Scalable Riemann Solvers with the Discontinuous Galerkin
Method for Hyperbolic Network Simulation

Aidan Hamilton
aidan@udel.edu
Department of Mathematics
University of Delaware
Newark, DE, USA

ABSTRACT

We develop a set of highly efficient and effective computational
algorithms and simulation tools for fluid simulations on a network.
The mathematical models are a set of hyperbolic conservation laws
on edges of a network, as well as coupling conditions on junctions
of a network. For example, the shallow water system, together
with flux balance and continuity conditions at river intersections,
model water flows on a river network. The computationally ac-
curate and robust discontinuous Galerkin methods, coupled with
explicit strong stability preserving Runge-Kutta methods, are imple-
mented for simulations on network edges. Meanwhile, linear and
nonlinear scalable Riemann solvers are being developed and imple-
mented at network vertices. These network simulations result in
tools that are added to the existing PETSc and DMNetwork software
libraries for the scientific community in general. Simulation results
of a shallow water system on a Mississippi river network with
over one billion network variables are performed on an extreme-
scale computer using up to 8,192 processor with an optimal parallel
efficiency. Further potential applications include traffic flow sim-
ulations on a highway network and blood flow simulations on a
arterial network, among many others.

CCS CONCEPTS

« Mathematics of computing — Discretization; Solvers; « Ap-
plied computing — Physics; - Computing methodologies —
Massively parallel and high-performance simulations.

KEYWORDS

Riemann solver, discontinuous Galerkin, hyperbolic networks, PETSc,
scalable simulation

ACM Reference Format:

Aidan Hamilton, Jing-Mei Qiu, and Hong Zhang. 2023. Scalable Riemann
Solvers with the Discontinuous Galerkin Method for Hyperbolic Network
Simulation . In Platform for Advanced Scientific Computing Conference (PASC
'23), June 26-28, 2023, Davos, Switzerland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3592979.3593421

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASC °23, June 26-28, 2023, Davos, Switzerland

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0190-0/23/06....$15.00
https://doi.org/10.1145/3592979.3593421

Jing-Mei Qiu
jingqiu@udel.edu
Department of Mathematics
University of Delaware
Newark, DE, USA

Hong Zhang
hzhang@mcs.anl.gov
Department of Computer Science
Illinois Institute of Technology
Chicago, IL, USA

1 INTRODUCTION

Hyperbolic network models and simulations, that effectively predict
nonlinear wave interactions in global complex networks among
their local components, are of great importance in many fields of
science and engineering. Much research effort has been made to the
modeling, analysis and computational algorithm development [9].
Yet the algorithm design for general nonlinear network junction
coupling conditions, together with a parallel-efficient implementa-
tion with support from scalable software libraries, are still lacking.

In this paper, we present our two new contributions in address-
ing such a gap. On one hand, we propose a new linearized coupling
condition, as an approximation to Riemann solutions at network
vertices. Compared with the nonlinear implementation of coupling
condition, the new algorithm is more computationally efficient and
user friendly, while providing comparable accuracy in numerical
solutions. Meanwhile we implement the highly efficient, accurate
and robust discontinuous Galerkin (DG)- Runge-Kutta (RK) method
with the traditional nonlinear Riemann solver, as well as the newly
proposed linearized coupling condition, for general hyperbolic net-
work simulations by adding two new classes, namely NetRieman-
nProblem and NetRiemannSolver, into an experimental branch of
the open-source library PETSc [5-7]. We applied these classes to a
Mississippi river network simulation with over one billion network
variables (as modeled with 892,740 edges and 872,300 vertices) on
the shallow water system over an extreme-scale computer using
up to 8,192 processors, and demonstrate the scalability and poten-
tial scale of our proposed Riemann solvers with DG method for
hyperbolic network simulations.

These implementations are built upon the existing PETSc [5-7]
and DMNetwork [2] software libraries, which provide access to
scalable solvers and distributed network. There is a wide range of
application domains where our proposed Riemann solvers could be
useful in predictive modeling and simulations. Examples include
traffic flow modeling and simulation on a network of highways,
shallow water simulations on a network of rivers, blood flow simu-
lations in arterial networks, etc.

This paper is organized as follows. In Section 2, we introduce
hyperbolic network problems. We review nonlinear Riemann prob-
lems at network junctions and propose a new user friendly and
computationally efficient linearization procedure for general hy-
perbolic systems. In Section 3, we introduce the RK DG method
as a robust, efficient and effective solver for network hyperbolic
systems. In Section 4, the implementation in PETSc is discussed.
Section 5 presents the numerical experimental results. Section 6
gives a summary of the paper and our ongoing research.

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-3462-188X
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3592979.3593421
https://doi.org/10.1145/3592979.3593421

PASC ’23, June 26-28, 2023, Davos, Switzerland

2 HYPERBOLIC CONSERVATION LAW ON A
NETWORK

In this section we introduce the notion of a hyperbolic network,
along with relevant background material. Throughout we use the
shallow water system as our example of hyperbolic conservation
laws, however the material presented generalizes to other hyper-
bolic conservation laws as well.

2.1 Hyperbolic conservation laws on a network

We start with introducing a system of m conservation laws in a 1D
domain,
dru + dx f(u) =0, (1)

where u € R™ is vector-valued function called the conserved vari-
ables and f : R™ — R™ is the flux function. The system is called
hyperbolic, if the Jacobian matrix of the flux function is diagonaliz-
able. The hyperbolic nature of the system leads to nonlinear wave
propagation on the 1D domain. Now a network is a topological
graph, i.e. a couple (V, E), where E is a collection of intervals, and V
is a collection of vertices connecting these intervals. A system of m
conservation laws then naturally extends to a network edge-wise;
However, coupling conditions, such as the continuity of certain
physics quantities, balance of fluxes, etc, will need to be imposed
on the vertices of the network, as boundary conditions for the edge
conservation laws. Nonlinear wave propagation will then be further
compounded by these coupling conditions.

We give a specific example of a hyperbolic network, modeled by
the shallow water system. Assuming a uniform cross section and
zero slope, the shallow water system on each edge reads

arh+ dx(hv) = 0,

2

Orhv + oy (V? + ghz) -0, @
where h(x, t) is the water height and v(x, t) the water velocity, g

the gravitational constant. Letting g = hv, such a system is in the
form of (1) with

h q)
u= s u) = 3
Then the Jacobian matrix for this system is given by
0 1
D7 = (g) @

with eigenvalues

M) =v-~gh do(u)=v++gh)
We assume that the system is fluvial or subcritical, meaning that the
fluid velocity v is smaller than the speed \/g_h of the gravity waves,
ie|v| < \/g_h Under such a condition, A; < 0,13 > 0, i.e. the fluid
has waves propagating in opposite directions. Note that the fluvial
condition is essential to define the coupling conditions at network
junctions [11, 14]. Extending coupling conditions to super-critical
systems is still an open problem (see [10] for a simple case) and
beyond the scope of this paper.
To complete the shallow water system on a network, we im-
pose algebraic coupling conditions on conservation of mass, i.e.
flux balance, and equal height or energy condition conditions. [11]

Hamilton, Qiu, Zhang

Consider a vertex v € V, then let E(v) be the set of edges connected

to o,
Z ge(0) = Z ge(0), vt > 0, (6)
ecE(v), ecE(v),
incoming outgoing

is the flux balance condition. Note here incoming and outgoing is
defined by the direction in parameterizing the edge. This condition
is further coupled with the equal height for the well-posedness of
hyperbolic network [11],

he = her Ve, e’ € E(v). 7)

Note that there exist other coupling conditions such as equal energy
[11], but for simplicity of presentation we consider only equal
height.

2.2 Riemann Problems at Network Vertices

In this subsection, we introduce the Riemann problem, which pro-
vides a fundamental building block to modern numerical methods to
hyperbolic systems arise in computational fluid dynamics. In the hy-
perbolic network setting, understanding the vertex Riemann prob-
lem is essential in understanding the theoretical well-posedness of
the problem [14]; meanwhile it provides the main guiding principle
in our algorithm design of treating coupling conditions at network
junctions. For simplicity of the presentation, we will only discuss
the Riemann problem for the shallow water system as an example.

2.2.1 A Riemann problem for 1D equation [24]. A Riemann prob-
lem for a 1D hyperbolic conservation law (1) has the jump initial

condition
ur, x<0,
uo(x) = { 8)

ur, x>0,

for constants uy, ug.

Linear system. The Riemann problem for a linear system can be
solved by finding scalar Riemann solution along each eigenvector di-
rection. The discontinuity will propagate with the speed determined
by the corresponding eigenvalue of the Jacobian matrix. As these
Riemann solutions are projected back to the original conservative
variable, an intermediate state is u, is generated. This intermediate
state can be found by finding the intersection points of two lines
connected to the left and right states (uy, and ug) with the slope
determined from the first and second eigenvectors respectively, in
the phase space.

Nonlinear system. For a nonlinear shallow water system (2), the
solution to the Riemann problem can be found by locating the
intersection point of two nonlinear curves in the phase space plot
as in Figure 1. These two curves correspond to the 1-wave connected
to uy and 2-wave connected to ug. They can be described by the
following formula:

VL — 2(@ - \/gTL) if h < hy (rarefaction)
Pr(hiuL) = {VL —(h=he)\Jg" g h >y (shock)
©)
and
VR + 2(\/g_h - \/gTR) if h < hg (rarefaction)
#r(Aiup) = {VR +(h=hR)\Jg % i h > by (shock).

(10)

Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation

Mathematically, solving the Riemann problem is reduced to find an
intermediate states with h, such that u. = (h, h.vs) is connected to
uy, by a 1-wave and can be connected to ug by an 2-wave. Computa-
tionally, one can numerically find such an intersection by applying
anonlinear root-finder to find h, such that ¢ (hs; ur) = Pr(hs; ug)-
Meanwhile, ¢y (hs;up) = ¢r(h«; ug) returns the value of v, such
that us = (hs, h.vs) can be connected to uj, by a physically cor-
rected 1-wave, and can be connected to ug by a physically correct
2-wave. Please see Figure 1 for the nonlinear curves connected to
ur and ug, and their intersection u.. Notice that the dotted lines
correspond to the eigenvector directions of the Jacobians from the
linearization of system.

—— Nonlinear Curves

- -~ Eigenvectors

\ \ \ \ \ \ \ \
1.8 2 22 24 26 28 3 3.2

h

Figure 1: Phase space plot for the Riemann Problem of the
shallow water system.

2.2.2 Riemann Problems at Vertices. We first introduce the 1D Rie-
mann problem at a vertex v.

Definition 2.1 (Riemann Problem at a Vertex v [14]).

Orue + Ox f (ue) = 0, teR* e € E(v)
R* ifeis outgoi (11)
Ue(x,t = 0) = U, e 1 e ?S f)u g01.ng
R~ ifeis incoming

where U, are constant states.

For well-posedness of this Riemann problem, we require addi-
tional deg(v) algebraic equations known as the coupling conditions.
Here deg(v) is the number of edges connected to the vertex. The
solution to the vertex Riemann Problem (11) is then given by in-
termediate states u; such that u; connects to u, by a 1-wave if e
is incoming and a 2-wave if e is outgoing, and {ug }.cg (o) satisfy
the algebraic coupling conditions. In the shallow-water case, these

PASC ’23, June 26-28, 2023, Davos, Switzerland

4\
2 -
=
=
=
1 Wave
9l 2 Wave
2 Wave
— — — Eigenvectors

Figure 2: Phase space plot of the Riemann problem on a
three-branch vertex. Edge 0 is for incoming edge and edges
1 & 2 are for outgoing. The {u;, };:0 are intermediate states
satisfying the algebraic conditions (6) and (7), while lying
along the wave curves.

coupling conditions are,

K = B,

PRI

E(v), E(0),

ifliorgzizj'zg oeiftg(g?rzg . (12)

%

Ve

Pr(hs; ue) if e is outgoing
vy = ¢r.(hg; ue) if e is incoming

This nonlinear system can then be solved numerically by a nonlin-
ear root-finder as in the 1D Riemann problem case. However, the
formula for describing waves such as eq. (9) for a general nonlinear
system are not easy to obtain analytically. Because of this, this pro-
cedure to construct an exact Riemann solver is not easily applicable
to general systems.

Figure 2 presents the phase plot of Riemann solutions of a shallow
water system on a three-branch vertex. Notice that ug, is connected
to e, respectively by the corresponding incoming or outgoing (1
or 2) waves; and the set of {ug, }12:0 satisfy the continuity condition
(same water height h), as well as the flux balance condition.

2.3 Linearized Vertex Riemann Solver

Motivated by the difficulty in constructing exact vertex Riemann
solvers and the simplicity of the Riemann problem for a linear
system, we propose a generic linearized Riemann solver, that does
not rely on formula such as (9). Let r; () denote the eigenvector
corresponding to incoming wave and ry(u) for the outgoing wave.
In Figure 2, dotted lines depict lines connected to i, associated
with localized incoming/outgoing eigenvector directions; they are
tangent to the nonlinear wave curves.

To construct an approximate solver for the vertex Riemann prob-
lem, we look for intermediate states u}; connected to u, along locally
linearized eigenvector directions instead of the nonlinear wave

PASC ’23, June 26-28, 2023, Davos, Switzerland

curves. That is, we have the following lines parameterized by 7,
connected to ue,

uy =r1(Ue)te + Ue (incoming), u, = ra(ue)te + e (0utgoing)

In our shallow water example we have

1 1
no=(,) no={o)

The approximate Riemann solver at a vertex results in solving a
system with

h; (Ee + \/gze) -q; = he (55 + \/gﬁe) -9, (13)

for incoming e, with similar for outgoing, together with the cou-
pling conditions (6) and (7). The proposed linearization procedure
provides a second order approximation to the exact nonlinear wave
curves for |[u, — ug|| sufficiently small. We refer to Chapter 1, The-
orems 3.1 and 4.1 of [17] to related discussions.

This linearized procedure has not, to the authors knowledge,
been previously presented as a vertex Riemann Solver. Its benefit is
that it only requires knowledge of the eigenvectors r; and r; of the
Jacobian of the linearized system, which should be easily available
for any system under consideration. Thus it can be generically
implemented. Furthermore, as we shall demonstrate in section
5.3 the linearized solver can be much faster than an exact solver,
requiring only a single linear solver as opposed to a nonlinear solve
in the shallow water system.

3 DISCONTINUOUS GALERKIN
DISCRETIZATION OF HYPERBOLIC
NETWORK

In this section, we introduce our numerical approach in simulating
conservation laws on a 1D domain, followed by discussions on
network vertices. We choose to use the explicit strong stability
preserving RK DG method [13], due to its high order accuracy,
compactness in handling boundary/coupling conditions, as well as
its superior performance in a long term simulation.

We assume a discretization of the 1D spatial domain Q = [a, b]
with N elements

a=x1<x3 <.+ <Xpn.,1=Db.
7 % Ntz
Each of the element is denoted as I} = [xjfl,xj,rl] with mesh size
2 2

J
We let

hj=x1 —xj_l,j =1---N.Let h denote the maximal mesh size.
2 2

PE(Q) = {w: wl;, € P*(I;),m=n,...N}, (14)

where Pk (1 ;) denote the space of polynomials of degree at most k
on the element I;. The vector version is defined naturally, with a
slight abuse of notation P}’: will be assumed to be the vector version

for a system of conservation laws. Note that a function uy, € P'}: is
piece-wise defined and in general is discontinuous at the element
boundaries. The discontinuity at each of the element boundary is
handled by an exact or approximate solver to a Riemann problem
as in (8). The Riemann problem is essential in understanding the
nonlinear shock phenomenon for nonlinear hyperbolic systems.
In fact, exact or approximate solutions to Riemann problem is a

Hamilton, Qiu, Zhang

fundamental building block for modern numerical methods for
hyperbolic systems [24].

The DG method for (1) is formulated by a weak formulation,
derived from multiplying an equation by some test functions v €
W/: and performing integration by parts. Assume (1) is a scalar

equation, the DG method looks for uy, € P}IE(Q), s.t.

/vatuhdxz/f(uh)axvdx
L L

(15)
- (f}+%0_|xj+% _f},lv+|x.

P -3’
for all test functions v € P¥(I ;). Here we let v* denote the
left and right limits of the function values. The numerical fluxes

fj+% = f(u];l, ”;1) with uil = lim uy(x), are approximate
2 2

Jts x—x3 /2
Riemann solvers with monotone propért/ies at element interfaces.
For example, the Lax-Friedrich flux f(u~,u") = % (fw)+fu)+
% (u™ —u") is a monotone flux. The monotonity of the flux gauran-
tees the entropy stability of the DG method [13]. Further discussion
on approximate Riemann solvers can be found in [24]. In the system
case, we apply the DG method in a component-wise manner to
each equation in the system.

For implementation, we consider a set of basis given by {¢/;(£) };‘: 0

with & = x;;j € [—%, %] for on each computational element I;.
Then the DG solution uy, can be represented as

k
(6, 1) = Y cu(t(E(x), x€l; (16)
1=0
where c;; are the coefficients of the basis. Plug (16) into the DG
formulation (15), and let the test function run through the set of
basis {1//,(5)};‘:0, we end up with a system of ODEs for c;, for
j=1---N,1 =0,---k. An explicit third order strong stability
preserving (SSP) RK method can be applied as an efficient and
accurate time integrator. For robustness and nonlinear stability of
the algorithm, we apply a characteristic-wise TVB slope limiter
slope at each inner stage of the RK integrator [12].

Extending the DG discretization from a 1D domain to the net-
work case requires proper passing of information between DG poly-
nomials at boundary elements on each edge and the corresponding
vertex Riemann solver. On one hand, evaluating DG polynomials
from boundary elements of all branches connected to a vertex,
provides the {#¢}¢cE(y) as in Riemann initial data in (11); on the
other hand, solving the vertex Riemann problem yields intermedi-
ate states uj, evaluating which gives f(u}) that is used as flux at
the boundary element of DG solutions on each edge connected to
the vertex, i.e. fé and fN+% in (15).

4 IMPLEMENTATION IN PETSC

We implement our simulations using the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [5-7], an open-source library
(BSD-style license) for the numerical solution of large-scale applica-
tions. PETSc consists of a set of libraries for creating parallel vectors
(Vec), matrices (Mat), distributed networks (DMNetwork), scalable
linear (KSP), nonlinear (SNES) and timestepping (TS) [3] solvers.

Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation

DMNetwork manages the construction and parallel distribution
of the networks, and facilitates query of network elements (edges
and vertices) and physical components [2]. We use DMNetwork to
manage the network structure of our problem, which allows for
our scalable performance.

We added two classes, NetRiemannProblem and NetRiemann-
Solver to the DMNetwork/PETSc to build scalable Riemann Solvers
for the DG method for hyperbolic network simulation. Figure 3 il-
lustrates the software structure of NetRiemannProblem and NetRie-
mannSolver in PETSc. We note that these are experimental classes
that are currently in a PETSc branch. The code is available at request.

D Newly Added Class

[
I |
|
|
|

NetRiemannSolver |
! I:] Existing PETSc Class
at network
[DMNetwork \\ vertices . Probl
: (Network Topology): etRiemannProblem

/N

SNES
(Linear Solvers) | | (Nonlinear Solvers)

Figure 3: Software Structure of NetRiemannProblem and
NetRiemannSolver within PETSc.

The process of solving the vertex Riemann problems (11) on
every vertex of a network is logically split into the two classes.

(1) NetRiemannProblem: Specifies and solves each local ver-
tex Riemann problem. Not parallel.

(2) NetRiemannsolver: Provides scalable parallelism for solv-
ing the vertex Riemann problem on all vertices of a dis-
tributed network.

The details of each class will follow.

4.1 NetRiemannProblem

NetRiemannProblem is essentially a function object, where a user
is responsible for setting up the equations for the Riemann Problem
they want to solve, and NetRiemannProblem will then, given initial
data for the Riemann problem, actually perform the solve. This
abstraction separates the details of particular Riemann problem
from its usage in other algorithms such as our DG discretization.

A user is responsible for providing function callbacks for spec-
ifying the either nonlinear or linear system (e.g. eq. (12) or (13))
that comprises their Network Riemann problem. It is important to
note that the user is not responsible for creating any of the Vec or
Mat objects in these routines, nor is responsible for generating or
directly using solver objects such as KSP or SNES.

In fact, one essential feature of NetRiemannProblem is its reuse
of solver objects. A particular local Riemann Solver such as (12) will
be called repeatedly, with different vertex degrees, which requires
different size systems and different solver objects. NetRiemannProb-
lem will cache all solver objects by vertex degree, so subsequent

PASC ’23, June 26-28, 2023, Davos, Switzerland

calls can reuse the existing solvers. This is hidden from a user, who
only needs to provide simple function callbacks specifying systems
without thinking about any performance optimizations.

This also allows reuse of symbolic solves in the linear solvers
for both linear Riemann problems as well as the Jacobian solves
inside of the nonlinear solvers. As the systems are small, a direct
LU factorization solve is chosen as the default solver, the symbolic
factorization of which is reused among all Riemann solves for a
vertex degree. This greatly reduces users’ development time and
accelerates the solve speed for these systems.

An additional usage is that standard 1D boundary conditions,
such as the outflow boundary condition for the shallow water sys-
tem [22], can be implemented as special case of NetRiemannProb-
lem for degree 1 vertices. This is exactly how we enforce boundary
conditions in our DG discretization package.

4.2 NetRiemannSolver

NetRiemannSolver is responsible for assembling and solving vertex
Riemann problems on all vertices of a network, stored as a DM-
Network object. A user adds all NetRiemannProblems to a NetRie-
mannSolver, and assigns each NetRiemannProblem to a subset of
the vertices of a DMNetwork. DMNetwork is a class for managing
distributed networks, with data associated with the components of
the network, see [2] for details. Figure 4 shows how DMNetwork
maintains a distributed representation of a network, and it is this
distribution that provides the parallelism for our simulation. It is
important that only some vertices are shared among processors in
DMNetwork.

Global DMNetwork Representation of Network

Local DMNetwork Representation

el ~7

1

1

1

1

1

! 7z
! V020
1

1

1

1

1

1

Processor 0

~

@

Processor 1

Figure 4: Example of distributed DMNetwork on two proces-
sors. The global representation is the logical representaiton
of the network. The local representation is how it is actually
stored and used. The dashed vertex v; is shared among pro-
cessors, and any data associated with v, would be shared as
well.

DMNetwork provides the functionality to generate these dis-
tributed representations. It uses packages such as ParMETIS [20]
for generating a distributed network with load balance.

PASC ’23, June 26-28, 2023, Davos, Switzerland

NetRiemannSolver is thus designed to manage the complexities
of efficiently solving NetRiemannProblems on a collection of ver-
tices on a distributed DMNetwork. This reduces to following three
main tasks that NetRiemannSolver does.

(1) Manage Parallelism:

On the distributed network in DMNetwork, a processor owns
a local subnetwork of the full global network as shown in
Figure 4, and some vertices are shared among processors.
The Riemann data %, for the vertex v Riemann problem is
assumed to be associated with the edges e € E(v). However,
if v is shared among processors, like v, in Figure 4, each
processor copy of v will not have direct access to all of the
Riemann data. Thus NetRiemannSolver provides an interface
to set the locally available Riemann data, and will take care of
the communication and manipulation required to construct
vertex Riemann problem for v. For vy vertex in Figure 4
processor 0 would set %7 and processor 1 would set u2 and us.
then NetRiemannSolver would perform the communication
such that both processors would have access to the Riemann
problem solutions u;.

(2) Batch Solve the NetRiemannProblems:
NetRiemannSolver efficiently manages iteration through the
distributed DMNetwork and performing the NetRieman-
nProblem solves. Communication and computation are inter-
laced by solving completely on processor Riemann problems
while communicating the Riemann data u for the shared
vertices. In the case shown in Figure 4 on processor 0, the
NetRiemannProblems for vy and v; would solved while com-
municating the Riemann data for vy. Additional user inter-
lacing is also available via runtime options.

(3) Multiple NetRiemannProblems:

It is straightforward to add multiple NetRiemannProblems to
a NetRiemannSolver, as long as assigned vertices do not over-
lap. This is essential for practical use as multiple Riemann
problems on a single network is the default, when one con-
siders the need for boundary conditions on degree 1 vertices.
While not done in our numerical tests presented, this make
it easy to assign some vertices to be a linearized approximate
NetRiemannProblem, and some as an exact NetRiemannProb-
lem where more accurate solutions are needed.

4.3 DG Implementation

Using NetRiemannProblem, NetRiemannSolver and DMNetwork
we present how we implement the scalable DG discretization of
hyperbolic networks described in Section 3. The scalability of the
implementation primarily comes from DMNetwork distributing the
network as shown in Figure 4. Only some vertices of a network are
shared, so the DG algorithm described in Section 3 is an entirely
local to a processor, except for the computation of the boundary
fluxes f 1, fN +h which are handled by the NetRiemannSolver. Thus

the only part of the algorithm that performs communication is
a NetRiemannSolverSolve() routine from the NetRiemannSolver
class.

The implementation requires a setup phase where a user pro-
vides the details of the problem they wish to solve. A user would
begin by setting the physics of the NetRiemannProblems they wish

Hamilton, Qiu, Zhang

to use, i.e. setting equations (12), along with algebraic coupling con-
ditions. A DMNetwork would be created, either through a creation
routine or loading the information from file and distributed. It is
associated with a NetRiemannSolver and a user would choose the
set of vertices each NetRiemannProblem should apply to. Other
standard algorithmic decisions such as the number of cells per edge,
choice of time-integrator, time step size etc, would also be chosen.

After this setup phase the main driving algorithm is the evalua-
tion of the right-hand side of equation (15) which we denote the
DG RHS evaluation. This algorithm is shown in Algorithm 1.

Algorithm 1 DG RHS Evaluation for a Hyperbolic Network

for vertex v in DMNetwork do
for e € E(v) do
Evaluate u, (0)
Place u¢(v) in NetRiemannSolver
end for
end for
NetRiemannSolverSolve()
> All boundary fluxes f% , fN +} are now available

for Edge e in DMNetwork do
for Cell ¢ in edge e do
Evaluate integral (15)
end for
end for

> Communication is here

As it shows, the introduction of the NetRiemannSolver class
greatly simplifies the implementation of a scalable DG method.

5 NUMERICAL EXPERIMENTS

We preform four numerical experiments in this section. In Sec-
tion 5.1 we test the numerical accuracy of the scheme on a refer-
ence problem, which verifies the correct implementation of the DG
method. In Section 5.2 we test our method on a dam break prob-
lem, which verifies the stability of our method on a shock problem.
Section 5.3 displays the potential speedup of the linearized vertex
Riemann solver versus an exact nonlinear vertex Riemann solver.
Section 5.4 demonstrates the scalability of NetRiemannSolver and
the overall DG discretization using a large Mississippi river net-
work.

5.1 Convergence Test

We test for the order of convergence of the scheme to verify the
implementation. For our domain I' we use the directed graph G
shown in Figure 5, the network I' is formed by associating [0, 10]
for every edge e € G.

Figure 5: Graph for the convergence test

Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation

We consider the shallow water system (2) on I', along with the
algebraic coupling conditions of height continuity (7) and the con-
servation of mass (6). We use the following initial condition, chosen
such that the solution remains smooth on edges up to ¢t = 0.1:

hi(x,0) = 1+ e 597
h1vi(x,0) = h1(x,0)/2,

ho(x,0) = hs(x,0) = 1+ e 5(10-97,
hava(x,0) = h3v3(x,0) = hz(x,0)/4.

17)

This example constitutes a pulse of moving water on edge e; that
passes through the vertex v1 to interact with edges e; and es3. This
solution remains smooth to ¢t = 0.1, but has nontrivial vertex Rie-
mann problems. Since the true solution at ¢ = 0.1 is not available,
we use a refined DG solution with a P3 basis and 10000 elements
per edge, along with the exact vertex Riemann Solver (12), as a
reference solution. The DG solutions are evolved in time by a third
order SSP RK method [18] with time-step chosen to make the spa-
tial error dominant. Figure 6 and Table 1 show the convergence

results of the scheme using the Linearized vertex Riemann Solver

(13). Expected order of k + 1 for a kth order polynomial is observed

for a smooth problem. The results from the scheme using the exact
vertex Riemann Solver have a neglegible difference, showcasing
the effectivness of the linearized vertex Riemann Solver.

10°
£ 1072
=
<
LE —@— ErrorP?
NS - - Order 1
4 —*— Errorp! B
10 - = Order 2
—®— ErrorpP?
- = Order 3
_6 P —4— ErrorP?
10 ’ ——— Orders | |
| | | | | | |
27> 27t 273 7% o7l 0 3l
h

Figure 6: L? Errors and orders of convergence for the Section
5.1 test.

Table 1: L? Errors and orders of convergence for the Section
5.1 test.

h P’ Error P°Order P!'Error P! Order P?Error P?Order P®Error P® Order
2 0.74 NaN 0.62 NaN 212 NaN 3.96 NaN

1 0.87 -0.24 0.61 0.02 0.97 113 0.76 2.39

3 0.46 0.92 0.26 1.25 0.15 2.65 0.12 2.66

1 0.24 097 7.55-1072 176 241-107% 2,67 7.28-107° 4.04

H 0.12 098 1.95-107% 195 313-107% 295 473.107% 394
L 603-107% 099 491-107% 199 395-107% 299 298-107° 3.99
% 3.02-107% 100 1.23-107% 200 495-107° 300 1.87-107° 4.00

PASC ’23, June 26-28, 2023, Davos, Switzerland

5.2 Dam Break Simulation

Here we describe a test demonstrating the capability to handle a
shock problem, as well as providing a visualization of the numerical
solution. We test using the graph shown in Figure 7. The network
T is formed by associating edge ey with the interval [0, 50] and all
other edges with the interval [0, 10]. We again consider the shallow
water system (2) on T, along with the algebraic coupling conditions

of height continuity (7) and the conservation of mass (6).

Figure 7: Grid graph variant used in the dam break test, Sec-

tion 5.2.

)

1

\‘ 1767
%
1

1500

2
g
t ‘ 1251

09928

Figure 8: Water height for dam break problem, Section 5.2.
We use "dam break" initial conditions, with
ho(x,0) =2, hovo(x,0) =0

he(x,0) = 1, heve(x,0) =0, (18)

Veel, e#0,

which would simulate a dam breaking at vertex 1 in the network I'.
This initial data is chosen such that the data and the solution are flu-
vial, using the method presented in [11]. This results in rarefaction
wave passing backwards along eg and a shock wave propagating
throughout the rest of the network, generating reflected waves at
every encountered vertex.

We discretize by P? polynomials and cells of length 1, and use
a Linearized NetRiemannProblem (13) for vertices 1,..., 16, and
outflow boundary conditions for vertices 0 and 17. The numerical
solution after the shock has propagated through a set of vertices, is
visualized using GLVis [1] in Figure 8. Qualitatively the absence of
oscillations in Figure 8 indicates the stability of the discretization,

PASC ’23, June 26-28, 2023, Davos, Switzerland

as well as the Linearized NetRiemannProblem, in the presence of
weak shocks.

5.3 Nonlinear vs. Linearized Vertex Riemann
Solver

We compare the performance of the linearized vertex Riemann
solver (13) versus the exact nonlinear vertex Riemann solver (12).
We test the solvers on directed graphs G, where edge 1 is incoming
on to vertex 1 and edges 2, ..., n are outgoing from vertex 1.

()

€2

['%e]
L@
el \ ey

(13 By
Q)

G Graph

o
-
®
S

G3 Graph

Figure 9: Example of the graphs used in the Section 5.3 tests.

For example, G3 and Gg are shown in Figure 9. The following
set of Riemann problems is then tested on these directed graphs G;
fori=3,...,8, with results shown in Table 2. We consider the shal-
low water system Riemann problem (11), subject to the algebraic
coupling conditions (6) and (7). The Riemann data is chosen to be

Eei = (1’ 0),

with #,, taking a uniform 1000 X 1000 grid of values in the block
[1,2] x [-3,3], for a total of 1e6 separate Riemann problems to
solve. This range of values better informs the relative performance
of the two solvers in a generic setting.

The two solvers were implemented as NetRiemannProblem ob-
jects, see Section 4.1, and the time to solve all 1e6 Riemann problems
was logged, ignoring any setup time for the NetRiemannProblem.
The default direct LU factorization solver was used for all linear
system solves. The same NetRiemannProblem was reused for all
1e6 solves, so solver objects were reused throughout the solves;
in particular the symbolic factorization in the LU factorization
solver was reused for all linear system solves, being computed
only once for all 1e6 NetRiemannProblem solves. For the exact
vertex Riemann Solver, the nonlinear system (12) is solved using a
PETSc/SNES nonlinear solver internal to the NetRiemannProblem.
Default parameters for the SNES were used from PETSc version
3.18.2, in particular the solver was a Newton method via linesearch
with a relative tolerance of 1e-8. For this application it is a finer
tolerance than is truly required, because we wished to show the
relative performance one could expect with no tuning of any solver
parameters.

Table 2 shows the timing results for solving all 1e6 Riemann prob-
lems with the two types of NetRiemannSolvers. The simulations

i=2,...,n

Hamilton, Qiu, Zhang

were run on a Macbook Pro with a 2.9 GHz Dual-Core Intel Core i5
and 8 GB 2133 MHz LPDDR3 memory. The table demonstrates that,
at least with the default SNES solver, the exact NetRiemannSolver
takes roughly 10 times as long as the Linearized NetRiemannSolver
for the this range of vertex Riemann problems. For most values
of ue, the SNES solver took 4-5 iterations to converge, with the
overhead for the line search accounts for the time difference.

Table 2: Execution time (seconds) for the Exact nonlinear vs
Linearized NetRiemannProblem detailed in Section 5.3.

Number of Exact nonlinear Linearized
Edges NetRiemannSolver ~ NetRiemannSolver
3 38.90 3.25
4 40.20 3.44
5 39.60 3.75
6 40.60 3.94
7 40.70 4.24
8 44.00 4.57

This significant time difference can motivate the usage of the
linearized method even when an exact method is available, as long
as the i, states are sufficiently close to afford the linearization
error.

5.3.1 A Comment on Accuracy. While a complete accuracy anal-
ysis of the linearized method is beyond the scope of this paper
and will be explored in subsequent work, we provide an intuitive
sketch of the behavior of the linearized method for small jumps. Let
U, constitute Riemann data for a vertex v such that the resulting
Riemann problem (12) has exact solution ug, with a "small" jump,
measured by 2?:1 [z, — ug, |l2. Noting that the linearized wave-
curves are a 2nd order approximation to the exact-wave curves
[17] for sufficiently small jumps, we expect this to carry over to the
Linearized Riemann solution, u{;f”.

We test this by again considering the Vertex Riemann Problem
on the G3 graph, see Figure 9, for the shallow water system (11),
subject to the algebraic coupling conditions (6) and (7). We sample
the Riemann data u,; independently for each edge i = 1,2,3 on a
uniform 8 x 8 grid of values in the block [1, 1.1] x [—-0.15, 0.15] for
a total of 8° Riemann Problems. The exact Riemann solutions ug,
were computed and compared with the Linearized Vertex Riemann
Solver solutions u{;iin by plotting their difference 2?:1 llug, — ugii" [|2
against the jump in solution Z?:l |[uze; — ug, ||z in Figure 10. From
Figure 10 we can see the roughly 2nd order approximation of the
Linearized Vertex Riemann solver for "small" jumps. Whether a
specific application can tolerate this error would need to be judged
on a case by case basis, and for a fully robust usage require some
form of a posteriori error estimation.

We would also like to note that most of the vertices in our DG
discretization of a shallow system network problem will naturally
have near continuous water heights for their Riemann problems,
unless a shock wave is passing through that vertex, and thus the
linearized method should be sufficient for most vertices of a net-
work. This can be seen in the convergence test of Section 5.1, where
the Linearized Vertex Riemann Solver did not impact the order of
convergence.

Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation

= B 1
5 B]
8 i i
5
_2 [=
E 10 B E
[5) I 1
3 B]
z i i
g
g 1073 E
3 B]
~ r i
%
X i i
5 4
o -4 E|
L 10 E El
o I 1
Q
g -]
‘g | // 1
—_ [-
g 10 5 F e .- =
L | | I]
10-15 1071 10703

Sy e, —ug 2

Figure 10: Error in the Linearized Vertex Riemann Solver,
computed as Z?:] llue, — ugil” |l2 , for the example presented in

Section 5.3.1.

5.4 Scalable Simulation of Mississippi River
Network

We test the strong scaling of our Riemann Solvers by simulating
river flow in the Mississippi river basin [8], which is the largest river
in North America. The Mississippi river system consists of one-
eighth of the total river segments in the conterminous United States
[19]. The data for the river network and the physical properties
for each river segment (e.g., length, width, slope, flow depth and
velocity) are obtained from the NHDPlus dataset [23]. This river
network contains 892,740 edges and 872,300 vertices, and edges
are discretized with cells at most length 10 meters and a P? basis
for the DG method, resulting in 1,034,349,240 degrees of freedom
to evolve in time by a 5-stage SSPRK2 method [21]. We again use
the dam break initial conditions (18) for simplicity of the setup. We
present the results using the exact NetRiemannSolver as the scaling
results are similar for the linearized NetRiemann Solver. Numerical
simulation is conducted on the Theta supercomputer at Argonne
Leadership Computing Facility [4]. Theta has 4,392 nodes, each
with 64 1.3GHz Intel Xeon Phi 7230 cores with 16 GiB of MCDRAM
per node.

Table 3: Execution times (seconds) per function call in 5-stage
SSPRK2 for the Mississippi River Network Simulation. See
Figure 11 for an explanation of the terms.

Number of Edge NetRiemann DG Time Step RHS Eval

Cores DG Solver Limiter
256 5.87 2.03 4.15 49.00 6.63
512 2.94 1.02 2.08 24.40 3.34
1,024 1.45 0.51 1.03 12.10 1.66
2,048 0.73 0.26 0.52 6.08 0.83
4,096 0.37 0.15 0.27 3.14 0.43
8,192 0.18 7.42-1072 0.13 1.55 0.22

In Table 3 a fine breakdown of the strong-scaling result is pre-
sented. A plot of these results is presented in Figure 11. This plot
demonstrates a near perfect strong-scaling for the various pieces

PASC ’23, June 26-28, 2023, Davos, Switzerland

I I
—@— EdgeDG
102 b — W NetRiemannSolver ||
Eoo x —@— DG Limiter E
I T~ —— TmeStep ||
— L R —4— RHSEval |
2 ~
~ h Slope -1
g 10! F L
= r E
= r 1
4 L]
Q
s L |
C
= 1 00 = =
1071 -
L | | | | | | |

256 512 1,024 2,048 4,096 8,192

Number of Cores

Figure 11: Strong scaling result per function call in 5- stage
SSPRK2 for Mississippi River Network Simulation. Edge DG
is the time to perform the integral on the RHS of (15) assum-
ing boundary fluxes are available, NetRiemannSolver is the
time to call NetRiemannSolverSolve() including communi-
cation time, DG Limiter is a TVB limiter called after each
stage of the time integrator, RHS Eval is the time for the full
DG RHS evaluation detailed in algorithm 1. Time Step is the
total time for a time step, roughly 5" (RHS Eval+DG Limiter).

of the application, detailed in Table 3. In particular, the NetRie-
mannSolver class demonstrates strong-scaling for this problem
even though it is the only subroutine of Time Step that performs
communication.

Note that the scaling result from this study is satisfactory com-
pared with the Routing Application for Parallel Computation of
Discharge model [15] that scales up to 16 cores for the simulation
of the upper Mississippi river using different physics. We achieved
this scaling result through:

(1) Usage of DMNetwork to manage the network topology, and
thus efficiently using ParMETIS [20] to distribute the net-
work for load balancing.

(2) Using DG, a discretization method with a small stencil, re-
quiring minimal communication.

(3) Interlacing communication and computation in NetRiemann-
Solver.

(4) Using a explicit time integrator, SSPRK2, which does not
require any nonlinear or linear solves.

Furthermore, due to small stencil of DG in (2), communication
occurs only at the shared vertices of the network subdomains,
when computing the boundary fluxes with NetRiemannSolver. Thus
communication costs only scale with the sizes of the Network
Riemann Problems on the shared vertices of the network subdomain,
which is proportional to the degrees of the shared vertices. This
cost is hidden by interlacing with computation (3), and thus with
the above strategies (1)-(4), we anticipate satisfying weak scaling
results with the number of edges and vertices of networks.

The total execution time of the simulation includes (a) reading
river network data from files; (b) setup and parallel distribution

PASC ’23, June 26-28, 2023, Davos, Switzerland

of DMNetwork; and (c) repeated time steps to evolve the physics.
The first two phases had a fixed cost, for which we did a sequential
reading of data, setting up a sequential network, and then using
ParMETIS to distribute it to a parallel network for the rest of the
simulation. While this setup phase contributes to the execution of
a full simulation, it is dominated by the actual simulation time (c),
and is not the focus of this paper.

6 CONCLUSION AND ON-GOING WORK

This article introduced the progress of developing a scalable solver
for generic hyperbolic network simulations, using the shallow water
system as an example. We developed a simplified linearized vertex
Riemann solver, to remove the onerous requirement to construct
exact vertex Riemann solvers. Two classes, NetRiemannProblem and
NetRiemannSolver, were built on the top of PETSc [5-7]. NetRie-
mannProblem abstracts the solution of individual vertex Riemann
problems, and NetRiemannSolver solves a collection of NetRie-
mannProblems on a distributed network. Both classes were imple-
mented using DMNetwork[2] to build scalable Riemann solvers
with DG method for hyperbolic network applications. The scal-
ablity of which was demonstrated on 892,740 edges and 872,300
vertex shallow water system network, which achieved perfect scal-
ability up to 8,192 cores. This is, to the authors knowledge, the first
instance of a scalable simulation of hyperbolic networks of this
massive size.

The development of the package is an ongoing effort, and the
interface and implementation details for NetRiemannSolver and
NetRiemannProblem are continuously improving. As the develop-
ment of these classes stabilizes it is hoped to be included in PETSc
directly for general use. Currently we are experimenting with the
parallel simulation of other hyperbolic networks such as network
traffic flow [16]. Visualization of the dynamic solution of hyperbolic
networks, such as seen in Figure 8 is an ongoing effort. It is the
hope of the authors to provide a set of tools and software support
that allow for scalable simulations of hyperbolic networks, that has
a wide range of application in science and engineering.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. Aidan Hamilton and
Hong Zhang were supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research, un-
der contract DE-AC02-06CH11357 and by the Exascale Computing
Project 17-SC-20-SC, a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Ad-
ministration. Jingmei Qiu was supported by the Air Force Office
of Scientific Research under grant FA9550-22-1-0390, the National
Science Foundation under grant NSF-DMS-2111253, and the De-
partment of Energy under grant DE-SC0023164.

REFERENCES

[1] . GLVis: OpenGL Finite Element Visualization Tool. glvis.org. https://doi.org/10.
11578/dc.20171025.1249

[2] S. Abhyankar, G. Betrie, D.A. Maldonado, L.C. McInnes, B. Smith, and H. Zhang.
2020. PETSc DMNetwork: A Library for Scalable Network PDE-Based Multi-
physics Simulations. ACM Trans. Math. Software 46, 1 (2020). https://doi.org/10.
1145/3344587

G

—
=

[8

[o

(10]

[11

[12

(13]

[14]

[15

=
&

[17

(18

[19]

[20]

)
=

[22

[23

[24

Hamilton, Qiu, Zhang

Shrirang Abhyankar, Jed Brown, Emil M. Constantinescu, Debojyoti Ghosh,
Barry F. Smith, and Hong Zhang. 2018. PETSc/TS: A Modern Scalable ODE/DAE
Solver Library. Technical Report. arXiv:1806.01437

ALCF. 2018. Theta supercomputer. https://www.alcf.anl.gov/theta.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener,
Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Vaclav Hapla, Tobin
Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande
Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills,
Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason
Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao
Zhang. 2022. PETSc/TAO Users Manual. Technical Report ANL-21/39 - Revision
3.18. Argonne National Laboratory.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp
Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Vaclav Hapla,
Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley,
Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran
Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan,
Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and
Junchao Zhang. 2022. PETSc Web page. https://petsc.org/. https://petsc.org/
Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997.
Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset,
and H. P. Langtangen (Eds.). Birkhduser Press, 163-202.

Getnet Betrie, Hong Zhang, Barry Simith, and Eugene Yan. 2018. A scalable river
network simulator for extereme scale computers using the PETSc library. In AGU
Fall Meeting.

Alberto Bressan, Suncica Cani¢, Mauro Garavello, Michael Herty, and Benedetto
Piccoli. 2014. Flows on networks: recent results and perspectives. EMS Surveys
in Mathematical Sciences 1 (2014). Issue 1. https://doi.org/10.4171/EMSS/2
Maya Briani and Benedetto Piccoli. 2018. Fluvial to torrential phase transition
in open canals. Networks and Heterogeneous Media 13, 4 (2018), 663-690. https:
//doi.org/10.3934/nhm.2018030

Maya Briani, Benedetto Piccoli, and Jing-Mei Qiu. 2016. Notes on RKDG Methods
for Shallow-Water Equations in Canal Networks. . Sci. Comput. 68, 3 (sep 2016),
1101-1123. https://doi.org/10.1007/s10915-016-0172-2

Bernardo Cockburn and Chi-Wang Shu. 1989. TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. II. General
framework. Computational Mathematics (1989).

Bernardo Cockburn and Chi-Wang Shu. 2001. Runge-Kutta Discontinuous
Galerkin Methods for Convection-Dominated Problems. Journal of Scientific
Computing 16, 3 (2001), 173-261. https://doi.org/10.1023/A:1012873910884

R. M. Colombo, M. Herty, and V. Sachers. 2008. On 2 X 2 Conservation Laws
at a Junction. SIAM Journal on Mathematical Analysis 40, 2 (2008), 605-622.
https://doi.org/10.1137/070690298 arXiv:https://doi.org/10.1137/070690298
Cédric H David, David R Maidment, Guo-Yue Niu, Zong-Liang Yang, Florence
Habets, and Victor Eijkhout. 2011. River network routing on the NHDPlus dataset.
Journal of Hydrometeorology 12, 5 (2011), 913-934.

M. Garavello and B. Piccoli. 2006. Traffic Flow on Networks: Conservation Laws
Models. American Institute of Mathematical Sciences. https://books.google.com/
books?id=LVwYAwWAACAA]J

Edwige Godlewski and Pierre-Arnaud Raviart. 2014. Numerical Approximation
of Hyperbolic Systems of Conservation Laws. Springer Publishing Company,
Incorporated.

Sigal Gottlieb, David L. Ketcheson, and Chi-Wang Shu. 2009. High Order Strong
Stability Preserving Time Discretizations. Journal of Scientific Computing 38, 3
(2009), 251-289. https://doi.org/10.1007/s10915-008-9239-z

John C Kammerer. 1987. Largest rivers in the United States (water fact sheet).
Technical Report. U.S. Geological Survey,.

G. Karypis and V. Kumar. 1995. METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0. Technical Report. University of Minnesota,
Department of Computer Science, Minnesota.

David I. Ketcheson. 2008. Highly Efficient Strong Stability-Preserving
Runge-Kutta Methods with Low-Storage Implementations. SIAM Journal on
Scientific Computing 30, 4 (2008), 2113-2136. https://doi.org/10.1137/07070485X
arXiv:https://doi.org/10.1137/07070485X

RJ. LeVeque and D.G. Crighton. 2002. Finite Volume Methods for Hyperbolic
Problems. Cambridge University Press. https://books.google.com/books?id=
QazenD7GUoUC

L McKay, T Bondelid, T Dewald, J Johnston, R Moore, and A Rea. 2012. NHDPlus
Version 2: user guide. National Operational Hydrologic Remote Sensing Center,
Washington, DC (2012).

Eleuterio F Toro. 2013. Riemann solvers and numerical methods for fluid dynamics:
a practical introduction. Springer Science & Business Media.

glvis.org
https://doi.org/10.11578/dc.20171025.1249
https://doi.org/10.11578/dc.20171025.1249
https://doi.org/10.1145/3344587
https://doi.org/10.1145/3344587
https://arxiv.org/abs/1806.01437
https://www.alcf.anl.gov/theta
https://petsc.org/
https://petsc.org/
https://doi.org/10.4171/EMSS/2
https://doi.org/10.3934/nhm.2018030
https://doi.org/10.3934/nhm.2018030
https://doi.org/10.1007/s10915-016-0172-2
https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1137/070690298
https://arxiv.org/abs/https://doi.org/10.1137/070690298
https://books.google.com/books?id=LVwYAwAACAAJ
https://books.google.com/books?id=LVwYAwAACAAJ
https://doi.org/10.1007/s10915-008-9239-z
https://doi.org/10.1137/07070485X
https://arxiv.org/abs/https://doi.org/10.1137/07070485X
https://books.google.com/books?id=QazcnD7GUoUC
https://books.google.com/books?id=QazcnD7GUoUC

	Abstract
	1 Introduction
	2 Hyperbolic Conservation Law on a Network
	2.1 Hyperbolic conservation laws on a network
	2.2 Riemann Problems at Network Vertices
	2.3 Linearized Vertex Riemann Solver

	3 Discontinuous Galerkin discretization of Hyperbolic Network
	4 Implementation in PETSc
	4.1 NetRiemannProblem
	4.2 NetRiemannSolver
	4.3 DG Implementation

	5 Numerical Experiments
	5.1 Convergence Test
	5.2 Dam Break Simulation
	5.3 Nonlinear vs. Linearized Vertex Riemann Solver
	5.4 Scalable Simulation of Mississippi River Network

	6 Conclusion and On-going Work
	Acknowledgments
	References

