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ARTICLE INFO ABSTRACT

Keywords: Forest structural diversity and community composition are key in regulating forest microclimates. When

Forest disturbance disturbance affects structural diversity or composition, forest microclimates may be altered due to changes in soil

]I&PARI' temperature, soil water content, and light availability. It is unclear however which structural or compositional
icroclimate

components, when changed or to what extent, result in microclimatic change. To address this question, we used
data from a large scale, manipulative stem-girdling experiment in northern, lower Michigan—the Forest Resil-
ience and Threshold Experiment (FORTE). FORTE follows a factorial design with multiple levels of disturbance
severity (0, 45, 65, 85%) based on targeted reductions in gross leaf area index via stem-girdling induced mor-
tality. These disturbance severity treatments are applied in two ways: either as top-down (largest trees are killed)
or bottom-up (small to medium trees killed) treatments. We examined how multiple components of structural
diversity and community composition changed as a product of disturbance severity and type, and then tested for
resulting effects on forest microclimates (light availability, soil temperature, and soil water), using a multivar-
iate, Random Forest framework. We found that measures of community composition (species richness, species
evenness, and Shannon-Wiener Diversity Index) and stand structure (basal area, standard deviation of DBH, tree
size diversity) declined more following disturbance than did measures of canopy cover, heterogeneity,
arrangement, or height. However, when changes in each variable from pre- to post-disturbance, measured as log
change, were employed in a multivariate, Random Forest regression framework, structural diversity measures of
heterogeneity (rugosity, top rugosity), cover (canopy cover), and arrangement (porosity) were the most influ-
ential variables, but with differences among bottom-up and top-down treatments We found that the death of
large trees from disturbance impacts soil temperature, water, and light environments more substantially and
uniformly across disturbance gradients than does the death of smaller trees. Our results have implications for
both statistical and process-based modeling of forest disturbance.

Structural change
Soil moisture
Soil temperature

Introduction

Over large extents-landscape to global scales—microclimates are
constrained by latitude and elevation (Geiger et al., 1995; Korner et al.,
1983) and by environmental heterogeneity within these physiographic
bounds. Abiotic and biotic factors that contribute to environmental
heterogeneity—variation in land cover, vegetation, topography, and
soils—affect microclimatic components such as light, temperature, and
soil moisture (Vanwalleghem and Meentemeyer, 2009). In forested
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ecosystems specifically, forest structure—including such structural
components as aboveground biomass, stand density, leaf area, canopy
complexity, canopy cover (J.W. Atkins et al., 2018; Ehbrecht et al.,
2021; Fahey et al., 2015; LaRue et al., 2019; Noss, 1990)—substantially
contributes to the environmental heterogeneity driving microclimate
regulation and variance (Atkins et al., 2015; Chen et al., 1999; Potter
et al., 2001; Zukswert et al., 2014). Functionally, connections between
forest structure and microclimate define habitat suitability (Varner and
Dearing, 2014), and determine patterns of carbon, water, and nutrient
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cycling (Band et al., 1991). While our baseline understanding of forest
structure and microclimate connections has advanced steadily over the
past few years (Frenne et al., 2021; Zellweger et al., 2019), our under-
standing of how forest disturbance alters these connections lags.

Different disturbance agents—e.g., ice storms, pathogens, insect
infestations— can affect different forest structural or compositional
components, resulting in divergent structural outcomes (Atkins et al.,
2020). For example, ice storms may erode the upper canopy (Fahey
et al., 2020), low intensity forest fires may primarily kill subcanopy
vegetation (Armour et al., 1984), and species-specific pathogens or in-
sects may increase the number and area of canopy gaps (McCarthy,
2001). It is however unclear which structural components, when altered
by disturbance, exert the strongest controls over subsequent microcli-
mate changes. To answer this question, it is necessary to link forest
structure changes in response to disturbance and then link that change
to concomitant changes in the magnitude and variance of relevant
micrometeorological attributes, including soil moisture, soil tempera-
ture, and the canopy light environment. Manipulative experiments offer
a tractable means to explore structural outcomes from disturbance and
their connections to forest microclimates as naturally occurring distur-
bances are random in space, time, and magnitude, and rarely occur in
opportune study locations with pre-existing data and infrastructure.

Here we focus on one such experimental manipulation, the Forest
Resilience and Threshold Experiment (FORTE). established in 2018 in
northern, lower Michigan (Atkins et al., 2021; Gough et al., 2021)
FoRTE uses stem-girdling to mimic phloem-disruption at four distur-
bance severity levels, 0, 45, 65, and 85% based on targeted reductions in
leaf area. Early findings from FoRTE, two years post-disturbance, show
more structurally complex areas of the forest exhibited a loss of resis-
tance in belowground functions (i.e., soil respiration) with increasing
levels of disturbance severity relative to less complex areas, while
above-ground functions in more complex forests were more resistant (i.
e., above-ground wood net primary productivity and maximum photo-
synthetic rates) relative to less complex forests (Gough et al., 2021;
Niedermaier et al. 2022). The strong correlation between
pre-disturbance forest structure and functional resistance suggests that
carbon (C) cycling responses are influenced by structural change, which
results in a cascade of biotic and abiotic (including microclimatic)
change. Additionally, time since disturbance is potentially an important
consideration. At shorter time scales, canopy cover and leaf area may
exert dominant controls, being the primary factors affected initially by
disturbance. As a forest recovers, canopy cover and leaf area may return
to pre-disturbance levels, but forest structure and arrangement could be
altered such that canopy layering, complexity, and arrangement may be
different from pre-disturbance values.

Using data pre- and post-disturbance data from FoRTE, we ask the
following questions:

Q1) Which structural and compositional components change the
most in response to phloem-disrupting disturbance two-years
post-disturbance after controlling for disturbance severity and
disturbance type?

Q2) Which structural and compositional components altered by
disturbance are most strongly correlated with the post-
disturbance magnitude and variance of abiotic microclimatic
processes—soil temperature, soil moisture, and canopy light
interception?

2. Methods
2.1. Field site and experimental description
FoRTE is a modeling and manipulative field experiment located at

the University of Michigan Biological Station (UMBS) in northern, lower
Michigan, USA (45.56 N, — 84.67 W) testing the effects of disturbance
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severity and disturbance type on temperate forest carbon cycling dy-
namics. At UMBS the annual air temperature is 5.5 °C and mean annual
precipitation is 817 mm (Gough et al., 2013). UMBS is comprised of
~100-year-old middle successional forests with the upper-canopy
dominated by bigtooth and trembling aspen (Populus grandidentata and
P. tremuloides, respectively) and paper birch (Betula papyrifera). These
early successional tree species established following widespread har-
vesting and fire in the region in the early twentieth century and are now
rapidly declining (Gough et al., 2013), giving way to later successional
red oak (Quercus rubra), eastern white pine (Pinus strobus), sugar maple
(Acer saccharum), red maple (Acer rubrum), and American beech (Fagus
grandifolia).

FoRTE employs a fully factorial experimental design with various
disturbance severity levels of 0, 45, 65, and 85%, respectively, (based on
targeted reductions in gross leaf area index via stem-girdling induced
tree mortality), each paired with either top-down or bottom-up distur-
bance treatments (where trees are girdled sequentially by either
increasing (i.e. bottom-up) or decreasing (i.e. top-down) diameter-at-
breast height (DBH) starting with the smallest (>8 cm DBH) or largest
tree, respectively, until targeted disturbance thresholds are achieved)
(Atkins et al., 2021; Gough et al., 2020; Grigri et al. 2020) (Fig. 1).

Each replicate is located within a unique landscape ecosystem,
collectively representative of secondary forests in the Great Lakes region
of North America and yet substantially varied from each other in plant
community composition, forest structure, and net primary productivity
(Gough et al., 2020; Hardiman et al., 2011) due to unique climate, soils,
biota, and landforms (Pearsall and others 1995) and shared disturbance
history (Scheuermann et al., 2018).

2.2. Defining structural and compositional diversity and change

To address Q1 we evaluated the change in components of structural
and compositional diversity defined by the hierarchy established by
Franklin (1988) and Noss (1990). We constrained the universe of vari-
ables considered based on a priori understanding of which structural and
compositional components are associated with observed microclimate
patterns and processes (Abd Latif and Blackburn, 2010; Heithecker and
Halpern, 2006; Ma et al., 2010; Parker et al., 2004) (See Table S1 for
detailed descriptions of all variables outlined below as well as refer-
enced literature). To evaluate change, we used the relative change for
each variable between 2018 (pre-disturbance) and 2020 (post--
disturbance) at the plot level (n = 30) calculated as follows:

Si— n (Slzms> o))

Siz020

Where Si is the log change for a given structural or compositional
index. Log change is a normalized, symmetric, and additive indicator of
relative change (Torngvist et al., 1985) which accounts for differences
among the units and starting values of structural and compositional
variables while also providing the direction of change—negative for a
decrease, positive for an increase of a given index.

2.3. Structural diversity

Our definition of structural diversity includes two elements. First,
stand structure, defined as the horizontal and vertical distribution of
stand components—specifically tree heights and diameters (Helms,
1998). We quantified stand structure using plot level estimates of the
standard deviation of diameter-at-breast-height (DBH) measurements
(6DBH), canopy tree Gini coefficient (a measure of size inequality in tree
diameters), basal area, and tree size diversity index (Hq)—where the
Shannon-Wiener Diversity equation is used to quantify the proportion of
basal area distributed among 5 cm DBH size classes (Buongiorno et al.,
1994). Each of these variables were calculated for live trees only. Sec-
ond, we examined canopy structural complexity metrics derived from
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Fig. 1. (a) Map showing the distribution of plots in relation to landform types (*)—colors indicate assigned severity levels. Plot replicates are grouped (A, B, C, D);
(b) Subplot diagram showing position of nested subplots for sampling and arrangement of subplots within the plot (orange).

terrestrial, portable canopy lidar data (Hardiman et al., 2011; Parker
and Russ, 2004) using version 2.0.2 of the R package forestr (J.W. Atkins
et al., 2018). These metrics include: 1) canopy cover (CC), the propor-
tion of canopy planar area covered by leaf area (Onaindia et al., 2004);
2) canopy rugosity (Rc), the horizontal and vertical variance of canopy
elements (Gough et al., 2020); 3) top rugosity (Rt) (Parker et al., 2004);
4) foliar height diversity (FHD) (MacArthur and MacArthur, 1961) a
measure of canopy layering; 5) the effective number of layers (ENL)
(Ehbrecht et al., 2017), another measure of canopy layering; 6) canopy
porosity (P¢), the proportion occupied to unoccupied canopy space; 7)
clumping index (Ma et al., 2018), a measure of canopy arrangement; 8)
mean canopy height (H); 9) maximum canopy height (Hyayx); 10) mean
outer canopy height (MOCH); 11) lidar determined distributional
heights, common across lidar instruments, that describe the percentile
height of canopy density (p10, p25, p50, p75, p90). Leaf area variables
were explicitly excluded from our analysis as the disturbance levels in
FoRTE are based on targeted reductions in leaf area (See Appendix
Table A1 for full descriptions).

2.4. Compositional diversity

We estimated community composition using measures of biodiver-
sity, specifically defined in terms of the relative abundance and distri-
bution of species within the forest (Simberloff, 1999)—as opposed to
genetic or ecosystem biodiversity. We quantified biodiversity as species
richness (S), species evenness (E), and Shannon-Wiener Index (H).

2.5. Forest microclimatology

We considered micrometeorological variables such as soil tempera-
ture (Tsoi;; °C), soil water content (VWC;%), the standard deviation of
each (0Tsoj, c6VWC), and as a proxy for the canopy light environment,
canopy light absorption (faPAR, umol m ~ 25~ 1. Insitu Tsoit and VWC
were concurrently measured twice a month during the growing season
at five locations in each subplot in 2018 and 2020. Tsej was measured to
7 cm depth with a LICOR-6400 thermocouple probe (LI-COR Inc,
Lincoln, NE, USA) and VWC was measured to 20 cm depth with a CS620
soil moisture probe (Campbell Scientific Inc., Logan, UT, USA). To
minimize confounding diurnal effects, Tsojj and VWC measurements
were not taken within 48 h of a rainfall event. faPAR was measured once
for each subplot during the peak of the growing season (July) for 2018,
and 2020, using a handheld ceptometer (Decagon Devices; Pullman,
WA). Approximately 40 distributed, below-canopy PAR readings were
taken during clear sky conditions within each sampled subplot. These
values were then related to coincident open-sky, above-canopy meas-
urements—faPAR is calculated as the ratio of below- to above-canopy
PAR and approximates the amount of light absorbed by the forest can-
opy. When open-sky measurements were not available, tower-based
PAR readings from the nearby (within 2 km of each plot) UMBS Amer-
iFlux tower (UMB) were used. Tower PAR measurements were corrected
using a calibration curve.
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2.6. Structural connections to forest microclimatology via random forest
regression

To answer Q2, we used a multivariate, Random Forest regression
modeling approach. We specifically sought to test the impact of changes
in stand, structural, and compositional diversity on the 2020 (post-
disturbance) growing season average of each micrometeorological var-
iable (Tsoj, VWC, 6Tsoi, 6VWC, faPAR). Random forest regression
models were created in R 4.1 (R Core Team, 2022) to evaluate re-
lationships between structural and micrometeorological change using
the randomForest (Liaw and Wiener, 2002) and ranger (Wright et al.,
2022) packages in R, augmented with validation functions from the
rfUtilities package (Evans and Cushman, 2009). While Random Forest is
generally insensitive to multicollinearity, model performance is often
improved by removing colinear and multicollinear variables (Murphy
et al. 2010). We first assessed collinearity using the spatialEco package in
R (Evans et al., 2022), testing for pairwise collinear correlations among
all candidate variables, removing strongly colinear variables from
further analysis, including basal area and Gini Index. We then tested all
remaining variables for multicollinearity using the multi.collinear()
function in rfUtilities that uses QR decomposition and premutation (n =
1000) to test for the presence of multicollinearity. No variables were
found to be multicollinear.

Next, for model selection, we split our data into bottom-up and top-
down treatments and created RF models for each micrometeorological
variable. Final models were developed using the R package ranger
(Wright et al., 2022) with 501 trees and importance scaling based on
permutation (Altmann et al., 2010) which corrects for feature bias
through repeated permutation of the outcome vector (n = 1000) to es-
timate the distribution of measured importance, additionally creating a
significance statistic, the permutation importance value or p-value.
Then, for each model, we removed all variables with negative impor-
tance values and p-values greater than 0.1. For validation purposes, we
used a Jackknife resampling approach whereby a Jackknife estimator is
built by aggregating parameter estimates through leave-one-out
resampling (i.e., n = n —1). For each model we report model R? (ie.,
the amount of explained variation, based on out-of-bag or OOB data and
reported as “variance explained” in text below), prediction root mean
square error (RMSE), and out-of-bag (OOB) prediction error (i.e., Mean
Square Error, MSE). We also report statistical parameters from the
Jackknife resampling validation including median Jackknife R%, RMSE,
and prediction error.
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3. Results
3.1. Structural component change from disturbance (Q1)

While we observed changes in structural diversity following distur-
bance within treatment and disturbance severity combinations, broad,
generalizable patterns of structural change were limited to changes in
stand structure and community composition (Fig. 2; Table A2). Basal
area (BA), Shannon-Weiner Index (H), Gini coefficient, and variance in
tree diameter-at-breast-height (¢DBH) each of which decreased with
higher levels of disturbance severity in both top-down and bottom-up
treatments. Measures of community composition declined more pre-
cipitously (as much as log change values of —4) in bottom-up treat-
ments, but overall showed the most change as compared to other
variables (Fig. 2). Measures of canopy height showed mixed results
between treatments and among disturbance severities. Percentile
heights (i.e., p25, p50, p75) showed both increases and decreases among
expermential combinations, though noticables increases were observed
in the 45% disturbance severity plots regardless of treatment. MOCH
generally increased for all disturbance severity and treatment combi-
nations. Canopy complexity also exhibited mixed effects, with canopy
rugosity (R¢) generally increasing at higher disturbance severity levels
for the bottom-up treatment while the effective number of layers (ENL)
increases for all disturbance severity and treatment combinations
(Fig. 2).

Correlation analysis showed that community composition and stand
structural variables were more strongly correlated among top-down
treatments than in bottom-up treatments (Fig. 3); while measures of
canopy height, arrangement and heterogeneity were broadly more
negatively correlated in the bottom-up treatment (Fig. 3).

3.2. Connecting structure to microclimatology (Q2)

3.2.1. Soil temperature

Based on random forest regression models, structural components,
rather than compositional explained greater variation in Tso; patterns in
both the bottom-up and top-down treatments. In the bottom-up treat-
ment, Tgej was described by a combined model of (in order of variable
importance; Fig. A3) changes in canopy cover (C/'E') and structural
complexity (}/22) explained 45% of the observed variance (i.e., model R
on OOB error of 0.28). Soil temperature increased with increases in
canopy rugosity and reductions in canopy cover (Fig. A5). In the top-
down treatment, patterns of Tsj were best described by a model

BOTTOM-UP TOP-DOWN
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Fig. 2. Log change by structural diversity category (see Fig. 2; Table Al for further information) by treatment. Colors indicate the targeted disturbance severity.
Negative values indicate reductions from pre-disturbance (2018) to post-disturbance (2020).
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including changes in canopy cover and structural complexity—specifi-

cally top rugosity (Rr, C/'E'), explaining 45% of the observed variance
(Table 2; Fig. A7). Increases in Tgoj were correlated with structural
complexity, though this time with increases in Rt which describes the
complexity of the outer canopy surface and decreases in FHD which
describes internal forest layering, as well as correlated again with re-
ductions in canopy cover (Fig. A8).

3.2.2. Volumetric water content

Mean VWC increased at higher disturbance severities in bottom-up
treatments, but for top-down treatments, only the variance increased
at higher disturbance severities (Fig. 4). . We observed that 6VWC pat-
terns in bottom-up treatments were well fit with a model including pa-
rameters structural complexity (1/{;) and canopy height (p/7\5),
explaining 23% of the variance (Fig. A10). Soil water variance showed a
parabolic relationship with canopy height and structural complexity
(Fig. A11). VWC regimes in top-down treatments were best described by
a model including on structural diversity, specifically only top rugosity
(Rp), explaining 12% of the observed variance (Fig. A9) though a higher
OOB error rate (1.56) than any other significant model However, for

Table 2

oVWC in top-down treatments, while the model included only measures
of stand structure, in addition to top rugosity (E‘); the model addi-
tionally included porosity (Pc)—a measure of the proportion of the
canopy occupied by vegetation—explaining 26% of the observed vari-
ance. VWC peaked at moderate values of each structural variable but
declined at higher values (Fig. A13).

3.2.3. Light environment

We found that for the canopy light environment, as inferred from
estimates of the fraction of absorbed photosynthetically active radiation
(faPAR), a model including only changes in canopy cover (C/‘E‘) in the
top-down treatment to be significant, explaining 23% of the variance.
No relationship was found for bottom-up treatments. Across both
treatments, faPAR decreases with increasing disturbance severity
(Fig. 4).

4. Discussion

We show that some, but not all, forest structural and compositional
diversity components changed from their pre-disturbance values two

Model regression table with micrometeorological variable, treatment (bottom-up, top-down), model variables from random forest model selection process including
model Rz, root mean square error (RMSE), and out-of-bag (OOB) prediction error or mean square error (MSE); as well as Jackknife resampling statistics—with the
exception of models that only retained on variable, thus not allowing for resampling analysis, indicated by an asterisk (*).

Model Results Model Results Jackknife Resampling
Variable Treatment Model Variables Model R? RMSE OOB Prediction error (MSE) R? RMSE  Prediction error (MSE)
Soil Temp. (Tsi, °C) Bottom-Up /C\C., I/QE 0.45 0.53 0.28 0.39 0.57 0.33
Soil Temp. (Tsoi, °C) Top-Down ¢, Ry, FHD 0.45 072  0.52 042 076  0.56
6Soil Temp. (Tsoi, °C) Bottom-Up /C\C., I/QE 0.27 0.66 0.43 0.23 0.68 0.46
6Soil Temp. (Tsoi, °C) Top-Down — - - - - - -
Volumetric Water Content (VWC,%) Bottom-Up - - - - - - -
Volumetric Water Content (VWGC,%)* Top-Down Rr 0.12 1.56 2.19 - - -
6 Volumetric Water Content (VWC,%) Bottom-Up ﬁ; p/7‘5 0.23 0.54 0.29 0.22 0.56 0.31
o Volumetric Water Content (VWC,%) Top-Down fz; ﬁz 0.26 0.53 0.28 0.19 0.55 0.31
faPAR (umolm ~ 25~ 1) Bottom-Up - - - - - - -
faPAR (umolm ~ 25~ 1) Top-Down (¢ 0.23 0.10 0.009 - - -




J.W. Atkins et al.

21

dn-wopog

‘
>
o

o
|

Growing Season VWC (%)

Growing Season Tsg (° C)

s @
..
o
umoQg-doy
s @&
o

5
o
.
.
oo

B2

Agricultural and Forest Meteorology 339 (2023) 109566

? -
i 09 ? o
IR < :
bl 08
o L4 o
2 . 2
l___‘ H] o 3
I c (=
g ° 08 d
{ gos
0
JE .
=Y = X
% 0o v % :. {
" S - :
3 E “ o8 -
E o WY g
v o »
§’ g
.
. 06 . 5
°

a4
3

0 45 85 85
Disturbance Severity (% Targeted Leaf Area Reduction)

0 45
Disturbance Severity (% Targeted Leaf Area Reduction)

- 85 0 45 65 85
Disturbance Severity (% Targeted Leaf Area Reduction)
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disturbance) by disturbance severity (0% black, 45% green, 65% blue, 85% orange), and treatment (bottom-up, top-down).

years after the establishment of a manipulative, stem-girdling experi-
ment. We found by connecting the amount of structural and composi-
tional change to post-disturbance patterns of soil temperature, soil
water, and light, we could isolate which structural and compositional
components were most influential in controlling specific forest micro-
climate attributes—however based on our analysis only structural di-
versity measures of height, arrangement, cover, and heterogeneity were
influential. We found that almost ubiquitously, top-down disturbance
treatments—where the largest trees were killed (Fig. 2)—affected forest
microclimates, though bottom-up disturbance treatments—where only
the smallest trees were killed—had mixed effects, isolated generally to
only changes in the variance of soil temperature and water regimes.
Specifically, we found that structural changes resulted in effects on soil
temperature regimes in disturbed plots as evidenced by model inclusion
of structural diversity components describing structural complexity and
canopy cover. We found that patterns of soil temperature were well
described in both top-down and bottom-up treatments, however for
variance in soil temperature, we found observable patterns only for
bottom-up treatments. The magnitude of soil water availability was
notably affected only in top-down treatments where the largest trees
were killed, while no observable relationships among candidate vari-
ables were found for bottom-up treatments. We observed that the vari-
ance of soil water availability in both top-down and bottom-up
treatments could be described using models with structural diversity
components. We found only canopy cover could describe the canopy
light environment, but only in top-down treatments.

We observed that measures of community composition and stand
structure changed more with increasing disturbance severity. Commu-
nity composition measures such as species richness, evenness, and di-
versity indices (Shannon-Weiner) decreased more noticeably in the
bottom-up treatments, while stand structural measures decreased in
both treatments (with some notable decreases at the 85% severity level
in top-down treatments: Fig. 3). Removal of the smallest trees in the
forest (i.e., bottom-up treatments) reduces both the number of species
and overall diversity rather notably as these smaller trees are typically
late and mid successional species (e.g., pine, oak, maple) which tend to
be more numerous and diverse. The top-down treatment—removing the
largest trees—primarily targets early successional species (e.g., aspen,
birch), thus not affecting community composition as dramatically
(Gough et al. 2008; Hardiman et al., 2011). Stand structural measures
decreased with increasing disturbance severity across treatment as ex-
pected. Given previous work, it is reasonable to assume that a stronger
effect on complexity measures as a function of disturbance severity
would have been observed—with greater disturbance severity more
strongly affecting complexity (Stuart-Haéntjens et al., 2015)— time
since disturbance may be a key consideration here. The experimental
design of FORTE allows observation of structural diversity change as the

impacts of disturbance unfold. Unlike disturbance agents such as wind
or ice storms which create pulsed, one-time disturbance events where
resulting structural change occurs during the disturbance, stem-girdling
results in mortality over a protracted timeframe (Edwards and Ros-
s-Todd, 1979). Often, girdled trees will continue to leaf-out for several
more years following girdling, though overall leaf area will diminish
steadily (Gough et al., 2013). It is possible that the lack of evidence
supporting microclimatic effects due to changes in community compo-
sition and stand structure in our analysis could be attributed to a lag
effect—i.e., it may simply take longer than two years for these changes
to affect microclimates, while other structural diversity metrics are
capable of capturing changing dynamics more rapidly. The unique
perspective offered by FORTE, with pre-disturbance plus annual mea-
sures of structural change following, helps to illustrate the mechanisms
underlying functional outcomes from disturbance.

We show that changes in structural diversity following disturbance
well describe observed patterns of some, but not all forest microclimatic
components (i.e., soil temperature, soil water content, and light ab-
sorption). No measures of community composition or stand structure
were included as selected variables, despite those categories exhibiting
greater overall change from pre- to post-disturbance state. Rather,
measures of canopy heterogeneity, cover, arrangement, and height were
found to be more important in determining and describing patterns of
microclimate change. Changes in canopy structural complexity as either
R¢ or Ry and canopy cover were identified most often as the most
important parameters, with each appearing in three out of ten possible
relationships. Of note, while four out of the six observed relationships
(Table 2) were best described by multivariate models, in two instan-
ces—VWC and faPAR in top-down treatments—only changes in either
top rugosity or canopy cover were retained in the model. Additionally
canopy cover was included in three of the seven observed relationships
and top rugosity in five of the seven. Previous studies (Atkins et al.,
2020) of low to moderate severity disturbance effects on forest structure
have not indicated canopy cover as a component notably affected by
disturbances; however, many post-disturbance structural observations
occur at times after the forest has begun to recover. Leaf area and canopy
cover (CC) likely return to pre-disturbance levels faster than other
structural diversity measures. Measures of canopy layering, complexity,
and related factors may either increase, decrease, or return to
pre-disturbance levels, but do so on longer time scales. High severity
disturbances with high mortality often decimate canopy cover and leaf
area, resulting in successional reversion or fundamental state change-
s—e.g., forests to grasslands or deserts. In these cases, microclimate
effects are substantial—in time, space, and magnitude (Hardwick et al.,
2015). Canopy cover is thus a key explanatory variable in this context.
Canopy cover can be remotely sensed by many different types of sensors,
both passive and active (Korhonen et al., 2011; Atkins et al., 2020),
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across scales from local (e.g., hemispherical cameras, canopy analyzers),
to regional (drone- or airplane-based sensors), to global (spaceborne
instruments such as Landsat, GEDI, ICESat-2). Canopy cover can also be
estimated using traditional forestry methods such as a densiometer.
While we do show that the inclusion of measures such as R¢, Ry increase
our ability to describe process outcomes, these structural parameters can
only be inferred from lidar or structure-from-motion data, potentially
limiting their application currently. The ability to map change using
canopy cover alone is non-trivial and useful in situations where lidar
data are unavailable, thus limiting the derivation of such structural
parameters. However, for areas where lidar data are available, we will
be able to moderately to substantially increase our ability to monitor and
attribute microclimatic change. While this work focuses on identifying
the relationship between structural change and microclimate processes,
our validation analysis shows that predictions informed by data on
structural are possible, however more data, monitoring, and analyses
are needed.

The assessment of structural mechanisms driving changes to the
forests microclimates has profound implication for understanding and
modeling the earth system. For example, understanding how distur-
bances will impact ecosystem processes such as soil respiration (Rs)—the
largest efflux of carbon from terrestrial ecosystems (Bond-Lamberty
etal.,, 2018; Lei et al., 2021). Rg is among the most important ecosystem
functions directly influenced by soil temperature and moisture. There-
fore, assessing the aboveground structural mechanisms driving changes
to the soil microclimate can aid in better understanding how distur-
bances will impact this globally important flux. An assessment of R in
FoRTE showed that significant declines with increasing disturbance
severity were driven by continued suppression of carbohydrate supply to
the roots, but there was no difference between top-down and bottom-up
treatments in the first two years (Mathes et al. in review). However, as
changes to canopy structural metrics—particularly canopy cover-
—become more pronounced, differences in Ry between disturbance
types may emerge (Mathes et al. in review). For example, as canopy gaps
in the top-down disturbance continue to grow, rising soil temperatures
could increase rate of heterotrophic contributions to respiration, sug-
gesting that the soil microclimate, mediated by canopy structural
changes, will become an important driver of R recovery.

Importantly though, we only investigated microclimate during the
growing season. Basal area could be a strong predictor of microclimate
variation at annual time steps because canopy cover is meaningless in
the winter for broadleaved trees (Latimer and Zuckerberg, 2017). Chen
et al. (1999) summarized several forest structural components that in-
fluence microclimatic conditions, with a particular emphasis on the ef-
fects of fragmentation. For example, summertime temperatures
generally decrease away from forest edges (albeit with an increase in
humidity), although these effects have been difficult to predict (Saun-
ders et al., 1998). Similarly, forests with less canopy cover tend to
experience greater variability with higher maximum temperatures and
lower minimum temperatures (Chen et al., 1999; Clinton, 2003) with
greater amplitudes near the center of canopy gaps (Ritter et al., 2005).
Ecologically mediated effects of forest structure and edges on microcli-
mate are of growing interest due to increased rates of forest fragmen-
tation associated with worldwide increases in deforestation (Wade et al.,
2003). These efforts must also be informed by measurements and ana-
lyses conducted during non-growing season and transitional periods, in
both higher latitudes where snowfall and snowpack play a key role in
determining microclimates (Broxton et al., 2021) and lower latitudes
where snowfall plays little to no role.

4.1. Community composition and the role of biodiversity

Species diversity is often positively correlated with both the rate and
variability of many ecosystem functions (Hooper et al., 2005), and
therefore functional stability (Balvanera et al., 2006; May 1974; Peralta
et al., 2014). However, in regulating forest microclimates following
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disturbance, we find little evidence for the influence of community
variables. Much of our understanding of this relationship comes from
studies of models (Ives and Carpenter, 2007), mesocosms (Downing
et al.,, 2014), and grasslands (Stuart-Haentjens et al., 2018) with
comparatively less consideration given to forested ecosystems (Balva-
nera et al., 2006; Gough et al., 2020; Musavi et al., 2017). Our under-
standing of biodiversity and functional stability relationships in forests
is limited primarily to inferences made from research connecting com-
munity composition to production stability (Jucker et al., 2014; Silva
Pedro et al., 2016) showing that mixed forests tend to be more func-
tionally stable than monocultures to effects from disturbance (Jactel
et al., 2018). Here we show that changes in community composition do
not directly affect microclimates within two years of a disturbance.
While further work will hopefully contextualize these relationships, over
space and through time, we posit there may be connections here to tree
species specific water use strategies that will emerge. Forests in the
Great Lakes have notable populations of maples and oaks, species with
varying water-use strategies with maples tending to be more conserva-
tive, closing their stomata in response to stress more readily than oaks
(Matheny et al., 2014). These differences extend below ground as well,
with maples and oaks differing in rooting depth strategies resulting in
lateral root interactions driving water sourcing and ultimately the spa-
tiotemporality of soil water (Agee et al., 2021).

4.2. Time and future divergence

Our study focused only on the first two years of change following a
stem-gridling event, but senescence can vary by species or individual
with mortality taking upwards of three or more years for some trees
following stem-girdling (Gough et al., 2013). Therefore, any observed
structural changes are likely to increase in the future, with further
separation among disturbance severities and treatment.

We also expect the influence of community compositional and stand
structural change to emerge and be magnified over time as well. The
normalized difference approach we employed in this study does not
consider the pre-disturbance forest structural attributes such as
complexity, biomass, or any other measure, but rather focuses on the
relative change or effect size from pre- to post-disturbance. This
normalized approach centers the amount of change as the independent
variable. It is possible that a more detailed consideration of the pre-
disturbance state is necessary in connecting which structural compo-
nents influence specific abiotic processes. It may be that more complex
forests have more stable microclimates than their less complex coun-
terparts, with complexity converying greater resistance.

5. Conclusions

We show that forest structural and compositional change following
disturbance can be correlated with forest microclimatic response and
that a multivariate framework considering both structural and compo-
sitional change can identify patterns of response. We also show that the
same severity of disturbance, depending on whether smaller or larger
trees are affected, can have different structural outcomes, and subse-
quently different microclimate ramifications. modeling efforts focusing
on effects of disturbance should consider how a disturbance unfolds in
addition to the severity of disturbance.

Data availability

Analysis scripts are available at: https://github.com/atkins
jeff/FoRTE_micromet 2018 2020. All micrometeorological and struc-
tural data are publicly accessible via the fortedata package in R (Atkins
et al., 2021): https://github.com/FoRTExperiment/fortedata.
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