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Abstract | After many years of development of the basic tools, quantum simulation with ultracold
atoms has now reached the level of maturity at which it can be used to investigate complex
quantum processes. Planning of new experiments and upgrading of existing set-ups requires
abroad overview of the available techniques, their specific advantages and limitations. This
Technical Review aims to provide a comprehensive compendium of the state of the art. We discuss
the basic principles, the available techniques and their current range of applications. Focusing
on the simulation of various phenomena in solid-state physics through optical lattice experiments,
we review their basics, the necessary techniques and the accessible physical parameters.

We outline how to control and use interactions with external potentials and interactions between
the atoms, and how to design new synthetic gauge fields and spin—orbit coupling. We discuss the
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Quantum simulation is an approach for studying quan-
tum systems experimentally by using other controllable
quantum many-body systems'. This is especially useful
when the system of interest is either experimentally
inaccessible or too difficult to simulate numerically.
Ultracold atomic gases have become a well-established
experimental platform for quantum simulation, owing to
the excellent controllability of the system parameters and
refined measurement techniques>’. Quantum simulation
with ultracold atoms in optical lattices, in particular, ben-
efits from a wealth of theoretical and experimental tools
and can be applied to many fields, ranging from con-
densed matter physics and statistical mechanics to high-
energy physics and astrophysics** (FIG. 1). The tunabil-
ity and controllability of the system parameters enables
access to phenomena or regimes unavailable in other
systems, such as the realization of the Bardeen-Cooper—
Schrieffer to Bose-Einstein condensate (BCS-BEC)
crossover or the generation of strong effective magnetic
fields through artificial gauge fields™.

In this Technical Review, we mainly focus on appli-
cation to solid-state physics whose models are natu-
rally realized with ultracold atoms in optical lattices
— even though at first glance the key parameters of
the systems differ at times by more than ten orders
of magnitude (TABLE 1) — and describe the tools used in
these experiments. Real solid-state materials have many
complex degrees of freedom, such as defects, impu-
rities and multiple energy bands. In some cases, how-
ever, the essential features of the system are captured

latest progress in site-resolved techniques that use quantum gas microscopes, and describe
the unique features of quantum simulation experiments with two-electron atomic species.

by a minimal theoretical model, an important exam-
ple being the single-band Fermi-Hubbard model for
high-critical-temperature (high-T)) cuprate supercon-
ductors. It is especially important to explore the under-
doped region of the Fermi-Hubbard model where the
origin of high-temperature cuprate superconductors
could be discovered”'. Numerical simulation methods
are not powerful enough to simulate the Fermi-Hubbard
model away from half-filling'"'"* (BOX 1). In a quantum
simulation approach, experiments using ultracold
atoms in an optical lattice are performed to simulate
the Fermi-Hubbard model itself, instead of the complex
real solid-state materials.

This Technical Review provides an accessible source
of technical references especially targeted at newcomers
to the field of experimental quantum simulation with
ultracold atoms. The article is structured into six main
topics, each covering a particularly important main aspect
of ultracold atom experiments towards quantum sim-
ulation (optical lattice basics and techniques; control
of interatomic interactions; engineered perturbations;
high-resolution imaging; synthetic gauge fields and
spin-orbit coupling; and two-electron atoms). We break
down each topic into the individual techniques, describe
the methods involved and offer exemplary applications.

As we focus on quantum simulations using optical lat-
tices, we omit, or mention only briefly, many other impor-
tant topics, such as the BCS-BEC crossover; the physics
of universal few-body bound states; experiments in box
potentials; atom-ion hybrid systems; BECs of photons,
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Key points

e Quantum simulation with ultracold atomic gases in optical lattices can be used to
study condensed-matter quantum many-body systems, which are hard to simulate
with conventional computers.

* The control of interatomic interactions is key to successful quantum simulation,
and it can be implemented at short range and long range through various methods.

¢ Non-equilibrium phenomena can be studied by using controlled dissipation or lattice
perturbations.

* Quantum gas microscopes currently offer the most precise tool for the manipulation
and readout of optical lattice quantum simulators.

* The use of artificial gauge fields enables the simulation of charged particle physics;
furthermore, non-trivial effects are accessible through use of spin-orbit coupling,
topological lattices and synthetic dimensions.

* Going from alkaline-earth-metal to two-electron alkaline-earth-metal-like atoms
allows the study of SU(N) symmetrical systems.

polaritons or excitons; cavity-mediated interactions;
the physics of lower-dimensional systems; quantum
droplets and supersolids; quantum thermalization; quan-
tum transport in narrow wires; and other developments,
including spontaneous matter-wave emission.

Optical lattices

An optical lattice — a periodic potential formed by
interference of laser beams, with the lattice spacing of
the order of the laser wavelength — is a versatile tool
with which to perform quantum simulations (BOX 1).
Analogous to the lattice structure of solid-state systems,
an optical lattice imprints a well-defined structure on a
cloud of cold atoms and serves as the reference frame
to define interatomic interactions. The utility of such a
system for the study of, for example, the superfluid-to-
insulator phase transition was first recognized more
than 20 years ago”. In this section, starting from the
well-established procedure for preparing cold atoms
in an optical lattice, we review how to emulate differ-
ent systems (Hubbard, Heisenberg and Ising models)
in optical lattices of various lattice geometries. We then
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Fig. 1 | Quantum simulation tools and applications. Quantum simulation with optical
lattices encompasses diverse fields that serve as tools, target applications or both.

A clear distinction is often neither possible nor desirable. We give here an overview of
the general fields and how, although all interconnected, they can be seen as tools to (red)
and applications of (blue) quantum simulation approaches, with many topics positioned
in between these classifications. This Technical Review focuses on applications towards
condensed matter physics and related fields (outlined in yellow).

discuss how the flexibility of cold atom systems allows us
to perform ‘protocols’ — that is, sequences of combined
system controls and measurements — to gain access to
physical quantities otherwise difficult to obtain.

Optical lattice basics. After formation of an ultracold
atomic sample (see Supplementary Section 1 for a con-
cise review of the process), the atoms are loaded into
an optical lattice. Although periodic optical light fields
can be created using various methods (discussed briefly
below), we largely consider standing waves generated by
counterpropagating laser beams, which is still the most
important technique to the field. Depending on the laser
wavelength, the atoms in an optical lattice are trapped in
either the nodes or the antinodes by the optical dipole
force. Such a periodic potential produced by an optical
lattice gives rise to a series of Bloch bands (FIC. 2a). We
note that before transferring the atoms into an optical
lattice, it is possible to cool them in the harmonic trap to
sufficiently low temperatures such that only the lowest
Bloch band is naturally populated after adiabatic loading
of the atomic sample into the optical lattice. When the
lattice potential is sufficiently deep, the tight-binding
model", in which an atom is localized at each lattice site
and undergoes hopping between adjacent lattice sites, is
applicable. In this situation, the interaction energy at a
single site is much smaller than the energy gap between
the ground state and the first excited band. The system
can then be described by the Hubbard model, which
includes on-site interactions, tunnelling and external
confinement. At large enough on-site interactions, com-
pared with the tunnelling energy at unity filling, the
Hubbard model can be rewritten as spin Hamiltonians'’,
such as the Heisenberg or Ising models. Spin-spin
interactions in the Heisenberg model arise through
super-exchange interactions. Dipole-dipole interactions
(magnetic or electric) are caused by magnetic atoms or
polar molecules'>'®. Ising-type interactions are due to the
mapping between spin and density in the Bose—-Hubbard
model”'* (BOX 1).

Numerous many-body phases in solid-state systems
arise from the competition between the various energy
scales involved. The choice of the lattice geometry there-
fore has a crucial role in the design of a target quantum
system. First, the lattice dimensionality (one'’, two* or
three dimensions*) has a strong impact on the available
many-body phases and their phase transitions. In low
dimensions, quantum effects are generally enhanced by
strong quantum fluctuations; the 2D Fermi-Hubbard
model is a prominent example. Second, each lattice con-
figuration in real space leads to a unique energy band
structure (FIC. 2). In the excited P-band of a square lat-
tice, unconventional superfluidity is found®'. In the
Lieb lattice® (FIC. 2b), a dispersionless flat band appears,
in which interactions dominate over kinetic energy. In
the honeycomb lattice® (FIG. 2¢), which is analogous
to graphene, Dirac cones appear in the energy band,
and topological physics can be explored. Further spe-
cialized lattice types, such as triangular* (FIC. 2d) or
kagome-lattice systems” (FIC. 2¢), can exhibit geometric
frustration in their ground states, which, owing to strong
quantum fluctuations, can be highly entangled states.
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Table 1| Comparison between solid-state and optical lattice systems

Parameter

Spin

Mass

Lattice constant
Tunnelling rate/energy
Interactions

Density

Fermi temperature (T)

Temperature

Electrons in solids Fermionic atoms

1/2 1/2,3/2, ...

~10%kg 1079-10%kg

~0.5nm ~500nm
~10"*Hz/~10*K 100-1,000Hz/5-50 nK
Coulomb Van der Waals, on-site
~10%cm 10-10*cm™

~10*K ~100nK

~1K (~10°T,) ~10nK (~0.1T,)

Typical values of the key physical parameters are described for electrons in solid-state
systems and fermionic atoms in optical lattices.

Moreover, by trapping multiple atomic species or states,
species-selective potentials can be used to implement
state-dependent”** or mixed-dimensional lattices”~*, in
which ‘mediated interactions, for example, can be engi-
neered for realizing unconventional pairings. Even more
exotic lattices, such as quasi-crystals* and lattices within
optical cavities™ can also be realized to simulate unique
physical systems. Finally, optical superlattices have many
applications, from creating isolated double wells* to
exploring topological physics™.

The manipulation of the optical potential and the cre-
ation of optical lattices are not limited to standing waves
of light. Holographic methods using masks or spatial
light modulators®*, as well as diffractive optics using
digital micromirror devices (DMDs) or acousto-optic
deflectors, are also used to create and control optical
potentials*-*%. Furthermore, the above techniques can be
used to form arrays of single atoms contained in micro-
traps created by tightly focused laser beams, known as
optical tweezers. By combining non-destructive and
highly sensitive imaging methods with the targeted
movement of selected tweezers, defect-free atomic arrays
with spacings of only a few micrometres can be prepared
in one, two and three dimensions*****.

In general, the polarizabilities and energy shifts
induced by external light fields (namely the light or
a.c. Stark shifts) in two different atomic states are not
equal. Harnessing the light shift as a tool, it is possible
to create spin-dependent lattices wherein the vector
and tensor light shifts are dominant over the scalar
light shift. Conversely, in some situations, it is possible
to tune the trap or lattice lasers to a ‘magic wavelength’
at which the polarizabilities of both states become
equal, and thus the difference in the light shifts van-
ishes. In this situation, it becomes feasible to investigate
minute energy shifts, such as collisional shifts**~* and
smaller perturbations.

Controllable parameters. The fundamental parameters
of the Hubbard model“* (BOX 1), namely the hopping
matrix element (also often referred to as the hopping or
tunnelling amplitude) and on-site interaction strength,
can be precisely controlled experimentally. These param-
eters depend on the depth of the optical lattice potential,
and their ratio, in particular, is finely controllable by
changing the lattice depth. In addition to the ratio, the
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strength and sign of the on-site interactions can be con-
trolled through Feshbach resonances (discussed further
below). The hopping matrix elements can also be con-
trolled by lattice shaking methods*"*2. Although these
matrix elements are usually real numbers, it is possible
to induce complex hopping matrix elements, charac-
terized by Peierls phases, using lattice shaking® and
Raman-assisted tunnelling’ methods (discussed below).

The filling factor (that is, the number of particles
per lattice site) and temperature are also important
parameters and are controllable by adjusting the total
atom number and the initial entropy in a harmonic
trap before adiabatically ramping up the lattice depth.
As the laser beams forming the optical lattice usually
have a Gaussian profile, a weak, overall harmonic trap-
ping potential is superimposed on the lattice geometry.
This additional potential generally leads to unavoidable
inhomogeneities in the atom density. To overcome this
issue, laser light tuned to create repulsive potentials can
be used to create (quasi)uniform optical box traps™.
Recent developments in advanced light-shaping tech-
niques, such as DMDs and quantum gas microscopy
techniques, also enable this limitation to be overcome
for 1D and 2D gases.

Methods for diagnosing optical lattice systems. A rich set
of tools for probing an optical lattice system is available.
Of these, the time-of-flight (TOF) method is probably
the most widely used. In the framework of optical lat-
tice experiments, TOF images include information on
the atomic coherence over the lattice sites’. Pioneering
work revealed the superfluid-to-Mott-insulator quan-
tum phase transition of the Bose-Hubbard model by
observing the vanishing sharp interference peaks in TOF
images**. These images show the ‘real’ momentum dis-
tribution of trapped atoms. However, the kinetic energy
in periodic potentials is often discussed within the the-
ory of Bloch bands in terms of Bloch wavefunctions and
Brillouin zones, in which case, the quasi-momentum is
then the relevant physical quantity. Quasi-momentum
distributions of the atoms in multiple Bloch bands
can be measured by the ‘band-mapping’ method after
adiabatic ramp-down of the optical lattice followed by
TOF imaging™»”.

Various spectroscopic methods allow us to probe
the band structures and properties of interacting and
non-interacting atoms in an optical lattice. Band struc-
tures are often measured using two-photon A-type
excitations, whereby two light beams with frequencies
f, and f, with the associated wavenumbers k, and k,,
respectively, excite an atomic state with energy E and
quasi-momentum k to a state of energy E+ AE and quasi-
momentum k+ Ak, where AE=h(f, - f,) and Ak=k, - k,.
Spectroscopy on a transition within the same band is
often referred to as Bragg spectroscopy”*’. By con-
trast, lattice-modulation spectroscopy, which uses the
temporal modulation of the lattice potential depth,
can also excite the system between states with the
same quasi-momentum, that is, Ak=0, and is often
used to investigate higher Bloch-band structures. This
approach also allows the study of interactions, owing
to their impact on the excitation spectrum®. As first
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Box 1| The optical lattice toolbox

In its most common implementation, an optical lattice
is formed by interfering continuous-wave lasers.
Most simply, a laser beam with a wavelength A is retro-
reflected off a mirror, creating a 1D lattice potential,
Uix)=-U, sin?(2mtx / A) (where U, is the lattice potential
depth, and x is the position of the atoms), that is propor-
tional to the intensity of the laser standing wave. By super-
imposing 1D lattices in three orthogonal directions, a 3D
cubic optical lattice can be created. The periodic potential
for the atoms results in the introduction of band structures
for the atoms, similar to those of electrons in crystalline
materials.

Ultracold atoms trapped in a sufficiently deep lattice
potential are described by the Hubbard model (see panel a
of the figure). For fermionic atoms, the Hamiltonian is

T FF F
Heermi-Hubbard ==t 2. fioio U Ynpng + Y eni,
(ijho i Lo

where j‘i‘;(fi a) is the fermionic creation (annihilation)
operatof for spino={1,1}, nfa :)‘I,Lfiyt7 is the fermionic
number operator for g-spin at site i, t is the hopping
matrix element, U is the on-site interaction energy and
¢;is the site-dependent energy offset accounting for weak
confinement. i,j denotes nearest-neighbour sites. Here,
it is assumed that the atoms with spin-1/2 occupy a single
band of the lattice potential. The Hubbard model features
arich phase diagram, and the competition between
kinetic energy and interaction energy leads to quantum
phase transitions.

Similar to the case of fermionic atoms, the bosonic
counterpart is described by the Bose-Hubbard
Hamiltonian,

T B, B
HBose—Hubbard = -t (.Z): bi.abj,tr +U Z n; (ni -1)/2
i,j),0 i

B
+2 €Ny
i,o

where b, (b:) is the bosonic annihilation (creation) operator
andn® = b, is the number operator for bosons at site i.
As the interaction strength (U/t) is increased, the system
undergoes a quantum phase transition from the superfluid
to the Mott-insulator phase. The Gaussian shape of the
laser beams forming the optical lattice leads to an overall
harmonic confinement potential, which givesrise to a
wedding-cake-like structure of the density distribution

in the Mott-insulator phase.

demonstrated for an interacting ultracold Fermi gas
in a trap without a lattice® and recently extended to
the attractive Fermi-Hubbard model®, angle-resolved
photoemission spectroscopy (ARPES) can be used to
probe the pairing of fermions and, in particular, the
pseudo-gap, which is of great importance to the under-
standing of high-temperature superconductivity®. This
ARPES method has been enabled by combining four
basic steps: initial radio-frequency excitation of the
interacting system to a non-interacting excited state, fol-
lowed by band mapping of the quasi-momentum distri-
bution of the excited atoms. A quantum gas microscope
(discussed further below) is then used to measure the
site-resolved atom distribution after conversion of atom
momentum to position in real space using a harmonic

a Hubbard model
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In the limit of half-filling, where one spin-1/2 particle
per lattice site is found, and strong interactions (U/t > 1),
the Fermi-Hubbard model is reduced to the Heisenberg
model

HHeisenberg =J Z Si : Sj
(i)

ey,

Here,S;=(S/, S7, S{)is the spin operator and is the
nearest-neighbour coupling constant. The coupling is
antiferromagnetic for />0 and ferromagnetic for J <0.
The coupling arises from the super-exchange interaction
that is given by | = 4t?/U. The Bose—Hubbard model can
also be reduced to the anisotropic Heisenberg model®.

Another important spin model for quantum simulation
is the Ising model (see panel b of the figure),

HIsing =-llsing Z S}ZSJZ +j|sing Z (hXSlx - hZSIZ)
(i) i

where the first term describes the nearest-neighbour
interaction that depends only on the z-component of the
spin, and the second term describes the transverse and
longitudinal magnetic field. A Bose-Hubbard model with
a tilted potential can be used to emulate the Ising model,
wherein the occupation numbers are mapped to spins to
observe paramagnetic-to-antiferromagnetic quantum
phase transitions'’'%,

trap®. In a related approach, the use of Raman spectros-
copy has been proposed to obtain information on the
Fermi surface of strongly correlated states®.

The local density distribution is another useful
physical quantity for diagnosing optical lattice sys-
tems. The double occupancy in lattice sites is accessible
either by observing the two-body loss after molecular
creation® or by direct absorption imaging combined
with high-resolution radio-frequency spectroscopy®.
Multiple occupancies can also be revealed with
high-resolution spectroscopy using radio-frequency® or
optical clock transitions®. Recently, the internal energy
of the Bose-Hubbard model was measured by com-
bining TOF and site-occupancy measurements®. Last,
but not least, the development of single-site imaging
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techniques (‘quantum gas microscopes’) has provided
direct access to the in situ atom distribution™.

One of the advantages of a cold atom system is the
flexibility of combining several controls and measure-
ments: that is, it is possible to measure the system after
having performed some local operations. In the follow-
ing, we will refer to such sequences of operations and
measurements as measurement protocols. Although
many protocols have been proposed and demonstrated,
we highlight here just a few key examples. By apply-
ing a spin-dependent potential gradient just before a
TOF measurement, the spin components are separately
imaged (magnetic® or optical® Stern-Gerlach imaging).
For complex lattice geometries containing sublattices,
such as a double-well or a Lieb lattice (FIC. 2b), the occu-
pation numbers of each sublattice are also accessible
by prior conversion into band populations>*. The
spin correlations between nearest neighbours at unity
filling can be detected by exploiting a singlet-triplet
oscillation protocol®~"" (see Supplementary Section 2).

a  g=A22
>
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Experiments that were based on the Talbot effect and
combined in-trap atom expansion and thermaliza-
tion after rapid optical lattice ramp-up succeeded in
detecting non-local atom correlations and long-range
coherences’. Measurement protocols to assess the
Berry curvature and various related topological invar-
iants have also been experimentally realized*>”*. For
example, in a recently proposed and demonstrated
method, the excitation rate to higher Bloch bands by
amplitude modulation of a position-dependent exter-
nal potential, measured through a band-mapping tech-
nique, directly provided the real and imaginary parts
of a quantum geometric tensor’’. Operation sequences
are also applied for quantum state manipulation. For
example, the ‘square root of swap’ (VSWAP) gate can
be implemented by use of a spin-dependent optical
lattice”. Finally, in combination with quantum gas
microscopes and local operations, even more complex
protocols become feasible, such as the measurement of
the entanglement entropy.

Fig. 2 | Optical lattice geometries and Bloch band structures. a| Regular square lattice configuration in real space
(left) with the lattice spacing, a, being half the lattice laser wavelength, A. The periodic potential leads to Bloch bands®*
(middle), where k, =mt/ais the laser wavenumber. The matter-wave interference patterns formed by a Bose-Einstein
condensate after free expansion from a 3D cubic lattice reflects its momentum distribution® (right). b | Real-space lattice
structure (left) and energy bands (right) of a Lieb optical lattice, for which a flat band appears in the first excited level”’.
A, B and C denote the three sublattices. ¢ | Real-space honeycomb lattice (left). Dirac points appear in the band structure
(right). A and B denote the two sublattices’*. d | Triangular lattice in real space (left) and band structure with Dirac points
(right)?”’’. e | Real-space kagome-lattice configuration (left) and band structure (right) with emerging Dirac cones and
aflat band”*®. E, band energy; k, wavenumber of the wave packets. Panel a (centre) adapted from REF.**, Springer Nature
Limited. Panel a (right) adapted from REF.*, Springer Nature Limited. Panel b (right) adapted with permission from REF.%,
AAAS. Panel c (right) adapted from REF.%*%, Springer Nature Limited. Panel d (right) adapted with permission from REF.**/,

APS. Panel e (right) adapted with permission from REF.?*, APS.
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Controlled interatomic interactions

A non-interacting lattice system can be described by
single-particle eigenstates and calculated without fun-
damental difficulties. However, it is the interactions
between components of a quantum system that bring
the quantum simulator to life. It is useful to distin-
guish between short-range and long-range interactions,
such as the contact and the dipole-dipole interac-
tion. There are also interactions intrinsic to the system
under study and those that are dynamically controlled,
such as magnetic moments and Feshbach resonances.
In the following section, we highlight and compare
the most prominent techniques to create and control
atomic interactions of relevance for quantum simulation
applications.

Isotropic and short-range interactions. We consider here
the collision between two unbound atoms of an ultra-
cold gas. If the energy of this unbound scattering state
(called ‘entrance channel’ or ‘open channel’) approaches
the energy of a bound molecular state (‘closed channel’),
a Feshbach resonance occurs, and considerable mix-
ing between the entrance and the closed channels is
possible™. If the energy of the bound state is controlled in
the experiment, the strength of this isotropic interaction
itself becomes adjustable. Most importantly, differences
in magnetic moments of the open and closed channels
allow for magnetically tunable Feshbach resonances’
(FIG. 3a). This is the workhorse method for precisely con-
trolling interactions. However, the bound states are not
limited to those in the ground electronic states, and it is
possible to bridge the energy gap between the entrance

a Magnetic Feshbach b Optical Feshbach

ta ta,
oL \Y

channel and the bound state in the electronic excited
state by using laser light tuned near a photoassociation
resonance, leading to optical Feshbach resonances”-*'
(FIG. 3b). Even for two-electron atoms (alkaline-earth-
metal or alkaline-earth-metal-like atoms), for which
fully occupied outer shells with vanishing total elec-
tronic spin seem to oppose magnetic tunability, subtle
differences in the nuclear g-factor between the ground
and excited states open the possibility of magneti-
cally controlling interactions through orbital Feshbach
resonances®** in the case of extremely shallow binding
energies, as for '*Yb.

Tight confinement of atoms in optical lattices leads
to changes in the interaction dynamics of ultracold
gases®™ . In a 1D system, there are transversally excited
molecular bound states, and a confinement-induced res-
onance occurs when the 3D scattering length approaches
the length scale of the transversal confinement®-"'
(FIG. 30). This effect is not limited to single-species experi-
ments, and has also been demonstrated with two-species
experiments in mixed dimensions™.

The four approaches to manipulate the short-range
interactions (magnetic, orbital, optical and confinement-
induced) discussed here can all be treated consistently
in the Feshbach resonance framework. Magnetic con-
trol is most common and most readily achievable. In
cases when magnetic control is not possible, other types
of Feshbach resonance may offer a feasible approach.
Optical control allows for extremely fast switching as well
as submicrometre-scale control of the interactions, and
confinement effects offer control of interactions under
reduced dimensionalities.

¢ Confinement-induced
resonances

Coupling to bound
transverse mode

Entrance
channel

Entrance
channelin
continuum

Scattering length

1D coupling constant

Fig. 3 | Controlling atomic interactions using magnetic, optical and confinement-induced Feshbach resonances.

a| In amagnetic Feshbach resonance (top), the energy of a molecular bound state (red) is magnetically tuned to approach
the low energy of the entrance channel (blue). The Feshbach resonance can modify the scattering length (bottom) over many
orders of magnitude. b | In an optical Feshbach resonance (top), a similar modification of the scattering length (bottom) is
achieved by bridging the energy gap (A) between the entrance channel and the bound state with suitably tuned laser light
(red arrows). This can be achieved by using either a one-photon excitation scheme (left) or by driving a two-photon Raman
transition® (right). ¢ | A confinement-induced resonance of the 1D coupling constant occurs in a harmonic confinement
(transverse oscillator frequency w ) when the strength of confinement is tuned (horizontal green arrows) such that the
energy of the incident channel in the continuum matches (vertical green arrow) the energy of a transversally excited
bound state®. Panels a and b adapted courtesy of Johannes Hecker Denschlag, University of Ulm, Germany.
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Anisotropic and long-range interactions. The resonance
effects discussed above depend on the very close proxi-
mity of the scattering partners, leading to isotropic and
short-range interactions. The inclusion of electromag-
netic forces can lead to both long-range and anisotropic
interaction effects. A prime example is the magnetic
dipole-dipole interaction, which causes strong ani-
sotropies in the interactions. These are particularly
enhanced in atomic species with very large magnetic
moments, such as Cr (REF.’%), Dy (REF.*), Er (REF”) and
Ho (REF). Combined with the technique of Feshbach
resonances, the relative strength of the isotropic, short-
range interactions and the dipole-dipole interactions
can be controlled”. In contrast to magnetic dipole
moments, polar molecules comprising different atomic
species””® exhibit electric dipole moments, providing
another approach towards anisotropic interactions.
Two methods are pursued to generate cold polar mole-
cules. Either the polar molecules are formed from laser-
cooled cold atoms”-'%%, or molecules are first created and
then laser-cooled to the required low temperatures'®-'%.
By combining molecule association from ultracold
atomic samples and further cooling techniques, it has
even been possible to realize quantum-degenerate polar
molecules'™.

Another important example is the electrostatic,
long-range interaction provided by Rydberg atoms'”,
which could pave the way to a Rydberg-based quantum
computing infrastructure'®'*” and to several quantum
simulation applications of the spin Hamiltonian'"’, such
as realizing the Ising model'"'"'"°. As building blocks,
Rydberg blockade''*'"’, Rydberg dressing of ground-state
atoms through off-resonant laser coupling'*® and dipole
spin-exchange interactions''” have been realized. Trapp-
ing of Rydberg atoms by the ponderomotive force in
lattice potentials'”’ and in blue-detuned hollow traps'*!
allows for high-fidelity control in future experiments
using long-lived circular Rydberg atoms'*>'*. Finally,
Rydberg states of two-electron atoms could offer further
unique possibilities as they have an atomic structure that
is different from that of alkali atoms'*".

Controlled perturbations

In perturbing a quantum system, a changeover from a
closed, equilibrated system to an open or non-equilibrium
system is made possible. Controlled perturbations there-
fore broaden the range of accessible quantum simula-
tion targets to go beyond equilibrium properties in the
ground state. In this section, we focus on experimental
methods to introduce perturbations through coupling to
external degrees of freedom (dissipation) and through
disordered potentials. Some possibilities offered by
time-periodic modulations are discussed in a later sec-
tion. Additionally, we examine here how sudden changes
of the system parameters (a quench) may be realized to
create and study out-of-equilibrium situations.

Dissipation. Although the previous section focused on
elastic collisions, in the context of dissipation, inelas-
tic collisions have an important role. The dissipation
process can be classified on a microscopic level by the
number of particles involved. One-body dissipation
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can be easily introduced by background-gas collisions
in an uncontrollable way, whereas highly effective and
controllable one-body dissipation is possible with near-
resonant light, leading to heating by photon scattering
events'”. In a different approach, very localized dissipa-
tion, limited in its effects to just a single optical lattice
site, has been achieved using tight electron beams'*.
When more than one particle is involved, the dissipation
is governed by the collisional physics between atoms'*’.
In this case, instead of driving transitions between
two states of a single atom, dissipative coupling of two
atoms in a photoassociation experiment to short-lived
or untrapped molecular states is possible'**. A controlled
three-body dissipation has been demonstrated by tuning
the scattering length to large negative values through a
Feshbach resonance'”. Inelastic processes are often det-
rimental to the long coherence times necessary for quan-
tum simulation and computing applications. However,
inelastic processes can also give rise to new effects that
can be exploited as tools'.

An example is the ‘watched-pot-never-boils’ quan-
tum Zeno effect’”’. This effect has been experimentally
studied in static optical lattice systems'**'*, wherein
decay from a single state is suppressed. Moreover, in
the absence of optical lattices, this effect has also been
studied on whole subspaces'**'**, within which, in the
theoretical framework of quantum Zeno dynamics'*,
the wavefunction is free to evolve within only a part
of the possible space of states. Theoretical studies have
demonstrated that engineered dissipation can pro-
tect a system from decoherence caused by otherwise
uncontrollable dissipative effects'*.

Dissipation control therefore makes it possible to
switch from exploring the standard Hubbard model
(BOX 1) to dissipative lattice systems for both bosons and
fermions. Two-body dissipation, for example, has been
used in experiments as a tool to suppress the growth
of phase coherence and to stabilize the Mott-insulator
state in a dissipative Bose-Hubbard model'** and in a
dissipative Fermi-Hubbard model'”” in which a highly
entangled Dicke state was created. Such dissipative
Hubbard models are also predicted to lead to a dynam-
ical change of the spin correlation'**. Anomalous, sub-
diffusive momentum broadening due to dissipation
has also been observed'*. Considering a weak dissi-
pative perturbation, a non-Hermitian version of the
linear-response relation has recently been proposed'*’.
A spatially dependent dissipation with a /2 phase dif-
ference to the optical lattice potential can realize an
interesting type of non-Hermitian Hamiltonian with
parity and time-reversal symmetry, which is predicted
to exhibit novel behaviour'*'.

Disorder potentials. In contrast to the predominantly
temporal perturbation caused by dissipation, spatial
perturbation owing to non-periodic potential landscapes
enables the quantum simulation of disordered matter.
A well-established route to disordered potentials is
through optical potentials (FIC. 4). In its most basic sense,
speckle patterns focused down to the very small length
scales of optical lattice experiments provide access to
the disordered regime'* (FIC. 4a). Quasi-periodic optical
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Fig. 4| Controlled perturbations through disorder. a | In the absence of a periodic optical lattice, a random pattern
of speckles imprints a random light-intensity landscape** that randomly fluctuates about a mean value, |, onto the
atoms. b | In a superposition of a strong optical lattice (in this case, with a lattice constant of 516 nm) and a weaker
optical lattice (in this case, with a lattice constant of 431 nm), a quasi-periodic potential is realized. The hopping
energy, J, varies site-to-site (where x is the position) and the maximum shift of the on-site energy is 24 (REF.'*%).

c| A bosonic superfluid in an optical lattice (red) is perturbed owing to localized impurities (blue) that introduce local,
effective potential shifts U, (REF.**). d | Anderson localization observed in a speckle pattern experiment. Ina 1D trap
(red), the speckle pattern (blue) is projected onto a small Bose-Einstein condensate wave packet that is also kept in
an additional harmonic confinement (grey) (left). Upon release from the small trap, the cloud expands and eventually
localizes owing to the disorder potential (right)*. Panel a adapted with permission from REF.**%, © IOP Publishing and
Deutsche Physikalische Gesellschaft. Reproduced by permission of IOP Publishing. CC BY-NC-SA. Panel b adapted
from REF.'*, Springer Nature Limited. Panel c adapted with permission from REF.**, APS. Panel d adapted from REF.'*/,

Springer Nature Limited.

lattices (FIG. 4b), superpositions of optical lattices at
incommensurable lattice spacings, allow a degree of con-
trol of the disorder to be regained and have proved to
be equally effective'*’. In a different approach, disorder
is introduced by adding a minority population acting
as impurities to the majority species (FIC. 4¢). Beyond
changes in the local energy landscape, inter-species
atom-atom collisions have demonstrated the impact
of small impurity admixtures on fundamental pheno-
mena, such as the transition from superfluid to Mott
insulator'*’. All three approaches — random speckles,
quasi-periodic potentials and atomic impurities — have
been instrumental to studies of Anderson localization
phenomena'*>'*>'* (FIC. 4d). In the presence of intera-
tomic interactions and dissipation, many-body localized
states can form that, although still far from equilibrium,
cannot thermalize and thus remain insulating, even at
non-zero temperatures' >,

Out-of-equilibrium dynamics. The accessible physics
is broadened beyond steady-state properties by time-
dependent changes of the system Hamiltonian. If these
changes or perturbations of the system are performed
very quickly with respect to the other relevant times-
cales, it is referred to as a quench. These quenches drive
the atomic system out of equilibrium and provide access

to the physics of the time dynamics in ultracold atom
systems'*. In an optical lattice set-up, for example, the
lattice depth can be changed either nearly instantane-
ously or by a continuous, but still fast, sweep across a
phase transition. In the latter case, the speed of variation
is an additional parameter of the experiment. In both
scenarios, non-equilibrium dynamics can be studied.
Changing the lattice depth from the deep Mott-
insulator regime (BOX 1) to the shallow superfluid gives
access to the phase coherence dynamics of the system'*.
Thus, in extension to the Kibble-Zurek mechanism of
quenches across classical phase transitions'”’, the forma-
tion of excitations after entering the superfluid state'’
and the build-up of the coherence lengths'** can be
assessed. Limits on the propagation speed of correlation
information, which are important for understanding a
quantum many-body system, have also been obtained
in quenched lattice experiments with a quantum gas
microscope'”. Other experiments demonstrated inhib-
ited ballistic expansion of bosons in systems with reduced
integrability'**. Moreover, for fermionic quantum gases,
the out-of-equilibrium dynamics after suddenly turn-
ing off a weak initial harmonic confinement has been
investigated. A transition from ballistic expansion for a
non-interacting quantum gas to diffusive expansion for
an interacting system has been observed'*. Studies of the
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mass transport in a two-component, 1D Fermi gas after
a sudden release from an optical lattice with a harmonic
trap potential along the 1D direction into a homoge-
neous lattice revealed phase separation between fast sin-
glons and slow doublons'****’. This ‘quantum distillation’
could serve to dynamically create low-entropy regions in
alattice. In a different approach, using fast magnetic-field
control and suitable Feshbach resonances, quenches of
the scattering length are possible. In one such experi-
ment, fast density fluctuations in a 2D BEC of Cs atoms
was observed'*.

Quantum gas microscope

An important feature of ultracold atom experiments is
the capability of very precise manipulation and high-
sensitivity detection. Quantum gas microscopes™'*’ ena-
ble us to observe and control atoms in optical lattices
with single-atom sensitivity and single-site resolution.
In this section, we describe several tools necessary for
quantum gas microscopy experiments and examples of
their applications.

Key technologies of quantum gas microscopes. In
Hubbard-regime optical lattice systems, the lattice peri-
ods need to be short to obtain a sufficiently large hop-
ping matrix element between adjacent lattice sites. This
poses formidable challenges to the experimental set-up
and the required imaging optics (see Supplementary
Section 3). In addition to the choice of imaging optics,
the imaging method also requires careful consideration.
Available imaging techniques include standard absorp-
tion imaging, fluorescence imaging (FIC. 5a) and Faraday
imaging. The latter two, in particular, merit closer exam-
ination. Although high-resolution absorption imaging
has been developed for the detection of local properties,
such as density or incompressibility'®, single-atom
sensitivity and single-site resolution are still difficult to
achieve owing to limited scattering cross-sections and
heating by photon scattering. Fluorescence imaging,
as a highly sensitive and background-free method, could
make it possible to obtain a sufficiently strong signal
from a single atom. However, fluorescence imaging inev-
itably leads to destruction of the quantum state by recoil
heating. In that respect, off-resonant Faraday imaging
offers the possibility of minimally destructive detection,
although squeezed light might be necessary to overcome
limitations in the signal-to-noise ratio'®".

To deal with heating due to photon scattering, sev-
eral cooling schemes are used (FIC. 5b—e). Molasses cool-
ing is a standard technique for Rb atoms, which have
well-separated hyperfine states in the excited state™'*.
For Li and K atoms, electromagnetically induced trans-
parency cooling'*>'® or Raman sideband cooling tech-
niques have been used'®~'*°. A combination of molasses
cooling and sideband cooling on a narrow-line transition
has been demonstrated for Yb atoms'®’. Even without
cooling, an extremely deep optical lattice potential for
the excited electronic state of the optical probing tran-
sition makes it possible to obtain enough fluorescence
photons before the sample is heated up'*® (FIG. 5.

Drawbacks of early versions of quantum gas micro-
scopes are parity projection and insensitivity to spin
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components (that is, hyperfine states): if there is more
than one atom per site, then pairwise atom loss occurs
owing to light-assisted collisions caused by the near-
resonant imaging light. Therefore, the observed quan-
tity is the parity of the atom occupation in each lattice
site and not the exact on-site atom number. The cool-
ing beam also mixes up the hyperfine states during
the many absorption cycles necessary for a sufficiently
large fluorescence signal. A straightforward solution
to achieve spin-selective detection is to apply a spin-
selective removal procedure before fluorescence imag-
ing. By spatially separating different spin components
or atoms before fluorescence imaging, more advanced
spin-resolved or atom-number-sensitive measurements
have been realized'®-'"".

By illuminating the sample through a high-resolution
imaging system with a Gaussian-shaped laser beam,
control of a quantum gas on the single-atom and
single-site level has been successfully demonstrated'””.
More complex patterns of light, and therefore nearly
arbitrary potentials, can be projected onto the atoms
with the help of a spatial light modulator, such as a
DMD"*2. Operation of a spatial light modulator in the
Fourier plane allows one to correct aberrations in
high-resolution imaging systems and thus to obtain
ultra-precise light patterns'”?, while the direct imaging
configuration offers advantages in terms of experimental
and numerical simplicity.

Applications. Quantum gas microscopes provide a
snapshot of a quantum many-body system, from which
it is possible to extract correlations between atoms as
well as their spatial distribution. Direct probing of the
Mott-insulating state has been demonstrated for both
bosonic’""** and fermionic'’*'”> atoms. Particle-hole
pairs, which stem from quantum fluctuations, have
been measured in the Mott-insulating state with finite
tunnelling'’®. Antiferromagnetic correlations'”"777¢
and ordering'” have been observed in Fermi-Hubbard
systems, a milestone in acquiring new insight into
high-T, cuprate superconductors. String orders (that is,
non-local correlations) are accessible!’® and have been
used to reveal hidden antiferromagnetic correlations'®’.
Quantum entanglement, which lies at the heart of quan-
tum information processing, also characterizes the
quantum phases and dynamics of many-body systems'®'.
Growth and propagation of entanglement have been
measured in a 1D spin chain'®. Entanglement entropy
has been probed using the interference of two copies of a
many-body state'*. Single-site and single-atom address-
ing techniques can be used to prepare specific initial
states for investigating quantum walks of atoms'’>'** or
spin-wave propagations’>'**. Non-equilibrium dynamics
in isolated quantum systems is among the most fun-
damental problems in statistical physics, and in this
direction, several intriguing phenomena have been
observed, such as quantum thermalization'® and many-
body localization'*. Cooling in optical lattices is a cen-
tral issue in quantum simulations with optical lattice
systems. Entropy redistribution, which is one possible
candidate to overcome the issue, has been demonstrated
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by locally manipulating the optical potential"’
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Fig. 5 | Quantum gas microscope imaging and cooling methods. In additionto a
high-numerical-aperture (NA) lens, cooling schemes are important to obtain a sufficient
number of photons. a| Fluorescence photons (wiggly arrows) from individual atoms in
an optical lattice are first collected by a high-NA lens and then imaged on the camera’.
The inset shows the raw-data fluorescence image of a weakly interacting Bose-Einstein
condensate in an optical lattice. Panels b—f show the cooling schemes, restrictions of
laser beam configurations (if any) and atomic species for which each cooling method
has been demonstrated for achieving site-resolved imaging. b | Molasses cooling.

The polarizations of the counterpropagating beams are orthogonal (two mutually
orthogonal linear polarizations or right- and left-handed (0"—0") circular polarizations).
For alkali-metal atoms, which have magnetic substates in the ground state, polarization
gradient cooling is the main cooling mechanism. ¢ | Electromagnetically induced
transparency (EIT) cooling. A strong coupling beam (C) creates a narrow dressed state,
which is driven by the probe beam (P). d | Raman sideband cooling. The Raman coupling,
consisting of pump (P) and Stokes (S) beams, lowers the vibrational level. The repump
beam (RP) prevents the reverse process. An additional repump beam (not shown) is
necessary for salvaging atoms from the dark state. For both EIT cooling and Raman
sideband cooling, no cooling occurs along the axis perpendicular to the momentum
transfer, Ak (where k;, k. and k, are the momenta of the pump, coupling and Stokes laser
beams, respectively). e | Sideband cooling. A narrow optical transition, which exists in
alkaline-earth(-like)-metal atoms, such as Yb atoms, makes it possible to resolve the
vibrational-level structure and to drive the sideband transition. During detection,

a stronger transition can be used in a molasses configuration to obtain a sufficient
number of scattered photons while suppressing heating. f| No cooling. The lattice
confinement for the excited state is so strong that the heating transition is suppressed.
Panel a (inset) adapted from REF?, Springer Nature Limited.

Synthetic gauge fields

Many fascinating phenomena in solids'® that arise from
the interaction of electrons with electromagnetic fields and
spin—orbit coupling cannot be simulated directly, owing
to the charge neutrality of atoms. However, in the past
decade, several advances have been made to artificially
engineer such effects. In the following, we introduce tools
to implement artificial gauge fields, spin-orbit coupling

and topologically non-trivial bands'® in optical lattices.

Artificial magnetic fields and topological lattices. The
basic idea of emulating a charged particle in a vector
potential field leads back to the Aharonov-Bohm effect.
When a charged particle moves around a solenoid, the
particle acquires a phase proportional to the magnetic
flux that penetrates the closed trace. This effect can
be mimicked by the geometric phase acquisition of a
quantum state. When atomic internal states are cou-
pled with Raman lasers, laser-dressed atoms in a non-
uniform magnetic field can acquire Berry phases owing
to the underlying Berry gauge field'". This technique,
which was originally realized in BECs, has also been
applied to observe a Peierls phase in a lattice potential®*.
Alternatively, a Raman-assisted tunnelling technique
that couples neighbouring lattice sites by resonant
Raman transitions is also accompanied by a Peierls
phase acquisition. This method does not require atomic
internal degrees of freedom but needs site-dependent
energy offsets, created either by magnetic field gradients
or by superlattice potentials to suppress the bare tunnel-
ling and to resolve the tunnelling resonance. The atoms
moving around a plaquette, the smallest closed loop
for the atoms in the lattice, can acquire a non-zero tun-
nelling phase that mimics the Aharonov-Bohm phase
acquired around a plaquette with non-zero magnetic
flux. This technique was used to realize staggered'’' and
strong uniform magnetic fields'**-**. The latter was then
used to realize the topological Hofstadter model with a
non-zero Chern number, measured using the centre-of-
mass motion induced by the anomalous Hall response”.
An artificial gauge field can be engineered not only with
a Raman laser, but also by periodically modulating the
phase of the lattice potential off-resonantly with respect
to the bandgap or the on-site interaction energies. This
rapid shaking of the lattice induces an inertial force on
the atoms with respect to the lattice frame. In the frame-
work of Floquet theory, the fast modulation is averaged
out, and a Floquet-Bloch band describes the system
in which a complex tunnelling matrix element is engi-
neered. With this Floquet engineering, artificial gauge
fields™, staggered magnetic fields*® and the topological
Haldane model” have been realized. The lattice shak-
ing approach has the advantage that it does not require
an additional laser'”!. More recently, the technique
was extended to engineer density-dependent gauge
fields'**"', a step towards the simulation of dynamical
gauge fields, and to measure the Chern numbers in the
Haldane model following a quench'*. A detailed com-
parison of various synthetic gauge-field implementations
is given in Supplementary Section 4.

Synthetic dimensions. The available dimensions are
not limited to the spatial ones, but can also be repre-
sented by time, internal states or momentum space.
The dynamical version of the quantum Hall effect, also
known as the Thouless charge pump, is realized with
time as the second dimension. Quantized centre-of-
mass transport per cycle is observed for both bosonic
and fermionic systems**”. Using the internal degrees
of freedom of atoms (for example, the Zeeman states in
alkali-metal atoms) as artificial lattice sites, a synthetic
dimensional lattice is realized, within which a chiral edge
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current has been observed'”*". The coupling of internal
states by a laser beam mimics the tunnelling between
neighbouring sites. Here, the Peierls phase along the
artificial site direction depends on the real lattice site
position through the position dependence of the phase
difference between the optical lattice and the coupling
laser. Thus, atoms that move around a plaquette of the
synthetic 2D lattice can acquire a phase. A momentum-
space lattice can be realized through the coupling of
discrete momentum states. Using laser-coupled internal
states as the second dimension, a 2D lattice with non-
zero flux was engineered”’'. Different from a normal
lattice, these synthetic-dimension approaches realize
hard-wall boundary conditions with a limited number
of sites along the artificial lattice direction, and the inter-
actions along the artificial dimensions are non-local*”,
establishing them as unique systems in the quantum
simulation toolbox.

Spin-orbit coupling. Spin-orbit coupling can be engi-
neered through the Raman coupling of internal states or
by Raman-laser-assisted tunnelling in an optical lattice
owing to spin-momentum locking’”~%. Furthermore,
optical Raman lattices*”~*"” have been implemented to
realize 2D spin-orbit coupling with topological bands
and also to realize a 3D semi-metal. In the Raman-lattice
scheme, two pairs of lasers simultaneously form the con-
ventional lattice and the necessary Raman potentials to
realize 2D spin-orbit coupling®'**'" (see Supplementary
Section 4 for a comparison of different implementation
schemes).

Two-electron atoms

Compared with alkali-metal atoms, which have a single
valence electron that governs the physics of interest,
two-electron systems, such as alkaline-earth-metal and
alkaline-earth-metal-like atoms (such as Yb), provide
additional unique features. Among these, access to
SU(N) symmetry and two-orbital systems offer intrigu-
ing quantum simulation tools and techniques that are
otherwise impossible to perform. In this section, we
address the preparation and detection methods of such
SU(N) and two-orbital physics.

SU(N) systems. The ground electronic state of two-
electron atoms is represented by a term 'S, where both
the electron spin and orbital angular momenta are zero.
Although bosonic isotopes have no nuclear spin, fermi-
onic isotopes of, for example, ¥Sr, 7'Yb and '*Yb have
non-zero nuclear spins, I, of 9/2, 1/2 and 5/2, respec-
tively. The fact that the spin degree of freedom in the 'S,
state of fermionic two-electron atoms is solely attributa-
ble to the nuclear spins, and that the interatomic poten-
tial scarcely depends on the nuclear spins, results in a
nearly ideal SU(N) symmetry’", where N=2I+1. The
unique quantum magnetic phases for a Fermi-Hubbard
model with SU(N) symmetry are extensively studied
theoretically and expected to yield rich physics’?. One
straightforward consequence of the SU(N) symmetry is
the absence of spin-exchange collisions, which differs
from the case of alkali-metal atoms and results in stable
populations of each spin component®®*"*. This stability
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is advantageous in the implementation of synthetic
dimensions using this large spin system*”.

The enlarged spin symmetry of SU(N) can be a
powerful tool to lower the temperature of atoms in an
optical lattice and is known as the Pomeranchuk cool-
ing effect’’*. During the adiabatic loading of the atoms
into the optical lattice, the total entropy is constant. At
unity filling, for example, each localized atom can carry
a large entropy in the spin degrees of freedom, result-
ing in cooling of the system. This Pomeranchuk cooling
effect has been confirmed by doublon production-rate
measurements’”, in situ density distributions’'® in a
spin-uncorrelated Mott region at high temperatures,
and antiferromagnetic spin-correlation measurements
at low temperatures™. Special care needs to be taken
when manipulating the nuclear spin degrees of freedom
of the SU(N) fermions, which are nearly 1,000 times
less sensitive to external magnetic fields than electron
spins. Instead of an external magnetic field widely used
for alkali atoms, one can use a pseudo-magnetic field
that originates from a spin-dependent light shift gener-
ated by an off-resonant circularly or linearly polarized
light field*®*"”. Such a pseudo-magnetic field gradient
has been used to measure spin populations in optical
Stern-Gerlach measurements® and to optically induce
nuclear-spin singlet-triplet oscillations™. Note that this
reduced sensitivity to external magnetic fields, combined
with the availability of optical manipulation methods,
is advantageous for quantum information processing
applications.

Two-orbital systems. The existence of long-lived meta-
stable °P, and *P, electronic states in two-electron atoms
gives rise to unique manipulation tools. The resulting
ultra-narrow optical transitions between the 'S, ground
state and these metastable states (‘clock transitions’) can
be a versatile tool for an occupancy-resolved spectro-
scopy”~** in which the on-site collisional shift is much
larger than the spectral linewidth.

Furthermore, the existence of electronic angular
momentum in the P, state provides a tool for tuning
the interatomic interaction between atoms in the 'S
and °P, states through a magnetic Feshbach resonance
induced not only by isotropic interactions, but also
by anisotropic interatomic interactions*'**'*. Near a
Feshbach resonance, the bound state is mixed with
the scattering state”’, which can enhance the strengths
of optical Feshbach resonances?'. This enhancement of
optical Feshbach resonances will become a versatile asset
for controlling the ground-state interatomic interactions
of two-electron atoms. Note that optical Feshbach reso-
nances have already been demonstrated for the related
1S,—*P, transition””’%, and, because of the relatively nar-
row linewidth, efficient control with only small losses
was realized.

The absence of electronic angular momentum
in the ’P, state provides an experimental platform
for a two-orbital 'S, +°P, SU(N) system, whose rich
quantum phases have been theoretically studied*”.
Interestingly, the orbital degrees of freedom and inter-
orbital nuclear-spin-exchange coupling provide an

SU(N) symmetrical orbital Feshbach resonance® ",
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similar to the magnetic Feshbach resonance of alkali
atoms with electron spin degrees of freedom and hyper-
fine coupling. The observed molecular bound state
in the 'S, +°P, state’” can be similarly exploited for use in
optical Feshbach resonances.

The two-orbital 'S, + 3P, system is also proposed
as an ideal experimental base for studying spin-orbital
physics, such as the Kondo effect’*>***, for which exper-
imental efforts using '*Yb and ”'Yb have recently been
reported®**.

224

Outlook

Ultracold atoms in optical lattices realize several theoret-
ical models, such as the Hubbard, Heisenberg and Ising
models, which are crucial in condensed matter physics.
We have described various tools for the quantum simula-
tion of these theoretical models and several applications
for the quantum simulation of both numerically hard
and conceptually important problems™*.

Finally, we briefly outline future directions as well as
challenges and opportunities for quantum simulation
with ultracold atoms in optical lattices. Although the
currently achieved temperature is low enough to study
new behaviours, such as pseudo-gap phenomena of the
Fermi-Hubbard model, one important technical issue is
reaching low enough temperatures for fermionic atoms

in an optical lattice, to enable the investigation of the
underdoped region of high-T cuprate superconduc-
tors. Note that the temperature of fermions in an opti-
cal lattice is of the order of nano-kelvin, which is much
colder than the sub-kelvin temperatures for electrons in
solids. However, the relevant quantity in this case is the
temperature scaled by the hopping matrix element, T/t,
which is of the order of 0.1 for ultracold atoms, whereas
it is typically below 10~ for electrons in solids (TABLE 1).
Several schemes have been discussed””~*"". Different lat-
tice configurations predicting higher T, (REF**) would
be interesting new targets for realizing unconventional
high-T, superfluids. A further important direction
is quantum computing with ultracold atoms, which
can be pursued with a Rydberg atom tweezer array*”.
Noisy intermediate-scale quantum devices*** would
be an important near-term target. Many sophisticated
tools, developed for quantum simulation, can also be
applied to other fields, such as precision measurements
with a Fermi-degenerate optical lattice clock”. Future
work will pursue other fundamental physics research®”,
such as the search for new particles using cold atoms
or molecules in a collisional-energy-shift-suppressing
optical lattice.
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