
Quantum simulation is an approach for studying quan-
tum systems experimentally by using other controllable 
quantum many-​body systems1. This is especially useful 
when the system of interest is either experimentally 
inaccessible or too difficult to simulate numerically. 
Ultracold atomic gases have become a well-​established 
experimental platform for quantum simulation, owing to 
the excellent controllability of the system parameters and 
refined measurement techniques2,3. Quantum simulation 
with ultracold atoms in optical lattices, in particular, ben-
efits from a wealth of theoretical and experimental tools 
and can be applied to many fields, ranging from con-
densed matter physics and statistical mechanics to high- 
​energy physics and astrophysics4–6 (Fig. 1). The tunabil-
ity and controllability of the system parameters enables 
access to phenomena or regimes unavailable in other 
systems, such as the realization of the Bardeen–Cooper–
Schrieffer to Bose–Einstein condensate (BCS–BEC) 
crossover or the generation of strong effective magnetic 
fields through artificial gauge fields7,8.

In this Technical Review, we mainly focus on appli-
cation to solid-​state physics whose models are natu-
rally realized with ultracold atoms in optical lattices 
— even though at first glance the key parameters of 
the systems differ at times by more than ten orders  
of magnitude (Table 1) — and describe the tools used in 
these experiments. Real solid-​state materials have many 
complex degrees of freedom, such as defects, impu-
rities and multiple energy bands. In some cases, how-
ever, the essential features of the system are captured 

by a minimal theoretical model, an important exam-
ple being the single-​band Fermi–Hubbard model for 
high-​critical-​temperature (high-​Tc) cuprate supercon-
ductors. It is especially important to explore the under-
doped region of the Fermi–Hubbard model where the 
origin of high-​temperature cuprate superconductors 
could be discovered9,10. Numerical simulation methods 
are not powerful enough to simulate the Fermi–Hubbard 
model away from half-​filling11,12 (Box 1). In a quantum 
simulation approach, experiments using ultracold 
atoms in an optical lattice are performed to simulate  
the Fermi–Hubbard model itself, instead of the complex 
real solid-​state materials.

This Technical Review provides an accessible source 
of technical references especially targeted at newcomers 
to the field of experimental quantum simulation with 
ultracold atoms. The article is structured into six main  
topics, each covering a particularly important main aspect  
of ultracold atom experiments towards quantum sim-
ulation (optical lattice basics and techniques; control 
of interatomic interactions; engineered perturbations; 
high-​resolution imaging; synthetic gauge fields and 
spin–orbit coupling; and two-​electron atoms). We break 
down each topic into the individual techniques, describe 
the methods involved and offer exemplary applications.

As we focus on quantum simulations using optical lat-
tices, we omit, or mention only briefly, many other impor-
tant topics, such as the BCS–BEC crossover; the physics 
of universal few-​body bound states; experiments in box 
potentials; atom–ion hybrid systems; BECs of photons,  
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polaritons or excitons; cavity-​mediated interactions;  
the physics of lower-​dimensional systems; quantum 
droplets and supersolids; quantum thermalization; quan-
tum transport in narrow wires; and other developments, 
including spontaneous matter-​wave emission.

Optical lattices
An optical lattice — a periodic potential formed by 
interference of laser beams, with the lattice spacing of 
the order of the laser wavelength — is a versatile tool 
with which to perform quantum simulations (Box 1). 
Analogous to the lattice structure of solid-​state systems, 
an optical lattice imprints a well-​defined structure on a 
cloud of cold atoms and serves as the reference frame 
to define interatomic interactions. The utility of such a 
system for the study of, for example, the superfluid-​to- 
​insulator phase transition was first recognized more 
than 20 years ago13. In this section, starting from the 
well-​established procedure for preparing cold atoms 
in an optical lattice, we review how to emulate differ-
ent systems (Hubbard, Heisenberg and Ising models) 
in optical lattices of various lattice geometries. We then 

discuss how the flexibility of cold atom systems allows us 
to perform ‘protocols’ — that is, sequences of combined 
system controls and measurements — to gain access to 
physical quantities otherwise difficult to obtain.

Optical lattice basics. After formation of an ultracold 
atomic sample (see Supplementary Section 1 for a con-
cise review of the process), the atoms are loaded into 
an optical lattice. Although periodic optical light fields 
can be created using various methods (discussed briefly 
below), we largely consider standing waves generated by 
counterpropagating laser beams, which is still the most 
important technique to the field. Depending on the laser 
wavelength, the atoms in an optical lattice are trapped in 
either the nodes or the antinodes by the optical dipole 
force. Such a periodic potential produced by an optical 
lattice gives rise to a series of Bloch bands (Fig. 2a). We 
note that before transferring the atoms into an optical 
lattice, it is possible to cool them in the harmonic trap to 
sufficiently low temperatures such that only the lowest 
Bloch band is naturally populated after adiabatic loading 
of the atomic sample into the optical lattice. When the 
lattice potential is sufficiently deep, the tight-​binding 
model14, in which an atom is localized at each lattice site 
and undergoes hopping between adjacent lattice sites, is 
applicable. In this situation, the interaction energy at a 
single site is much smaller than the energy gap between 
the ground state and the first excited band. The system 
can then be described by the Hubbard model, which 
includes on-​site interactions, tunnelling and external 
confinement. At large enough on-​site interactions, com
pared with the tunnelling energy at unity filling, the 
Hubbard model can be rewritten as spin Hamiltonians15, 
such as the Heisenberg or Ising models. Spin–spin 
interactions in the Heisenberg model arise through 
super-exchange interactions. Dipole–dipole interactions 
(magnetic or electric) are caused by magnetic atoms or 
polar molecules15,16. Ising-​type interactions are due to the 
mapping between spin and density in the Bose–Hubbard 
model17,18 (Box 1).

Numerous many-​body phases in solid-​state systems 
arise from the competition between the various energy 
scales involved. The choice of the lattice geometry there-
fore has a crucial role in the design of a target quantum 
system. First, the lattice dimensionality (one19, two20 or 
three dimensions4) has a strong impact on the available 
many-​body phases and their phase transitions. In low 
dimensions, quantum effects are generally enhanced by 
strong quantum fluctuations; the 2D Fermi–Hubbard 
model is a prominent example. Second, each lattice con-
figuration in real space leads to a unique energy band 
structure (Fig. 2). In the excited P-​band of a square lat-
tice, unconventional superfluidity is found21. In the 
Lieb lattice22 (Fig. 2b), a dispersionless flat band appears, 
in which interactions dominate over kinetic energy. In 
the honeycomb lattice23 (Fig. 2c), which is analogous 
to graphene, Dirac cones appear in the energy band, 
and topological physics can be explored. Further spe-
cialized lattice types, such as triangular24 (Fig. 2d) or 
kagome-​lattice systems25 (Fig. 2e), can exhibit geometric 
frustration26 in their ground states, which, owing to strong 
quantum fluctuations, can be highly entangled states. 

Key points

•	Quantum simulation with ultracold atomic gases in optical lattices can be used to 
study condensed-​matter quantum many-​body systems, which are hard to simulate 
with conventional computers.

•	The control of interatomic interactions is key to successful quantum simulation,  
and it can be implemented at short range and long range through various methods.

•	Non-​equilibrium phenomena can be studied by using controlled dissipation or lattice 
perturbations.

•	Quantum gas microscopes currently offer the most precise tool for the manipulation 
and readout of optical lattice quantum simulators.

•	The use of artificial gauge fields enables the simulation of charged particle physics; 
furthermore, non-​trivial effects are accessible through use of spin–orbit coupling, 
topological lattices and synthetic dimensions.

•	Going from alkaline-​earth-​metal to two-​electron alkaline-​earth-​metal-​like atoms 
allows the study of SU(N) symmetrical systems.
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Fig. 1 | Quantum simulation tools and applications. Quantum simulation with optical 
lattices encompasses diverse fields that serve as tools, target applications or both. 
A clear distinction is often neither possible nor desirable. We give here an overview of  
the general fields and how, although all interconnected, they can be seen as tools to (red) 
and applications of (blue) quantum simulation approaches, with many topics positioned 
in between these classifications. This Technical Review focuses on applications towards 
condensed matter physics and related fields (outlined in yellow).
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Moreover, by trapping multiple atomic species or states, 
species-​selective potentials can be used to implement 
state-​dependent27,28 or mixed-​dimensional lattices29–32, in 
which ‘mediated interactions’, for example, can be engi-
neered for realizing unconventional pairings. Even more 
exotic lattices, such as quasi-​crystals33 and lattices within 
optical cavities34 can also be realized to simulate unique 
physical systems. Finally, optical superlattices have many 
applications, from creating isolated double wells35 to 
exploring topological physics36,37.

The manipulation of the optical potential and the cre-
ation of optical lattices are not limited to standing waves 
of light. Holographic methods using masks or spatial 
light modulators38,39, as well as diffractive optics using 
digital micromirror devices (DMDs) or acousto-​optic 
deflectors, are also used to create and control optical 
potentials40–42. Furthermore, the above techniques can be 
used to form arrays of single atoms contained in micro-
traps created by tightly focused laser beams, known as 
optical tweezers. By combining non-​destructive and 
highly sensitive imaging methods with the targeted 
movement of selected tweezers, defect-​free atomic arrays 
with spacings of only a few micrometres can be prepared 
in one, two and three dimensions40,43,44.

In general, the polarizabilities and energy shifts 
induced by external light fields (namely the light or  
a.c. Stark shifts) in two different atomic states are not 
equal. Harnessing the light shift as a tool, it is possible 
to create spin-​dependent lattices wherein the vector 
and tensor light shifts are dominant over the scalar 
light shift. Conversely, in some situations, it is possible 
to tune the trap or lattice lasers to a ‘magic wavelength’ 
at which the polarizabilities of both states become 
equal, and thus the difference in the light shifts van-
ishes. In this situation, it becomes feasible to investigate 
minute energy shifts, such as collisional shifts45–49 and 
smaller perturbations.

Controllable parameters. The fundamental parameters  
of the Hubbard model4,50 (Box 1), namely the hopping 
matrix element (also often referred to as the hopping or 
tunnelling amplitude) and on-​site interaction strength, 
can be precisely controlled experimentally. These param-
eters depend on the depth of the optical lattice potential, 
and their ratio, in particular, is finely controllable by 
changing the lattice depth. In addition to the ratio, the 

strength and sign of the on-​site interactions can be con-
trolled through Feshbach resonances (discussed further 
below). The hopping matrix elements can also be con-
trolled by lattice shaking methods51,52. Although these 
matrix elements are usually real numbers, it is possible 
to induce complex hopping matrix elements, charac
terized by Peierls phases, using lattice shaking53 and 
Raman-​assisted tunnelling54 methods (discussed below).

The filling factor (that is, the number of particles 
per lattice site) and temperature are also important 
parameters and are controllable by adjusting the total 
atom number and the initial entropy in a harmonic 
trap before adiabatically ramping up the lattice depth. 
As the laser beams forming the optical lattice usually 
have a Gaussian profile, a weak, overall harmonic trap-
ping potential is superimposed on the lattice geometry. 
This additional potential generally leads to unavoidable 
inhomogeneities in the atom density. To overcome this 
issue, laser light tuned to create repulsive potentials can 
be used to create (quasi)uniform optical box traps55. 
Recent developments in advanced light-​shaping tech-
niques, such as DMDs and quantum gas microscopy 
techniques, also enable this limitation to be overcome 
for 1D and 2D gases.

Methods for diagnosing optical lattice systems. A rich set 
of tools for probing an optical lattice system is available. 
Of these, the time-​of-​flight (TOF) method is probably  
the most widely used. In the framework of optical lat-
tice experiments, TOF images include information on 
the atomic coherence over the lattice sites4. Pioneering 
work revealed the superfluid-​to-​Mott-​insulator quan-
tum phase transition of the Bose–Hubbard model by 
observing the vanishing sharp interference peaks in TOF 
images4,56. These images show the ‘real’ momentum dis-
tribution of trapped atoms. However, the kinetic energy 
in periodic potentials is often discussed within the the-
ory of Bloch bands in terms of Bloch wavefunctions and 
Brillouin zones, in which case, the quasi-​momentum is 
then the relevant physical quantity. Quasi-​momentum 
distributions of the atoms in multiple Bloch bands 
can be measured by the ‘band-​mapping’ method after 
adiabatic ramp-​down of the optical lattice followed by 
TOF imaging20,57.

Various spectroscopic methods allow us to probe 
the band structures and properties of interacting and 
non-​interacting atoms in an optical lattice. Band struc-
tures are often measured using two-​photon Λ-​type 
excitations, whereby two light beams with frequencies 
f1 and f2 with the associated wavenumbers k1 and k2,  
respectively, excite an atomic state with energy E and 
quasi-​momentum k to a state of energy E ± ΔE and quasi- 
​momentum k ± Δk, where ΔE = h(f1 – f2) and Δk = k1 – k2. 
Spectroscopy on a transition within the same band is 
often referred to as Bragg spectroscopy58,59. By con-
trast, lattice-​modulation spectroscopy, which uses the 
temporal modulation of the lattice potential depth, 
can also excite the system between states with the 
same quasi-​momentum, that is, Δk = 0, and is often 
used to investigate higher Bloch-​band structures. This 
approach also allows the study of interactions, owing 
to their impact on the excitation spectrum60. As first 

Table 1 | Comparison between solid-​state and optical lattice systems

Parameter Electrons in solids Fermionic atoms

Spin 1/2 1/2, 3/2, …
Mass ~10–30 kg 10–26–10–25 kg

Lattice constant ~0.5 nm ~500 nm

Tunnelling rate/energy ~1014 Hz/~104 K 100–1,000 Hz/5–50 nK

Interactions Coulomb Van der Waals, on-​site

Density ~1023 cm–3 1013–1014 cm–3

Fermi temperature (TF) ~104 K ~100 nK

Temperature ~ 1 K (~10–4TF) ~10 nK (~0.1TF)

Typical values of the key physical parameters are described for electrons in solid-state 
systems and fermionic atoms in optical lattices.
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demonstrated for an interacting ultracold Fermi gas 
in a trap without a lattice61 and recently extended to 
the attractive Fermi–Hubbard model62, angle-​resolved 
photoemission spectroscopy (ARPES) can be used to 
probe the pairing of fermions and, in particular, the 
pseudo-​gap, which is of great importance to the under-
standing of high-​temperature superconductivity62. This 
ARPES method has been enabled by combining four 
basic steps: initial radio-​frequency excitation of the 
interacting system to a non-​interacting excited state, fol-
lowed by band mapping of the quasi-​momentum distri-
bution of the excited atoms. A quantum gas microscope 
(discussed further below) is then used to measure the 
site-​resolved atom distribution after conversion of atom 
momentum to position in real space using a harmonic 

trap62. In a related approach, the use of Raman spectros-
copy has been proposed to obtain information on the 
Fermi surface of strongly correlated states63.

The local density distribution is another useful 
physical quantity for diagnosing optical lattice sys-
tems. The double occupancy in lattice sites is accessible 
either by observing the two-​body loss after molecular 
creation64 or by direct absorption imaging combined 
with high-​resolution radio-​frequency spectroscopy65. 
Multiple occupancies can also be revealed with 
high-​resolution spectroscopy using radio-​frequency66 or 
optical clock transitions45. Recently, the internal energy 
of the Bose–Hubbard model was measured by com-
bining TOF and site-​occupancy measurements46. Last, 
but not least, the development of single-​site imaging 

Box 1 | The optical lattice toolbox

In its most common implementation, an optical lattice  
is formed by interfering continuous-​wave lasers.  
Most simply, a laser beam with a wavelength λ is retro
reflected off a mirror, creating a 1D lattice potential, 

λ=− πU x U x( ) sin (2 / )0
2  (where U0 is the lattice potential 

depth, and x is the position of the atoms), that is propor-
tional to the intensity of the laser standing wave. By super-
imposing 1D lattices in three orthogonal directions, a 3D 
cubic optical lattice can be created. The periodic potential 
for the atoms results in the introduction of band structures 
for the atoms, similar to those of electrons in crystalline 
materials.

Ultracold atoms trapped in a sufficiently deep lattice 
potential are described by the Hubbard model (see panel a 
of the figure). For fermionic atoms, the Hamiltonian is

∑ ∑ ∑=− + +
σ

σ σ
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where σ
†fi, ( σfi, ) is the fermionic creation (annihilation) 

operator for spin σ = ↑ ↓{ , }, =σ σ σ
†n f fi i i,

F
, ,

 is the fermionic 
number operator for σ-​spin at site i, t is the hopping  
matrix element, U is the on-​site interaction energy and  
ε i is the site-​dependent energy offset accounting for weak 
confinement. i,j denotes nearest-​neighbour sites. Here,  
it is assumed that the atoms with spin-1/2 occupy a single 
band of the lattice potential. The Hubbard model features 
a rich phase diagram, and the competition between 
kinetic energy and interaction energy leads to quantum 
phase transitions.

Similar to the case of fermionic atoms, the bosonic 
counterpart is described by the Bose–Hubbard 
Hamiltonian,
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where bi (
†bi ) is the bosonic annihilation (creation) operator 

and = †n b bi i i
B  is the number operator for bosons at site i.  

As the interaction strength (U/t) is increased, the system 
undergoes a quantum phase transition from the superfluid 
to the Mott-​insulator phase. The Gaussian shape of the 
laser beams forming the optical lattice leads to an overall 
harmonic confinement potential, which gives rise to a 
wedding-​cake-​like structure of the density distribution  
in the Mott-​insulator phase.

In the limit of half-​filling, where one spin-1/2 particle  
per lattice site is found, and strong interactions ( ≫U t/ 1), 
the Fermi–Hubbard model is reduced to the Heisenberg 
model

∑= ⋅H J S S
i j

i jHeisenberg
( , )

Here, = ( )S S S S, ,i i
x

i
y

i
z  is the spin operator and J is the 

nearest-​neighbour coupling constant. The coupling is 
antiferromagnetic for J > 0 and ferromagnetic for J < 0.  
The coupling arises from the super-​exchange interaction 
that is given by =J t U4 /2 . The Bose–Hubbard model can 
also be reduced to the anisotropic Heisenberg model15.

Another important spin model for quantum simulation  
is the Ising model (see panel b of the figure),

∑ ∑= + −H J S S J h S h S( )
i j

j
z

j
z

i
x i

x
z i

z
Ising Ising

( , )
Ising

where the first term describes the nearest-​neighbour 
interaction that depends only on the z-​component of the 
spin, and the second term describes the transverse and 
longitudinal magnetic field. A Bose–Hubbard model with  
a tilted potential can be used to emulate the Ising model, 
wherein the occupation numbers are mapped to spins to 
observe paramagnetic-​to-​antiferromagnetic quantum 
phase transitions17,18.

t

λ/2

U

¼ J
Ising

–¼ J
Ising

a  Hubbard model

b  Ising model
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techniques (‘quantum gas microscopes’) has provided 
direct access to the in situ atom distribution39.

One of the advantages of a cold atom system is the 
flexibility of combining several controls and measure-
ments: that is, it is possible to measure the system after 
having performed some local operations. In the follow-
ing, we will refer to such sequences of operations and 
measurements as measurement protocols. Although 
many protocols have been proposed and demonstrated, 
we highlight here just a few key examples. By apply-
ing a spin-​dependent potential gradient just before a 
TOF measurement, the spin components are separately 
imaged (magnetic67 or optical68 Stern–Gerlach imaging). 
For complex lattice geometries containing sublattices, 
such as a double-​well or a Lieb lattice (Fig. 2b), the occu-
pation numbers of each sublattice are also accessible 
by prior conversion into band populations22,35. The 
spin correlations between nearest neighbours at unity 
filling can be detected by exploiting a singlet–triplet 
oscillation protocol69–71 (see Supplementary Section 2). 

Experiments that were based on the Talbot effect and 
combined in-​trap atom expansion and thermaliza-
tion after rapid optical lattice ramp-​up succeeded in 
detecting non-​local atom correlations and long-​range 
coherences72. Measurement protocols to assess the 
Berry curvature and various related topological invar-
iants have also been experimentally realized23,73. For 
example, in a recently proposed and demonstrated 
method, the excitation rate to higher Bloch bands by 
amplitude modulation of a position-​dependent exter-
nal potential, measured through a band-​mapping tech-
nique, directly provided the real and imaginary parts 
of a quantum geometric tensor74. Operation sequences 
are also applied for quantum state manipulation. For 
example, the ‘square root of swap’ (√SWAP) gate can 
be implemented by use of a spin-​dependent optical 
lattice75. Finally, in combination with quantum gas 
microscopes and local operations, even more complex 
protocols become feasible, such as the measurement of 
the entanglement entropy.
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Fig. 2 | Optical lattice geometries and Bloch band structures. a | Regular square lattice configuration in real space  
(left) with the lattice spacing, a, being half the lattice laser wavelength, λ. The periodic potential leads to Bloch bands85 
(middle), where kL = π/a is the laser wavenumber. The matter-​wave interference patterns formed by a Bose–Einstein 
condensate after free expansion from a 3D cubic lattice reflects its momentum distribution4 (right). b | Real-​space lattice 
structure (left) and energy bands (right) of a Lieb optical lattice, for which a flat band appears in the first excited level22.  
A, B and C denote the three sublattices. c | Real-​space honeycomb lattice (left). Dirac points appear in the band structure 
(right). A and B denote the two sublattices236. d | Triangular lattice in real space (left) and band structure with Dirac points  
(right)237. e | Real-​space kagome-​lattice configuration (left) and band structure (right) with emerging Dirac cones and  
a flat band238. E, band energy; k, wavenumber of the wave packets. Panel a (centre) adapted from ref.85, Springer Nature 
Limited. Panel a (right) adapted from ref.4, Springer Nature Limited. Panel b (right) adapted with permission from ref.22, 
AAAS. Panel c (right) adapted from ref.236, Springer Nature Limited. Panel d (right) adapted with permission from ref.237, 
APS. Panel e (right) adapted with permission from ref.238, APS.
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Controlled interatomic interactions
A non-​interacting lattice system can be described by 
single-​particle eigenstates and calculated without fun-
damental difficulties. However, it is the interactions 
between components of a quantum system that bring 
the quantum simulator to life. It is useful to distin-
guish between short-​range and long-​range interactions, 
such as the contact and the dipole–dipole interac-
tion. There are also interactions intrinsic to the system 
under study and those that are dynamically controlled, 
such as magnetic moments and Feshbach resonances. 
In the following section, we highlight and compare 
the most prominent techniques to create and control  
atomic interactions of relevance for quantum simulation  
applications.

Isotropic and short-​range interactions. We consider here 
the collision between two unbound atoms of an ultra-
cold gas. If the energy of this unbound scattering state 
(called ‘entrance channel’ or ‘open channel’) approaches 
the energy of a bound molecular state (‘closed channel’), 
a Feshbach resonance occurs, and considerable mix-
ing between the entrance and the closed channels is 
possible76. If the energy of the bound state is controlled in 
the experiment, the strength of this isotropic interaction 
itself becomes adjustable. Most importantly, differences 
in magnetic moments of the open and closed channels 
allow for magnetically tunable Feshbach resonances76 
(Fig. 3a). This is the workhorse method for precisely con-
trolling interactions. However, the bound states are not 
limited to those in the ground electronic states, and it is 
possible to bridge the energy gap between the entrance 

channel and the bound state in the electronic excited 
state by using laser light tuned near a photoassociation 
resonance, leading to optical Feshbach resonances77–81 
(Fig. 3b). Even for two-​electron atoms (alkaline-​earth-​
metal or alkaline-​earth-​metal-​like atoms), for which 
fully occupied outer shells with vanishing total elec-
tronic spin seem to oppose magnetic tunability, subtle 
differences in the nuclear g-​factor between the ground 
and excited states open the possibility of magneti-
cally controlling interactions through orbital Feshbach 
resonances82–84 in the case of extremely shallow binding 
energies, as for 173Yb.

Tight confinement of atoms in optical lattices leads 
to changes in the interaction dynamics of ultracold 
gases85–87. In a 1D system, there are transversally excited 
molecular bound states, and a confinement-​induced res-
onance occurs when the 3D scattering length approaches 
the length scale of the transversal confinement88–91 
(Fig. 3c). This effect is not limited to single-​species experi-
ments, and has also been demonstrated with two-​species 
experiments in mixed dimensions30.

The four approaches to manipulate the short-range 
interactions (magnetic, orbital, optical and confinement-​ 
induced) discussed here can all be treated consistently 
in the Feshbach resonance framework. Magnetic con-
trol is most common and most readily achievable. In 
cases when magnetic control is not possible, other types 
of Feshbach resonance may offer a feasible approach. 
Optical control allows for extremely fast switching as well 
as submicrometre-​scale control of the interactions, and 
confinement effects offer control of interactions under 
reduced dimensionalities.
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Anisotropic and long-​range interactions. The resonance 
effects discussed above depend on the very close proxi
mity of the scattering partners, leading to isotropic and 
short-​range interactions. The inclusion of electromag-
netic forces can lead to both long-​range and anisotropic 
interaction effects. A prime example is the magnetic 
dipole–dipole interaction, which causes strong ani-
sotropies in the interactions. These are particularly 
enhanced in atomic species with very large magnetic 
moments, such as Cr (ref.92), Dy (ref.93), Er (ref.94) and 
Ho (ref.95). Combined with the technique of Feshbach 
resonances, the relative strength of the isotropic, short-​
range interactions and the dipole–dipole interactions 
can be controlled96. In contrast to magnetic dipole 
moments, polar molecules comprising different atomic 
species97,98 exhibit electric dipole moments, providing 
another approach towards anisotropic interactions.  
Two methods are pursued to generate cold polar mole-
cules. Either the polar molecules are formed from laser-​
cooled cold atoms99–102, or molecules are first created and 
then laser-​cooled to the required low temperatures103–105. 
By combining molecule association from ultracold 
atomic samples and further cooling techniques, it has 
even been possible to realize quantum-​degenerate polar 
molecules106.

Another important example is the electrostatic, 
long-​range interaction provided by Rydberg atoms107, 
which could pave the way to a Rydberg-​based quantum 
computing infrastructure108,109 and to several quantum 
simulation applications of the spin Hamiltonian110, such 
as realizing the Ising model111–115. As building blocks, 
Rydberg blockade116,117, Rydberg dressing of ground-​state 
atoms through off-​resonant laser coupling118 and dipole 
spin-​exchange interactions119 have been realized. Trapp
ing of Rydberg atoms by the ponderomotive force in 
lattice potentials120 and in blue-​detuned hollow traps121 
allows for high-​fidelity control in future experiments 
using long-​lived circular Rydberg atoms122,123. Finally, 
Rydberg states of two-​electron atoms could offer further 
unique possibilities as they have an atomic structure that 
is different from that of alkali atoms124.

Controlled perturbations
In perturbing a quantum system, a changeover from a 
closed, equilibrated system to an open or non-​equilibrium  
system is made possible. Controlled perturbations there-
fore broaden the range of accessible quantum simula-
tion targets to go beyond equilibrium properties in the 
ground state. In this section, we focus on experimental 
methods to introduce perturbations through coupling to 
external degrees of freedom (dissipation) and through 
disordered potentials. Some possibilities offered by 
time-​periodic modulations are discussed in a later sec-
tion. Additionally, we examine here how sudden changes 
of the system parameters (a quench) may be realized to 
create and study out-​of-​equilibrium situations.

Dissipation. Although the previous section focused on 
elastic collisions, in the context of dissipation, inelas-
tic collisions have an important role. The dissipation 
process can be classified on a microscopic level by the 
number of particles involved. One-​body dissipation 

can be easily introduced by background-​gas collisions 
in an uncontrollable way, whereas highly effective and 
controllable one-​body dissipation is possible with near-​
resonant light, leading to heating by photon scattering 
events125. In a different approach, very localized dissipa-
tion, limited in its effects to just a single optical lattice 
site, has been achieved using tight electron beams126. 
When more than one particle is involved, the dissipation 
is governed by the collisional physics between atoms127. 
In this case, instead of driving transitions between 
two states of a single atom, dissipative coupling of two 
atoms in a photoassociation experiment to short-​lived 
or untrapped molecular states is possible128. A controlled 
three-​body dissipation has been demonstrated by tuning 
the scattering length to large negative values through a 
Feshbach resonance129. Inelastic processes are often det-
rimental to the long coherence times necessary for quan-
tum simulation and computing applications. However, 
inelastic processes can also give rise to new effects that 
can be exploited as tools130.

An example is the ‘watched-​pot-​never-​boils’ quan-
tum Zeno effect131. This effect has been experimentally 
studied in static optical lattice systems128,132, wherein 
decay from a single state is suppressed. Moreover, in 
the absence of optical lattices, this effect has also been 
studied on whole subspaces133,134, within which, in the 
theoretical framework of quantum Zeno dynamics135, 
the wavefunction is free to evolve within only a part 
of the possible space of states. Theoretical studies have 
demonstrated that engineered dissipation can pro-
tect a system from decoherence caused by otherwise 
uncontrollable dissipative effects136.

Dissipation control therefore makes it possible to 
switch from exploring the standard Hubbard model 
(Box 1) to dissipative lattice systems for both bosons and 
fermions. Two-​body dissipation, for example, has been 
used in experiments as a tool to suppress the growth 
of phase coherence and to stabilize the Mott-​insulator 
state in a dissipative Bose–Hubbard model128 and in a 
dissipative Fermi–Hubbard model137 in which a highly 
entangled Dicke state was created. Such dissipative 
Hubbard models are also predicted to lead to a dynam-
ical change of the spin correlation138. Anomalous, sub-
diffusive momentum broadening due to dissipation 
has also been observed139. Considering a weak dissi-
pative perturbation, a non-​Hermitian version of the 
linear-​response relation has recently been proposed140. 
A spatially dependent dissipation with a π/2 phase dif-
ference to the optical lattice potential can realize an 
interesting type of non-​Hermitian Hamiltonian with 
parity and time-​reversal symmetry, which is predicted 
to exhibit novel behaviour141.

Disorder potentials. In contrast to the predominantly 
temporal perturbation caused by dissipation, spatial 
perturbation owing to non-​periodic potential landscapes 
enables the quantum simulation of disordered matter. 
A well-​established route to disordered potentials is 
through optical potentials (Fig. 4). In its most basic sense, 
speckle patterns focused down to the very small length 
scales of optical lattice experiments provide access to 
the disordered regime142 (Fig. 4a). Quasi-​periodic optical 
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lattices  (Fig. 4b), superpositions of optical lattices at 
incommensurable lattice spacings, allow a degree of con-
trol of the disorder to be regained and have proved to 
be equally effective143. In a different approach, disorder 
is introduced by adding a minority population acting 
as impurities to the majority species (Fig. 4c). Beyond 
changes in the local energy landscape, inter-​species 
atom–atom collisions have demonstrated the impact 
of small impurity admixtures on fundamental pheno
mena, such as the transition from superfluid to Mott 
insulator144. All three approaches — random speckles, 
quasi-​periodic potentials and atomic impurities — have 
been instrumental to studies of Anderson localization 
phenomena142,143,145 (Fig. 4d). In the presence of intera-
tomic interactions and dissipation, many-​body localized 
states can form that, although still far from equilibrium, 
cannot thermalize and thus remain insulating, even at 
non-​zero temperatures146,147.

Out-​of-​equilibrium dynamics. The accessible physics 
is broadened beyond steady-​state properties by time-​
dependent changes of the system Hamiltonian. If these 
changes or perturbations of the system are performed 
very quickly with respect to the other relevant times-
cales, it is referred to as a quench. These quenches drive 
the atomic system out of equilibrium and provide access 

to the physics of the time dynamics in ultracold atom 
systems148. In an optical lattice set-​up, for example, the 
lattice depth can be changed either nearly instantane-
ously or by a continuous, but still fast, sweep across a 
phase transition. In the latter case, the speed of variation 
is an additional parameter of the experiment. In both 
scenarios, non-​equilibrium dynamics can be studied.

Changing the lattice depth from the deep Mott- 
​insulator regime (Box 1) to the shallow superfluid gives 
access to the phase coherence dynamics of the system149. 
Thus, in extension to the Kibble–Zurek mechanism of 
quenches across classical phase transitions150, the forma-
tion of excitations after entering the superfluid state151 
and the build-​up of the coherence lengths152 can be 
assessed. Limits on the propagation speed of correlation 
information, which are important for understanding a 
quantum many-​body system, have also been obtained 
in quenched lattice experiments with a quantum gas 
microscope153. Other experiments demonstrated inhib-
ited ballistic expansion of bosons in systems with reduced 
integrability154. Moreover, for fermionic quantum gases, 
the out-​of-​equilibrium dynamics after suddenly turn-
ing off a weak initial harmonic confinement has been 
investigated. A transition from ballistic expansion for a 
non-​interacting quantum gas to diffusive expansion for 
an interacting system has been observed155. Studies of the 
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mass transport in a two-​component, 1D Fermi gas after 
a sudden release from an optical lattice with a harmonic 
trap potential along the 1D direction into a homoge
neous lattice revealed phase separation between fast sin-
glons and slow doublons156,157. This ‘quantum distillation’ 
could serve to dynamically create low-​entropy regions in 
a lattice. In a different approach, using fast magnetic-​field 
control and suitable Feshbach resonances, quenches of 
the scattering length are possible. In one such experi-
ment, fast density fluctuations in a 2D BEC of Cs atoms 
was observed158.

Quantum gas microscope
An important feature of ultracold atom experiments is 
the capability of very precise manipulation and high- 
​sensitivity detection. Quantum gas microscopes39,159 ena-
ble us to observe and control atoms in optical lattices 
with single-​atom sensitivity and single-​site resolution. 
In this section, we describe several tools necessary for 
quantum gas microscopy experiments and examples of 
their applications.

Key technologies of quantum gas microscopes. In 
Hubbard-​regime optical lattice systems, the lattice peri-
ods need to be short to obtain a sufficiently large hop-
ping matrix element between adjacent lattice sites. This 
poses formidable challenges to the experimental set-​up 
and the required imaging optics (see Supplementary 
Section 3). In addition to the choice of imaging optics, 
the imaging method also requires careful consideration. 
Available imaging techniques include standard absorp-
tion imaging, fluorescence imaging (Fig. 5a) and Faraday 
imaging. The latter two, in particular, merit closer exam-
ination. Although high-​resolution absorption imaging 
has been developed for the detection of local properties,  
such as density or incompressibility160, single-​atom 
sensitivity and single-​site resolution are still difficult to 
achieve owing to limited scattering cross-​sections and 
heating by photon scattering. Fluorescence imaging,  
as a highly sensitive and background-​free method, could 
make it possible to obtain a sufficiently strong signal 
from a single atom. However, fluorescence imaging inev-
itably leads to destruction of the quantum state by recoil 
heating. In that respect, off-​resonant Faraday imaging 
offers the possibility of minimally destructive detection, 
although squeezed light might be necessary to overcome 
limitations in the signal-​to-​noise ratio161.

To deal with heating due to photon scattering, sev-
eral cooling schemes are used (Fig. 5b–e). Molasses cool-
ing is a standard technique for Rb atoms, which have 
well-​separated hyperfine states in the excited state39,159. 
For Li and K atoms, electromagnetically induced trans-
parency cooling162,163 or Raman sideband cooling tech-
niques have been used164–166. A combination of molasses 
cooling and sideband cooling on a narrow-​line transition 
has been demonstrated for Yb atoms167. Even without 
cooling, an extremely deep optical lattice potential for 
the excited electronic state of the optical probing tran-
sition makes it possible to obtain enough fluorescence 
photons before the sample is heated up168 (Fig. 5f).

Drawbacks of early versions of quantum gas micro-
scopes are parity projection and insensitivity to spin  

components (that is, hyperfine states): if there is more 
than one atom per site, then pairwise atom loss occurs 
owing to light-​assisted collisions caused by the near-​ 
resonant imaging light. Therefore, the observed quan-
tity is the parity of the atom occupation in each lattice 
site and not the exact on-​site atom number. The cool-
ing beam also mixes up the hyperfine states during 
the many absorption cycles necessary for a sufficiently 
large fluorescence signal. A straightforward solution 
to achieve spin-​selective detection is to apply a spin-​ 
selective removal procedure before fluorescence imag-
ing. By spatially separating different spin components 
or atoms before fluorescence imaging, more advanced 
spin-​resolved or atom-​number-​sensitive measurements 
have been realized169–171.

By illuminating the sample through a high-​resolution 
imaging system with a Gaussian-​shaped laser beam, 
control of a quantum gas on the single-​atom and 
single-​site level has been successfully demonstrated172. 
More complex patterns of light, and therefore nearly 
arbitrary potentials, can be projected onto the atoms 
with the help of a spatial light modulator, such as a 
DMD41,42. Operation of a spatial light modulator in the  
Fourier plane allows one to correct aberrations in 
high-​resolution imaging systems and thus to obtain 
ultra-​precise light patterns173, while the direct imaging 
configuration offers advantages in terms of experimental 
and numerical simplicity.

Applications. Quantum gas microscopes provide a 
snapshot of a quantum many-​body system, from which 
it is possible to extract correlations between atoms as 
well as their spatial distribution. Direct probing of the 
Mott-​insulating state has been demonstrated for both 
bosonic41,159 and fermionic174,175 atoms. Particle–hole 
pairs, which stem from quantum fluctuations, have 
been measured in the Mott-​insulating state with finite 
tunnelling176. Antiferromagnetic correlations171,177,178 
and ordering179 have been observed in Fermi–Hubbard 
systems, a milestone in acquiring new insight into 
high-​Tc cuprate superconductors. String orders (that is, 
non-​local correlations) are accessible176 and have been 
used to reveal hidden antiferromagnetic correlations180. 
Quantum entanglement, which lies at the heart of quan-
tum information processing, also characterizes the 
quantum phases and dynamics of many-​body systems181. 
Growth and propagation of entanglement have been 
measured in a 1D spin chain169. Entanglement entropy 
has been probed using the interference of two copies of a 
many-​body state182. Single-​site and single-​atom address-
ing techniques can be used to prepare specific initial 
states for investigating quantum walks of atoms172,183 or 
spin-​wave propagations42,184. Non-​equilibrium dynamics 
in isolated quantum systems is among the most fun-
damental problems in statistical physics, and in this 
direction, several intriguing phenomena have been 
observed, such as quantum thermalization185 and many-​
body localization186. Cooling in optical lattices is a cen-
tral issue in quantum simulations with optical lattice 
systems. Entropy redistribution, which is one possible 
candidate to overcome the issue, has been demonstrated 
by locally manipulating the optical potential179,187.
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Synthetic gauge fields
Many fascinating phenomena in solids188 that arise from 
the interaction of electrons with electromagnetic fields and 
spin–orbit coupling cannot be simulated directly, owing 
to the charge neutrality of atoms. However, in the past 
decade, several advances have been made to artificially 
engineer such effects. In the following, we introduce tools 
to implement artificial gauge fields, spin–orbit coupling 
and topologically non-​trivial bands189 in optical lattices.

Artificial magnetic fields and topological lattices. The 
basic idea of emulating a charged particle in a vector 
potential field leads back to the Aharonov–Bohm effect. 
When a charged particle moves around a solenoid, the 
particle acquires a phase proportional to the magnetic 
flux that penetrates the closed trace. This effect can 
be mimicked by the geometric phase acquisition of a 
quantum state. When atomic internal states are cou-
pled with Raman lasers, laser-​dressed atoms in a non-​
uniform magnetic field can acquire Berry phases owing 
to the underlying Berry gauge field190. This technique, 
which was originally realized in BECs, has also been 
applied to observe a Peierls phase in a lattice potential54. 
Alternatively, a Raman-​assisted tunnelling technique 
that couples neighbouring lattice sites by resonant 
Raman transitions is also accompanied by a Peierls 
phase acquisition. This method does not require atomic 
internal degrees of freedom but needs site-​dependent 
energy offsets, created either by magnetic field gradients 
or by superlattice potentials to suppress the bare tunnel-
ling and to resolve the tunnelling resonance. The atoms 
moving around a plaquette, the smallest closed loop 
for the atoms in the lattice, can acquire a non-​zero tun-
nelling phase that mimics the Aharonov–Bohm phase 
acquired around a plaquette with non-​zero magnetic 
flux. This technique was used to realize staggered191 and 
strong uniform magnetic fields192–194. The latter was then 
used to realize the topological Hofstadter model with a 
non-​zero Chern number, measured using the centre-​of-​
mass motion induced by the anomalous Hall response73. 
An artificial gauge field can be engineered not only with 
a Raman laser, but also by periodically modulating the 
phase of the lattice potential off-​resonantly with respect 
to the bandgap or the on-​site interaction energies. This 
rapid shaking of the lattice induces an inertial force on 
the atoms with respect to the lattice frame. In the frame-
work of Floquet theory, the fast modulation is averaged 
out, and a Floquet–Bloch band describes the system 
in which a complex tunnelling matrix element is engi-
neered. With this Floquet engineering, artificial gauge 
fields53, staggered magnetic fields26 and the topological 
Haldane model23 have been realized. The lattice shak-
ing approach has the advantage that it does not require 
an additional laser194. More recently, the technique 
was extended to engineer density-​dependent gauge 
fields195–197, a step towards the simulation of dynamical 
gauge fields, and to measure the Chern numbers in the 
Haldane model following a quench198. A detailed com-
parison of various synthetic gauge-​field implementations 
is given in Supplementary Section 4.

Synthetic dimensions. The available dimensions are 
not limited to the spatial ones, but can also be repre-
sented by time, internal states or momentum space. 
The dynamical version of the quantum Hall effect, also 
known as the Thouless charge pump, is realized with 
time as the second dimension. Quantized centre-​of-​
mass transport per cycle is observed for both bosonic 
and fermionic systems36,37. Using the internal degrees 
of freedom of atoms (for example, the Zeeman states in 
alkali-​metal atoms) as artificial lattice sites, a synthetic 
dimensional lattice is realized, within which a chiral edge 
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current has been observed199,200. The coupling of internal 
states by a laser beam mimics the tunnelling between 
neighbouring sites. Here, the Peierls phase along the 
artificial site direction depends on the real lattice site 
position through the position dependence of the phase 
difference between the optical lattice and the coupling 
laser. Thus, atoms that move around a plaquette of the 
synthetic 2D lattice can acquire a phase. A momentum-​
space lattice can be realized through the coupling of 
discrete momentum states. Using laser-​coupled internal 
states as the second dimension, a 2D lattice with non-​
zero flux was engineered201. Different from a normal 
lattice, these synthetic-​dimension approaches realize 
hard-​wall boundary conditions with a limited number 
of sites along the artificial lattice direction, and the inter-
actions along the artificial dimensions are non-​local202, 
establishing them as unique systems in the quantum 
simulation toolbox.

Spin–orbit coupling. Spin–orbit coupling can be engi-
neered through the Raman coupling of internal states or 
by Raman-​laser-​assisted tunnelling in an optical lattice 
owing to spin–momentum locking203–206. Furthermore, 
optical Raman lattices207–209 have been implemented to 
realize 2D spin–orbit coupling with topological bands 
and also to realize a 3D semi-​metal. In the Raman-​lattice 
scheme, two pairs of lasers simultaneously form the con-
ventional lattice and the necessary Raman potentials to 
realize 2D spin–orbit coupling210,211 (see Supplementary 
Section 4 for a comparison of different implementation 
schemes).

Two-​electron atoms
Compared with alkali-​metal atoms, which have a single 
valence electron that governs the physics of interest, 
two-​electron systems, such as alkaline-​earth-​metal and 
alkaline-​earth-​metal-​like atoms (such as Yb), provide 
additional unique features. Among these, access to 
SU(N) symmetry and two-​orbital systems offer intrigu-
ing quantum simulation tools and techniques that are 
otherwise impossible to perform. In this section, we 
address the preparation and detection methods of such 
SU(N) and two-​orbital physics.

SU(N) systems. The ground electronic state of two-​
electron atoms is represented by a term 1S0, where both 
the electron spin and orbital angular momenta are zero. 
Although bosonic isotopes have no nuclear spin, fermi-
onic isotopes of, for example, 87Sr, 171Yb and 173Yb have 
non-​zero nuclear spins, I, of 9/2, 1/2 and 5/2, respec-
tively. The fact that the spin degree of freedom in the 1S0 
state of fermionic two-​electron atoms is solely attributa-
ble to the nuclear spins, and that the interatomic poten-
tial scarcely depends on the nuclear spins, results in a 
nearly ideal SU(N) symmetry212, where N = 2I + 1. The 
unique quantum magnetic phases for a Fermi–Hubbard 
model with SU(N) symmetry are extensively studied 
theoretically and expected to yield rich physics212. One 
straightforward consequence of the SU(N) symmetry is 
the absence of spin-​exchange collisions, which differs 
from the case of alkali-​metal atoms and results in stable 
populations of each spin component68,213. This stability 

is advantageous in the implementation of synthetic 
dimensions using this large spin system200.

The enlarged spin symmetry of SU(N) can be a 
powerful tool to lower the temperature of atoms in an 
optical lattice and is known as the Pomeranchuk cool-
ing effect214. During the adiabatic loading of the atoms 
into the optical lattice, the total entropy is constant. At 
unity filling, for example, each localized atom can carry 
a large entropy in the spin degrees of freedom, result-
ing in cooling of the system. This Pomeranchuk cooling 
effect has been confirmed by doublon production-​rate 
measurements215, in situ density distributions216 in a 
spin-​uncorrelated Mott region at high temperatures, 
and antiferromagnetic spin-​correlation measurements 
at low temperatures70. Special care needs to be taken 
when manipulating the nuclear spin degrees of freedom 
of the SU(N) fermions, which are nearly 1,000 times 
less sensitive to external magnetic fields than electron 
spins. Instead of an external magnetic field widely used 
for alkali atoms, one can use a pseudo-​magnetic field 
that originates from a spin-​dependent light shift gener-
ated by an off-​resonant circularly or linearly polarized 
light field68,217. Such a pseudo-​magnetic field gradient 
has been used to measure spin populations in optical 
Stern–Gerlach measurements68 and to optically induce 
nuclear-​spin singlet–triplet oscillations70. Note that this 
reduced sensitivity to external magnetic fields, combined 
with the availability of optical manipulation methods, 
is advantageous for quantum information processing 
applications.

Two-​orbital systems. The existence of long-​lived meta-
stable 3P0 and 3P2 electronic states in two-​electron atoms 
gives rise to unique manipulation tools. The resulting 
ultra-​narrow optical transitions between the 1S0 ground 
state and these metastable states (‘clock transitions’) can 
be a versatile tool for an occupancy-​resolved spectro
scopy45–49 in which the on-​site collisional shift is much 
larger than the spectral linewidth.

Furthermore, the existence of electronic angular 
momentum in the 3P2 state provides a tool for tuning 
the interatomic interaction between atoms in the 1S0 
and 3P2 states through a magnetic Feshbach resonance 
induced not only by isotropic interactions, but also 
by anisotropic interatomic interactions218,219. Near a 
Feshbach resonance, the bound state is mixed with 
the scattering state220, which can enhance the strengths  
of optical Feshbach resonances221. This enhancement of 
optical Feshbach resonances will become a versatile asset 
for controlling the ground-​state interatomic interactions 
of two-​electron atoms. Note that optical Feshbach reso-
nances have already been demonstrated for the related 
1S0–3P1 transition77,78, and, because of the relatively nar-
row linewidth, efficient control with only small losses 
was realized.

The absence of electronic angular momentum 
in the 3P0 state provides an experimental platform 
for a two-​orbital 1S0 + 3P0 SU(N) system, whose rich 
quantum phases have been theoretically studied222. 
Interestingly, the orbital degrees of freedom and inter-
orbital nuclear-​spin-​exchange coupling provide an 
SU(N) symmetrical orbital Feshbach resonance82–84, 
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similar to the magnetic Feshbach resonance of alkali 
atoms with electron spin degrees of freedom and hyper-
fine coupling. The observed molecular bound state  
in the 1S0 + 3P0 state223 can be similarly exploited for use in  
optical Feshbach resonances.

The two-​orbital 1S0 + 3P0 system is also proposed224 
as an ideal experimental base for studying spin–orbital 
physics, such as the Kondo effect222,225, for which exper-
imental efforts using 173Yb and 171Yb have recently been 
reported226,227.

Outlook
Ultracold atoms in optical lattices realize several theoret-
ical models, such as the Hubbard, Heisenberg and Ising 
models, which are crucial in condensed matter physics. 
We have described various tools for the quantum simula-
tion of these theoretical models and several applications 
for the quantum simulation of both numerically hard 
and conceptually important problems228.

Finally, we briefly outline future directions as well as 
challenges and opportunities for quantum simulation 
with ultracold atoms in optical lattices. Although the 
currently achieved temperature is low enough to study 
new behaviours, such as pseudo-​gap phenomena of the 
Fermi–Hubbard model, one important technical issue is 
reaching low enough temperatures for fermionic atoms 

in an optical lattice, to enable the investigation of the 
underdoped region of high-​Tc cuprate superconduc-
tors. Note that the temperature of fermions in an opti-
cal lattice is of the order of nano-​kelvin, which is much 
colder than the sub-​kelvin temperatures for electrons in 
solids. However, the relevant quantity in this case is the 
temperature scaled by the hopping matrix element, T/t, 
which is of the order of 0.1 for ultracold atoms, whereas 
it is typically below 10–4 for electrons in solids (Table 1). 
Several schemes have been discussed229–231. Different lat-
tice configurations predicting higher Tc (ref.232) would 
be interesting new targets for realizing unconventional 
high-​Tc superfluids. A further important direction 
is quantum computing with ultracold atoms, which 
can be pursued with a Rydberg atom tweezer array233. 
Noisy intermediate-​scale quantum devices234 would 
be an important near-​term target. Many sophisticated 
tools, developed for quantum simulation, can also be 
applied to other fields, such as precision measurements 
with a Fermi-​degenerate optical lattice clock47. Future 
work will pursue other fundamental physics research235, 
such as the search for new particles using cold atoms 
or molecules in a collisional-​energy-​shift-​suppressing 
optical lattice.
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