jacobian is
constant for the linear interpolant,

|J | =

∣∣∣∣∣∣ ddξ
(

∆x̃j(t)

∆x
ξ −

xj+ 1
2
x̃j− 1

2
(t) + xj− 1

2
x̃j+ 1

2
(t)

∆x

)∣∣∣∣∣∣ =
∆x̃j(t)

∆x
. (2.13)

Since we want to apply WENO-AO over the uniform grid, we define the auxiliary uniform
cell averages as

ǔj(t) :=
1

∆x

∫
Ij

u(x(ξ), t)dξ =
1

∆x|J |

∫
Ĩj(t)

u(x, t)dx =
1

∆x̃j(t)

∫
Ĩj(t)

u(x, t)dx = ũj(t).

(2.14)
Note that we have shown the auxiliary uniform cell averages (on the uniform background
grid) are identical to the nonuniform cell averages. Hence, under this continuous piecewise-
linear mapping, we can directly use the nonuniform cell averages at time t in the (uniform)
WENO-AO procedure to obtain the left and right limits u(x̃−

j+ 1
2

(t), t) and u(x̃+
j+ 1

2

(t), t). We

further note that the high-order accuracy is preserved with such a strategy only when there
is a smooth mapping with equation (2.12). Theoretical justification for the existence of such
a mapping is highly nontrivial. Yet, our numerical tests verify that high-order spatial ac-
curacy is still achieved under this continuous, piecewise linear, C0 mapping so long as the
(approximate) characteristic field that controls the traceback grid is smooth. We found that
the accuracy drops to first or second order when the (approximate) characteristic field that

7

controls the traceback grid is not smooth (e.g., a fixed traceback grid with alternating cell
lengths 4

3
∆x : 2

3
∆x or 9

5
∆x : 1

5
∆x). However, since the traceback grid is determined by the

smooth velocity field via the Rankine-Hugoniot jump condition, the high-order accuracy is
still observed.

Algorithm 2. Reconstruction using WENO-AO with the nonuniform-to-uniform transfor-
mation

Input: nonuniform cell averages ũj(t) on the traceback grid.
Output: left and right limits u(x̃−

j+ 1
2

(t), t) and u(x̃+
j+ 1

2

(t), t).

do j = 1, 2, ..., N
Calculate the (uniform) WENO-AO reconstruction polynomial Rj(x ∈ Ij) in

terms of
the neighboring auxiliary uniform cell averages ǔi(t) = ũi(t), i = j− p, ..., j+ q.
Compute the left limit u(x̃−

j+ 1
2

(t), t) ≈ Rj(xj+ 1
2
).

Compute the right limit u(x̃+
j− 1

2

(t), t) ≈ Rj(xj− 1
2
).

end do

2.4 Time evolution with explicit Runge-Kutta methods

Algorithms 1 and 2 now allow us to perform (integral) reconstruction on a traceback grid
consisting of nodes x̃j+ 1

2
(t). With these two tools we can evolve equation (2.7) using any

explicit RK method. Recall that our primary goal is to achieve high order accuracy while
also taking large time steps. In our numerical tests we use WENO-AO(5,3) for the spatial
approximation; although higher order WENO-AO methods can certainly be used. As such,
we would like to use high-order time stepping methods. In the cases where the solution is
smooth, the standard fourth-order RK method suffices. However, if the solution is discontin-
uous (e.g., a travelling Heaviside step function), then we require an explicit SSP RK method
[24]. Explicit SSP RK methods are especially attractive when numerically solving hyperbolic
conservation laws because they maintain strong stability while also achieving high order ac-
curacy in time. When applicable, we use the optimal three-stage, third-order explicit SSP
RK method outlined below for demonstrative purposes.

8

∆x̃
(0)
j ũ

(0)
j = ∆x∗ju

∗
j ,

∆x̃
(1)
j ũ

(1)
j = ∆x̃

(0)
j ũ

(0)
j −∆t

Ä
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
ä
,

∆x̃
(2)
j ũ

(2)
j = ∆x̃

(0)
j ũ

(0)
j −

∆t

4

[Ä
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
ä

+
Ä
F̂

(1)

j+ 1
2

(u−, u+; tn+1)− F̂ (1)

j− 1
2

(u−, u+; tn+1)
ä]
,

∆xju
n+1
j = ∆x̃

(0)
j ũ

(0)
j −

2∆t

3

Ä
F̂

(2)

j+ 1
2

(u−, u+; tn+
1
2)− F̂ (2)

j− 1
2

(u−, u+; tn+
1
2)
ä

− ∆t

6

[Ä
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
ä

+
Ä
F̂

(1)

j+ 1
2

(u−, u+; tn+1)− F̂ (1)

j− 1
2

(u−, u+; tn+1)
ä]
,

(2.15)

where ∆x̃
(k)
j = x̃j+ 1

2
(t(k)) − x̃j− 1

2
(t(k)) denotes the cell lengths at stage k, F̂

(k)

j± 1
2

(u−, u+; t)

denotes using the cell averages ũ
(k)
j from stage k to approximate the limits u−

j± 1
2

and u+
j± 1

2

in the numerical flux function at time t using Algorithms 1 and 2. The Butcher tables for
other explicit RK methods are provided in Appendix A.

Remark 1. If the approximate characteristics are defined such that νj+ 1
2

= 0 for all j, then

the EL-RK-FV scheme reduces to the standard RK-FV scheme [43]. Referring to Figure 1,
the approximate characteristics would be vertical lines.

Remark 2. In the presence of shocks, the approximate characteristics will intersect even
under reasonable time-stepping sizes. The proposed EL-RK-FV scheme can handle shocks
only under very small time-stepping sizes, making the scheme not ideal when going to large
times after shock formation. The EL-RK-FV scheme is modified and extended to allow large
time-stepping sizes in the presence of shocks in [16, 49]. In particular, it is proved that the
first-order version of the modified scheme with forward Euler time discretization is total-
variation-diminishing and maximum-principle-preserving under a time-stepping size at least
twice as large as the CFL constraint for an Eulerian first-order finite volume method [49].
The method is extended to high-order accuracy with WENO type spatial reconstruction and
RK time discretization in [16].

Remark 3. Once the space-time partition is defined, the EL-RK-FV scheme evolves from
time tn to time tn+1 in a similar fashion to ALE methods. In the ALE mindset, one can
imagine that νj+ 1

2
= 0 fixes the grid point over this time interval (Eulerian), and νj+ 1

2
6=

0 moves the grid point according to the approximate characteristic speed (Lagrangian).
However, the goal of ALE methods is to move the grid to better resolve sharp gradients.
Whereas, the EL-RK-FV method is designed to approximate the characteristics with the
goal of large time-stepping sizes.

2.5 Two-dimensional problems

We now consider the two-dimensional equation

ut + f(u)x + g(u)y = 0. (2.16)

9

The spatial domain is discretized into NxNy cells, Ii,j := Ii × Ij with centers xi,j = ((xi− 1
2

+

xi+ 1
2
)/2, (yj− 1

2
+ yj+ 1

2
)/2), where the spatial discretizations in x and y are respectively given

by

0 = x 1
2
< x 3

2
< ... < xNx− 1

2
< xNx+ 1

2
= 2π and 0 = y 1

2
< y 3

2
< ... < yNy− 1

2
< yNy+ 1

2
= 2π.

The CFL number is defined as

∆t =
CFL

max |f ′(u)|
∆x

+
max |g′(u)|

∆y

, (2.17)

and the uniform cell averages at time tn are defined by

˜̄uni,j :=
1

∆x∆y

∫
Ii,j

u(x, y, tn)dxdy. (2.18)

In the two-dimensional case, we also want to compute the interval averages over the interval
Ii at a fixed y, or over the interval Ij at a fixed x. Define the uniform interval averages at
time tn with one variable fixed by

ūni|y :=
1

∆x

∫
Ii

u(x, y, tn)dx, (2.19a)

ũnj|x :=
1

∆y

∫
Ij

u(x, y, tn)dy. (2.19b)

Note that only in this subsection will the superscript tilde denote uniform interval averages
in y, not nonuniform interval averages.

Dimensional splitting methods are commonly used to solve two (or higher) dimensional
problems, with second-order Strang splitting being a popular choice. Dimensional splitting
methods solve equation (2.16) by alternating between solving the easier problems

ut + f(u)x = 0, (2.20a)

ut + g(u)y = 0. (2.20b)

Strang splitting uses ˜̄uni,j to solve (2.20a) over a half time step ∆t/2 for intermediate solution
˜̄u∗i,j; uses ˜̄u∗i,j to solve (2.20b) over a full time step ∆t for intermediate solution ˜̄u∗∗i,j; and uses
˜̄u∗∗i,j to solve (2.20a) over another half time step ∆t/2 for solution ˜̄un+1

i,j . As such, we can
reduce the two-dimensional problem to solving several (easier) one-dimensional problems.
Since the one-dimensional EL-RK-FV algorithm evolves interval averages, we need a way to
go between two-dimensional cell averages and one-dimensional interval averages. We note
that the nonlinear weights in the WENO-AO method [5] are the same for all nodes within
the same cell.

10

2.5.1 Going from/to cell averages to/from interval averages

Consider the interval averages as functions of y and x, respectively defined by

ψi(y) := ūni|y =
1

∆x

∫
Ii

u(x, y, tn)dx, (2.21a)

φj(x) := ũnj|x =
1

∆y

∫
Ij

u(x, y, tn)dy. (2.21b)

For any given i = 1, 2, ..., Nx or j = 1, 2, ..., Ny, consider the respective Gauss-Legendre

quadrature nodes {x(i)k ∈ Ii : k = 1, ..., K} and {y(j)l ∈ Ij : l = 1, ..., L}. Observing that the
cell averages at time tn can be expressed as the interval averages of ψ(y) and φ(x),

˜̄uni,j =
1

∆y

∫
Ij

ψi(y)dy =
1

∆x

∫
Ii

φj(x)dx, (2.22)

we can use WENO-AO to go from cell averages to interval averages evaluated at the Gauss-
Legendre nodes,

˜̄uni,j −→ ψi(y
(j)
l) = ūni|l, (2.23a)

˜̄uni,j −→ φj(x
(i)
k) = ũnj|k. (2.23b)

Algorithm 3 presents how to implement WENO-AO to go from cell averages to x−interval
averages at the fixed y−Gauss-Legendre nodes. A similar algorithm can be done to go from
cell averages to y−interval averages at the fixed x−Gauss-Legendre nodes.

11

Algorithm 3. Going from cell averages to x−interval averages

Input: uniform cell averages ˜̄ui,j.

Output: uniform x−interval averages ūi|l at fixed Gauss-Legendre nodes {y(j)l ∈ Ij : l =
1, ..., L}.

do i = 1, 2, ..., Nx

do j = 1, 2, ..., Ny

Calculate the WENO-AO reconstruction polynomial R(i)
j (y ∈ Ij) in terms

of the
neighboring averages ˜̄ui,k, k = j − p, ..., j + q.
do l = 1, ..., L

Store ūi|l = ψi(y
(j)
l) ≈ R(i)

j (y
(j)
l).

end do
end do

end do
The uniform x−interval averages at a fixed Gauss-Legendre node y

(j)
l are {ūi|l =

ψi(y
(j)
l) : l = 1, 2, ..., Nx}.

Computing the cell averages from the interval averages at the Gauss-Legendre nodes is
straightforward using a Gaussian quadrature. Let ξ and w denote the standard Gauss-
Legendre nodes and weights over the interval [−1, 1], respectively. Without loss of generality,
we can go from x−interval averages to cell averages.

˜̄ui,j =
1

∆y

∫
Ij

ψ(y)dy

=
1

2

∫ 1

−1
ψ
(
yj− 1

2
+

∆y

2
(y′ + 1)

)
dy′

≈ 1

2

L∑
l=1

wlψ
(
yj− 1

2
+

∆y

2
(ξl + 1)

)
=

1

2

L∑
l=1

wlψ(y
(j)
l), where y

(j)
l = yj− 1

2
+

∆y

2
(ξl + 1).

(2.24)

2.5.2 Strang splitting

For demonstrative purposes, we outline the EL-RK-FV algorithm for two-dimensional prob-
lems via Strang splitting. Since Strang splitting is only second-order in time, higher-order
splitting methods might be preferred. We present the fourth-order splitting method devel-
oped by Forest and Ruth [23] and Yoshida [50] in Appendix B; Rossmanith and Seal used
this fourth-order splitting method in the semi-Lagrangian framework in [40].

12

Algorithm 4. Strang splitting for the EL-RK-FV method

Input: uniform cell averages ˜̄uni,j.

Output: uniform cell averages ˜̄un+1
i,j .

Step 1 (x-direction). Solve equation (2.20a) for a half time step ∆t/2; that is,
over [tn, tn+1/2].

Use Algorithm 3 to get x−interval averages; that is, ˜̄uni,j −→ ūni|l.
do l = 1, 2, ..., Ny · L

For each Gauss-Legendre node, update the x−interval averages by applying the
1D algorithm;

that is, ūni|l −→ ū∗i|l.
end do
Use equation (2.24) to get updated cell averages; that is, ū∗i|l −→ ˜̄u∗i,j.

Step 2 (y-direction). Solve equation (2.20b) for a full time step ∆t; that is, over
[tn, tn+1].

Use Algorithm 3 analogue to get y−interval averages; that is, ˜̄u∗i,j −→ ũ∗j|k.
do k = 1, 2, ..., Nx ·K

For each Gauss-Legendre node, update the y−interval averages by applying the
1D algorithm;

that is, ũ∗j|k −→ ũ∗∗j|k.
end do
Use equation (2.24) analogue to get updated cell averages; that is, ũ∗∗j|k −→ ˜̄u∗∗i,j.

Step 3 (x-direction). Solve equation (2.20a) for a half time step ∆t/2; that is,
over [tn+1/2, tn+1].

Use Algorithm 3 to get x−interval averages; that is, ˜̄u∗∗i,j −→ ū∗∗i|l .
do l = 1, 2, ..., Ny · L

For each Gauss-Legendre node, update the x−interval averages by applying the
1D algorithm;

that is, ū∗∗i|l −→ ūn+1
i|l .

end do
Use equation (2.24) to get updated cell averages; that is, ūn+1

i|l −→ ˜̄un+1
i,j .

3 The EL-RK-FV method for convection-diffusion equa-

tions

Throughout this section, overlines (e.g., uj(t)) denote uniform cell averages, and tildes
(e.g., ũj(t)) denote nonuniform cell averages. We discuss the EL-RK-FV algorithm for

13

the convection-diffusion equation (1.1). Since we use dimensional splitting methods for two-
dimensional problems, it suffices to discuss the 1D EL-RK-FV algorithm for problems of the
form

ut + f(u)x = εuxx + g(x, t), (3.1)

where we impose periodic boundary conditions. Rewriting equation (3.1) in divergence form,
integrating over the same space-time region Ωj as in the ε = 0 case, applying the divergence
theorem and fundamental theorem of calculus, integrating over [tn, tn+1], and converting to
the time-differential form, we get the semi-discrete formulation

d

dt

∫
Ĩj(t)

u(x, t)dx = −
î
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
ó

+ ε

∫
Ĩj(t)

uxx(x, t)dx+

∫
Ĩj(t)

g(x, t)dx, (3.2)

where F̂j+ 1
2
(t) is any monotone numerical flux (e.g., Lax-Friedrichs flux) and Fj+ 1

2
(t) is the

modified flux function defined in (2.5).

3.1 Computing the uniform cell averages of uxx

When evolving equation (3.2) we will need to compute the uniform cell averages of uxx(x, t),
defined by

uxx,j(t) :=
1

∆x

∫
Ij

uxx(x, t)dx. (3.3)

We use the centered five-point stencil {j − 2, j − 1, j, j + 1, j + 2} for linear reconstruction.
Let P (x ∈ Ij) be the linear reconstruction polynomial over the centered five-point stencil.
After some tedious algebra, we find that the uniform cell averages uxx,j(t) can be expressed
in terms of the uniform cell averages uj(t) with fourth-order accuracy using the equation

uxx,j(t) =
1

∆x2

î
− 1

12
4
3
−5

2
4
3
− 1

12

óuj−2(t)uj−1(t)
uj(t)
uj+1(t)
uj+2(t)

 . (3.4)

For implementation it is easier to express equation (3.4) in matrix form (assuming periodic
or zero boundary conditions). We denote this matrix D4 in Algorithm 5. Computing the
nonuniform cell averages ũxx,j(t) can now be done using Algorithm 1.

3.2 Time evolution with implicit-explicit Runge-Kutta methods

We can split equation (3.1) into its non-stiff and stiff terms,

ut = F(u; x, t) + G(u; x, t), (3.5)

where F(u; x, t) = −f(u)x is the non-stiff convective term, and G(u; x, t) = εuxx + g(x, t)
is the stiff diffusive (and source) term. Discretization methods used for such problems are
implicit-explicit (IMEX) RK schemes [2, 18, 25]. The intuition behind these schemes is

14

straightforward – evolve the non-stiff term explicitly, and evolve the stiff term implicitly. As
such, each stage in the RK method will involve explicitly evaluating the non-stiff term, and
solving a linear system due to the stiff term.

All that’s needed are the possibly nonuniform cell averages at each RK stage µ = 1, ..., s
over the space-time regions Ωj. There are two approaches one can take to approximate
the possibly nonuniform cell averages at each RK stage: (1) have a single space-time par-
tition for multiple RK stages and directly update the solution to the possibly nonuniform
traceback grid at each intermediate RK stage, or (2) have multiple space-time partitions for
intermediate RK stages, and compute the uniform cell averages at time t(µ) and project them
onto the possibly nonuniform traceback grid via Algorithm 1. Although the first approach
is more intuitive, it is computationally expensive since the system to be solved (from the
implicit part) will depend on the measure of each cell. We choose the second approach, as
computing the uniform cell averages at time t(µ) requires solving a system dependent only
on the background uniform mesh size ∆x. Since we choose the second approach, we will
need to: (1) solve for the uniform cell averages at each consecutive stage, and (2) project the
uniform cell averages onto the possibly nonuniform traceback grid via Algorithm 1. Recall
the uniform cell averages u

(µ)
xx,j can be computed from the uniform cell averages u

(µ)
j using

equation (3.4).

For simplicity, we only use the IMEX RK schemes outlined in [2]. As per the notation
used by Ascher, et al., IMEX(s,σ,p) denotes using an s−stage diagonally-implicit Runge-
Kutta (DIRK) scheme for G(u; x, t), using a σ−stage explicit RK scheme for F(u; x, t), and
being of combined order p. Consider the semi-discrete formulation (3.2) rewritten as

d

dt

∫
Ĩj(t)

u(x, t)dx = F(u; t) + G(u; t), (3.6)

where we redefine F(u; t) = −
î
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
ó

and G(u; t) = ε
∫
Ĩj(t)

uxx(x, t)dx+
∫
Ĩj(t)

g(x, t)dx.

The IMEX(s,σ,p) RK schemes are expressed with two Butcher tables: one for the implicit
RK method, and another for the explicit RK method.

Table 1: *
Implicit Scheme

0 0 0 0 . . . 0
c1 0 a11 0 . . . 0
c2 0 a21 a22 . . . 0
...

...
...

...
. . .

...
cs 0 as1 as2 . . . ass

0 b1 b2 . . . bs

Table 2: *
Explicit Scheme

0 0 0 0 . . . 0
c1 â21 0 0 . . . 0
c2 â31 â32 0 . . . 0
...

...
...

...
. . .

...
cs âσ1 âσ2 âσ3 . . . 0

b̂1 b̂2 b̂3 . . . b̂σ

Defining U (µ) :=
∫
Ĩj(t(µ))

u(x, t(µ))dx, the IMEX(s,σ,p) scheme over the space-time region Ωj

15

is as follows:

Un+1 = Un + ∆t
s∑

µ=1

bµKµ + ∆t
σ∑
µ=1

b̂µK̂µ, (3.7a)

Kµ = G(U (µ); t(µ)), µ = 1, 2, ..., s, (3.7b)

K̂1 = F(Un; tn), (3.7c)

K̂µ+1 = F(U (µ); t(µ)), µ = 1, 2, ..., s. (3.7d)

More precisely,

Kµ = ε

∫
Ĩj(t(µ))

uxx(x, t
(µ))dx+

∫
Ĩj(t(µ))

g(x, t(µ))dx, (3.8a)

K̂µ+1 = −
î
F̂j+ 1

2
(t(µ))− F̂j− 1

2
(t(µ))

ó
. (3.8b)

Based on the IMEX RK method, the solution U (µ) over the traceback grid can be approxi-
mated by

U (µ) = Un + ∆t

µ∑
ν=1

aµ,νKν + ∆t

µ∑
ν=1

âµ+1,νK̂ν , µ = 1, 2, ..., s. (3.9)

Recall that we choose not to directly update the solution over Ωj. Instead, we opt to solve for
the uniform cell averages at each RK stage and project them onto the corresponding possibly
nonuniform traceback grid. We define sub-space-time regions µΩj for the µ-th stage of the
IMEX RK scheme, as shown in Figures 2 and 3. The space-time region µΩj traces back to
time tn (using the same approximate characteristic speeds as in Ωj) from time t(µ). Hence,
at time t(µ) on the sub-space-time region µΩj the grid is uniform. Lower left subscript µ
denotes values confined to the sub-space-time region µΩj. For example, 2U

n are the possibly
nonuniform definite integrals (and hence the possibly nonuniform cell averages) at time tn

over the traceback cell in 2Ωj, as seen in Figure 3.

Figure 2: The space-time region 1Ωj. Figure 3: The space-time region 2Ωj.

The desired uniform cell averages u
(µ)
j = µU

(µ)/∆x at stage µ can be obtained by computing
the first µ−stages of the IMEX RK scheme over the sub-space-time region µΩj, given below.

µU
(µ) = µU

n + ∆t

µ∑
ν=1

(aµ,ν)(µKν) + ∆t

µ∑
ν=1

(âµ+1,ν)(µK̂ν) (3.10a)

16

µKν = G(µU
(ν); t(ν)), ν = 1, 2, ..., µ, (3.10b)

µK̂1 = F(µU
n; tn), (3.10c)

µK̂ν+1 = F(µU
(ν); t(ν)), ν = 1, 2, ..., µ. (3.10d)

More precisely,

µK1 = ε

∫
µĨj(t(ν))

uxx(x, t
(ν))dx+

∫
µĨj(t(ν))

g(x, t(ν))dx, (3.11a)

µK̂ν+1 = −
î
F̂j+ 1

2
(t(ν))− F̂j− 1

2
(t(ν))

ó
. (3.11b)

Note that µK̂ν+1 uses the cell averages restricted to the sub-space-time regions µΩj. Further
note that equation (3.10) can recycle and reuse the uniform cell averages already com-

puted during stages 1, 2, ..., µ − 1. Simply project the uniform cell averages (u
(ν)
j or u

(ν)
xx,j,

ν = 1, 2, ..., µ − 1) onto the traceback grids formed by the space-time regions µΩj. Al-
though IMEX RK schemes are straightforward, it is easy to get lost in the notation. To
help demonstrate the EL-RK-FV algorithm coupled with an IMEX RK scheme, we present
the IMEX(2,2,2) case in Appendix D. The Butcher tables for other IMEX RK schemes are
included in Appendix C. There are IMEX SSP RK schemes that can be found in [18, 25].

Algorithm 5. EL-RK-FV algorithm coupled with an IMEX RK scheme [2], IMEX(s, σ, p)

Input: uniform cell averages unj .

Output: uniform cell averages un+1
j .

Compute the possibly nonuniform traceback cell averages ũj(t
n) using Algorithm 1.

Store K̂1 = F(Un; tn). This is the traceback grid in Ωj.
do µ = 1, 2, ..., s

1. Compute the uniform cell averages u
(µ)
j at time t(µ) with equation (3.10) by:

i. Restrict yourself to the space-time region µΩj.

ii. Compute the values µKν and µK̂ν+1 at each stage ν = 1, 2, ..., µ − 1
using Algorithm 1

to compute the necessary nonuniform cell averages, and Algorithm 2 for
the modified flux

function. Definite integrals of g(x, t) can be computed using a Gaussian
quadrature.

iii. Recalling equation (3.4), solve equation (3.10) by setting it up as the
linear systemÅ

I− aµ,µε∆t

∆x2
D4

ã
µ

#»

U (µ) = µ
#»

U n+∆t

µ−1∑
ν=1

(aµ,ν)(µ
#»

Kν)+∆t

µ∑
ν=1

(âµ+1,ν)(µ
#»

K̂ν)+aµ,µ∆t #»g (x, t(µ)),

where #»g j(x, t
(µ)) =

∫
Ij
g(x, t(µ))dx.

iv. Store the uniform cell averages u
(µ)
j = µU

(µ)
j /∆x.

17

2. Compute and store the uniform cell averages u
(µ)
xx,j using equation (3.4).

3. Compute the possibly nonuniform traceback cell averages ũ
(µ)
j using Algo-

rithm 1.
4. Compute the possibly nonuniform traceback cell averages ũ

(µ)
xx,j using Algo-

rithm 1.
5. Compute and store Kµ and K̂µ+1. Note that we are back on the possibly

nonuniform
traceback grid consisting of cells Ĩj(t

(µ)).
end do

Compute Un+1 = Un + ∆t
s∑

µ=1

bµKµ + ∆t
σ∑
µ=1

b̂µK̂µ.

Compute the uniform cell averages un+1
j = Un+1

j /∆x.

3.3 Mass conservation

We now show that the 1D EL-RK-FV algorithm is mass conservative when coupled with any
IMEX RK scheme in [2]. Since we extend the EL-RK-FV algorithm to higher dimensions via
dimensional splitting in this paper, showing mass conservation for the 1D problem suffices.
Note that mass conservation of the ε = 0 case can be proved just as easily.

Proposition 1. (Mass conservative). The 1D EL-RK-FV algorithm coupled with any IMEX
RK scheme in [2] for (non)linear convection-diffusion equations is mass conservative, assum-
ing the source term g(x, t) = 0 and periodic boundary conditions.

Proof. Making use of the semi-discrete form of the convection-diffusion equation,∫
Ij

u(x, tn+1)dx =

∫
Ĩj(tn)

u(x, tn)dx−
∫ tn+1

tn

{
F̂j+ 1

2
(t)− F̂j− 1

2
(t)− ε

∫
Ĩj(t)

uxx(x, t)dx

}
dt

=

∫
Ĩj(tn)

u(x, tn)dx−
∫ tn+1

tn

{
F̂j+ 1

2
(t)− F̂j− 1

2
(t)− ε

Ä
ux(x̃j+ 1

2
(t), t)− ux(x̃j− 1

2
(t), t)

ä}
dt.

(3.12)

Summing over all j = 1, 2, ..., Nx and making use of the periodic boundary conditions,∫ b

a

u(x, tn+1)dx =

∫ b

a

u(x, tn)dx. (3.13)

Remark 4. By virtue of approximating the exact characteristics, the CFL condition is much
more relaxed when compared to the standard RK-FV method. On the other hand, Algorithm
2 is more expensive than a standard WENO procedure on a uniform grid. The computational
savings of the EL-RK-FV method will be more significant for solving convection-diffusion

18

equations, as the computational overhead in the remapping algorithm is less significant com-
pared with the implicit solver for the stiff diffusion term. In our computational experiments,
we find that the proposed algorithm is most advantageous for convection-dominated prob-
lems. Moreover, it is advantageous to take larger time steps with numerical stability for
convection-diffusion problems when convective and diffusive terms are of similar magnitude.

4 Numerical tests

In this section, we present results applying the proposed EL-RK-FV algorithm to various
benchmark problems. In particular, we include error tables and error plots to investigate the
spatial and temporal convergence of the algorithm. Mass conservation is also numerically ver-
ified by applying the proposed algorithm to the 0D2V (zero dimensions in physical space and
two dimensions in velocity space) Leonard-Bernstein Fokker-Planck equation. We assume
a uniform mesh, apply WENO-AO(5,3) in Algorithms 1 and 2, use three Gauss-Legendre
nodes in Algorithm 3, and use the fourth-order approximation given by equation (3.4) for
the diffusive term. Unless otherwise stated, for the time-stepping we use the fourth-order
RK method for pure convection problems, and IMEX(2,3,3) for convection-diffusion equa-
tions. We also use second-order Strang splitting for two-dimensional convection-diffusion
equations. Although higher-order splitting methods can be used for pure convection prob-
lems, it is well-known that negative time integration can lead to significant instabilities when
dealing with a diffusive term.

There are three sources of error: spatial approximation, time-stepping, and splitting. De-
pending on the CFL number and test problem, these three sources of error will influence the
observed order of convergence. We compute the L1, L2, and L∞ errors (in one-dimension),

‖u− uexact‖1 = ∆x
Nx∑
j=1

|uj − uexact,j| (4.1a)

‖u− uexact‖2 =

Ã
∆x

Nx∑
j=1

|uj − uexact,j|2 (4.1b)

‖u− uexact‖∞ = max
1≤j≤Nx

|uj − uexact,j| (4.1c)

Note that for the norms defined above, ‖u− uexact‖1 ≤ |D|‖u− uexact‖∞.

4.1 Pure convection problems: one-dimensional tests

Example 4.1. (1D transport with constant coefficient)

ut + ux = 0, x ∈ [0, 2π] (4.2)

with periodic boundary conditions and exact solution u(x, t) = sin (x− t). The errors pro-
vided in Table 3 verify the convergence of the EL-RK-FV method when using WENO-
AO(5,3) and forward Euler. As expected, we see fifth-order convergence despite the large

19

CFL number. There is no temporal error for the convective part since the characteristics are
traced exactly and hence Fj+ 1

2
(t) = 0 for all t ∈ [tn, tn+1] and j = 1, 2, ..., Nx.

Table 3: Convergence study with spatial mesh refinement for equation (4.2) with forward
Euler at Tf = 1.

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.09E-08 - 4.83E-09 - 2.86E-09 -
100 3.34E-10 5.03 1.48E-10 5.03 8.34E-11 5.10
200 9.86E-12 5.08 4.37E-12 5.08 2.51E-12 5.06
400 2.80E-13 5.14 1.43E-13 4.94 1.91E-13 3.72

Example 4.2. (1D transport with variable coefficient in space)

ut + (sin (x)u)x = 0, x ∈ [0, 2π] (4.3)

with periodic boundary conditions and exact solution

u(x, t) =
sin (2 arctan (e−t tan (x/2)))

sin (x)
.

As seen in Table 4, we observe the high-order convergence. As the CFL number (and hence
the time step) increases, the temporal error starts to play more of a role, as evidenced by
the fourth-order convergence. We verify the high-order temporal convergence in Figure 4 by
fixing the mesh Nx = 400 and varying the CFL from 0.2 to 20.

Table 4: Convergence study with spatial mesh refinement for equation (4.3) with RK4 at
Tf = 1.

CFL = 0.3
Nx L1 Error Order L2 Error Order L∞ Error Order
50 2.76E-04 - 2.53E-04 - 3.42E-04 -
100 3.05E-06 6.50 2.53E-06 6.64 2.94E-06 6.87
200 9.78E-08 4.96 7.90E-08 5.00 9.86E-08 4.90
400 3.24E-09 4.91 2.59E-09 4.93 3.23E-09 4.93

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.81E-02 - 4.11E-02 - 4.51E-02 -
100 1.18E-03 5.85 6.23E-04 6.04 6.38E-04 6.15
200 5.89E-05 4.32 3.63E-05 4.10 5.46E-05 3.54
400 3.71E-06 3.99 2.57E-06 3.82 4.31E-06 3.66

20

Example 4.3. (1D transport with variable coefficient in time)

ut +

Å
u

t+ 1

ã
x

= 0, x ∈ [0, 2π] (4.4)

with periodic boundary conditions and exact solution u(x, t) = exp(−5(x− log (t+ 1)−π)2).
Periodic boundary conditions are a valid assumption for sufficiently thin Gaussian curves
and small enough times. The expected high-order convergence for both small and large CFL
numbers is seen in Table 5. Fixing the mesh Nx = 400 and varying the CFL number from
0.2 to 20, fifth-order convergence in time is seen in Figure 5. Observe that there are two
optimal CFL numbers for this mesh.

Table 5: Convergence study with spatial mesh refinement for equation (4.4) with RK4 at
Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.36E-03 - 5.80E-03 - 8.23E-03 -
100 2.37E-04 4.75 2.28E-04 4.67 5.33E-04 3.95
200 1.71E-06 7.12 1.30E-06 7.46 2.36E-06 7.82
400 4.40E-08 5.28 3.84E-08 5.08 6.02E-08 5.29

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.71E-02 - 5.72E-02 - 8.15E-02 -
100 7.74E-04 6.44 6.48E-04 6.46 1.06E-03 6.27
200 1.52E-05 5.67 1.26E-05 5.69 1.76E-05 5.91
400 9.65E-07 3.98 8.11E-07 3.96 9.61E-07 4.20

Figure 4: RK4, Final time Tf = 0.5. Figure 5: RK4, Final time Tf = 0.5.

21

4.2 Hyperbolic conservation laws: two-dimensional tests

Example 4.4. (2D transport with constant coefficient)

ut + ux + uy = 0, x, y ∈ [−π, π] (4.5)

with periodic boundary conditions and exact solution u(x, y, t) = sin (x+ y − 2t). The
expected high-order convergence is shown in Table 6 when using Strang splitting. Just like
equation (4.2), there is no temporal error for the convective part since the characteristics are
traced exactly.

Table 6: Convergence study with spatial mesh refinement for equation (4.5) with forward
Euler and CFL = 8 at Tf = 1.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.24E-09 - 7.49E-10 - 1.69E-10 -
200 1.27E-10 5.05 2.25E-11 5.05 5.15E-12 5.03
300 1.60E-11 5.11 2.84E-12 5.11 8.23E-13 4.52
400 3.57E-12 5.21 6.88E-13 4.92 3.68E-13 2.80

Example 4.5. (Rigid body rotation)

ut − yux + xuy = 0, x, y ∈ [−π, π] (4.6)

with periodic boundary conditions. We choose the exact solution u(x, y, t) = u(x, y, t =
0) = exp(−3(x2 + y2)) for convergence tests. The convergence results are presented in
Tables 7 and 8. Strang splitting dominates the error and we observe the expected second-
order convergence. Whereas, the spatial error dominates when using fourth-order splitting as
evidenced by the fifth-order convergence. The error plot using a fixed mesh Nx = Ny = 200
and varying the CFL number from 0.1 to 50 is shown in Figure 6. Second-order convergence in
time is observed when using Strang splitting, and fourth-order convergence is observed when
using fourth-order splitting. We note that comparable convergence results were observed for
the non-symmetric initial condition u(x, y, t = 0) = exp(−3x2 − 2y2). To demonstrate the
effectiveness of WENO-AO controlling spurious oscillations we choose the initial condition
u(x, y, t = 0) = 1 if x, y ∈ [−π/2, π/2]; u(x, y, t = 0) = 0 otherwise. With a fixed mesh
Nx = Ny = 100 and CFL = 2.2, we compute the solution up to time Tf = 2π using SSP
RK3. The discontinuities are smoothed out and no spurious oscillations occur.

Example 4.6. (Swirling deformation)

ut −
Ä
cos2 (x/2) sin (y)g(t)u

ä
x

+
Ä
sin (x) cos2 (y/2)g(t)u

ä
y

= 0, x, y ∈ [−π, π] (4.7)

22

Table 7: Convergence study with spatial mesh refinement for equation (4.6) with RK4 and
CFL = 0.95 at Tf = 0.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 3.57E-05 - 1.54E-05 - 2.43E-05 -
200 1.83E-06 4.29 9.94E-07 3.95 1.23E-06 4.31
300 8.01E-07 2.04 4.35E-07 2.04 4.72E-07 2.36
400 4.50E-07 2.01 2.44E-07 2.01 2.55E-07 2.13

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.05E-04 - 4.66E-05 - 8.95E-05 -
200 1.08E-06 6.60 6.13E-07 6.25 7.74E-07 6.85
300 1.39E-07 5.06 8.12E-08 4.99 1.02E-07 5.00
400 3.32E-08 4.99 1.93E-08 4.99 2.43E-08 4.99

Table 8: Convergence study with spatial mesh refinement for equation (4.6) with RK4 and
CFL = 8 at Tf = 0.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.97E-04 - 2.68E-04 - 2.78E-04 -
200 1.24E-04 2.00 6.74E-05 1.99 6.86E-05 2.02
300 5.59E-05 1.97 3.03E-05 1.97 3.08E-05 1.97
400 3.20E-05 1.94 1.73E-05 1.94 1.76E-05 1.94

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.95E-05 - 2.46E-05 - 6.82E-05 -
200 4.84E-07 6.68 2.92E-07 6.39 4.77E-07 7.16
300 6.17E-08 5.08 3.86E-08 4.99 6.19E-08 5.03
400 1.47E-08 4.99 9.22E-09 4.88 1.47E-08 5.00

When testing convergence we set g(t) = cos (πt/Tf)π and choose the initial condition to be
the smooth (with C5 smoothness) cosine bell

u(x, y, t = 0) =

rb0 cos6
(
rb(x,y)π

2rb0

)
, if rb(x, y) < rb0,

0, otherwise,
(4.8)

where rb0 = 0.3π and rb(x, y) =
√

(x− xb0)2 + (y − yb0)2 with (xb0, y
b
0) = (0.3π, 0). The conver-

gence results under spatial mesh refinement are presented in Tables 9 and 10. Surprisingly,
high-order convergence is observed in all test cases, even for the large CFL number of 8. In
particular, we observed super-convergence for CFL = 8 when using Strang splitting. We
got comparable convergence results when letting the initial condition be: (1) a cosine bell

23

Figure 6: Error plot for (4.6) with RK4 at
Tf = 0.5. Nx = Ny = 200.

Figure 7: Plot of the numerical solution to
(4.6) with SSP RK3 and CFL = 2.2 at Tf =
2π. Nx = Ny = 100.

of C3 smoothness, and (2) the cosine bell (4.8) but with xb0 = 0.6π and the width in the
x−direction scaled by a factor of 1/2.

The temporal orders of convergence are shown in Figure 8 using a fixed mesh Nx = Ny = 200
and varying the CFL number from 0.1 to 25. When using Strang splitting the temporal
convergence switches from second-order to third-order, indicating that for very large CFL
numbers the splitting error does not dominate the time-stepping error as much. Fourth-order
convergence is observed when using fourth-order splitting. To demonstrate the effectiveness
of WENO-AO in controlling spurious oscillations we set g(t) = 1 and choose the initial
condition [30]

u(x, y, t = 0) =

{
1, if rb(x, y) < rb0,

0, otherwise,
(4.9)

where rb0 = 8π/5 and rb(x, y) =
√

(x− xb0)2 + (y − yb0)2 with (xb0, y
b
0) = (π, π). With a fixed

mesh Nx = Ny = 100 and CFL = 8, we compute the solution up to time Tf = 5π using SSP
RK3 and Strang splitting. The discontinuities are smoothed out and no spurious oscillations
occur.

4.3 Convection-diffusion equations: one-dimensional tests

Example 4.7. (1D equation with constant coefficient)

ut + ux = εuxx, x ∈ [0, 2π] (4.10)

with periodic boundary conditions and exact solution u(x, t) = sin (x− t)exp(−εt). We set
ε = 1. The convergence results under spatial mesh refinement are shown in Table 11 for
CFL = 0.95 and CFL = 8. In both cases we observe the expected third-order convergence
since we are using IMEX(2,3,3) for the time-stepping. Note that there is no temporal error

24

Table 9: Convergence study with spatial mesh refinement for equation (4.7) with RK4 and
CFL = 0.95 at Tf = 1.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 5.17E-03 - 6.11E-03 - 2.04E-02 -
200 1.69E-04 4.94 1.69E-04 5.18 4.80E-04 5.41
300 3.12E-05 4.16 3.85E-05 3.64 1.41E-04 3.01
400 8.29E-06 4.61 1.12E-05 4.66 4.66E-05 3.86

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.42E-02 - 1.73E-02 - 5.25E-02 -
200 3.98E-04 5.16 3.70E-04 5.54 9.15E-04 5.84
300 7.69E-05 4.06 9.02E-05 3.48 3.24E-04 2.56
400 2.20E-05 4.35 2.89E-05 3.96 1.17E-04 3.52

Table 10: Convergence study with spatial mesh refinement for equation (4.7) with RK4 and
CFL = 8 at Tf = 1.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.90E-03 - 2.11E-03 - 6.83E-03 -
200 1.02E-04 4.23 8.88E-05 4.57 2.47E-04 4.79
300 1.90E-05 4.13 1.79E-05 3.94 6.36E-05 3.35
400 2.82E-06 6.63 4.11E-06 5.12 1.98E-05 4.05

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 3.89E-03 - 4.31E-03 - 1.43E-02 -
200 1.30E-04 4.90 1.34E-04 5.01 4.42E-04 5.01
300 2.41E-05 4.16 3.32E-05 3.44 1.40E-04 2.84
400 6.54E-06 4.53 1.02E-05 4.10 4.81E-05 3.70

for the convective part since the characteristics are traced exactly and hence Fj+ 1
2
(t) = 0 for

all t ∈ [tn, tn+1] and j = 1, 2, ..., Nx. Figure 10 shows the expected third-order convergence
in time using fixed mesh Nx = 400 and varying the CFL number from 0.1 to 15.

Example 4.8. (1D equation with variable coefficient)

ut + (sin (x)u)x = εuxx + g, x ∈ [0, 2π] (4.11)

with periodic boundary conditions and g(x, t) = sin (2x)exp(−εt) and exact solution u(x, t) =
sin (x)exp(−εt). We set ε = 1. Table 12 shows the convergence results under spatial mesh
refinement. Third-order convergence in space is observed for CFL = 0.95. Whereas, the

25

Figure 8: Error plot for (4.7) with RK4 at
Tf = 1.5. Nx = Ny = 200.

Figure 9: Plot of the numerical solution to
(4.7) with g(t) = 1, SSP RK3 and CFL = 8
at Tf = 5π. Nx = Ny = 100.

Table 11: Convergence study with spatial mesh refinement for equation (4.10) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.87E-04 - 8.26E-05 - 4.66E-05 -
100 2.55E-05 2.87 1.13E-05 2.87 6.36E-06 2.87
200 3.34E-06 2.93 1.48E-06 2.93 8.35E-07 2.93
400 4.31E-07 2.95 1.91E-07 2.95 1.08E-07 2.95
800 5.44E-08 2.99 2.41E-08 2.99 1.36E-08 2.99

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.87E-02 - 3.04E-02 - 1.72E-02 -
100 1.09E-02 2.66 4.82E-03 2.66 2.72E-03 2.66
200 1.63E-03 2.74 7.22E-04 2.74 4.07E-04 2.74
400 2.27E-04 2.84 1.01E-04 2.84 5.69E-05 2.84
800 3.03E-05 2.91 1.34E-05 2.91 7.57E-06 2.91

convergence for CFL = 8 is roughly order 2.6 since the time-stepping start to dominate.
We note that the order of convergence for IMEX(2,3,3) under increasing the CFL number
dips slightly below three for larger CFL numbers. We use fixed mesh Nx = 400 and vary the
CFL number from 0.1 to 15 for the error plot showing the temporal order of convergence in
Figure 11.

Example 4.9. (1D viscous Burgers’ equation)

ut +

Ç
u2

2

å
x

= εuxx, x ∈ [0, 2] (4.12)

26

Table 12: Convergence study with spatial mesh refinement for equation (4.11) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 2.10E-03 - 9.99E-04 - 7.70E-04 -
100 3.99E-04 2.39 1.88E-04 2.41 1.44E-04 2.42
200 6.41E-05 2.64 2.99E-05 2.65 2.27E-05 2.66
400 9.84E-06 2.70 4.57E-06 2.71 3.44E-06 2.73
800 1.30E-06 2.92 6.04E-07 2.92 4.53E-07 2.92

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 7.50E-01 - 4.34E-01 - 3.92E-01 -
100 1.26E-01 2.58 6.60E-02 2.72 6.63E-02 2.56
200 1.74E-02 2.85 8.31E-03 2.99 6.50E-03 3.35
400 3.09E-03 2.50 1.46E-03 2.51 1.12E-03 2.53
800 5.03E-04 2.62 2.36E-04 2.63 1.81E-04 2.63

Figure 10: IMEX(2,3,3), ε = 1, Final time
Tf = 0.5.

Figure 11: IMEX(2,3,3), ε = 1, Final time
Tf = 0.5.

with periodic boundary conditions. As in [42], we set ε = 0.1 and choose the initial condition
u(x, t = 0) = 0.2 sin (πx). The exact solution is

u(x, t) = 2επ

∞∑
n=1

cnexp(−n2π2εt)n sin (nπx)

c0 +
∞∑
n=1

cnexp(−n2π2εt) cos (nπx)
,

where c0 =
∫ 1

0
exp(−(1− cos (πx))/(10πε))dx and cn = 2

∫ 1

0
exp(−(1− cos (πx))/(10πε)) cos (nπx)dx

for n = 1, 2, 3, We computed the first ten Fourier coefficients in Mathematica® for the
exact solution; the eleventh Fourier coefficient was less than machine precision.

27

Table 13 shows the expected orders of convergence under spatial mesh refinement. Third-
order convergence is observed for CFL = 0.95. Whereas, the convergence for CFL = 8 is
slightly below order three since the time-stepping error starts to dominate. W note that the
order of convergence for IMEX(2,3,3) under increasing the CFL number dips slightly below
three for larger CFL numbers. The error plot in Figure 12 showing third-order convergence
in time uses mesh Nx = 400 and CFL numbers varying from 0.1 to 15.

Table 13: Convergence study with spatial mesh refinement for equation (4.12) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 9.50E-05 - 8.43E-05 - 1.17E-04 -
100 1.48E-05 2.68 1.32E-05 3.67 1.87E-05 2.65
200 2.42E-06 2.62 2.20E-06 2.59 3.21E-06 2.55
400 3.27E-07 2.88 3.00E-07 2.87 4.42E-07 2.86
800 4.28E-08 2.94 3.95E-08 2.93 5.86E-08 2.92

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.26E-02 - 1.31E-02 - 2.24E-02 -
100 2.79E-03 2.17 2.50E-03 2.38 3.70E-03 2.60
200 4.73E-04 2.56 4.16E-04 2.59 5.64E-04 2.71
400 1.28E-04 1.89 1.15E-04 1.85 1.64E-04 1.78
800 1.97E-05 2.70 1.78E-05 2.70 2.56E-05 2.68

Example 4.10. (The 0D1V Leonard-Bernstein (linearized) Fokker-Planck equation)

ft −
1

ε
((vx − vx)f)vx =

1

ε
Dfvxvx , vx ∈ [−2π, 2π] (4.13)

with zero boundary conditions and equilibrium solution the Maxwellian

fM(vx) =
n√

2πRT
exp

Ç
−(vx − vx)2

2RT

å
, (4.14)

where ε = 1, gas constant R = 1/6, temperature T = 3, thermal velocity vth =
√

2RT =√
2D = 1, number density n = π, and bulk velocity vx = 0. These quantities were chosen for

scaling convenience. When testing convergence we set the initial distribution f(vx, t = 0) =
fM(vx). Table 14 shows the convergence results, for which we use IMEX(4,4,3) for the time-
stepping; we show the results using IMEX(4,4,3) because it gave slightly better convergence
than IMEX(2,3,3). We observe fourth-order convergence under spatial mesh refinement for
CFL = 0.95. Whereas, for CFL = 8 the time-stepping error starts to dominate and we
observe third-order convergence. The error plot in Figure 13 showing third-order convergence

28

in time uses a fixed mesh Nvx = 400 and CFL numbers varying from 0.1 to 15. We note
that although high-order convergence is observed, the proposed EL-RK-FV algorithm is not
equilibrium-preserving.

Table 14: Convergence study with spatial mesh refinement for equation (4.13) with
IMEX(4,4,3) at Tf = 1.

CFL = 0.95
Nvx L1 Error Order L2 Error Order L∞ Error Order
50 8.02E-04 - 5.19E-04 - 5.65E-04 -
100 6.12E-05 3.71 3.83E-05 3.76 4.27E-05 3.73
200 4.41E-06 3.79 2.63E-06 3.87 2.84E-06 3.91
400 2.99E-07 3.88 1.73E-07 3.93 1.80E-07 3.98
800 2.03E-08 3.88 1.13E-08 3.94 1.10E-08 4.04

CFL = 8
Nvx L1 Error Order L2 Error Order L∞ Error Order
50 9.33E-03 - 4.52E-03 - 3.63E-03 -
100 1.34E-03 2.80 6.60E-04 2.78 5.63E-04 2.69
200 1.91E-04 2.81 9.57E-05 2.79 8.15E-05 2.79
400 3.21E-05 2.57 1.61E-05 2.57 1.34E-05 2.61
800 4.13E-06 2.96 2.09E-06 2.95 1.74E-06 2.94

Figure 12: IMEX(2,3,3), ε = 0.1, Final time
Tf = 0.5.

Figure 13: IMEX(4,4,3), Final time Tf =
0.5.

4.4 Convection-diffusion equations: two-dimensional tests

Example 4.11. (2D equation with constant coefficient)

ut + ux + uy = ε(uxx + uyy), x, y ∈ [0, 2π] (4.15)

29

with periodic boundary conditions and exact solution u(x, y, t) = exp(−2εt) sin (x+ y − 2t).
We set ε = 1. Third-order convergence under spatial mesh refinement is seen in Table 15
for CFL = 0.95 and CFL = 8. As with equation (4.10), there is no temporal error for
the convective part since the characteristics are traced exactly. Note that the error is larger
for CFL = 8 than CFL = 0.95 since this problem also has diffusion. Figure 14 shows the
third-order convergence in time using fixed mesh Nx = Ny = 400 and varying the CFL
number from 6 to 20.

Table 15: Convergence study with spatial mesh refinement for equation (4.15) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 6.74E-05 - 1.19E-05 - 2.68E-06 -
100 1.02E-05 2.72 1.81E-06 2.72 4.07E-07 2.72
200 1.41E-06 2.86 2.49E-07 2.86 5.62E-08 2.86
400 1.86E-07 2.92 3.29E-08 2.92 7.41E-09 2.92

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.92E-02 - 6.94E-03 - 1.56E-03 -
100 5.82E-03 2.75 1.03E-03 2.75 2.32E-04 2.75
200 8.09E-04 2.85 1.43E-04 2.85 3.22E-05 2.85
400 1.07E-04 2.92 1.90E-05 2.92 4.27E-06 2.92

Example 4.12. (Rigid body rotation with diffusion)

ut − yux + xuy = ε(uxx + uyy) + g, x, y ∈ [−2π, 2π] (4.16)

with periodic boundary conditions, g(x, y, t) = (6ε−4xy−4ε(x2+9y2))exp(−(x2+3y2+2εt)),
and exact solution u(x, y, t) = exp(−(x2 + 3y2 + 2εt)). We set ε = 1. Table 16 shows the
order of convergence when using IMEX(4,4,3). We use IMEX(4,4,3) instead of IMEX(2,3,3)
because the latter choice, along with the Strang splitting, showed an order of convergence
less than two for large CFL numbers. The expected second-order convergence in time (due to
Strang splitting) is seen in Figure 15 assumes fixed mesh Nx = Ny = 400 and CFL numbers
varying from 6 to 20.

Example 4.13. (Swirling deformation with diffusion)

ut −
Ä
cos2 (x/2) sin (y)f(t)u

ä
x

+
Ä
sin (x) cos2 (y/2)f(t)u

ä
y

= ε(uxx + uyy), x, y ∈ [−π, π]

(4.17)
When testing the convergence we set f(t) = cos (πt/Tf)π, ε = 1, and choose the initial
condition to be the cosine bell in equation (4.8). Since there is no analytic solution, we use a
reference solution computed with a mesh size of 400×400 and CFL = 0.1. The convergence

30

Table 16: Convergence study with spatial mesh refinement for equation (4.16) with
IMEX(4,4,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.22E-03 - 1.42E-03 - 1.44E-03 -
100 3.92E-04 3.04 1.75E-04 3.02 2.00E-04 2.85
200 7.27E-05 2.43 3.14E-05 2.47 3.54E-05 2.50
400 1.65E-05 2.14 7.11E-06 2.15 7.80E-06 2.18

CFL = 5
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 2.21E-02 - 8.81E-03 - 7.44E-03 -
100 5.98E-03 1.89 2.48E-03 1.83 2.46E-03 1.60
200 1.61E-03 1.89 6.81E-04 1.86 7.14E-04 1.79
400 4.24E-04 1.93 1.81E-04 1.91 1.94E-04 1.88

Figure 14: IMEX(2,3,3), ε = 1, Final time
Tf = 0.5.

Figure 15: IMEX(4,4,3), ε = 1, Final time
Tf = 0.1.

results under spatial mesh refinement are presented in Table 17. The splitting error seems to
dominate the time-stepping error for CFL = 0.95 as evidenced by the apparent second-order
convergence. Whereas, the time-stepping error seems to contribute more for CFL = 8. Due
to the interplay between the time-stepping and splitting errors, the temporal order 2.4 is
also observed in Figure 16, for which we use fixed mesh Nx = Ny = 400 and CFL numbers
varying from 6 to 20.

Example 4.14. (2D viscous Burgers’ equation)

ut +

Ç
u2

2

å
x

+

Ç
u2

2

å
y

= ε(uxx + uyy) + g, x, y ∈ [−π, π] (4.18)

with periodic boundary conditions. As in [46], we set ε = 0.1, g(x, y, t) = exp(−4εt) sin (2(x+ y)),

31

Table 17: Convergence study with spatial mesh refinement for equation (4.17) with
IMEX(2,3,3) and Strang splitting at Tf = 0.1.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 4.98E-04 - 2.57E-04 - 3.38E-04 -
100 9.13E-05 2.45 4.58E-05 2.49 6.05E-05 2.48
200 1.91E-05 2.26 9.56E-06 2.26 1.22E-05 2.31
400 4.48E-06 2.09 2.19E-06 2.13 2.61E-06 2.23

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 5.93E-02 - 3.60E-02 - 5.82E-02 -
100 2.05E-02 1.53 1.16E-02 1.63 1.65E-02 1.82
200 3.14E-03 2.71 1.67E-03 2.80 2.04E-03 3.01
400 6.08E-04 2.37 3.13E-04 2.41 4.16E-04 2.30

and suppose the solution u(x, y, t) = exp(−2εt) sin (x+ y). The convergence results are
presented in Table 18. The splitting error seems to dominate the time-stepping error for
CFL = 0.95 as evidenced by the second-order convergence. Whereas, the time-stepping
error seems to contribute more for CFL = 8 since the order is between two and three. The
temporal order of convergence in the L1 norm is roughly 2.3, as seen in Figure 17, for which
we use fixed mesh Nx = Ny = 400 and CFL numbers varying from 6 to 20.

Table 18: Convergence study with spatial mesh refinement for equation (4.18) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.01E-04 - 5.21E-05 - 1.19E-05 -
100 7.12E-05 2.08 1.30E-05 2.00 3.42E-06 1.80
200 1.76E-05 2.02 3.34E-06 1.96 9.42E-07 1.86
400 4.53E-06 1.95 8.60E-07 1.96 2.49E-07 1.92

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 8.11E-02 - 1.60E-02 - 5.80E-03 -
100 1.02E-02 2.99 2.00E-03 3.00 7.78E-04 2.90
200 1.61E-03 2.66 3.01E-04 2.74 9.81E-05 2.99
400 3.47E-04 2.21 5.97E-05 2.33 1.35E-05 2.86

Example 4.15. (The 0D2V Leonard-Bernstein (linearized) Fokker-Planck equation)

ft −
1

ε
((vx − vx)f)vx −

1

ε
((vy − vy)f)vy =

1

ε
D(fvxvx + fvyvy), vx, vy ∈ [−2π, 2π] (4.19)

32

Figure 16: IMEX(2,3,3), ε = 1, Final time
Tf = 0.1.

Figure 17: IMEX(2,3,3), ε = 0.1, Final time
Tf = 0.2.

with zero boundary conditions and equilibrium solution the Maxwellian

fM(vx, vy) =
n

2πRT
exp

Ç
−(vx − vx)2 + (vy − vy)2

2RT

å
, (4.20)

where ε = 1, gas constant R = 1/6, temperature T = 3, thermal velocity vth =
√

2RT =√
2D = 1, number density n = π, and bulk velocities vx = vy = 0. These quantities were

chosen for scaling convenience. When testing the spatial and temporal orders of accuracy
we set the initial distribution f(vx, vy, t = 0) = fM(vx, vy). Table 20 shows the convergence
results under spatial mesh refinement. We observe higher fourth-order convergence in space
for CFL = 0.95. The time-stepping and splitting errors start to dominate the spatial error
for larger CFL numbers, as observed for CFL = 8. Figure 18 shows the temporal order of
convergence is roughly 2.6 for fixed mesh Nvx = Nvy = 400 and CFL numbers varying from 6
to 20. We again note the interplay between the third-order time-stepping and second-order
splitting.

When testing for relaxation of the system, we choose the initial distribution f(vx, vy, t =
0) = fM1(vx, vy) + fM2(vx, vy), that is, the sum of two randomly generated Maxwellians
such that the total macro-parameters are preserved. The number density, bulk velocities,
and temperature of each Maxwellian are listed in Table 19. We set vy = 0 so that the two
generated Maxwellians are shifted only along the vx axis.

The macro-parameters we want to conserve are number density, bulk velocity, and temper-
ature, which in two dimensions are respectively given by

n =

∫ ∞
−∞

∫ ∞
−∞

f(v)dvydvx, (4.21a)

v =
1

n

∫ ∞
−∞

∫ ∞
−∞

vf(v)dvydvx, (4.21b)

33

fM1 fM2

n 1.990964530353041 1.150628123236752
vx 0.4979792385268875 -0.8616676237412346
vy 0 0
T 2.46518981703837 0.4107062104302872

Table 19: n = π, v = 0, and T = 3.

T =
1

2Rn

∫ ∞
−∞

∫ ∞
−∞

(v − v)2f(v)dvydvx. (4.21c)

Figures 25(f) and 26 show the solution using fixed mesh Nvx = Nvy = 200 and CFL = 6.
Although we computed the solution up to time Tf = 20, there was no difference (to the
naked eye) after time t = 3. Although the solution appears to reach equilibrium, we again
note that the proposed EL-RK-FV algorithm is not equilibrium-preserving. Figure 25(a)
verifies mass conservation, but Figure 25(b) implies that the numerical solution has some
negative values and is not positivity-preserving. Referring to Figure 25, momentum and
energy are not conserved. As seen in Figure 25(d), the bulk velocity in the vy-direction is on
the order of machine epsilon because we constructed the two Maxwellians in Table 19 such
that vM1,y = vM2,y = 0. Hence, there is no drift velocity in the vy-direction.

Table 20: Convergence study with spatial mesh refinement for equation (4.19) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nvx = Nvy L1 Error Order L2 Error Order L∞ Error Order

50 9.07E-04 - 4.22E-04 - 5.49E-04 -
100 7.19E-05 3.66 3.15E-05 3.74 4.36E-05 3.66
200 5.35E-06 3.75 2.15E-06 3.87 2.93E-06 3.89
400 3.54E-07 3.92 1.37E-07 3.98 1.82E-07 4.01

CFL = 8
Nvx = Nvy L1 Error Order L2 Error Order L∞ Error Order

50 5.70E-03 - 1.84E-03 - 1.26E-03 -
100 1.08E-03 2.40 3.53E-04 2.39 2.82E-04 2.16
200 1.69E-04 2.67 5.68E-05 2.64 5.02E-05 2.49
400 2.73E-05 2.63 9.30E-06 2.61 8.63E-06 2.54

5 Conclusion

In this paper, we proposed a new EL-RK-FV method for solving convection and convection-
diffusion equations. Whereas SL methods require solving for the exact characteristics, which

34

Figure 18: IMEX(2,3,3), Final time Tf = 0.1.

is often highly nontrivial for nonlinear problems, our EL method computes linear space-
time curves as the approximate characteristics. WENO-AO schemes allowed us to perform
spatial reconstruction at arbitrary points which was essential since the traceback grid was not
necessarily the (uniform) background grid. By working with the time-differential form, we
could use a method-of-lines approach. Explicit RK methods were used for pure convection
problems, and IMEX RK methods were used for convection-diffusion equations. Dimensional
splitting was used for higher-dimensional problems. Several one- and two-dimensional test
problems demonstrated the algorithm’s robustness, high-order accuracy, and ability to allow
extra large time steps. Ongoing and future work includes modifying the algorithm to handle
shocks and rarefaction waves (the authors already have promising results that will be written
in another paper), and developing a non-splitting version of the EL-RK-FV algorithm.

Acknowledgements

Research is supported by NSF grant NSF-DMS-1818924 and NSF-DMS-2111253, Air Force
Office of Scientific Research FA9550-18-1-0257 and University of Delaware. The authors
would like to thank William Taitano (Air Force Research Laboratory) and Alexander Alek-
seenko (California State University at Northridge) for their help in constructing the Leonard-
Bernstein Fokker-Planck equation test problems. Further thanks goes to Robert Martin
(Army Research Laboratory) and Alexander Alekseenko for their mentorship during Joseph
Nakao’s summer internship at the Air Force Research Laboratory.

35

Figure 19: *
(a)

Figure 20: *
(d)

Figure 21: *
(b)

Figure 22: *
(e)

Figure 23: *
(c)

Figure 24: *
(f)

Figure 25: Figures (a)-(e): Relative macro-parameters for equation (4.19) with initial distri-
bution of two Maxwellians defined by Table 19. Mesh Nvx = Nvy = 200, CFL = 6. Figure
(f): The initial distribution.

36

Figure 26: Various snapshots of the numerical solution to equation (4.19) with initial distri-
bution of two Maxwellians defined by Table 19. Mesh Nvx = Nvy = 200, CFL = 6. Times:
0.15, 0.30, 0.45, 0.60, 0.75, 3.

37

Appendices

Appendix A. Butcher Tables for Explicit RK Methods

Table 21: *

SSP RK3

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

Table 22: *

RK4

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Appendix B. Fourth-order operator splitting

Define two constants

γ1 =
1

2− 21/3
≈ 1.351207191959658 and γ2 =

−21/3

2− 21/3
≈ −1.702414383919315.

Given constants γ1 and γ2, the fourth-order splitting method in [23, 50] has seven stages,
compared to the three stages required for Strang splitting.

Step 1 (x−direction). Solve equation (2.20a) over a time step γ1∆t/2.
Step 2 (y−direction). Solve equation (2.20b) over a time step γ1∆t.
Step 3 (x−direction). Solve equation (2.20a) over a time step (γ1 + γ2)∆t/2.
Step 4 (y−direction). Solve equation (2.20b) over a time step γ2∆t.
Step 5 (x−direction). Solve equation (2.20a) over a time step (γ1 + γ2)∆t/2.
Step 6 (y−direction). Solve equation (2.20b) over a time step γ1∆t.
Step 7 (x−direction). Solve equation (2.20a) over a time step γ1∆t/2.

Note that steps 2 and 6 require steps larger than ∆t, and steps 3, 4, and 5 require steps
backwards in time.

Appendix C. Butcher Tables for IMEX RK Methods

All IMEX RK schemes included in this appendix are taken from [2]. By construction,
each IMEX RK scheme has slightly different properties that are better suited from different
problems. Some schemes might have better damping properties and stability regions, be
stiffly accurate, etc. In this appendix we opt to pad the implicit Butcher tables with zeros.

Table 23: *

IMEX(1,1,1) – Implicit Table
0 0 0
1 0 1

0 1

Table 24: *

IMEX(1,1,1) – Explicit Table
0 0 0
1 1 0

1 0

38

Table 25: *
IMEX(1,2,2) – Implicit Table

0 0 0
1/2 0 1/2

0 1

Table 26: *
IMEX(1,2,2) – Explicit Table

0 0 0
1/2 1/2 0

0 1

Table 27: *
IMEX(2,2,2) – Implicit Table

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

Table 28: *
IMEX(2,2,2) – Explicit Table

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

Table 29: *
Let γ = 1−

√
2/2 and δ = 1− 1/(2γ).

Table 30: *
IMEX(2,3,3) – Implicit Table

0 0 0 0
γ 0 γ 0

1− γ 0 1− 2γ γ
0 1/2 1/2

Table 31: *
IMEX(2,3,3) – Explicit Table

0 0 0 0
γ γ 0 0

1− γ γ − 1 2(1− γ) 0
0 1/2 1/2

Table 32: *
Let γ = (3 +

√
3)/6.

Table 33: *
IMEX(2,3,2) – Implicit Table

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

Table 34: *
IMEX(2,3,2) – Explicit Table

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

0 1− γ γ

Table 35: *
Let γ = (2−

√
2)/2 and δ = −2

√
2/3.

39

Table 36: *
IMEX(3,4,3) – Implicit Table

0 0 0 0 0
γ 0 γ 0 0

0.717933 0 0.282067 γ 0
1 0 1.208497 -0.644363 γ

0 1.208497 -0.644363 γ

Table 37: *
IMEX(3,4,3) – Explicit Table

0 0 0 0 0
γ γ 0 0 0

0.717933 0.321279 0.396654 0 0
1 -0.105858 0.552929 0.552929 0

0 1.208497 -0.644363 γ

Table 38: *
Let γ = 0.435867.

Table 39: *
IMEX(4,4,3) – Implicit Table
0 0 0 0 0 0

1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 -1/2 1/2 1/2 0
1 0 3/2 -3/2 1/2 1/2

0 3/2 -3/2 1/2 1/2

Table 40: *
IMEX(4,4,3) – Explicit Table

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 -5/6 1/2 0 0
1 1/4 7/4 3/4 -7/4 0

1/4 7/4 3/4 -7/4 0

40

Appendix D. An illustrative example with IMEX(2,2,2)

In this section, we couple the EL-RK-FV algorithm with IMEX(2,2,2), that is, two-stage
implicit, two-stage explicit, and of combined order two. This scheme is L-stable and uses a
second order DIRK method. The Butcher tables are given in Appendix C. Figure 27 shows
the lone sub-space-time region 1Ωj.

Figure 27: The space-time region 1Ωj for IMEX(2,2,2).

Step 0a. Compute the approximate characteristic speeds using equation (2.2). After defin-
ing the space-time region Ωj, compute the possibly nonuniform traceback cell averages ũj(t

n)
using Algorithm 1.
Step 0b. Use the possibly nonuniform traceback cell averages ũj(t

n) in Algorithm 2 to

compute K̂1 = F(Un; tn)).
Step 1a. Using the same approximate characteristic speeds from step 1a, define the sub-
space-time region 1Ωj as seen in Figure 27. Compute the possibly nonuniform traceback cell
averages 1ũ

n
j using Algorithm 1.

Step 1b. Use the possibly nonuniform traceback cell averages 1ũ
n
j in Algorithm 2 to com-

pute 1K̂1 = F(1U
n; tn)).

Step 1c. Recalling equation (3.4), solve equation (3.10) by solving the linear systemÅ
I− γε∆t

∆x2
D4

ã
1

#»

U (1) = 1
#»

U n + γ∆t1
#»

K̂1 + γ∆t #»g (x, t(1)), (5.1)

where #»g j(x, t
(1)) =

∫
Ij
g(x, t(1))dx can be computed with a Gaussian quadrature.

Step 1d. Compute the uniform cell averages u
(1)
j = 1U

(1)
j /∆x.

Step 1e. Compute the uniform cell averages u
(1)
xx,j using equation (3.4),

#»
u (1)
xx =

1

∆x2
D4

#»
u (1). (5.2)

Step 1f. Compute the possibly nonuniform traceback cell averages ũ
(1)
j and ũ

(1)
xx,j (we are

now in the space-time region Ωj) using Algorithm 1.
Step 1g. Compute K1 = G(U (1); t(1)),

K1 = ε∆x̃
(1)
j ũ

(1)
xx,j +

∫
Ĩj(t(1))

g(x, t(1))dx, (5.3)

41

where the definite integral involving g(x, t) can be evaluated using a Gaussian quadrature.

Step 1h. Use the possibly nonuniform traceback cell averages ũ
(1)
j in Algorithm 2 to compute

K̂2 = F(U (1); t(1)).
Step 2. Recalling equation (3.4), solve equation (3.7a) by solving the linear systemÅ

I− γε∆t

∆x2
D4

ã
#»

U n+1 =
#»

U n + (1− γ)∆t
#»

K̂1 + ∆t(δ
#»

K̂1 + (1− δ)
#»

K̂2) + γ∆t #»g (x, tn+1), (5.4)

where #»g j(x, t
n+1) =

∫
Ij
g(x, tn+1)dx can be computed with a Gaussian quadrature.

References

[1] E. Abreu, W. Lambert, J. Perez, and A. Santo, A new finite volume approach for trans-
port models and related applications with balancing source terms, Math. and Comput.
in Simul., 137 (2017), pp. 2-28.

[2] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations, App. Numer. Math., 25:2-3 (1997), pp.
151-167.

[3] T. Arbogast, C.-S. Huang, and X. Zhao, Finite volume WENO schemes for nonlinear
parabolic problems with degenerate diffusion on non-uniform meshes, J. Comput. Phys.,
399 (2019), pp. 108921.

[4] T. Arbogast, C.-S. Huang, X. Zhao, and D.N. King, A third order, implicit, finite volume,
adaptive Runge–Kutta WENO scheme for advection–diffusion equations, Comp. Meth.
in Appl. Mech. and Eng., 368 (2020), pp. 113155.

[5] D.S. Balsara, S. Garain, and C.-W. Shu, An efficient class of WENO schemes with
adaptive order, J. Comput. Phys., 326 (2016), pp. 780-804.

[6] D.S. Balsara, S. Garain, V. Florinski, and W. Boscheri, An efficient class of WENO
schemes with adaptive order for unstructured meshes, J. Comput. Phys., 404 (2020), pp.
109062.

[7] F. Benkhaldoun, S. Sari, and M. Seaid, A family of finite volume Eulerian-Lagrangian
methods for two-dimensional conservation laws, J. Comput. and App. Math., 285 (2015),
pp. 181-205.

[8] W. Boscheri and M. Dumbser, A direct Arbitrary-Lagrangian–Eulerian ADER-WENO
finite volume scheme on unstructured tetrahedral meshes for conservative and non-
conservative hyperbolic systems in 3D, J. Comput. Phys., 275 (2014), pp. 484-523.

[9] W. Boscheri and M. Dumbser, Arbitrary-Lagrangian-Eulerian One-Step WENO Finite
Volume Schemes on Unstructured Triangular Meshes, Comm. in Comput. Phys., 14:5
(2013), pp. 1174-1206.

42

[10] W. Boscheri, R. Loubere, and M. Dumbser, Direct Arbitrary-Lagrangian–Eulerian
ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws,
J. Comput. Phys., 292 (2015), pp. 56-87.

[11] W. Boscheri, High Order Direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume
Schemes for Hyperbolic Systems on Unstructured Meshes, Arch. Comput. Meth. Eng.,
24 (2017), pp. 751-801.

[12] X. Cai, W. Guo, and J.-M. Qiu, A high order conservative semi-Lagrangian discontin-
uous Galerkin method for two-dimensional transport simulations, J. Sci. Comput., 73
(2017) pp. 514-542.

[13] J.A. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-Based
models, SIAM J. Sci. Comput., 29 (2007), pp. 1179-1206.

[14] M.A. Celia, T.F. Russell, I. Herrera, and R.E. Ewing, An Eulerian-Lagrangian localized
adjoint method for the advection-diffusion equation, Adv. Water Resour., 13 (1990), pp.
187-206.

[15] J. Chen, X. Cai, J. Qiu, and J.-M. Qiu, Adaptive Order WENO Reconstructions for the
Semi-Lagrangian Finite Difference Scheme for Advection Problem, Comm. in Comput.
Phys., 30:1 (2021), pp. 67-96.

[16] J. Chen, J. Nakao, and J.-M. Qiu, High-order Eulerian-Lagrangian Runge-Kutta finite
volume (EL-RK-FV) methods for nonlinear hyperbolic problems with shocks, In prepa-
ration.

[17] B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, Advanced Numerical Approxi-
mation of Nonlinear Hyperbolic Equations, A. Quarteroni (ed.), Lecture Notes in Math
1697, Springer, New York, 1997.

[18] S. Conde, S. Gottlieb, Z.J. Grant, and J.N. Shadid, Implicit and Implicit-Explicit Strong
Stability Preserving Runge-Kutta Methods with High Linear Order, J. Sci. Comput., 73
(2017), pp. 667-690.

[19] N. Crouseilles, M. Mehrenberger, and E. Sonnendrucker, Conservative semi-Lagrangian
schemes for Vlasov equations, J. Comput. Phys., 229:6 (2010), pp. 1927-1953.

[20] M.-C. Ding, X. Cai, W. Guo, and J.-M. Qiu, A semi-Lagrangian discontinuous Galerkin
(DG)-local DG method for solving convection-diffusion equations, J. Comput. Phys., 409
(2020), pp. 109295.

[21] J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran, Arbitrary Lagrangian-
Eulerian Methods, Chapter 14 in The Encyclopedia of Computational Mechanics, Volume
1, Wiley (2004), pp. 413-437.

[22] F. Filbet, E. Sonnendrucker, an P. Bertrand, Conservative numerical schemes for the
Vlasov equation, J. Comput. Phys., 172:1 (2001), pp. 166-187.

43

[23] E. Forest and R.D. Ruth, Fourth-order symplectic integration, Phys. D Nonlinear Phe-
nom., 43 (1990), pp. 105-117.

[24] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time
discretization methods, SIAM Review, 43:1 (2001), pp. 89-112.

[25] I. Higueras, N. Happenhofer, O. Koch, and F. Kupka, Optimized strong stability pre-
serving IMEX Runge-Kutta methods, J. Comput. and Appl. Math., 272 (2014), pp.
116-140.

[26] C. Hirt, A. Amsden, and J. Cook, An arbitrary lagrangian eulerian computing method
for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227253.

[27] C.-S. Huang, T. Arbogast, and J. Qiu, An Eulerian-Lagrangian WENO finite volume
scheme for advection problems, J. Comput. Phys., 231 (2012), pp. 4028-4052.

[28] C.-S. Huang and T. Arbogast, An Eulerian-Lagrangian Weighted Essentially Nonoscil-
latory scheme for Nonlinear Conservation Laws, Num. Meth. for Part. Diff. Eq., 33:3
(2017), pp. 651-680.

[29] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrucker, and O. Couland, Instability of the
time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system, J.
Comput. Phys., 185:2 (2003), pp. 512-531.

[30] R.J. Leveque, High-resolution conservative algorithms for advection in incompressible
flow, SIAM J. Numer. Anal., 33:2 (1996), pp. 627–665.

[31] D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of
conservation laws, ESAIM: Math. Model. and Numer. Anal., 33:3 (1999), pp. 547-571.

[32] L. Li, J. Qiu, and G. Russo, A High-Order Semi-Lagrangian Finite Difference Method
for Nonlinear Vlasov and BGK Models. Comm. on Applied Math. and Comput., (2022),
pp. 1-29.

[33] R. Li, T. Tang, and P.W. Zhang, Moving mesh methods in multiple dimensions based
on harmonic maps, J. Comput. Phys., 170 (2001), pp. 562-588.

[34] S. Li and L. Petzold, Moving mesh methods with upwinding schemes for time-dependent
PDEs, J. Comput. Phys., 131 (1997), pp. 368-377.

[35] D. Luo, W. Huang, and J. Qiu, A quasi-Lagrangian moving mesh discontinuous Galerkin
method for hyperbolic conservation laws, J. Comput. Phys., 396 (2019), pp. 544-578.

[36] J.S. Peery and D.E. Carroll, Multi-material ale methods in unstructured grids, Comp.
Meth. in App. Mech. and Eng., 187 (2000), pp. 591-619.

[37] J.-M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method
for the Vlasov equation, J. Comput. Phys., 229:4 (2010), pp. 1130-1149.

44

[38] J.-M. Qiu and C.-W. Shu, Conservative high order semi-Lagrangian finite difference
WENO methods for advection in incompressible flow, J. Comput. Phys., 230 (2011), pp.
863-889.

[39] J.-M. Qiu and C.-W. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin
formulation: Theoretical analysis and application to the Vlasov-Poisson system, J. Com-
put. Phys., 230 (2011), pp. 8386-8409.

[40] J.A. Rossmanith and D.C. Seal, A positivity-preserving high-order semi-Lagrangian
discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230
(2011), pp. 6203-6232.

[41] T.F. Russell and M.A. Celia, An overview of research on Eulerian-Lagrangian localized
adjoint methods (ELLAM), Adv. Water Resour. 25 (2002), pp. 1215-1231.

[42] M. Seydaoglu, U. Erdogan, and T. Ozis, Numerical solution of Burgers’ equation with
high order splitting methods, J. Comput. and Appl. Math., 291 (2016), pp. 410-421.

[43] C.-W. Shu, High Order Weighted Essentially Nonoscillatory Schemes for Convection
Dominated Problems, SIAM Review, 51:1 (2009), pp. 82-126.

[44] J.M. Stockie, J.A. Mackenzie, and R.D. Russell, A moving mesh method for one-
dimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 22 (2001), pp. 1791-
1813.

[45] H. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws, SIAM J. Numer. Anal., 41:2 (2003), pp. 487-515.

[46] H. Wang, S. Wang, Q. Zhang, and C.-W. Shu, Local discontinuous Galerkin methods
with implicit-explicit time-marching for multi-dimensional convection-diffusion problems,
ESAIM: Math. Model. and Numer. Anal., 50:4 (2016), pp. 1083-1105.

[47] T. Xiong, G. Russo, and J.-M. Qiu, Conservative Multi-dimensional Semi-Lagrangian
Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simula-
tions, J. Sci. Comp., 79 (2019), pp. 1241-1270.

[48] D. Xiu and G.E. Karniadakis, A semi-Lagrangian high-order method for Navier-Stokes
equations, J. Comput. Phys., 172 (2001) pp. 658-684.

[49] Y. Yang, J. Chen, and J.-M. Qiu, Stability analysis of the Eulerian-Lagrangian finite
volume method for nonlinear hyperbolic equations in one spatial dimension, In prepara-
tion.

[50] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150
(1990), pp. 262-268.

[51] M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math Comp., 46
(1986), pp. 119-133.

45

[52] J. Zhu and J. Qiu, A new third order finite volume weighted essentially non-oscillatory
scheme on tetrahedral meshes, J. Comput. Phys., 349 (2017), pp. 220-232.

[53] J. Zhu and J. Qiu, A New Type of Finite Volume WENO Schemes for Hyperbolic
Conservation Laws, J. Sci. Comput., 73 (2017), pp. 1338-1359.

[54] J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with increasingly
higher order of accuracy on triangular meshes, J. Comput. Phys., 392 (2019), pp. 19-33.

[55] J. Zhu and J. Qiu, New finite volume weighted essentially nonoscillatory schemes on
triangular meshes, SIAM J. Sci. Comput., 40:2 (2018), pp. A903-A928.

46

