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Abstract: Roadway improvements to reduce the frequency of crashes are of the utmost priority to transportation agencies. To a great extent,
implementation of improvement programs depends on the reliable identification of roadway segments with high crash risk. Among all crash
types, wrong-way driving (WWD) crashes are considered random in nature and are a major safety concern. The Federal Highway
Administration defines WWD specifically for high-speed divided highways and access ramps. This definition excludes all other roadway
classifications when a crash occurs in the opposing direction to the legal flow of traffic. Screening 5 years of crash data in Minnesota revealed
that WWD resulted in crashes on other types of roadway functional classes. This work aimed to (1) introduce a new term/acronym to the
literature for driving in the wrong direction (DWD) on all roadway functional classes, (2) apply a set of count data models to estimate the
occurrence of DWD crashes, (3) identify roadway geometric features of high-risk segments for DWD crashes, (4) investigate random effects
of covariates due to unobserved factors, and (5) calculate elasticity effects of variables. Final models’ specifications indicate that the negative
binomial (NB) mixed effect model was found to be the best-fit model. Focusing on DWD crashes, we uncovered the factors contributing
to higher DWD crash-risk segments: log of average annual daily traffic (AADT), number of lanes, sidewalk, and shoulder type. The change in
frequency of crashes is also investigated using marginal effects, and safety interventions for preventing DWD crashes are also discussed.
Transportation agencies can use the findings of this research, in terms of contributing factors and their relative effects on DWD crashes,
to deploy appropriate countermeasures at high-risk locations.DOI: 10.1061/JTEPBS.0000695.© 2022 American Society of Civil Engineers.
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Introduction

The Federal Highway Administration (FHWA) defines wrong-way
driving (WWD) events as those in which vehicles are traveling in
the opposing direction to the legal flow of traffic on high-speed
access-controlled divided roadways (i.e., freeways and ramps). The
current research defines driving the wrong direction (DWD) events
as those occurring when a driver enters against the legal flow of
traffic on any roadway functional class. The current literature on
WWD does not classify crashes as WWD crashes if they occur

while driving in the wrong direction on non-high-speed and undi-
vided roadways. In this study, we introduce DWD, investigate the
vulnerability of roadway segments to DWD crashes, and uncover
the causal factors in DWD crashes. Studies on DWD crashes are
nonexistent in the literature; therefore, we reviewed WWD litera-
ture to highlight recent studies because WWD crashes represent a
subset of DWD crashes. However, we emphasize that WWD and
DWD crashes cannot be used interchangeably.

Due to the installation of many technologies in today’s vehicles
to improve crashworthiness and ongoing safety improvements of
legacy highway systems, crash frequency per 100 million vehicle
miles traveled (VMT) has been decreasing in the United States
(US) at a steady rate for many years. However, the total number of
traffic crashes has not been decreasing at the same rate due to the
steady increase in VMT. In addition to millions of traffic injuries
and property damages, 37,473 motor vehicle fatalities occurred on
US highways alone in 2017 (NHTSA 2019). Due to the nature of
DWD crashes (head-on or opposite-direction sideswipe crashes);
they are relatively more severe than other types of motor vehicle
crashes. One analysis of wrong-way crashes on freeways in Illinois
showed that roadway segments close to freeway ramps were the
most likely locations for WWD crashes (Zhou et al. 2016). Accord-
ing to the National Transportation Safety Board, 360 WWD-related
fatalities were reported annually between 2004 and 2011 in the US
(NTSB 2012). The leading contributing factors of WWD crashes
are driving under the influence, inattention to driving due to fatigue
and distraction, physical and age-related impaired judgment,
unfamiliar drivers, infrastructure deficiencies (e.g., poor lighting),
limited sight distance, and heavy roadside vegetation (Zhou et al.
2016).

Several past studies (discussed in the “Literature Review”
section of this paper) have focused on the identification of causal
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factors related to WWD crashes, and crash severity modeling. We
found that studies on WWD crash frequency prediction models
considering geometric, traffic, and environmental characteristics
of roadway segments are very limited. The current study aimed
to bridge this gap in the literature. In this research, crash frequency
prediction models were developed using 6 years (2010–2015) of
observed DWD crashes in the State of Minnesota (MN) transpor-
tation network to identify geometric features of roadway segments
with relatively high risk for crashes of this type. Data were col-
lected from the Highway Safety Information System (HSIS), which
was formally obtained by the HSIS from the Minnesota Department
of Transportation (HSIS 2020).

One of the critical methodological aspects of statistical model-
ing is the correlation that potentially exists between roadway seg-
ments (within-segment correlation) considered in the modeling
process, and the different types of crashes (DWD in this context).
The possible presence of segment-level unobserved factors, as well
as potential unobserved heterogeneity in the effects of key factors,
may influence the outcomes in terms of the level of risk posed by
one segment type versus another for the different types of crashes.
Ignoring unobserved factors—which may produce within-segment
correlation and possible unobserved heterogeneity in the effects of
covariates on outcomes—can lead to biased estimates of the var-
iable parameters. The effects of unobserved factors can affect other
controlled observed factors, which could lead to change in their
impact. This issue, known as unobserved heterogeneity, is com-
monly addressed in the literature by utilizing random-parameter
modeling techniques versus fixed-parameter methods (Mannering
et al. 2016). This restrictive method of fixed-parameter models as-
sumes that the effects of explanatory variables are similar across all
observations (i.e., roadway segments in the current study). The
random-parameter method utilizes simulation techniques in the es-
timation process to estimate both the mean and standard deviation
of parameters, as compared with mean-only parameters in the
fixed-parameter method (Anastasopoulos and Mannering 2009;
Bogue et al. 2017). Such deviations in the parameter estimates, if
found to be statistically significant, provide credible indications
that variables behave differently across observations and, therefore,
the utilization of fixed-parameter methods would be improper.
There are several methodological approaches to account for unob-
served heterogeneity. In the context of count data models, these
approaches can be broadly summarized into one of the following
types: (1) random parameter count models, (2) finite mixture mod-
els, and (3) Markov switching models (Mannering et al. 2016).
Random parameter count models are by far the most widely
adopted approach in the literature (e.g., Barua et al. 2016; Mitra and
Washington 2012). Finite mixture models identify latent classes
within observations and vary parameters for each latent class
(e.g., Buddhavarapu et al. 2016). Markov switching models ac-
count for temporal correlation in data arising from aggregation over
time (e.g., Malyshkina and Mannering 2010). Notably, the issue
of temporal instability has also been highlighted in recent years.
Statistical analysis of crash data assumes that the model parameters
are temporally stable and do not change over time; this assumption
overlooks the effect of variables that may change over time
(Mannering 2018). Researchers have addressed this issue to model
crash severities and vehicle ownership decisions by utilizing ran-
dom parameter models that account for unobserved heterogeneity
in means and variances of the random parameters (Se et al. 2021;
Hamed and Al-Eideh 2020).

In summary, the current work aimed to fulfill three main ob-
jectives and contribute to the existing literature on WWD
crashes: (1) introduce DWD to the existing literature, (2) inves-
tigate and identify statistical approaches to model DWD crashes,

and (3) identify roadway geometric features of high-risk seg-
ments for DWD crashes by accounting for random effects due
to unobserved factors.

The remainder of this article is organized as follows. The next
section presents a literature review, followed by the methodology
section describing the formulation of the statistical modeling
frameworks utilized in this study. The data section discusses the
dataset used and the final estimation sample assembly process, as
well as descriptive statistics of different variables available for
statistical modeling. The modeling results and findings section
presents a detailed overview of the estimation results and the models’
measures-of-fit and comparison analysis. Then we discuss the results
of the variables’ elasticities. Finally, we present conclusions and lim-
itations of the study along with major findings, and future scope of
research based on the limitations of this study, respectively.

Literature Review

A comprehensive review of WWD crashes on freeways and ex-
pressways in 1971 documented that roadway geometry and con-
figuration are major factors in the occurrence of WWD crashes.
Most WWD events occur when a vehicle enters exit ramps. Partial
interchanges were two times riskier than full interchanges (i.e., full
cloverleaf) (Friebele et al. 1971). Other significant factors associ-
ated with WWD crashes cited in this study include limited line-
of-sight on exit ramps; distracted driving under the influence of
alcohol (distracted driving and driving under the influence can
occur simultaneously or independently); lighting conditions; night-
time driving; presence of two-way frontage roads; insufficient sign-
ing and pavement markings; absence of divergent roadways to
redirect wrong-way entry; and absence of technology-based warning
systems (Friebele et al. 1971). Using the Fatality Analysis Reporting
System (FARS), a study found that driving under the influence rep-
resents approximately 60% of WWD crashes (NTSB 2012). Several
studies reported that most WWD crashes occur on urban roadways
during weekend nights (Cooner et al. 2004; FDOT 2015; Finley et al.
2014; Zhou et al. 2016). Young male drivers under the influence of
drugs/alcohol were overrepresented in the literature ofWWD crashes
on freeways (Baratian-Ghorghi et al. 2014; Finley et al. 2014;
Tamburri and Theobald 1965; Zhou et al. 2016). However, in all
WWD crashes, older drivers were overrepresented (Baratian-
Ghorghi et al. 2014; FDOT 2015; NTSB 2012).

Different types of countermeasures have been implemented by
state transportation agencies at high-risk WWD crash locations.
The National Cooperative Highway Research Program (NCHRP)
Report 881 identified the most frequent countermeasures to be DO
NOT ENTER and WRONG WAY signs, wrong-way arrow mark-
ings, flashing red LEDs on WRONG WAY signs, centerline in
median openings, and stop or yield lines (Finley 2018). As most
WWD crashes were related to drunk/distracted driving, many of the
infrastructure-based solutions were dynamic and caught drivers’ at-
tention, thereby reducing the frequency of WWD crashes. Several
studies reported a high number of WWD crashes during early
morning hours (Cooner et al. 2004; Copelan 1989). AnalyzingWWD
crashes in California, Copelan (1989) recommended countermeas-
ures such as the installation of high retroreflective WRONG-WAY
pavement markings; proper placement of high retroreflective WWD
signs; geometric modifications to freeway ramps; modifications of
partial-interchanges to full-interchanges; installation of specialized
pavement lighting (similar to those found in airport runways/
taxiways); detector and surveillance cameras; and modifications to
the design of ramps and interchanges in terms of spacing and con-
figuration, to reduce driver confusion. Vaswani (1976) presented
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engineering solutions implemented in Virginia to reduce WWD
crashes, which included the removal of pavement flares informing
drivers about new geometric configurations. Wang (2018) recom-
mended that stop-line positioning, narrower turning radius, nontra-
versable medians, and narrower median widths can reduce WWD
crash risk at partial cloverleaf interchanges. While physical barriers
(e.g., spike barrier) had been considered as a solution to avoid
wrong-way entry, none of the states’ transportation agencies found
it practical (Copelan 1989). Beyond many of the solutions pre-
sented in the California study, a Texas study recommended install-
ing WWD signs at a lower height than the standard 7-ft height for
urban signs, and developed a checklist for engineers and field crews
to review WWD risks (Cooner et al. 2004). A 2013 survey, which
included state transportation officials who participated in the first
National WWD Summit, identified that the geometric modification
of ramp configurations was the most effective countermeasure to
reduce WWD crashes (Pour-Rouholamin et al. 2014). In addition
to crash data, an Alabama study conducted onsite data collection
(e.g., sight distance measurement) and applied the Haddon matrix
to identify WWD crash contributing factors (Wang and Zhou
2017). Azzeh et al. (2016) conducted a simulation-based study to
identify drivers’ decision making at WWD scenarios, and reported
that the installation of multiple countermeasures reduced driver
confusion. A study in North Carolina developed a toolbox consist-
ing of signs, markings, and geometric modifications of existing fa-
cilities to reduce WWD risks (Carter et al. 2018).

Although many studies investigated WWD crashes, several
studies applied statistical modeling techniques to investigate the
causal factors of WWD crashes. Jalayer et al. (2018) applied an
ordered probit model to identify significant crash contributing fac-
tors using WWD crash data from Illinois and Alabama. The authors
identified significant factors included seatbelt use, vehicle age and
type, airbag deployment status, crash type, and a set of engineering
and nonengineering (i.e., education and enforcement) measures
were proposed. Das et al. (2018a) applied multiple correspondence
analysis (MCA) methods to investigate WWD crashes in Louisi-
ana, and measured the relative association of different crash factors
to understand the combined contribution to WWD crash occur-
rences. Jalayer et al. (2017) also applied MCA methods to model
WWD crashes in Illinois and Alabama, and identified the most sig-
nificant contributing factors. Another study used frequent pattern
mining (FPM) to identify significant factors in WWD on freeway
ramps and median crossover crashes on undivided highways (Das
et al. 2018b). A binomial logistic regression model was developed
for WWD and non-WWD crashes in Florida to identify the odds
of occurrence and the associated significant crash contributing
factors (Ponnaluri 2016). The model findings were integrated with
a perception survey of roadway users and transportation profes-
sionals. It was found that, in addition to freeways, arterials were
also susceptible to WWD. Because urban areas received significant
attention for roadway safety improvements, roadway lighting at
high-risk locations, especially in rural areas, was recommended.
A similar study was conducted using WWD and non-WWD
crashes in Alabama (Zhang et al. 2017). Applying the Poisson
regression model using different WWD event data (including non-
crash WWD events), high-risk locations for WWD were identified
for safety improvements in Central Florida (Sandt and Al-Deek
2018). Sandt and Al-Deek (2018) developed an optimization al-
gorithm to assist transportation agencies in selecting locations
with high WWD crash risk for installation of technology-based
countermeasures. A study on WWD crashes on undivided high-
ways recommended the installation of infrastructure-based coun-
termeasures (such as centerline rumble strip) on rural two-lane
highways (Kusano and Gabler 2013). A French study compared

the characteristics of WWD and non-WWD crashes and recom-
mended interventions that were effective for cognitively impaired
drivers (Kemel 2015). Moreover, driver-related factors, which were
common in WWD crashes, were also a primary cause of many other
crash types (e.g., drunk driving), and countermeasures to reduce the
causal factors were recommended in addition to infrastructure im-
provements. A high percentage of fatalities resulted from WWD
compared with other crash types: In WWD crashes, 63% of drivers
were alcohol-intoxicated versus only 5.6% intoxication rate in other
crash types. It was also reported that Native Americans were over-
represented in WWD crash fatalities in New Mexico; a potential rea-
son noted was the higher drinking and driving rate in the Native
American population.

Methodology

Frequency estimation models are considered to be a form of para-
metric model. Parameters of covariates are estimated from observed
frequency/count data, which present the influence of each indepen-
dent variable on the frequency of a certain event (e.g., DWD crash
frequency in the current study). Due to the nonnegative nature of
crash frequency events, log-linear models are suitable compared
with linear regression models. The covariate estimates of log-linear
models are multiplicative, where parameter estimates in regression
models are additive.

Different forms of Poisson and negative binomial (NB) models
have been used for frequency modeling (Washington et al. 2010).
The equal mean and variance property is a prerequisite of applying
the Poisson model to any frequency dataset. The NB model is suit-
able for frequency data, which exhibits the assumption of unequal
mean and variance (known as overdispersion or underdispersion of
frequency data). One typical characteristic of crash frequency data
is the excessive zero occurrences of crash frequency, which over-
represents zeros in the standard NB model. Modeling frameworks
such as the zero-inflated, hurdle, and zero-inflated mixed effect
models are specifically developed to address the “excessive zeroes”
issue in frequency data. For example, Yang et al. (2016) applied the
zero-inflated negative binomial (ZINB) model to estimate transit
trip frequency (Yang et al. 2016). Unlike Poisson and NB models,
hurdle and zero-inflated models assume crashes as a phenomenon
following a dual-state process, and therefore model zero and non-
zero crash frequencies (therefore inferring a location is either safe
or unsafe, respectively) as different processes. The dual-state
assumption, particularly in ZINB for crash modeling, has been
criticized by researchers for lack of clear distinction between the
states (Lord et al. 2005, 2007). In their research, Lord et al. (2007)
presented a simple yet intuitive example to demonstrate this. For
example, assuming two adjacent segments have identical geometry,
their state is determined by highway geometry alone. In such a
case, if one segment is classified as unsafe, what makes it so? If
two different states are assumed, it would be more appropriate
to analyze them independently rather than together using a single
model (Lord et al. 2007). In the case of missing data, there is also a
possibility that the dual-state assumption will lead to erroneous in-
ferences, resulting in the classification of unsafe locations as safe.
As a result, the use of single, less complex models (Poisson and NB)
is often more suitable for crash modeling (Lord et al. 2007). There-
fore, in the current study, to model the occurrence of DWD crashes,
account for unobserved heterogeneity in the data, compare the rel-
ative fit of fixed versus mixed effects count models and select the
best model, both fixed and mixed effects models based on Poisson
and NB regression were employed. Goodness-of-fit measures were
used to compare models and select the best fit for the current DWD
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dataset. In the following subsections, a description of each of the
models’ formulations is discussed.

Poisson Model

According to the Poisson model, the probability of occurrence of a
certain frequency event (yi) with respect to the vector of covariates
(Xi) is expressed as

PðYi ¼ yijXiÞ ¼
e−λi × λyi

i

yi!
; yi ¼ 0; 1; 2; · · · · · · · · · ð1Þ

The distribution mean (λi) is a function of the covariate vector
and expressed as

EðyijXiÞ ¼ λi ¼ expðX 0
iβÞ ð2Þ

where Xi, X 0
i , and β = vector of independent variables, vector of

exogenous variables, and corresponding coefficient, respectively.

Poisson Mixed Effect Model

The Poisson model with fixed effects can be extended to incorpo-
rate random effects by estimating a coefficient for event yij (event
yi belonging to group j) and a random component uj for every
group j. The extended model capable of incorporating fixed and
random effects is called the Poisson mixed effect model. The
probability is expressed as

PðYij ¼ yijjXijÞ ¼
e−λij × λ

yij
ij

yij!
; yij ¼ 0; 1; 2; · · · · · · · · ·

ð3Þ
The distribution mean (λij) is a function of the covariate vector

and expressed as

EðyijjXijÞ ¼ expðX 0
ijβ þ ujÞ ð4Þ

where Xi, X 0
ij, β, and uj = vector of independent variables, vector

of exogenous variables, corresponding coefficient, and the random
effect component, which is normally distributed with zero mean,
respectively.

NB Model

According to the NB model, the probability of occurrence of a cer-
tain frequency event (yi) depends on the mean (λ) and parameter of
dispersion (θ > 0), and is expressed as

PðY ¼ yjλ; θÞ ¼
�

θ
θþ λ

�
θ
×

Γðθþ yÞ
Γðyþ 1ÞΓðθÞ ×

�
λ

θþ λ

�
y

ð5Þ

where the gamma function (Γ) is defined as

ΓðtÞ ¼
�R∞

X¼0 X
t−1e−Xdx for positive noninteger t

ðt − 1Þ! for positive integer t
ð6Þ

where vðλþ λ2=θÞ; θ, and λ are the variance, over-dispersion
parameter and mean of the NB distribution, respectively.

NB Mixed Effect Model

Using the same notation for events and groups introduced earlier
for the Poisson models, the probability of occurrence of an event in
a group (yij) according to the NB model depends on the means (λij)
and the dispersion parameter θ, as follows:

PðY ¼ yijjλij; θÞ ¼
�

θ
θþ λij

�
θ
×

Γðθþ yijÞ
Γðyij þ 1ÞΓðθÞ ×

�
λij

θþ λij

�
yij

ð7Þ
The gamma function (Γ) is defined as identical to the fixed NB

model. The variance, overdispersion parameter, and means of the
distribution are vðλij þ λ2ij=θÞ; θ, and λij, respectively.

Data

In the current study, data on DWD crashes were collected from all
reported crashes in the State of Minnesota for the years between
2010 and 2015 (HSIS 2020). Table 1 presents the descriptive
statistics of all continuous and categorical independent variables
considered for modeling. A total of 2,787 DWD crashes were
observed during that period. The crash data were coupled with
additional features such as exposure and highway geometry to form
a complete database.

The dataset consists of 252,757 unique roadway segments for
the entire MN roadway system, which includes both zero and non-
zero DWD crash segments. The segments included different func-
tional classes, including principal arterials (including freeways and
expressways), minor arterials, collectors, and local system road-
ways. Some additional features were added to the dataset such
as distance to upstream and downstream junctions (i.e., merge/
diverge points). These limits were determined based on detailed
mileposts and junction descriptions for each segment as provided
in the dataset. These mileposts specify the beginning and end of a
roadway segment.

Model Results and Findings

This section presents a comparison of candidate DWD frequency
prediction models based on goodness-of-fit measures and marginal
effects of significant variables in the best-fit model.

Model Comparison

Four candidate count estimation models were considered in this
study to estimate the DWD crash frequency on MN roadway seg-
ments, namely, Poisson model [Model #1], Poisson mixed effect
model [Model #2], NB model [Model #3], and NB mixed effect
model [Model #4]. A performance comparison of these four mod-
els, including goodness-of-fit measures for each model, is pre-
sented in Table 2. Coefficients of all statistically significant
variables, including t-value of each variable (presented in parenthe-
sis of coefficient value) of each model are also listed in Table 2. The
goodness-of-fit measures, calculated to compare the performance
of all models, are log-likelihood (LL) values of the null model
(constants-only model with no covariates), LL of the converged
model (full model with all parameters), log-likelihood ratio (LR)
test statistic for each set of null/converged models, the Akaike in-
formation criterion (AIC), and the Bayesian information criterion
(BIC) for all models (Akaike 1987). It is expected that the mean and
variance are equal to apply the Poisson model (Model #1) to any
count datasets for frequency estimation. Thus, statistical verifica-
tion of equal mean and variance is a prerequisite of applying the
Poisson model, and many count datasets might not exhibit this
characteristic. The NB model is used to address the frequent pres-
ence of overdispersion property in count data. NB is a generalized
form of Poisson’s model and includes an additional model param-
eter (θ) to account for overdispersion property.
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The signs and magnitude of variable coefficients for the models
and mixed models in Table 2 are similar, which indicates consis-
tency in the effects of the estimated variables, although some var-
iables were not statistically significant across all the models. For
example, the indicator variable for lane width = 12 ft was statisti-
cally significant only in the Poisson model. It is noteworthy that
indicator variables for the presence of median and divided road-
ways were correlated with a correlation coefficient of 0.8. There-
fore, only the indicator variable for divided roadways was included
in four models. Variables that were statistically significant in esti-
mating DWD crash frequencies for the four candidate models con-
sidered in this study include log of average annual daily traffic
(AADT), principal arterial, minor arterial, collector, number of
lanes, lane width, escape lanes, acceleration/deceleration lanes,
sidewalk, parallel parking, curb, left shoulder width, left shoulder
gravel, speed limit and divided. The AADT variable had a positive
relationship with DWD crash frequency in all models. The reason
for this relationship is that a higher number of vehicles on a road-
way increases the possibility of a higher number of distracted or
intoxicated drivers attempting improper maneuvers and resulting
in a DWD crash. Many studies found that AADT and crash fre-
quency have a positive relationship. For example, Ponnaluri (2016)
reported that a higher AADT value increased the odds of WWD
crashes. In addition to other geometric and traffic variables, a crash
frequency estimation model using crash data in Central Florida

found that AADT has the highest relative effect on the likelihood
of crash occurrence on a roadway segment (Abdel-Aty and Wang
2006). Number of lanes also has a positive effect on DWD crash
frequency, as more lanes generally carry higher traffic volume. A
positive relationship of AADT and the number of lanes with DWD
crash frequency suggests that transportation agencies should con-
sider further investigation for installing DWD-related countermeas-
ures at high-volume roadways with a higher number of lanes.
Potential countermeasures in this regard can be a combination
of signage and pavement markings that are more visible, use of
intelligent transportation systems, and geometric modifications
on ramps. For example, countermeasures such as the use of lowered
signs displaying “Wrong Way” or “Do Not Enter” and use more
visible pavements markings to delineate exit ramps, use of flashing
beacons with detectors to warn wrong-way drivers, and avoidance
of left side exit ramps have been adopted by agencies across the
country (Sandt et al. 2015).

Results from Poisson and NB models suggest that higher func-
tional class roadways were less likely to experience DWD crashes
than lower functional classes. While the higher functional class of
roadways (e.g., principal arterials) generally carries higher traffic
volume, fewer DWD events occur on higher functional class road-
way segments because of the high level of access control. Lane
width of 12 ft or less was found to negatively affect DWD crash
frequencies. The likely reason for this finding is that wider lanes

Table 1. Descriptive statistics of variables considered for modeling

Categorical variables

Variable Count % Variable Count %

Control-of-access Divided
None 248,369 98.26 Yes 16,471 6.52
Partial 2,789 1.10 No 236,286 93.48
Full 1,599 0.63 Curbed

Median Yes 66,351 26.25
Yes 15,210 6.02 No 186,406 73.75
No 237,547 93.98 Parking type

Left Shoulder type None 144,421 56.00
Paved 28,048 11.10 Diagonal 453 1.00
None 206,273 81.61 Mixed 400 1.00
Gravel 18,436 7.29 Parallel 107,483 42.00

Surface type Urban Municipality
Paved 151,643 60.00 Urban 107,015 42.34
Unpaved 101,114 40.00 Rural 145,742 57.66

Right shoulder type Lane width
Paved 30,351 12.01 <12 ft 78,259 30.96
None 203,762 80.62 =12 ft 108,152 42.79
Gravel 18,644 7.38 >12 ft 66,346 26.25

Additional lanes Functional class
Acceleration/Deceleration 484 1.00 Local 184,387 72.95
Escape 1,798 0.71 Collector 29,020 11.48
None 250,475 98.00 Principal arterial 17,971 7.11

Sidewalk Minor arterial 21,379 8.46
Yes 33,996 13.45
No 218,761 86.55

Continuous Variables

Variable Min. 1st Qu. Mean 3rd Qu. Max.

AADT 5.0 82.0 2,262.0 832.0 196,333.0
Log of AADT 0.7 2.0 2.6 2.9 5.3
Left shoulder width (ft) 0 0 1.7 3.0 29.0
Right shoulder width (ft) 0 0 2.0 3.0 29.0
Total number of lanes 2.0 2.0 2.2 2.0 10.0
Speed limit (mph) 10.0 30.0 40.1 55.0 70.0
Downstream junction (mi) 0 0 1.8 1.0 8.5
Upstream junction (mi) 0 0 3.3 7.3 10.2
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(e.g., two-lane roadways with extra lane width for roadside parking/
bike lane) encourage drivers to travel at higher than the assigned
segment speed limit when there are no/limited parked vehicles/
bike/pedestrian activities. The presence of acceleration lanes was
found to be associated with decreased DWD crash frequency, as
drivers are more careful at a merge junction (e.g., intersection, ramp)
accompanied by acceleration lanes. Additional lanes (e.g., accelera-
tion lane) on certain segments may contribute to narrower mainline
lanes due to possible right-of-way limitations, and therefore drivers
are more cautious and travel at lower speeds to stay within narrow
lanes. Furthermore, additional lanes are more likely to be on the right
side of the roadway, which reduces the chances of vehicles crossing a
median into opposing traffic—however, this may not be the case for
all segments, as additional lanes may also exist on the left sides of
some segments.

Divided highways negatively contribute to higher risks for
DWD crash frequencies. This finding is intuitive and is likely due
to the lower chances of distracted/intoxicated drivers crossing the
center lane/lines into opposing traffic. This finding is well sup-
ported by current highway design standards because medians and
barriers (e.g., cable barrier, raised or depressed median) are widely
used to separate opposing traffic, especially on high-speed road-
ways. Due to the associated higher costs of constructing rigid bar-
riers, medians, or limited right-of-way, lower functional class
roadways are usually undivided. Left gravel shoulder was found to
be associated with increased risks for higher DWD crash frequen-
cies. This result is intuitive, as gravel shoulders are typically not
striped, and especially if wide enough, can lead distracted drivers

to enter a gravel shoulder, either intentionally or unintentionally,
which ultimately can contribute to a cross-over DWD event.

These findings provide valuable information on safety-oriented
strategies that could be adopted to mitigate DWD. Since DWD is
less likely to occur on higher functional class roadways, safety
countermeasures can be allocated and prioritized on lower func-
tional class roadways. Similarly, locations and segments where
drivers are more confident driving at higher speeds could be pro-
vided with better signage and markings to avoid DWD behavior. As
acceleration lanes decrease the possibility of DWD, highway ramps
and exits can be prioritized to be on the right side. Our findings
suggest that clear demarcation of opposing lanes using markings
and medians can reduce DWD crashes. Because lower functional
class roadways typically are undivided highways and are also more
likely to experience DWD crashes, better signage and marking and
use of loop detectors and beacons in place of medians can alert
DWD drivers and potentially prevent crashes.

Model Validation and Measures-of-Fit

To validate the models, root mean squared error (RMSE) was cal-
culated between the predicted number of crashes and the observed
number of crashes. The calculated RMSE is presented in Table 3.
As the cumulative RMSE is often skewed by the prediction errors
across different observed counts, the table presents RMSE for
different counts observed in the highway segments (min ¼ 0,
max ¼ 8). The incorporation of mixed effects in both Poisson
and NB regression results in lower RMSE and, therefore, better
prediction. Among the mixed models 2 and 4, Model 2 fits better

Table 2. Model results

Variables
Poisson model
(Model 1)

Poisson mixed effect
model (Model 2) NB model (Model 3)

NB mixed effect
model (Model 4)

Count estimation
Intercept −11.21 (−61.19)*** −11.63 (−67.33)*** −11.43 (−59.14)*** −11.68 (−66.88)***
Log (AADT) 1.85 (33.11)*** 1.96 (40.25)*** 1.88 (32.05)*** 1.97 (39.58)***

Principal arterial 0.24 (2.54)* — 0.20 (2.01)* —
Minor arterial 0.66 (8.48) *** 0.46 (7.06)*** 0.61 (7.42)*** 0.45 (7.03)***

Collector 0.65 (9.15)*** 0.49 (7.64)*** 0.63 (8.42)*** 0.49 (7.63)***

Number of lanes 0.18 (9.36)*** 0.14 (5.15)*** 0.19 (8.06)*** 0.14 (5.15)***

Lane width <12 ft −0.17 (−1.86)**** — — —
Lane width ¼ 12 ft −0.10 (−2.13)* — — —
Escape lanes −1.01 (−5.26)*** −1.07 (−4.21)*** −1.03 (−5.18)*** −1.11 (−4.31)***
Acceleration lanes −0.76 (−2.72)** −0.67 (−2.09)* −0.74 (−2.55)* −0.70 (−2.15)*
Sidewalk 0.44 (8.89)*** 0.40 (7.79)*** 0.44 (8.37)*** 0.41 (7.57)***

Left shoulder gravel 0.38 (5.62)*** 0.37 (5.28)*** 0.38 (5.23)*** 0.37 (5.06)***

Speed limit (mph) 0.004 (2.30)* 0.009 (4.65)*** 0.006 (2.78)** 0.010 (4.73)***

Divided −1.38 (−20.13)*** −1.27 (−16.60)*** −1.40 (−18.57)*** −1.29 (−15.86)***
Log (θ) — — 0.33 (11.22)*** 0.51 (10.21)***

Random parameters
Log (AADT) — 0.186 — —
Minor arterial — 0.464 — 0.359
Collector — 0.710 — 0.539
Number of lanes — 0.156 — 0.135
Escape lanes — 1.069 — 1.037
Acceleration lanes — 0.867 — 0.754

Measures-of-fit
Degrees of freedom 14 17 13 17
LL (null model) −15,572.73 −14,240.99 −15,572.73 −14,055.6
LL (converged model) −12,599.35 −12,472.54 −12,413.78 −12,361.50
LR stat (null/converged) 5,946.71 3,536.93 5,162.89 3,388.22
AIC 25,227 24,979 24,854 24,757
BIC 25,373 25,156 24,989 24,935

Note: Significant levels: *0.05, **0.01, ***0.001, and ****0.1.

© ASCE 04022047-6 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2022, 148(8): 04022047 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
em

ph
is

, U
ni

ve
rs

ity
 o

f o
n 

09
/0

8/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



for larger DWD crash counts as suggested by a smaller value of
RMSE for DWD counts greater than 0. On the contrary, Model 4
fits 0 counts (no crash occurrences) better.

The calculated goodness-of-fit measures for four candidate
DWD crash frequency models include LL of the null and converged
models, LR test statistics (null/converged), AIC, and BIC values for
all models. Additionally, adding more variables could increase the
goodness-of-fit, and could result in an overfitted model. The AIC
and BIC measures control for the model’s overfitting by introduc-
ing a penalty term in their calculation (Akaike 1987; Schwarz
1978). The lowest BIC value model is the best-fit model consid-
ering the overfitting issue. Based on the goodness-of-fit values pre-
sented in Table 2, the NB mixed effect model has the lowest AIC
and BIC values (24,757 and 24,935, respectively) and therefore
outperformed all other proposed models. In the following subsec-
tion, the elasticity effects of significant variables in the NB mixed
effect model are discussed.

Marginal Effects of Significant Variables

Table 4 summarizes the elasticity values of statistically significant
independent variables of the NB mixed effect model. The 95% con-
fidence interval for the elasticities is also provided in parentheses.
Elasticity values explain the contribution of independent variables
on the outcomes of the dependent variable. In the context of this
research, the marginal effect represents the unit change (increase/
decrease) in DWD crash frequency due to the unit change (increase/
decrease) of an independent variable (e.g., AADT) in its corre-
sponding measuring unit. For example, the marginal effect of
AADT indicated that a unit increase in the value of the log of
AADT increased DWD crash frequency by about 1.96, which is
the highest value among all independent variables.

Similarly, with a unit increase in the number of lanes, DWD
crash frequency increased by 0.143. The effect of speed limit on
crashes was negligible compared with other predictors. This was
expected because its coefficient in the ZINB model was also small.
To be specific, there was only about 0.01 increase in DWD crashes
with a unit increase in the posted speed limit. In the case of indi-
cator variables, the elasticity is interpreted in terms of the base cat-
egory. For example, the frequency of DWD crashes increased by
0.448 on minor arterials compared with other roadways. The in-
crease in DWD on collector roads was approximately 0.5 compared
with other roads. On roadway segments with escape and acceler-
ation, however, DWD crashes decreased by about 1.12 and 0.7,
respectively. Similarly, the presence of sidewalks on roadway seg-
ments, which, as previously mentioned, indicates lower functional
class roadways, increases DWD crashes by 0.413. The frequency of
DWD crashes increased by 0.375 on roadway segments with a
graveled left shoulder. Similarly, on divided highways, the frequency
of DWD crashes decreased by 1.292 compared with nondivided
highways.

Conclusions

Transportation agencies have considered WWD events a major
safety issue because these events are associated with higher fatality
rates and higher injury severity levels than other crash types. WWD
has been defined by FHWA as well as in the safety literature as a
vehicle entering the opposing direction of the legal flow of traffic
exclusively on high-speed roadways (i.e., freeways) and ramps.
Screening of crash data in Minnesota revealed that crashes while
driving in the wrong direction (DWD) occurred on all roadway
functional classes. Therefore, the current study adopted the new
term, with the acronym DWD, to refer to those events taking place
on any roadway functional class, while preserving FHWA’s defini-
tion of WWD events. While several studies investigated WWD
crash severity and developed crash severity models, none of the
studies developed DWD crash frequency models to determine
high-risk roadway segments for such types of crashes. The contri-
butions of this research are (1) introduction of a new acronym,
DWD, to the literature while preservingWWD as defined by FHWA,
(2) determination of the applicability of different count data models
for DWD crash frequency estimation, and (3) identification of sig-
nificant crash contributing factors, and the relative effect of each con-
tributing factor on DWD crash frequency outcomes for different
roadway segments. In this study, four frequency estimation models
were proposed: Poisson model, Poisson mixed effects model, neg-
ative binomial (NB) model, and NB mixed effect model. Based on
four goodness-of-fit measures (i.e., log-likelihood values, LR tests,
AIC, and BIC), the NB mixed effect model was found to best fit the
current DWD dataset. It was found that AADT, number of lanes,
presence of sidewalk, left-side gravel shoulder, and speed limit
had positive effects on DWD crash frequencies. Factors that had
a negative effect on DWD frequencies included presence of escape
lanes, presence of acceleration/deceleration lanes, and divided road-
ways. Elasticity values of significant independent variables of the
NBmixed effect model indicated that AADT had the highest positive
effects. Variables with the highest negative effects on segment risks
for DWD crashes included the presence of escape lanes and divided
roadways. Transportation agencies can use these findings in terms of
significant contributing factors and their relative effects on DWD
crash frequency to identify roadway segments of different roadway
functional classes with high DWD crash risk, and to deploy appro-
priate countermeasures at such locations accordingly.

Table 4. Marginal effects of NB mixed effect model

Variables Marginal effects

Log (AADT) 1.961 [1.871, 2.066]
Minor arteriala 0.448 [0.322, 0.573]
Collectora 0.498 [0.370, 0.625]
Number of lanes 0.143 [0.088, 0.200]
Escape lanesa −1.115 [−1.622, −0.608]
Acceleration lanesa −0.698 [−1.325, −0.071]
Sidewalka 0.413 [0.306, 0.519]
Left shoulder gravela 0.375 [0.230, 0.519]
Speed limit (mph) 0.010 [0.006, 0.014]
Divideda −1.292 [−1.452, −1.133]
aIndicator variables.

Table 3. RMSE for model predictions

DWD counts

Poisson
model

(Model 1)

Poisson mixed
effect model
(Model 2)

NB model
(Model 3)

NB mixed
effect model
(Model 4)

0 0.0798 0.0860 0.0804 0.0791
1 0.9497 0.9347 0.9495 0.9404
2 1.8996 1.8253 1.9010 1.8550
3 2.8936 2.7609 2.8906 2.8314
4 3.7608 3.2306 3.7742 3.4832
5 4.8325 4.4757 4.8302 4.6621
6 5.9613 5.8943 5.9606 5.9032
7 6.7899 4.9353 6.8108 6.1964
8 7.7680 6.6816 7.7765 7.3044
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Limitations and Future Study

The current study has a few notable limitations that can be inves-
tigated in future studies. First, our analysis did not consider the
influence of weather conditions, and relied solely on the effect
of highway geometry. DWD might be more likely to occur during
adverse weather or poor lighting conditions (e.g., during heavy rain
or in the absence of adequate lighting) when visibility is an issue.
Second, our dataset does not consider the underlying causes behind
DWD. Drivers under the influence, distracted, or inexperienced
may be more likely to be involved in a DWD event. If a consid-
erable share of DWDs is a result of these underlying causes rather
than driving error and geometry, it would be imperative to consider
them in the modeling process. Additionally, our models did not
include temporal and spatial correlation. The inclusion of these cor-
relations may provide better insight into DWD crashes. Future re-
search can also include a broader range of datasets that include
multistate DWD crash data to increase confidence that the study
results can be used nationwide. Additionally, WWD/DWD crashes
are considered rare compared with all other types of crashes. Future
research could use more combined years of DWD crash frequency
data to increase sample size and gain more in-depth insights into
the effects of the considered variables. Finally, utilizing interaction
terms between the different roadway geometric features will allow
even more in-depth insight into the effects of certain features, for
example, the interaction between the roadway division indicator
variable as a function of another variable such as speed or urban
municipality. Researchers can also account for temporal instability
in future studies.
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